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Galor and Ryder [Journal of Economic Theory 49 (1989), 360–375] establish conditions
for the existence of equilibrium in a Diamond-type overlapping-generations (OLG)
model. Although theoretically appealing, these conditions are implicit and not convenient
to apply. This paper provides explicit and easily applied conditions for the existence and
uniqueness of steady-state equilibrium, with which one only needs to check the first
derivatives of the production and utility functions and their interactions, with no need to
solve the optimization problem. Our theorems on the existence and uniqueness of
steady-state equilibrium can be applied to a larger class of OLG models that do not
require second-order differentiability of the production and utility functions. We present
examples to show how to check the existence and uniqueness of equilibrium.
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1. INTRODUCTION

The overlapping-generations (OLG) model introduced by Allais (1947) and
Samuelson (1958) and extended by Diamond (1965) has been widely used in
economic analyses, in fields such as public economics, monetary economics, eco-
nomic growth, development economics, and international economics. However,
the existence and uniqueness of equilibrium has been an issue haunting the users
of the OLG model. Most prior studies have either provided illustrative numerical
examples to show the existence of equilibrium or simply assumed that equilibrium
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exists in the OLG model. This paper will develop a new approach to existence
and uniqueness and provide easily checkable conditions for the existence and
uniqueness of nontrivial steady-state equilibrium in an OLG model.

Galor and Ryder (1988, 1989, 1991) advanced the literature by examining the
conditions for the existence of equilibrium for the Diamond-type OLG model
with productive capital. They demonstrated that the Inada conditions, along with
well-behaved preferences, are not sufficient to warrant the existence of a non-
trivial equilibrium in an OLG economy with production. They introduced the
strengthened Inada condition and provided sufficient conditions for the existence
of nontrivial steady-state equilibrium, which are requirements on production func-
tion and savings function and the interaction of these functions. Studies extending
Galor and Ryder’s work (1989) have usually imposed more restrictive conditions.
For example, Konishi and Perera-Tallo (1997) imposed the condition that the labor
share of output does not go to zero when the capital stock goes to zero, called
nonvanishing labor share (which is stronger than Galor and Ryder’s strengthened
Inada condition), whereas on the consumption side they imposed the condition
that the Engel curve must be concave near the origin.1

This paper introduces a new approach to the existence and uniqueness of steady-
state equilibrium in OLG models. We generalize the existing OLG model by
relaxing the assumption of second-order differentiability of production and utility
functions. Thus, our existence theorems can be applied to a broader range of
preferences and technologies, specifically, to models with production and util-
ity functions not second-order differentiable. Our theorems require neither the
strengthened Inada condition as in Galor and Ryder (1989), nor the traditional
Inada condition as in McCallum (1983).

Despite the generalization, we are able to provide explicit and easily applicable
conditions for the existence and uniqueness of equilibrium in the OLG model.
Our conditions involve only first derivatives of production and utility functions.2

One only needs to check the derivatives of the production and utility functions
and their interactions, without solving for the optimization problem. We provide
examples to illustrate how to use our theorems.

2. THE GENERALIZED MODEL

The model is a generalized Diamond-type OLG model with productive capital. The
economy produces one good, which can be either consumed or invested. Individ-
uals live for two periods, working and saving in the first period, and being retired
and consuming savings and accrued interest in the second period. Individuals are
identical within and across generations.

Let Lt be the number of workers in period t. The population grows at a rate
n, i.e., Lt+1 = (1 + n)Lt . Let Kt be capital in period t. The production function
exhibits constant returns to scale in both factors. The output, in period t, is Yt =
F(Lt ,Kt) = Ltf (kt ), and output per worker is yt = f (kt ), where kt = Kt/Lt is
the capital–labor ratio, and yt = Yt/Lt is the ratio of output to labor.
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Factor markets are perfectly competitive, so that the rate of return to each factor
is equal to its marginal product; i.e., rt = f ′(kt ), wt = f (kt ) − ktf

′(kt ), where rt

is the rate of return on capital in period t and wt is the rate of return to labor, or
the wage rate.

In this paper, the production function f is defined on [0, ∞) and is assumed to be
continuously differentiable of degree one, strictly increasing, and strictly concave.

Individuals born at time t have an intertemporal utility function, u(ct
t , c

t
t+1).

The utility function is continuous over nonnegative first- and second-period con-
sumption. In this paper, we always assume that the utility function is continuously
differentiable of degree one on R2

++ and is strictly increasing in ct
t for any fixed

level of ct
t+1 > 0, strictly increasing in ct

t+1 for any fixed level of ct
t > 0, and

strictly quasiconcave. More precisely, the utility function, u, satisfies the following
conditions:

u1
(
ct
t , c

t
t+1

)
> 0, u2

(
ct
t , c

t
t+1

)
> 0, ∀ (

ct
t , c

t
t+1

) � 0,

lim
ct→0

u1
(
ct
t , c

t
t+1

) = ∞, ∀ct
t+1 > 0,

lim
ct+1→0

u2
(
ct
t , c

t
t+1

) = ∞, ∀ct
t > 0,

u11
(
ct
t , c

t
t+1

)
[< 0, and u22

(
ct
t , c

t
t+1

)
< 0.

Let st be savings for an individual. For any given utility function, substituting
the two-period budget constraints into the utility function, we obtain a constrained
utility function for an individual,

u
(
ct
t , c

t
t+1

) = u[wt − st , (1 + rt+1 − δ)st ],

where δ is the depreciation rate. For any fixed wt > 0 and rt+1 > 0, we define
the optimal (utility-maximizing) savings function in period t of an agent born in
period t as

st = s(wt,rt+1) = arg max
0≤st≤wt

u[wt − st , (1 + rt+1 − δ)st ]. (1)

Under continuity, monotonicity, and the strict quasiconcavity of preferences for the
utility function u, it is known that the savings function s(wt,rt+1) is well-defined,
single-valued and continuous.

The market clearing condition, demand for capital equal to supply of capital
(savings), is as follows:

kt+1= s[f (kt ) − ktf
′(kt ), f

′(kt+1)]

1 + n

=
arg max

0≤st≤f (kt )−kt f ′(kt )

u[f (kt ) − ktf
′(kt ) − st , (1 + f ′(kt+1) − δ)st ]

1 + n
. (2)

In the steady-state equilibrium of the generalized OLG economy, all the endoge-
nous variables are time-invariant, and thus, the above dynamics of the system can
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be represented by the following equation:

k = s[f (k) − kf ′(k), f ′(k)]

1 + n

=
arg max

0≤s≤f (k)−kt f ′(k)

u[f (k) − kf ′(k) − s, (1 + f ′(k) − δ)s]

1 + n
. (3)

In contrast to prior studies, throughout this paper we assume that the production
and utility functions have continuous differentials of only first degree on R2

+. The
relaxation of the second derivatives assumption allows us to consider a much
broader range of production technologies and preferences.

3. SOME PRELIMINARIES

For a given production function f and a given population growth rate n satisfying
−1 < n, we define three functions:

φ(k)= s(f (k) − kf ′(k), f ′(k))

= arg max u[f (k) − kf ′(k) − s, (1 + f ′(k) − δ)s], for all k > 0, (4)

P(f, n) = {k > 0: f (k) − kf ′(k) > (1 + n)k}, (5)

ξ(k) = u1[f (k) − kf ′(k) − (1 + n)k, (1 + n)k(1 + f ′(k) − δ)]

u2[f (k) − kf ′(k) − (1 + n)k, (1 + n)k(1 + f ′(k) − δ)]
,

for all k ∈ P(f, n), (6)

where φ(k) is the savings function, P(f, n) is a set of capital–labor ratios k that
satisfy f (k) − kf ′(k) > (1 + n)k (i.e., the wage rate is greater than investment
(savings), or the first-period consumption is positive), and ξ (k) stands for the
marginal rate of substitution between first- and second-period consumption. Note
that second-period consumption is positive, i.e., (1 + n)k(1 + f ′(k) − δ) > 0, for
all k > 0, and the domain of function ξ (k) is P(f, n).

We now present three lemmas in order to establish a theorem of existence.

LEMMA 1. If the utility function u satisfies conditions (8), (9), and (10), then

(i) for any c > 0, we have

lim sup
(c1,c2)→(c,0)

u1(c
1, c2) < ∞ and lim sup

(c1,c2)→(0,c)

u2(c
1, c2)

< ∞; (7)

(ii) for an yc > 0, we have

lim
(c1,c2)→(c,0)

u2(c
1, c2) = ∞ lim

(c1,c2)→(0,c)

u1(c
1, c2) = ∞; (8)

(iii) for any given value w > 0, r > 0, we have

0 < s(w, r) < w; (9)
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i.e., for any given constrained utility function, we can obtain an interior solution, not
a corner solution.

Proof. See Online Appendix 1 (http://journals.cambridge.org/MDY).

The following theorem describes the equilibrium conditions in general for this
economy.

PROPOSITION 1. Suppose that the utility function u satisfies conditions (8),
(9), and (10), and the production function f and f ′ satisfy conditions (4)–(6), then
for any given population growth rate n satisfying −1 < n, and for any given
depreciation rate δ satisfying 0 ≤ δ ≤ 1, k̄ is a nontrivial steady-state equilibrium
of the OLG economy if k̄ ∈ P(f, n) and satisfies

ξ(k̄) = 1 + f ′(k̄) − δ. (10)

Proof. See Online Appendix 2 for a straightforward proof.

Remark. If the production function f satisfies the condition

f (k) − kf ′(k) < (1 + n)k, for all k > 0, that is, P (f, n) = ∅,

then for any utility function u that satisfies conditions (8)–(10) [or conditions (8)
and (9)], the only steady-state equilibrium of the OLG economy is characterized
by zero production and consumption (a trivial equilibrium).

The result given in the above remark is well known in the literature. In our
generalized model, it can be proved using Proposition 1.

4. PROPERTIES OF THE UTILITY AND PRODUCTION FUNCTIONS

This section discusses some properties of the utility and production functions that
will be utilized in the next section to establish the existence of nontrivial steady-
state equilibrium. In order to find a nontrivial steady-state equilibrium, we need
to find an equilibrium k that satisfies the condition in Proposition 1 (i.e., equation
(10)). Traditionally, to determine the range of possible equilibria, an upper bound
to the attainable capital k̃ is first figured out, so that the possible nontrivial steady-
state equilibrium will be in (0, k̃), as in Galor and Ryder (1989). We will find
another upper bound that will narrow the range of possible equilibrium values of
the capital–labor ratio. The following proposition describes the upper bound of
the capita–labor ratio, which is essential in this section.3

PROPOSITION 2. If the production function f, defined on [0,∞), satisfies
conditions (4)–(6), then there exists k̂ > 0 such that

f (k) − kf ′(k) < (1 + n)k, for all k > k̂. (11)

Moreover, if k̂ is taken to be the inferior limit of k satisfying (11), then k̂ is an
upper bound of the possible equilibrium capital–labor ratio.

https://doi.org/10.1017/S1365100510000878 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000878


304 JINLU LI AND SHUANGLIN LIN

To derive the conditions for the existence of a nontrivial steady-state equilib-
rium, we need to discuss the characteristics of utility functions further. The next
proposition describes the behavior of the utility function at the boundary.

LEMMA 2. If the utility function u satisfies conditions (8), (9), and (10), then
for any given c > 0, we have

lim
(c1,c2)→(0,c)

u1(c
1, c2)

u2(c1, c2)
= ∞, (12)

lim
(c1,c2)→(c,0)

u1(c
1, c2)

u2(c1, c2)
= 0. (13)

Furthermore, if there exists k̂ ∈ P(f, n) such that f (k̂)− k̂f ′(k̂) = (1+n)k̂, then
we have

lim
k→�

k,k∈P(f,n)

ξ(k) = ∞. (14)

Proof. The first two equalities of this proposition follow immediately from parts
(i) and (ii) of Lemma 1. The last equality can be derived from the first equality
using the condition f (k̂) − k̂f ′(k̂) − (1 + n)k̂ = 0.

5. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF NONTRIVIAL
STEADY-STATE EQUILIBRIUM

We are now ready to identify some conditions on the utility and production
functions, which ensure that the generalized OLG model has at least one nontrivial
steady-state equilibrium.

THEOREM 1. Assume that the utility function u satisfies conditions (8), (9),
and (10), and the production function f satisfies conditions (4)–(6). If the produc-
tion function f and the utility function u satisfy the conditions

(a) P(f, n) 	= ∅,
(b) There exists k′ ∈ P(f, n) such that

lim inf
k→k′,k∈P(f,n)

ξ(k)

f ′(k)
< 1, (15)

then for a given population growth rate n satisfying −1 < n, and for any given
depreciation rate δ satisfying 0 ≤ δ ≤ 1, the OLG economy has at least one
nontrivial steady-state equilibrium.

Proof. From conditions (a) and (b), we can find a point k0 ∈ P(f, n), which is
very near to point k̂ ∈ P(f, n), such that

ξ(k0) < f ′(k0). (16)

From the definition of P(f, n), we have

f (k0) − k0f
′(k0) > (1 + n)k0.
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Because the production function f and its derivative function f ′ satisfy conditions
(4)–(7), applying Lemma 4, we see that the set {k > k0 : f (k)−kf ′(k) < (1+n)k}
is not empty. Hence if we let

k1 = inf {k > k0 : f (k) − kf ′(k) < (1 + n)k},
by using the continuity of f and f ′, we get k0 < k1, [k0, k1) ⊂ P(f, n), and

f (k1) − k1f
′(k1) = (1 + n)k1. (17)

From the continuity and the conditions in (8), (9), and (10) on the utility function,
the function ξ (k) is well-defined and continuous on the interval [k0, k1). For any
given rate of capital depreciation δ satisfying 0 ≤ δ ≤ 1, inequality (16) implies

ξ(k0) < 1 + f ′(k0) − δ. (18)

On the other hand, from conditions (4)–(6) and applying (17) and Lemma 1, we
get

lim
k→k−

1

ξ(k) = ∞. (19)

Because limk→k1 f ′(k) = f ′(k1) < ∞, applying (19), there exists k2 ∈ (k0, k1)

which is near to k1, such that

ξ(k2) > 1 + f ′(k2) − δ. (20)

Combining (18) and (20), from the continuity of the functions ξ(k), f ′(k) and
applying the Intermediate Value Theorem, there exists at least one point k̄ ∈ (k0,
k1) such that

ξ(k̄) = 1 + f ′(k̄) − δ.

From Proposition 1, we see that k̄ is a nontrivial steady-state equilibrium.

Remark. If lim
k→�

k
f ′(k) < ∞, then condition (b) in Theorem 1 can be replaced

by the following stronger condition:

(b′) there exists
�

k ∈ P(f, n) such that lim inf
k→�

k,k∈P(f,n)

ξ(k) < lim
k→�

k

f ′(k). (15′)

In case lim inf
k→�

k,k∈P(f,n)
ξ(k) = ∞ and lim

k→�
k
f ′(k) = ∞, we can consider

the limit of their ratios and apply the condition in (15). But the condition in (15′)
is not applicable in this case.

The properties and behavior of the production function f and its derivative
functionf ′ near zero have drawn a lot of attention in the literature. On the basis of
Theorem 1, we can easily obtain the following corollary as a special case where
k′ is 0.

COROLLARY 1. Assume that the utility function u satisfies conditions (8),
(9), and (10), and the production function f satisfies conditions (4)–(6). If the
production function f and the utility function u satisfy the conditions
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(a) 0 ∈ P(f, n) (implying P(f, n) 	= ∅),
(b) lim infk→0,k∈P(f,n) ξ(k)/f ′(k) < 1,

then for a given population growth rate n satisfying −1 < n, and for any given
depreciation rate δ satisfying 0 ≤ δ ≤ 1, the OLG economy has at least one
nontrivial steady-state equilibrium.

Prior studies have been based on strong assumptions on the production function.
The Inada condition on production function f is defined by

lim
k→0

f ′(k) = ∞. (21)

Galor and Ryder (1989) developed a stronger condition than the Inada condition
on the production function, called the strengthened Inada condition,

lim
k→0

(−kf ′′(k)) > 1 + n. (22)

Using this condition, they provided significant results about the existence of equi-
librium in the OLG models. Note that this condition is not used in this paper, and
the existence of f ′′(k) is not required in this paper. Theorem 1 and Corollary 1
depend on neither the strengthened Inada condition nor the Inada condition. With
the Inada condition, we can obtain the following corollary based on Corollary 1.

COROLLARY 2. Assume that the utility function u satisfies conditions (8),
(9), and (10), and the production function f satisfies conditions (4)–(6) and the
Inada condition. If the production function f and the utility function u satisfy the
conditions

(a) 0 ∈ P(f, n) [which implies that P(f, n) 	= ∅],
(b) lim infk→0,k∈P(f,n) ξ(k) < ∞,

then for a given population growth rate n satisfying −1 < n, and for any given
depreciation rate δ satisfying 0 ≤ δ ≤ 1, the OLG economy has at least one
nontrivial steady-state equilibrium.

Proof. Combining condition (b) of this corollary and the Inada condition, we
obtain

lim inf
k→0,k∈P(f,n)

ξ(k)

f ′(k)
= 0.

Then this corollary follows immediately from Theorem 1.

The Inada condition does not ensure that P(f, n) 	= ∅. The following lemma
shows that Galor and Ryder’s condition ensures thatP(f, n) 	= ∅.

LEMMA 3. If the production function f and its derivative function f ′ satisfy
conditions (4)–(6) and if f ′′ exists on (0,∞) satisfying limk→0(−kf ′′(k)) > 1+n,
then there exists κ0 > 0 such that f (k) − kf ′(k) > (1 + n)k, for all 0 < k < κ0.
Therefore, P(f, n) 	= ∅.
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Proof. Under conditions (4)–(7), it is known that

f (k) − kf ′(k) > 0, for all k > 0. (23)

Using f (0) ≥ 0 and (23), we get

lim
k→0

(f (k) − kf ′(k)) = a ≥ 0. (24)

So if we define the value of f (k)− kf ′(k) to be a when k = 0, then f (k)− kf ′(k)

is a continuous function on [0, ∞). From Galor and Ryder’s condition (22), there
exists κ0 > 0 such that −kf ′′(k) > 1 + n, for all 0 < k < κ0. Noting that

d(f (k) − kf ′(k))

dk
= −kf ′′(k),

and applying the Mean Value Theorem for function f (k) − kf ′(k), for all 0 <

k < κ0, we have

f (k) − kf ′(k) = −k1f
′′(k1)k + a (for some 0 < k1 < k)

≥ −k1f
′′(k1)k

> (1 + n)k.

Applying Corollary 2 and Lemma 5, we obtain the following corollary.

COROLLARY 3. Assume that the utility function u satisfies conditions (8),
(9), and (10), and the production function f satisfies conditions (4)–(6). If the
production function f is continuously differentiable of degree 2 and satisfies Galor
and Ryder’s strengthened Inada condition in (22), and the utility function u satisfies
condition (b) in Corollary 2, i.e.,

lim
k→0

(−kf ′′(k)) > 1 + n and lim inf
k→0,k∈P(f,n)

ξ(k) < ∞,

then for a given population growth rate n that satisfies −1 < n, and for any given
depreciation rate δ that satisfies 0 ≤ δ ≤ 1, the OLG economy has at least one
nontrivial steady-state equilibrium.

Remarks.

(1) In Corollary 3 above, the first condition is the strengthened Inada condition introduced
by Galor and Ryder (1989). The second condition is developed by us.

(2) The result in Corollary 3 is more general than the result in Proposition 2 in Konishi
and Perera-Tallo (1997). The first condition of Proposition 2 in their paper is exactly
the same as the first condition of Corollary 3. But the second condition in their
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paper is
lim sup

k→0
ξ(k) < ∞,

which is stronger or more restrictive than the second condition of Corollary 3. Hence,
Proposition 2 in Konishi and Perera-Tallo (1997) is a special case of Corollary 3.

We now provide two examples to show how to use our theory to check the
existence of equilibrium. The first example is simple, with a typical utility and a
production function, whereas the second one is complicated, with both production
and utility functions not being second-order differentiable.

Example 1
Assume that the utility function is u(ct

t , c
t
t+1) = ct

t c
t
t+1, where ct

t = f (kt ) −
ktf

′(kt ) − kt+1 and ct
t+1 = kt+1[1 + f ′(kt+1)], based on the budget constraints.

In the steady state, u(c1, c2) = c1c2, where c1 = f (k) − kf ′(k) − k and c2 =
k[1 + f ′(k)]. Assume that the steady-state production function is f (k) = 2k0.5,
which implies that f ′(k) = k−0.5. Assume, for simplicity, that n = 0 and δ = 0.

Now let us examine the set P(f, n), which includes all k that enable nonnegative
first-period consumption:

P(f, n) = {k > 0: f (k) − kf ′(k) > (1 + n)k}
= {k > 0: 2k0.5 − k0.5 − k > 0}
= {k > 0:

√
k < 1}

= {k > 0: k < 1}
= (0, 1).

It is clear that P(f, n) 	= ∅, which implies that the closure P(f, n) = [0, 1] 	= ∅.
Therefore, condition (a) in Theorem 1 is met. By taking the partial derivates of
the utility function u, we obtain the marginal rate of substitution between the first
and second periods of consumption, ξ (k), as follows:

ξ(k) = u1

u2
= c2

c1
= k[1 + f ′(k)]

f (k) − kf ′(k) − k
for all k ∈ P(f, n).

The ratio of ξ(k) to the marginal product of capital f ′(k) is

ξ(k)

f ′(k)
= k[1 + f ′(k)]

(f (k) − kf ′(k) − k)f ′(k)
= k + k0.5

(2k0.5 − k0.5 − k)k−0.5
= k + k0.5

1 − k0.5
.

Condition (b) in Theorem 1 requires that there exist k′ ∈ P(f, n) such
that

lim inf
k→�

k,k∈P(f,n)

ξ(k)

f ′(k)
< 1.
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It is easy to see that, in this example, if k < −1 + √
2, then ξ(k)/f ′(k) < 1.

Hence, any number k̂ ∈ (0,−1 + √
2) will meet condition (b) in Theorem 1.

Based on Theorem 1, there exists at least one steady-state equilibrium in this
economy.

Setting the marginal rate of substitution equal to the slope the intertemporal
budget constraint, we can solve for the equilibrium easily:

ξ(k) = k[1 + f ′(k)]

f (k) − kf ′(k) − k
= k + k0.5

2k0.5 − k0.5 − k

= k + k0.5

k0.5 − k
= 1 + f ′(k) = 1 + k−0.5.

Thus, k = 13−4
√

3
16 is a unique nontrivial equilibrium.

Example 2
Define a production function and a utility function as follows:

f (k) =
{

3(2k − k ln k), k ∈ (0, 1]
6k1/2, k ∈ [1,∞).

u(c1, c2) =

⎧⎪⎨
⎪⎩

(c1c2)
1
3 , if (c1, c2) ∈ R+ × [0, 1]

2

3
(c1)

1
3 (c2)

1
2 + 1

3
(c1)

1
3 , if (c1, c2) ∈ R+ × [1,∞).

Both the production function and the utility function are continuously differen-
tiable of degree one but not two. With n = 0 and δ = 0, the OLG economy has a
unique nontrivial steady-state equilibrium, approximately k̄ = 2.82296.4

6. UNIQUENESS OF NONTRIVIAL STEADY-STATE EQUILIBRIUM

In this section, we provide a uniqueness theorem for nontrivial steady-state equi-
librium for the generalized OLG model.

THEOREM 2. Assume the utility functional u satisfies conditions (8)–(10) and
the production function f satisfies the conditions (4)–(6). If the utility function u
and the production function f satisfy the following conditions:

(a) there exists k̂ > 0 such that P(f, n) = (0, k̂);
(b) lim infk→0 ξ(k)/f ′(k) < 1;
(c) Function ξ − f ′ is strictly increasing on (0, k̂),

then for the given population growth rate n with −1 < n, and for any given
depreciation rate δ with 0 ≤ δ ≤ 1, the OLG economy has a unique nontrivial
steady-state equilibrium.
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Proof. For all k ∈ (0, k̂), we define γ (k) = ξ(k) − (1 + f ′(k) − δ). From
Theorem 1, we know that k̄ is a nontrivial steady-state equilibrium of the OLG
economy if and only if k̄ ∈ P(f, n) and

γ (k̄) = ξ(k̄) − (1 + f ′(k̄) − δ) = 0.

From condition (c) of this theorem, the function g is a strictly increasing function
on (0, k̂). Noting that the function γ (k) is defined on P(f, n) = (0, k̂), the equation
γ (k) = 0 has at most one solution; that is, the OLG economy has at most one
nontrivial steady-state equilibrium. From Corollary 2, conditions (a) and (b) of
this theorem ensure that the OLG economy has at least one nontrivial steady-
state equilibrium. Of course, all the nontrivial steady-state equilibria must be in
P(f, n) = (0, k̂)

Remarks on Theorems 1 and 2.

(1) In the current model, given the production and utility functions and the set P(f, n),
the function ξ(k) can be derived explicitly.

(2) The conditions in Theorems 1 and 2 can be explicitly checked.
(3) The production function in Corollary 1 of Galor and Ryder (1989), which is consid-

ered a major implication of Propositions 4 and 5 in their paper, is required to satisfy
the extended Inada condition. Lemma 5 in our paper shows that the extended Inada
condition is a stronger or more restrictive condition than our condition P(f, n) 	= ∅.
Thus, the conditions on production function in Theorems 1 and 2 are weaker (less
restrictive) than Galor and Ryder’s conditions in Propositions 4 and 5 of Galor and
Ryder (1989).

(4) In Propositions 4 and 5 of Galor and Ryder (1989), the conditions involve the saving
function and its partial derivatives, and are more difficult to check.

7. CONCLUDING REMARKS

This paper has provided easily applicable theorems to determine the existence
and uniqueness of nontrivial steady-state equilibrium in an OLG model. Our
conditions for the existence and uniqueness are explicit and less restrictive. Based
on our theorem, one need only check the first derivatives of the production and
utility functions and their interactions to determine whether an OLG model has
a nontrivial equilibrium and whether the equilibrium is unique, with no need to
solve the optimization problem.

Our theorems can be applied to OLG models with a broader range of pro-
duction and utility functions, which are only first-order differentiable. Although
most economists assume well-behaved utility and production functions, real world
production and utility functions may be more complicated. Advanced economic
analyses in the future may need to be based on more realistic utility and pro-
duction functions. Our theorems are more general. Numerous models that violate
the conditions required by the earlier studies can still have nontrivial steady-state
equilibria based on our conditions.
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NOTES

1. Following Galor and Ryder’s (1989) work, many other studies emerged. Wang (1993) showed
the conditions for the existence of equilibrium in an OLG model with production and uncertainty.
Galor (1992) developed a two-sector OLG model with the utility and production functions being twice
continuously differentiable and characterized the dynamic system globally. He established sufficient
conditions for the existence of nontrivial steady-state equilibrium in a two-sector OLG model. Li and
Lin (2008) provided easily checkable conditions for the existence and uniqueness of equilibrium in
the two-sector OLG model.

2. The assumption concerning the existence of unique (nontrivial) steady-state equilibrium is
restrictive in prior studies, including Ihori (1978), Tirole (1985), and Weil (1987), where the third
derivatives of utility and production functions are involved. The condition imposed by Galor and
Ryder (1989) involves second derivatives.

3. This proposition can be shown by a result proved by Boldrin (1992), and Jones and Manuelli
(1992). See Online Appendix 3 for a direct proof.

4. A detailed proof is provided in Online Appendix 4.
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