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We study the number of random permutations needed to invariably generate the symmetric group
Sn when the distribution of cycle counts has the strong α-logarithmic property. The canonical
example is the Ewens sampling formula, for which the special case α = 1 corresponds to uniformly
random permutations.

For strong α-logarithmic measures and almost every α , we show that precisely �(1−α log2)−1�
permutations are needed to invariably generate Sn with asymptotically positive probability. A
corollary is that for many other probability measures on Sn no fixed number of permutations will
invariably generate Sn with positive probability. Along the way we generalize classic theorems
of Erdős, Tehran, Pyber, Łuczak and Bovey to permutations obtained from the Ewens sampling
formula.

2010 Mathematics subject classification: Primary 60C05
Secondary 12Y05, 68W20, 68W30, 68W40

1. Introduction

In 1934, van der Waerden [32] raised the question of the minimal number of uniformly random
permutations required to invariably generate Sn with positive probability. Recent breakthroughs
by Pemantle, Peres and Rivin [31] and Eberhard, Ford and Green [15] have resolved van der
Waerden’s question, showing that precisely four permutations are required. We consider the same
question in the context of more general permutation measures related to the cycle structure. The
primary example is the Ewens sampling formula (1) introduced in [19]. It aligns a permutation’s
cycle structure with conditioned independent Poisson random variables and is defined in (1.1).

Elements g1, . . . ,gm of a group G generate the group if the smallest subgroup containing them
is G itself. The symmetric group Sn is the group of permutations of the set [n] := {1, . . . ,n}. We
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say a set of permutations π1, . . . ,πm generate Sn invariably if π ′
1, . . . ,π ′

m generate Sn whenever
π ′

i is conjugate to πi for all i [13]. Invariable generation is conjugacy invariant, and conjugacy
classes of the symmetric group are precisely permutations of the same cycle type, defined to be
the multiset of cycle lengths in the cycle decomposition of a permutation. A permutation fixes a
set of size k if some combination of the permutation cycle lengths sums up to k. If a collection
of permutations π1, . . . ,πm all fix sets of size k, then we can choose a set of conjugates π ′

1, . . . ,π ′
m

that all fix the same set of size k, and thus do not generate all of Sn. For this reason, invariable
generation concerns only the cycle structure of permutations, rather than the action on [n].

Recent developments show that cycle counts converge to independent Poisson random vari-
ables for many measures on Sn as n tends to infinity. Arratia, Barbour and Tavaré have shown
that strong α-logarithmic measures have this property and numerous further results [2, 3, 4,
5]. Measures with general cycle weights are considered in [8, 16] and related permutons are
introduced in [25]. Following this work, Mukherjee used Stein’s method to deduce that a variety
of permutation measures have Poisson limiting cycle counts [29]. Furthermore, the structure of
the short cycles in the Mallows measure was characterized in [21].

In addition to its intrinsic interest, the minimal number of permutations required for invariable
generation has applications to computational Galois theory. One may use this quantity to estimate
the run time of a Monte Carlo polynomial factorization algorithm [12, 24, 30, 31]. This estab-
lishes a connection between the irreducible factors of polynomials and the cycle structure of
permutations. The cycle structure of a permutation is also compared with prime factorization
of integers in the survey [22]. An analogy between divisors of large integers and invariable
generation of permutations is then mentioned in the introduction of [15], postulating a link
between the threshold for invariable generation and small divisors of a set of random integers.

Despite the age of van der Waerden’s question, it was only recently shown that the number
of uniformly random permutations required to invariably generate Sn is bounded. A bound of
O(

√
logn) was first established in [13]. This was improved to O(1) in [26], but the constant was

large (≈ 2100). Pemantle, Peres and Rivin reduced the bound to four in [31], which was then
shown to be sharp by Eberhard, Ford and Green in [15].

We extend the results for uniform permutations to the Ewens sampling formula and beyond.
Along the way, we extend results in [9, 17, 26], replacing counting arguments with a tool known
as the Feller coupling (3.2) introduced in [20, p. 815].

1.1. Ewens sampling and the logarithmic property
The Ewens sampling formula appears throughout mathematics, statistics and the sciences. In the
words of Harry Crane, it ‘exemplifies the harmony of mathematical theory, statistical application,
and scientific discovery’. This is stated in his survey [10]. It and its follow-up [11] give a nice tour
of the formula’s universal character, describing applications to evolutionary molecular genetics,
the neutral theory of biodiversity, Bayesian non-parametrics, combinatorial stochastic processes
and inductive inference, to name a few. The sampling formula also underpins foundational
mathematics in number theory, stochastic processes and algebra.

We start by formally defining the Ewens sampling formula, as well as the strong α-logarithmic
property. Let Poi(λ ) denote the law of a Poisson random variable with mean λ . Fix α > 0 and
let X1, . . . ,Xn be independent random variables in which Xk has law Poi(α/k). For a permutation
π ∈ Sn let Ck denote the number of k-cycles in π . More precisely, Ck is the number of disjoint
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k-element subsets of [n] on which π restricts to a cyclic permutation. We say that the vector
C = (C1, . . . ,Cn) has distribution ESF(α,n) if it satisfies the joint distribution

P[C1 = x1, . . . ,Cn = xn] = P

[
X1 = x1, . . . ,Xn = xn

∣∣∣ n

∑
1

kXk = n

]
. (1.1)

As observed in [19], this can be written explicitly as

P[C1 = x1, . . . ,Cn = xn] =
n!

α(n)

n

∏
j=1

(
α
j

)x

j

1
x j!

1{∑n
�=1 � · x� = n},

where α(n) = α(α + 1) · · ·(α + n − 1). The formulation in (1.1) will be most useful for our
purposes.

The tuple (C1, . . . ,Cn) uniquely specifies the cycle type of a permutation. Furthermore, it is
easy to see that as π ranges over Sn, the tuple (C1, . . . ,Cn) associated with π ranges over the set{

(C1, . . . ,Cn) ∈ {0, . . . ,n}n :
n

∑
k=1

kCk = n

}
.

Thus, (1.1) specifies a measure on the conjugacy classes of Sn. We extend this to a measure on
Sn (also denoted by ESF(α,n)) by weighting all elements of the same class uniformly. Note that
ESF(1,n) is the uniform measure, and therefore the results we establish regarding ESF(α,n) will
generalize the corresponding results about uniform permutations appearing in [15, 31].

A more general family that includes ESF(α,n) is obtained by replacing the Xk in (1.1) with
an arbitrary sequence of independent non-negative integer valued random variables Z1,Z2, . . . .

To avoid intractable distortions when conditioning on ∑kZk = n, logarithmic growth of ∑Zk

is traditionally assumed (see [3]). For our purposes, we require the Zk satisfy the strong α-
logarithmic condition:

|iP[Zi = 1]−α| < e(i)c1,

iP[Zi = �] � e(i)c�, l � 2,
(1.2)

where ∑ i−1e(i) and ∑�c� are both finite.

Besides Poisson, the most commonly used distributions for the Zi are the negative-binomial and
binomial distributions. These are called assemblies, multisets and selections, respectively (see
[3] for more discussion). The proof that all three of these different distributional choices for the
Zi satisfy the strong α-logarithmic property is in [3, Proposition 1.1].

It is no trouble to work at this level of generality, because the limiting cycle structure of
any family satisfying the strong α-logarithmic property is the same as that for an ESF(α,n)
permutation. We will describe this in more detail in Section 1.4, but in short, the number of
�-cycles converges to an independent Poisson with mean α/�.

1.2. Statement of Theorem 1.1
We state our result in terms of random variables Z1,Z2, . . . satisfying the strong α-logarithmic
property in (1.2). The example to keep in mind though is the measure ESF(α,n), since all of
these have the same limiting cycle counts.

Given such a collection let μn(α,Z1,Z2, . . . ,Zn) be the measure induced on Sn via the relation
in (1.1) with Xk replaced by Zk. We define mα = mα(Z1,Z2, . . .) to be the minimum number
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Figure 1. The graph h(α) defined in (1.4). We show that mα = h(α) = sα , but are not sure about the value at the
discontinuities of h. See Question 1 for more discussion.

of permutations sampled according to μn to invariably generate Sn with positive probability as
n → ∞:

mα = inf
m�2

{
m : inf

n�2
P[{π1, . . . ,πm} ⊂ Sn,πi ∼ μn, invariably generate Sn] > 0

}
. (1.3)

Our theorem gives a closed formula for mα = h(α), save for a countable exceptional set. Because
we will reference it several times, we write the expression here:

h(α) =

{
�(1−α log2)−1� 0 < α < 1/ log2,

∞ α � 1/ log2.
(1.4)

See Figure 1.

Theorem 1.1. Let Z1,Z2, . . . be a collection of random variables satisfying the strong α-log-
arithmic condition in (1.2). Let mα = mα(Z1,Z2, . . .), as in (1.3), be the minimum number of
permutations to invariably generate Sn with positive probability. Let h(α) be as in (1.4). For
points of continuity of h it holds that mα = h(α). At points of discontinuity we have h(α) �
mα � h(α)+1.

This has broader implications beyond measures that have the strong α-logarithmic property.
We use it to deduce that any finite collection of random permutations with cycle counts asymp-
totically dominating a Poi(1/ j log2) random variable will fail to generate a transitive subgroup
of Sn.

Corollary 1.2. Suppose that c j � 1/ log2 and Xk ∼ Poi(c j/ j). Let κn be a sequence of probab-
ility measures on Sn such that for random permutations π ∼ κn the cycle structure, C satisfies

d((C1, . . . ,Ck0
),(X1, . . . ,Xk0

))TV → 0
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for all fixed k0. Then, the probability that any fixed number of permutations sampled according
to κn invariably generate a transitive subgroup of Sn goes to 0 as n → ∞.

This corollary is particularly relevant to the results in [8] and [16]. They describe measures on
Sn that are formed by weighting cycle lengths by parameters c j. The limiting cycle structure has
Cj ∼ Poi(c j/ j). Thus, we can create any limiting Poisson cycle structure we like – in particular,
those satisfying Corollary 1.2.

Another source of alternative measures with limiting Poisson cycle counts comes from [29].
This fits into the larger body of work on permutons initiated in [25]. Of particular interest is
Mallow’s measure (introduced in [28]). This measure specifies a parameter qn > 0 that biases
towards more or less inversions in a permutation. A permutation π has probability proportional
to qinv(π)

n , where inv(π) := |{(s, t)|s < t and πs > πt}|.
The recent article [21] begins to characterize the cycle structure of Mallow’s measure. They

find that for (1−qn)−2 � n all cycles are of the order of o(n). The high density of small cycles,
along with [29, Theorem 1.4], which proves a limiting Poisson cycle profile, suggests that no
finite collection of permutations sampled according to Mallow’s measure in this regime will
invariable generate Sn. Note that in the regime (1−qn)−2 
 n the cycle counts converge to those
of a uniformly random permutation. This is a new and exciting area. We are hopeful our result
will find more applications as these objects become better understood.

1.3. Generalizations for the Ewens sampling formula
In proving Theorem 1.1 we connect an approximation sumset model (described in Section 1.4)
back to fixed-set sizes in random permutations. This also takes place in [31] and [15]. These two
articles use a small-cycle limit theorem for uniformly random permutations ([5, Theorem 1]).
Namely, the number of �-cycles in a uniformly random permutation converges to a Poisson
random variable with mean 1/� that is independent of the other small cycles.

Permutations sampled from μn have an analogous limit theorem ([3, Theorem 3.2]), except that
now the �-cycles behave like Poisson random variables with mean α/�. This lets us use similar
ideas to analyse the corresponding sumset model. However, our approach diverges significantly
when we connect back to random permutations, especially in obtaining an upper bound on mα .
The difference is that both [31] and [15] have access to a large canon of results for uniformly
random permutations. We do not. This requires a deep excavation where we extend classical
results to π ∼ ESF(α,n). Along the way we prove many new estimates (see Lemmas 3.1,
3.2 and 3.3, Proposition 3.4 and Lemmas 3.9 and 3.11) for larger cycle lengths in ESF(α,n)
permutations.

We begin by showing that with high probability the only transitive subgroups containing
a permutation π sampled with distribution ESF(α,n) are An and Sn. This is the analogue of
what [26, Theorem 1] proves for uniformly random permutations. This was recently studied in
more detail by Eberhard, Ford and Green in [14]. We plan to explore this vein for ESF(α,n)
permutations in future work. For our current purposes, the following result suffices.

Theorem 1.3. Let π ∼ ESF(α,n). Then with probability 1−o(1) the only transitive subgroups
containing π are An and Sn.

https://doi.org/10.1017/S096354831800007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800007X


858 G. Brito, C. Fowler, M. Junge and A. Levy

Pyber and Łuczak rely on an important theorem of Bovey regarding primitive subgroups. We
need the analogue of it for ESF(α,n) permutations. The minimal degree of 〈π〉 = {πk : k ∈ Z}
is the minimum number of elements of {1, . . . ,n} displaced by some power of π that is not the
identity.

Example 1.4. Consider π = (1234)(567)(89) and τ = (1234567)(89) in S9. The order of π
displacing the fewest elements of {1, . . .9} is π4 = (567), so the minimal degree of 〈π〉 is 3.
Meanwhile, the order of τ displacing the fewest elements is τ7 = (89), so the minimal degree of
〈τ〉 is 2.

Theorem 1 of [9] says that if π is a uniformly random permutation, then for each ε > 0 and
0 < β < 1 we have

P[minimal degree of 〈π〉 > nβ ] < Cε,β nε−β .

We establish a weaker analogue of this result.

Theorem 1.5. Let π ∼ ESF(α,n). For each 0 < β < 1 and any α it holds that

P[minimal degree of 〈π〉 > nβ ] = o(1).

Establishing Theorem 1.3 also requires a generalization of a classical theorem of Erdős and
Turán (see [17, Theorem V]).

Theorem 1.6. Let π ∼ ESF(α,n) and ω(n) be an arbitrary function with ω(n) → ∞. The
probability that the largest prime which divides ∏n

�=1 �C� is larger than nexp(−ω(n)
√

logn) is
1−o(1).

The proof of Theorem 1.3 uses both Theorems 1.5 and 1.6. For all three generalizations we
follow a somewhat similar blueprint to their predecessors. However, the previous work often uses
special features of uniformly random permutations. Counting arguments are heavily employed.
In general, these techniques do not translate to ESF(α,n) permutations. Our approach is to
use the Feller coupling (see Section 3.1) to directly relate the cycle structure to independent
Poisson random variables. In some places this yields more elegant proofs, in others it becomes
a bit technical. Keeping in mind that ESF(1,n) is the uniform measure, this is a nice high-level
approach to extending these results.

1.4. Overview of proof and result for sumsets
Because a fixed set’s size is a sum of cycle lengths of a permutation, invariable generation is
related to sumsets formed from random multisets. The link is developed over a collaborative arc
of Arratia, Barbour and Tavaré [2, 3, 4, 6]. They study the relationship between α-logarithmic
structures and Poisson random variables. Most relevant for our purposes are the descriptions of
the cycle counts C = (C1, . . . ,Cn) for permutations sampled according to μn.

In Theorems 3.1 and 3.2 of [3] they prove that for permutations induced by the strong α-
logarithmic property, the small cycle counts evolve to be independent Poisson random
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variables, and the large cycle counts behave according to the Ewens sampling formula. Fur-
thermore, Lemma 1 of [2] (also discussed in [4]) shows that the Ewens sampling formula can be
cleanly related via the Feller coupling to independent Poi(α/k) random variables. The pay-off
is that we can model the sizes of fixed sets in a permutation with independent Poisson random
variables.

Let X(α) = (X1,X2, . . .) be a sequence of Poisson random variables where Xj has mean α/ j.
The coupling discussed in the previous paragraph allows us to model the sizes of fixed sets in a
permutation with the random sumset

L (X(α)) =
{

∑
j�1

jx j : 0 � x j � Xj

}
.

Returning to our opening question, we can bound the required number of permutations from
above if no fixed set size is common to all permutations. And we can bound the number from
below if there is guaranteed to be a common fixed set size. Consider independent realizations
X(1)(α), . . . ,X(m)(α). The upper and lower bounds correspond to finding extremal values of m
such that

(i)
⋂m

i=1 L (X(i)(α)) = {0} with positive probability, and

(ii) |⋂m
i=1 L (X(i)(α))| = ∞ almost surely.

Now the cycle counts of these permutations converge to independent Poisson random variables
[2, 3, 4, 5]. Thus common elements among independent sumsets correspond to common fixed-set
sizes of independent permutations. So invariable generation is analogous to a trivial sumset inter-
section. On the other hand, an infinite intersection means that common fixed-sets persist among
the permutations. For the case α = 1, the results of [31, Theorem 1.6] and [15, Corollary 2.5]
each imply that four sets suffice in (i). That (ii) holds with three sets is due to [15, Corollary 3.9].
Here is the analogue for general α > 0.

Theorem 1.7. Let sα := inf{m : P[∩m
1 L (X(i)(α)) = {0}] > 0} be the smallest number of i.i.d.

sumset intersections so that the resulting set is trivial with positive probability. Let h(α) be as in
(1.4), and mα as in Theorem 1.1. At points where h is continuous we have sα = h(α), and at the
discontinuities h(α) � sα � h(α)+1.

To establish this result for sumsets, we build upon the ideas in [31] and [15] to prove matching
lower and upper bounds for sα . These bounds can be found in Propositions 4.2 and 5.1. Parts of
the argument are as simple as swapping 1s for αs, but in others, particularly the lower bound,
some care is required.

A relevant quantity for establishing the upper bound is pk = pk(α), the probability that the
element k appears in L (X). Estimating pk(1) is the major probabilistic hurdle in [31]. There are
two difficulties. The first is called a lottery effect: certain unlikely events greatly skew pk. This is
circumvented by using quenched probabilities p̃k, which ignore an o(1) portion of the probability
space (that ∑Xj and ∑ jXj are uncharacteristically large). With this restriction, it is shown in

[31, Lemma 2.3] that p̃k(1) � klog(2)−1. Notice that 4(log2−1) < −1 and a Borel–Cantelli-type
argument implies finiteness of the intersection of the m-independent L (X(i)(α)). Establishing
the quenched formula is the second hurdle. It requires a clever counting and partitioning of
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L (X). We generalize these ideas in Lemma 4.1 to obtain the upper bound

p̃k(α) � Cε k−1+α log2+ε

for any ε > 0. Taking into account the lottery effect, and ignoring a vanishing portion of the
probability space, we can write P[k ∈ ∩m

1 L (X(i))] = ∏m
1 p̃k. When m � �(1−α log2 + ε)−1�,

the product is smaller than n−1, and the probabilities are summable. With this, the Borel–Cantelli
lemma implies the intersection is almost surely finite, and thus it is trivial with positive
probability.

The lower bound in Proposition 5.1 requires more care. We generalize the framework in [15,
Section 3] to higher dimensions to incorporate more than three sumsets as well as different values
of α . Given I ⊆ N and m sumsets we consider the set of differences

S(I;X(1), . . . ,X(m)) := {(n1 −nm,n2 −nm, . . . ,nm−1 −nm) : ni ∈ L (X(i))∩ I}.

We use Fourier analysis (as in [15] and [27]) to study a smoothed version of the indicator function
of this set. In particular, we will work with its Fourier transform F : Tm−1 → C. After obtaining
a pointwise bound on F , we integrate around that torus to obtain, for sufficiently large k and
I = (k1−β ,k], that |S(I,M1, . . . ,Mm)| 
 km−1 and lies in the cube [−ck,ck]m−1 for some c > 0.
The density of these sets is sufficiently high that if we look in a larger interval, with positive
probability we can find j1, . . . , jm ∈ (k,Dk] such that X (1)

j1
, . . . ,X (m)

jm
> 0 and

( jm − j1, . . . , jm − jm−1) ∈ S(I;X(1), . . . ,X(m)).

Combining this with the corresponding point in the set of differences then produces a number in
L (X(1))∩·· ·∩L (X (m)) made solely from values in (k1−β ,Dk] for some constants β ,D > 0. By
partitioning N into infinitely many disjoint sets of this form and repeating this argument for each
of them, we conclude that the set of intersections is almost surely infinite.

1.5. Further questions
There is still much to be done for both components of this paper – random permutations and
random sumsets. Recall that Theorems 1.1 and 1.7 do not pin down the exact behaviour at points
of discontinuity of h. A glaring question is to characterize mα and sα at these points. We are
doubtful our approach generalizes. Characterizing the behaviour at the critical values is likely
difficult, and will require a new idea.

Question 1. What are mα and sα at discontinuity points of h?

For random permutations we would like a more complete characterization than in Corol-
lary 1.2, in particular an upper bound.

Question 2. Show that if a permutation has cycle counts that are asymptotically dominated by
Poisson random variables with mean h−1(2)/k, then two will invariably generate Sn with positive
probability.
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Corollary 1.2 shows that for many permutation measures no finite number will invariably
generate Sn. Possibly if we let the number of permutations grow with n we will see different
behaviour.

Question 3. Let α > 1/ log2. Prove that there are constants β < β ′ such that the probability
β logn Ewens-α permutations generate Sn is bounded away from 0, while β ′ logn fail to generate
Sn with high probability?

We believe that logn is the correct order by the following approximation model. When α >

1/ log2, the fixed set sizes in a random permutation are dense in [n]. So, we can model the
occurrence of each fixed size by independent Bernoulli random variables with some parameter
pα > 0. If one performs N independent thinnings of [n] by including each integer k with prob-
ability pα , then the probability that k belongs to all N subsets is pN

α . Hence, the probability that
there are no common elements in the N-fold intersection is (1− pN

α )n. If we choose N = c logn
this will converge to either 0 or a positive number as we increase c. The difficulty in answering
the question for permutations is that we do not have independence for fixing different fixed set
sizes.

We also have a question in the simpler setting of generating Sn. Dixon’s theorem [13] implies
that two uniformly random permutations will generate either An or Sn with high probability. Does
the analogue hold for ESF(α,n) permutations? Because generation relies on more than just cycle
structure, this may be a hard question.

Question 4. How many ESF(α,n) permutations are needed to generate one of An or Sn with
high probability?

1.6. Notation
Note that α > 0 is fixed throughout. As already discussed, we denote cycle counts of a per-
mutation by C = (C1, . . . ,Cn) with Cj the number of j-cycles. Unless otherwise noted, our
permutations and cycle vectors come from an ESF(α,n) distribution. We will let Y(α) denote
a vector of independent Poi(α/k) random variables that are obtained from the Feller coupling
in (3.2). We will also take X(α) to be a vector of independent Poi(α/k) random variables. This
is done to distinguish the permutation and random sumset settings. Henceforth we will suppress
the α dependence unless there is reason to call attention to it. For an infinite vector, such as Y,
we will use the notation Y[i, j] to denote the sub-vector (Yi,Yi+1, . . . ,Yj).

For I an interval in N define the sumset

L (I,X) :=
{

∑
j∈I

jx j : 0 � x j � Xj

}
,

and set L (X) := L (N,X). Given X define

f�,k(X) = ∑
�< j�k

Xj, g�,k(X) = ∑
�< j�k

jXj. (1.5)

It will be convenient to abbreviate fk := f1,k(X) and gk := g1,k(X). Thus, fk is the number of
available summands smaller than k, and gk is the largest sum attainable with them.
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We will use the notation f � g and f (n) = O(g(n)) interchangeably for the existence of c such
that for all large enough n it holds that f (n) � cg(n). When the c depends on our choice of ε we
will use f �ε g, similarly f �m,ε denotes dependence of the constant on both ε and the number
of intersections m. We use the little-o notation f (n) = o(g(n)) to mean that f (n)/g(n)→ 0. Also,
f (n) = Õ(g(n)) means there is k > 0 such that f (n) = O(logk(n)g(n)). The symbol f (n) ≈ g(n)
means that f (n)/g(n) → c for some c > 0. A sequence of events En occurs with high probability
if liminfP[En] = 1. Also i | j means that i divides j (i.e. there is an integer k with ik = j.)

1.7. Outline of paper
We will lead off with a proof of Theorem 1.1. This comes in two parts: an upper bound from
Theorem 1.7, and a matching lower bound in Proposition 2.3. The upper bound in Theorem 1.7
has two distinct components. We connect random sumsets to ESF(α,n) permutations in Sec-
tion 3.1. This section includes the proofs of Theorems 1.3, 1.5 and 1.6. The second component
is analysing the random sumset model. We do this in Section 4 and provide an upper bound on
sα at Proposition 4.2. The lower bound is Proposition 2.3 and is proved in Section 5.

2. Proof of Theorem 1.1

First we show that h(α) + 1 is an upper bound for the number of ESF(α,n) permutations to
invariably generate Sn. We will use a few lemmas and propositions that come later in the paper,
but prove this now to give the reader a sense of the important bounds needed.

Proposition 2.1. Suppose α is a continuity point of h. A collection of h(α) < ∞ independent
permutations sampled according to an ESF(α,n) invariably generates Sn with positive probab-
ility as n → ∞.

Proof. Suppose m = h(α). Call the permutations π(1), . . . ,π(m). Condition π(1) to be odd.
Lemma 3.11 guarantees this happens with probability bounded away from zero. Define the events

En,k = {π(1), . . . ,π(m) fix an �-set for some k � � � n/2},
Fn,k = {π(1), . . . ,π(m) fix an �-set for some 1 � � � k}.

The probability of a common fixed set size amongst all of the permutations is bounded above by

P[En,k ∪Fn,k] � P[En,k]+P[Fn,k]. (2.1)

Therefore, the π(i) will invariably generate a transitive subgroup of Sn if this quantity is less than
1. By Theorem 1.3 we know this transitive subgroup is with high probability either An or Sn.
Because π(1) is odd, it must be Sn.

Now α is a continuity point of h, so

m = h(α) = �(1−α log2)−1)� > (1−α log2)−1.

It follows that there exists some ε > 0 such that

m = (1− (α + ε) log2)−1.
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Fix ε ′ such that 0 < ε ′ < ε . By Lemma 3.10 there exists a c such that for any k and n and
i = 2, . . . ,m,

P[π(i) fixes a k-set] � ck−δ ,

where

δ = 1− (α + ε ′) log2.

Similarly, by Corollary 3.13 for any k,

P[π(1) fixes a k-set] � ck−δ ·max

{
α +1

α
,

α +1
1

}
.

By independence of the π(i), we conclude

P[π(1), . . . ,π(m)all fix a k-set] � (ck−δ )m ·max

{
α +1

α
,

α +1
1

}
.

By construction we have that δm > 1. A union bound for k0 � k � n/2 ensures that

P[En,k0
] � Ck1−δm

0 . (2.2)

As δm > 1 it follows from (2.2) that we can make P[En,k] as small as we like by fixing a large k.
Now we turn our attention to bounding the probability of Fn,k. We will show that there exists

β > 0 such that

inf
k�1

liminf
n→∞

P[Fn,k] < 1−β . (2.3)

Once we have (2.3) we apply (2.2) with k0 large enough so that P[En,k0
] < β/2. This then gives

(2.1) is strictly less than 1 as n → ∞, as desired.
It remains to establish (2.3). Fix k and let π be an ESF(n,α). The Feller coupling in (3.2)

ensures that each cycle count C� � Y� +1{Jn = 0} for all 1 � � � n for a certain random variable
Jn (defined just above (3.2)). Thus, with high probability we have

C� � Y� for all 1 � � � k.

Since this dominance relation is with high probability, it also applies to π(1) despite being condi-
tioned to be odd. This is because {π(1) is odd} occurs with positive probability by Lemma 3.11.

The event Fc
n,k can be coupled so that it occurs when m independent Poisson sumsets have

empty intersection. Theorem 1.7 ensures that this occurs with some positive probability which is
independent of k (since we are considering infinite sets). This probability provides the claimed
β in (2.3) and completes the argument.

Remark 2.2. The argument above implies that mα � mα+η for all η > 0, since any appropriate
choice of ε ′ in the latter case will hold for the former. It follows that h(α)+1 permutations will
invariably generate Sn with positive probability at discontinuity points of h.

Now we prove a matching lower bound.
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Proposition 2.3. A collection of m < h(α) permutations sampled independently according to
an ESF(α,n) with high probability do not invariably generate Sn, or any transitive subgroup
of Sn.

Proof. Let m < h(α), and fix some ε > 0. By Proposition 5.1 the intersection of the i.i.d.
sumsets with parameter α ,

⋂m
i=1 L (X(i)), is almost surely infinite. It follows that there is some

k0 = k0(ε) such that if k � k0 then

m⋂
i=1

L (X(i))∩ [1,k] �= ∅

with probability at least 1− ε/2.
Fix some k � k0 and call the random permutations π(1), . . . ,π(m). By [3, Theorem 3.1] the

cycle counts C(i)[1,k] of π(i) converge in total variation to X(i) ∩ [1,k]. Then there exists some
n0 = n0(ε,k) such that if n � n0, with probability greater than 1 − ε/2 we have C(i)[1,k] =
X(i) ∩ [1,k] for all i = 1, . . . ,m. Since

m⋂
i=1

L (X(i))∩ [1,k] ⊂
m⋂

i=1

L (X(i) ∩ [1,k]),

with probability at least 1− ε we have that π(1), . . . ,π(m) each fix a set of size � for some � � k.
As ε was arbitrary, this completes our proof.

Theorem 1.1 is a straightforward consequence of the last two propositions.

Proof of Theorem 1.1. Together, Theorems 3.1 and 3.2 of [3] guarantee that the cycle counts
of any measure satisfying the strong α-logarithmic property converge in total variation to the
same distribution as an ESF(α,n) permutation. Hence it suffices to consider ESF(α,n)
permutations.

By Proposition 2.1 we have mα � h(α) at point of continuity of h. At points of discontinuity,
we use Remark 2.2 to deduce that mα � mα+η � h(α)+ 1. Then, by Proposition 2.3 we have
that h(α) � mα for all α , completing our proof.

3. The upper bound for mα

The main goal of this section is to prove that mα � sα . Our primary tool for relating Poisson
sumsets to permutations is the Feller coupling. This is described at the onset of Section 3.1.
We then use it in that section to prove several estimates on the cycle structure of ESF(α,n)
permutations. With these we prove Theorems 1.3, 1.5 and 1.6 in Section 3.2. We put all of this
together and establish Proposition 2.1 in Section 3.3.

3.1. The Feller Coupling
The Ewens sampling formula can be obtained via an elegant coupling attributed to Feller [20,
p. 815] for uniform permutations. The articles [2, 4] have nice descriptions. We start with a
sequence ξ1,ξ2, . . . of mixed Bernoulli random variables with P[ξi = 1] = α/(α + i−1) and
P[ξi = 0] = (i−1)/(α + i−1). Define an �-spacing to be any occurrence of �−1 zeros enclosed
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by a 1 on the left and right (e.g. 1,0,0,0,1 is a 4 spacing). Remarkably, the total number of �-
spacings, Y�, is distributed as Poi(α/�). Moreover, the collection Y1,Y2, . . . are independent (see
[2, 4]).

The counts of spacings in ξ1, . . . ,ξn,1 generate a partition of n, which can be filled in uniformly
randomly to form a permutation with C� cycles of size �, where C� are sampled according to an
ESF(α,n) distribution. Explicitly,

C� = the number of �-spacings in ξ1, . . . ,ξn,1

= ξn−�+1(1−ξn−�+2) · · ·(1−ξn)+
n−�

∑
k=1

ξk(1−ξk+1) · · ·(1−ξk+�−1)ξk+�. (3.1)

This gives an intuition for why ESF(1,n) corresponds to a uniformly random permutation.
Indeed, we can inductively construct such a permutation by letting ξi indicate the decision to
complete a cycle, when there is an i-way choice for the next element.

Letting Rn be the index of the rightmost 1 in ξ1, . . . ,ξn and Jn = n+1−Rn, it follows from the
previous discussion that

C� � Y� +1{Jn = �}. (3.2)

This says that the cycle counts can be obtained from independent Poisson random variables
through a random number of deletions, and possibly one insertion. We require a few estimates
on the behaviour of these perturbations.

Lemma 3.1. Let Jn be as defined above, and let Dn = ∑n
�=1 Y� −1{Jn = �}−C� be the number

of deletions. The following four inequalities hold:

P[Jn = �] � α
n− �

, � < n. (3.3)

P[Jn = �] � cn−α(1−γ), n−nγ < � < n, 0 < γ < 1, for some c = c(γ) > 0. (3.4)

P[Jn = �] = O(n−α/(1+α)), � < n. (3.5)

EDn = O(1). (3.6)

Proof. We can write the density of Jn explicitly for all � < n as

P[Jn = �] =
α

α +n− �

n

∏
n−�+2

i−1
α + i−1

�
n

∏
n−�+1

i−1
α + i−1

. (3.7)

As α > 0 we can use the leading term α/(α +n− �) < α/(n− �) to obtain (3.3).
Fix some γ ∈ (0,1). For the case � > n− nγ in (3.4) we use that when Jn = � we must have

ξn−�+1 = 1 and ξk = 0 for all larger index terms up to ξn. The probability of this can be computed
explicitly as

P[Jn = �] =
α

α +n− �

n

∏
n−�+2

i−1
α + i−1

�
n

∏
n−�+1

i−1
α + i−1

.

We estimate the product by converting it to the sum
n

∏
n−�+1

i−1
α + i−1

= exp

(
−

n

∑
n−�+1

log
α + i−1

i−1

)
� exp

(
−

∫ n

n−�+1
log

α + x−1
x−1

dx

)
.
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The last inequality follows from the fact that log((α + x−1)/(x−1)) is a decreasing function,
and the sum can be viewed as a right-sided Riemann (over-)approximation. This integral has the
closed form

−
∫ n

n−�+1
log

(
α + x−1

x−1

)
dx = − log

(
(α +n−1)α+n−1

(n−1)n−1

)
+ log

(
(α +n− �)α+n−�

(n− �)n−�

)
.

Hence, exponentiating the above line gives

n

∏
n−�+1

i−1
α + i−1

� (n−1)n−1

(α +n−1)α+n−1
× (α +n− �)α+n−�

(n− �−1)n−�
. (3.8)

The leftmost product is less than n−α . The rightmost product can be written as

(α +n− �)α
(

n− �+α
n− �−1

)n−�

= (α +n− �)α
(

1+α/(n− �)
1−1/(n− �)

)n−�

. (3.9)

The rightmost product in (3.9) is asymptotic to eα/e−1 as n− � → ∞, and thus may be bounded
by some constant for all values of n− �. Using the hypothesis that n− � � nγ , it follows that
(3.9) is universally bounded by cnαγ for some constant c. We conclude that (3.8) is less than
cn−α+αγ = cn−α(1−γ). This establishes (3.4).

To obtain the universal bound in (3.5), observe when � � n− nα/(1+α) we can input this into
(3.3) to obtain

P[Jn = �] � α
n− (n−nα/(1+α))

= O(n−α/(1+α)).

And, for � > n − nα we substitute γ = α/(1 + α) into (3.4) to obtain the same asymptotic
inequality: O(n−α/(1+α)).

Lastly, (3.6) is proved in [2, Theorem 2].

We will also require a bound on the joint probability that two cycles occur simultaneously.
There will be some poly-log terms that, besides being a minor nuisance, do not change the tack
of our proof. Recall the Õ notation that ignores logarithmic contribution. It is described carefully
in Section 1.6.

Lemma 3.2. For any i < j � n it holds that

P[CiCj > 0] = Õ(i−1 j−α/(1+α)).

Proof. We start by using the formula in (3.1) to bound Ci with the ξk:

Ci � ξn−i+1(1−ξn−i+2) · · ·(1−ξn)+
n−i

∑
k=1

ξkξk+i.
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Thus,

CiCj �
(

ξn−i+1(1−ξn−i+2) · · ·(1−ξn)+
n−i

∑
k=1

ξkξk+i

)

×
(

ξn− j+1(1−ξn− j+2) · · ·(1−ξn)+
n− j

∑
�=1

ξ�ξ�+ j

)

= (x+ y)(z+w).

The last line is just labelling the terms in the product immediately above in the natural way (i.e.
y = ∑n−i

k=1 ξkξk+i). This is so we can bound E[xz+xw+yw+yz] in an organized fashion, one term
at a time.

Term xz. First, consider

ξn−i+1(1−ξn−i+2) · · ·(1−ξn)ξn− j+1(1−ξn− j+2) · · ·(1−ξn).

When i < j this product contains the term ξn−i+1(1− ξn−i+1) ≡ 0, thus it is always zero. We
conclude that

E[xz] ≡ 0. (3.10)

Term xw. Next, we consider the cross-term

ξn−i+1(1−ξn−i+2) · · ·(1−ξn)
n− j

∑
�=1

ξ�ξ�+ j.

Many of the summands are zero. In fact, the overlapping terms with n− j− i+1 < � � n− j are
identically zero. So, for the sake of obtaining disjoint terms, we consider the smaller sum

ξn−i+1(1−ξn−i+2) · · ·(1−ξn)
n− j−i+1

∑
�=1

ξ�ξ�+ j.

Aside from the � = n− j− i+1 term, all the indices are all disjoint. Ignoring this term for now,
the expected value is

α
α +n− i

n− i+1
α +n− i+1

· · · n−1
α +n−1

n− j−i

∑
�=1

α2

(α + �−1)(α + �−1+ j)
. (3.11)

Now i and j correspond to cycle lengths, so we must have i + j � n to have a non-zero
expectation at all. Since i < j we conclude that i < n/2. A simple bound on the product outside
the sum is to plug this value into the first term and ignore the rest. This gives the bound

α
α +n− i

n− i+1
α +n− i+1

· · · n−1
α +n−1

<
α

n− (n/2)+1
<

2α
n

.

Ignoring the product outside of it, the sum can be compared to the integral∫ n

1

1
x(x+ j)

dx

to prove it is O(log( j)/ j). Thus the expression in (3.11) is Õ(1/n j).
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Rather than using the rough bound from above, the full � = n− j− i+1 term is

ξn− j−i+1(1−ξn− j−i+2) · · ·(1−ξn−i)ξ
2
n−i+1(1−ξn−i+2) · · ·(1−ξn).

The expectation of this term is

α
α +n− j− i

( n−i

∏
k=n− j−i+2

k−1
α + k−1

)
α

α +n− i

( n

∏
k=n−i+2

k−1
α + k−1

)
.

But this is just

α
α +n− i

α +n− i
n− i

P[Jn = j + i] =
α

n− i
P[Jn = j + i]

� 2α
n

P[Jn = j + i].

Then by (3.5) of Lemma 3.1 we have the bound

P[Jn = j + i] = O(n−α/(1+α)).

Thus this term is O(i−1 j−α/(1+α)), and

E[xw] = Õ(i−1 j−α/(1+α)). (3.12)

Term yw. Because i < j, the term

ξn− j+1(1−ξn− j+2) · · ·(1−ξn)
n−i

∑
�=1

ξ�ξ�+i

behaves differently from the previous case. In fact, it is the largest-order term amongst the four.
The first step is the same as before, though. A few of the terms are identically zero. So we can
write yw as

ξn− j+1(1−ξn− j+2) · · ·(1−ξn)
n−i− j+1

∑
�=1

ξ�ξ�+i.

Except for when � = n− i− j +1, all of the indices are now disjoint. When we take expectation
of the terms with disjoint indices, we obtain

α
α +n− j

n− j +1
α +n− j +1

· · · n−1
α +n−1

n− j−i

∑
�=1

α2

(α + �−1)(α + �+ i−1)
.

Notice that j could be quite large. The best bound we have for the product outside the sum comes
from (3.5). This implies it is O(n−α/(1+α)). As with (3.11), the sum term is O(log i/i). This yields
that the whole expression is Õ(i−1 j−α/(1+α)).

As before, the full � = n− i− j +1 term is

ξn−i− j+1(1−ξn− j−i+2) · · ·(1−ξn− j)ξ
2
n− j+1(1−ξn−i+2) · · ·(1−ξn).

The expectation of this term is

α
α +n− j− i

( n− j

∏
k=n− j−i+2

k−1
α + k−1

)
α

α +n− i

( n

∏
k=n− j+2

k−1
α + k−1

)
.
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This simplifies to

α
α +n− j

α +n− j
n− j

P[Jn = j + i] =
α

n− j
P[Jn = j + i].

By construction i � n − j, and again by (3.5) of Lemma 3.1, we have that P[Jn = j + i] =
O(n−α/(1+α)). Thus this term has expectation that is O(i−1 j−α/(1+α)). It follows that

E[yw] = Õ(i−1n−α/(1+α)). (3.13)

Term yz. The last step is to bound the product(n−i

∑
k=1

ξkξk+i

)(n− j

∑
�=1

ξ�ξ�+ j

)
=

n−i,n− j

∑
k,�=1

ξkξk+iξ�ξ�+ j. (3.14)

Call the index set

Λ = {(k, �) : k ∈ [1, . . . ,n− i], � ∈ [1, . . . ,n− j]}.

As i < j, we can divide Λ into disjoint sets

Λ0 = {k,k + i, �, and �+ j are all distinct},
Λ1 = {k = �},
Λ2 = {k = �+ j},
Λ3 = {k + i = �},
Λ4 = {k + i = �+ j}.

This yields the following upper bound on (3.14):

∑
Λ0

ξkξk+iξ�ξ�+ j +∑
Λ1

ξkξk+iξ�+ j +∑
Λ2

ξkξk+iξ� +∑
Λ3

ξkξk+iξ�+ j +∑
Λ4

ξkξk+iξ�.

The pay-off of this partition is that each product of ξ above is of distinct, independent terms.
This lets us tidily compute the expectation of each. For (k, �) ∈ Λ0 we have the k,k + i, �, �+ j
are all distinct. This gives

E[ξkξk+iξ�ξ�+ j] �
A

k(k + i)�(�+ j)

for some constant A depending only on α . We can take the expectation of the entire sum:

E∑
Λ0

ξkξk+iξ�ξ�+ j �
n

∑
k=1,�=1

E[ξkξk+iξk+ j] �
n

∑
k=1,�=1

A
k(k + i)�(�+ j)

= Õ(1/i j).

We can parametrize Λ1 by k to write it as Λ1 = {(k,k) : k = 1, . . . ,n− j}. This gives the bound

E∑
Λ1

ξkξk+iξ�+ j �
n

∑
k=1

E[ξkξk+iξk+ j] �
n

∑
k=1

A
k(k + i)(k + j)

= Õ(1/i j).

We can similarly parametrize the sums over Λ2,Λ3 and Λ4 to obtain

E[yz] = Õ(1/i j). (3.15)
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All of the expressions in (3.10), (3.12), (3.13) and (3.15) are Õ(i−1 j−α/(1+α)). Markov’s
inequality yields

P[CiCj > 0] = Õ(i−1 j−α/(1+α)). (3.16)

This proves the claimed inequality.

We also need a bound on the probability that cycles of the same size occur.

Lemma 3.3. For any i � n it holds that

P[Ci � 2] = Õ(i−2 +n−1−α/(1+α)).

Proof. We start by bounding P[Ci > 2]. By (3.2) we have

P[Yi +1{Jn = i} > 2] � P[Yi > 1] = O(1/i2). (3.17)

It remains to bound P[Ci = 2]. Conditioning on the value of Jn, we obtain the decomposition

P[Ci = 2] = P[Ci = 2 | Jn = i]P[Jn = i]+P[Ci = 2 | Jn �= i]P[Jn �= i]. (3.18)

First we estimate the first summand on the right-hand side of (3.18). Because two cycles larger
than n/2 cannot occur, we must have i � n/2. Then by (3.3) of Lemma 3.1, P[Jn = i] � 2α/n.

When Jn = i, it ensures that the sequence ξ1, . . . ,ξn has ξn−i+1 = 1 and the larger index ξk are
zero. The smaller indices ξi are independent of this event. The value of Ci conditioned on Jn = i
is thus one more than the number of i-spacings in the sequence

ξ1, . . . ,ξn−i,1,

with ξ1, . . . ,ξn−i independent and distributed according the Feller coupling of an ESF(α,n− i)
distribution. Call the number of i-spacings in the above sequence C−

i . So, conditional on Jn = i
we have Ci = C−

i +1. By writing explicitly what it means for an i-spacing to arise, we can bound
C−

i in terms of the ξk:

C−
i � ξn−2i+1(1−ξn−2i+2) · · ·(1−ξn−i)+

n−2i

∑
k=1

ξkξk+i.

Looking to apply Markov’s inequality, we take the expectation of the above line and obtain

EC−
i � α

α +n−2i
n−2i+1

α +n−2i+1
· · · n− i−1

α +n− i−1
+

n−2i

∑
k=1

α2

(α + k−1)(α + k−1+ i)
.

The product above is equivalent to P[Jn−i = i], then we use (3.5) of Lemma 3.1 and the fact that
i < n/2 to bound it by Õ((n− i)−α/(1+α)) = Õ(n−α/(1+α)). The sum, as we have seen from (3.11),
has order Õ(1/i). Recalling that (3.3) implies P[Jn = i] = O(1/n), it follows that

P[Ci = 2 | Jn = i]P[Jn = i] = Õ(n−1−α/(1+α) +1/in) = Õ(i−2 +n−1−α/(1+α)). (3.19)

Now we estimate the second summand on the right-hand side of (3.18). Under the event {Jn �=
i}, for Ci to equal 2, it is necessary that two i-spacings occur in the infinite sequence ξ1,ξ2, . . . .
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The count of i-spacings is distributed as Yi from (3.2). Therefore,

P[Ci = 2 and Jn �= i] � P[Yi � 2] = O(1/i2). (3.20)

Then (3.17), (3.19) and (3.20) imply that

P[Ci � 2] = Õ(i−2 +n−1−α/(1+α)), (3.21)

as desired.

Using the previous two lemmas we may prove the following.

Proposition 3.4. Let π ∼ ESF(α,n) and a = 1−α/(4α +3). The probability that π has two
cycles whose lengths have a common divisor larger than na is o(1).

Proof. Call Ea the event that π has two cycles with common divisor larger than na. We utilize
a union bound, then apply Lemmas 3.2 and 3.3 to write

P[Ea] �
n

∑
d=�na�

(�n1−a�

∑
1�i< j

P[CidCjd > 0]+
�n1−a�

∑
i=1

P[Cid � 2]
)

= Õ

( n

∑
d=�na�

�n1−a�

∑
1�i< j

(id)−1( jd)−α/(1+α) +
n

∑
d=�na�

�n1−a�

∑
i=1

(
1

(id)2
+n−1−α/(1+α)

))
.

Since d � na the above line is

Õ(n1n2(1−a)n−a−aα/(1+α) +n1n1−an−2a +n1−a−α/(1+α)).

We can simplify the exponents in each term to

3−3a−aα/(1+α), 2−3a, and 1−a−α/(1+α),

respectively. Some algebra shows that all are negative as long as a > 1−α/(4α +3). For such
a we have P[Ea] = o(1).

3.2. Proofs of Theorems 1.3, 1.5 and 1.6
We now have enough to establish our bound on the minimal degree of an ESF(α,n) permutation.

Lemma 3.5. Let π ∼ ESF(α,n). For each 0 < β < 1, there exists λ ∈ (0,1) such that if we
define the set

Qn = {d < nβ : there exists a prime p > nλβ with p | d},

then

P[∃Cd = 1 with d ∈ Qn] = 1−o(1). (3.22)

Proof. We start with [3, Theorem 3.1], which implies

∑
d∈Qn

Cd
TV→ Poi(κn), (3.23)
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where

κn = ∑
d∈Qn

α
d

.

Borrowing an argument from [9, p. 50], we have

∑
d∈Qn

1
d

= ∑
d<nβ

1
d
− ∑

d<nβ

p|d⇒p�nλβ

1
d

� ∑
d<nβ

1
d
− ∏

p�nλβ

(1−1/p)−1

= β logn− eγ∗λβ logn+O(1)

where γ∗ is Euler’s constant. When λ is such that eγ∗λβ < β/2 we have κn > (β/2) logn for
all n. It follows from (3.23) and standard estimates on the concentration of a Poisson random
variable that

P

[
∑

d∈Qn

Cd > (β/4) logn] → P[Poi(κn) > (β/4) logn

]
= 1−o(1).

To obtain (3.22), observe that the convergence statement in [3, Theorem 3.1] implies that P[Cd >

1] → P[Yd > 1] = O(1/d2). Here Yd is a Poisson random variable as in (3.2). The Borel–Cantelli
lemma implies that only finitely many Yd are larger than 1. Hence ∑Yi>1 Yi is almost surely
bounded. We have seen that, for n large, the sum of Cd with d ∈ Qn is at least Poi((β/4) logn)
with probability 1−o(1). This diverges, and so one or more of the positive Cd must be equal to
one. Our claim follows.

For a random permutation π ∼ ESF(α,n), we define Φ(π) = ∏n
�=1 �C� . To prove Theorem 1.5,

it suffices to show that with high probability π has a cycle of length d such that

d � nβ , (3.24)

d2 � Φ(π). (3.25)

First we will need an estimate on d2 dividing Π(πn) conditional on Cd = 1.

Lemma 3.6. Let π , β , λ , and Qn be as in Lemma 3.5, then for any d ∈ Qn

P[d2 divides Φ(πn) |Cd = 1] = o(n−λβ+ε)

for all ε > 0.

Proof. It follows from [5, Theorem 3] that the cycle counts Ci with i �= d are with high probab-
ility distributed like ESF(α,n−d). Accordingly let n′ = n−d and πn′ be a permutation sampled
from this distribution. Note that from our construction of Qn, there exists a prime p > nλβ such
that

{d | Φ(πn′)} ⊂ {p | Φ(πn′)}.

https://doi.org/10.1017/S096354831800007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800007X


Ewens Sampling and Invariable Generation 873

For such prime number p, the event on the right-hand side above satisfies

{p | Φ(πn′)} ⊂
{n′/p

∑
i=1

Cip > 0

}

Note we are omitting i = d/p from the above summation, and every subsequent one.
Call the last event Gn′ . The Feller coupling in (3.2) allows us to bound the probability by

P[Gn′ ] � P

[
�n′/p�

∑
i=1

Yip +1{Jn′ = ip} > 0

]
. (3.26)

This, in turn, is bounded by

P

[
Poi

(�n′/p�

∑
i=1

α
ip

)
> 0

]
+P

[
�n′/p�

∑
i=1

1{Jn′ = ip} > 0

]
.

The mean of the above Poisson random variable is asymptotically bounded by α log(n/p)/p.
Since p � nλβ , this ensures that the left summand is o(n−λβ+ε). To bound the right summand we
write

P

[
�n/p�

∑
i=1

1{Jn = ip} > 0

]
� ∑

ip�n−nγ
P[Jn = ip]+ ∑

ip>n−nγ
P[Jn = ip].

Here γ is a constant we will determine in a moment. We begin by bounding the first summand of
the right-hand side. By (3.3) of Lemma 3.1,

∑
ip�n′−nγ

P[Jn′ = ip] �
�(n′−nγ )/p�

∑
i=1

α
n′ − ip

�
∫ (n−nγ )/p+1

1

α
n−d − px

dx

= O

(
logn

p

)
= o(n−λβ+ε).

The last line follows since p � nλβ . For the second summand, from (3.4) of Lemma 3.1 there
exists some constant c > 0 such that

∑
ip>n′−nγ

P[Jn = ip] � ∑
ip>n−nγ

cn−α(1−γ)

� cnγ−λβ n−α(1−γ).

The last line follows as there are at most nγ−λβ different values of i such that n′ −nγ < ip � n′.
We therefore have that

P[Gn′ ] = O(nγ−λβ−α(1−γ)).

An easy calculation confirms that γ satisfying

γ <
α + ε
1+α
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is sufficient to ensure

P[Gn′ ] = o(n−λβ+ε).

This completes our proof.

Lemma 3.7. Let π , β , λ , and Qn be as in Lemma 3.5. Then

P[∃d ∈ Qn such that d2 � Φ(π) and Cd = 1] = 1−o(1). (3.27)

Proof. We will show the stronger result that

P[d2 | Φ(π) for some d ∈ Qn such that Cd = 1] = o(1).

Denote the above event by En so that

En =
⋃

d∈Qn

{Cd = 1 and d2 | Φ(π)}.

A union bound gives

P[En] � ∑
d∈Qn

P[Cd = 1 and d2 | Φ(π)]

= ∑
d∈Qn

P[d2 | Φ(π) |Cd = 1]P[Cd = 1]

� max
d∈Qn

(P[d2 | Φ(π) |Cd = 1])
(

∑
d∈Qn

P[Cd = 1]
)

.

By Lemma 3.6, the left probability is o(n−λβ+ε) for arbitrarily small ε > 0. The Feller coupling
ensures that the right-hand sum can be bounded by αβ logn. It follows that P[En] = o(1),
completing our proof.

Proof of Theorem 1.5. By Lemma 3.7, with probability 1−o(1) there exists a cycle length of
length d satisfying (3.24) and (3.25). When these conditions are met, for K = Φ(π)/d, we have
πK displaces d � nβ elements. Thus, with high probability π has minimal degree no more than
nβ . This completes our proof.

Proof of Theorem 1.6. The theorem statement is such that if it holds for ω(n), then it also
holds for any ω ′(n) � ω(n). So, it suffices to prove the statement for all ω(n) � 4

√
logn.

Fix such an ω(n) and set bn = nexp(−ω(n)
√

logn). Let P be the set of all primes and define
Pn = P∩ [bn,n]. Given p ∈ Pn, let Ip = [1,2, . . . ,�n/p�] be the set of all i for which pi is a multiple
of p between p and n. We also introduce the entire collection of such multiples smaller than n:

Wn =
⋃

p∈Pn

{(p, i) : i ∈ Ip}.

It suffices to show that the event

En = {∃(p, i) ∈Wn : ip | Φ(π)}
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occurs with high probability. We can write En as a union of events:

En =
⋃

(p,i)∈Wn

{C(n)
ip > 0}.

Notice that any two numbers in the set of products

{ip : (p, i) ∈Wn}

are different. To see this we argue by contradiction: suppose that ip = i′p′ with p < p′. Because
of primality, this could only happen if p′ | i. Thus i � p′. Also note that our assumption ω(n) �

4
√

logn ensures bn >
√

n. Thus p, p′ >
√

n. These two inequalities give

ip � p′p >
√

n
√

n = n.

But ip > n is a contradiction, since our construction of Ip ensures that ip � n.
We have now shown that the occurrence of En is equivalent to the sum of cycle counts being

positive: En = {∑Wn
Cip > 0}. The Feller coupling (3.2) ensures that

∑
Wn

Cip � −Dn +∑
Wn

Yip, (3.28)

with Dn the total number of deletions. It follows that

P[En] � P

[
−Dn +∑

Wn

Yip > 0

]
. (3.29)

Using additivity of independent Poisson random variables, the sum on the right of (3.28) is
distributed as a Poisson with mean

μn,α = ∑
p∈Pn

�n/(p)�

∑
i=1

α/ip ≈ α ∑
p∈Pn

log(n/(p))
p

= α
(

logn ∑
p∈Pn

1
p
− ∑

p∈Pn

log p
p

)
. (3.30)

Lemma 3.8 shows that μn,α → ∞. To establish that (3.29) occurs with high probability, we
will show that the number of deletions, Dn, in the Feller coupling is unlikely to remove every
successful Yip in (3.28).

As μn,α → ∞, we take any h(n) = o(μn,α) with h(n) → ∞. By (3.6) of Lemma 3.1 we know
that EDn � c for some c = c(α). It follows from Markov’s inequality that

P[Dn � h(n)] � c
h(n)

= o(1).

Standard estimates on a Poisson random variable tell us that

P[Poi(μn,α) � h(n)] = 1−o(1).

So Dn is with high probability smaller than ∑Wn
Yip, and combined with (3.28) we have estab-

lished that the right side of (3.29) occurs with high probability.

Lemma 3.8. Let μn,α be as in the proof of Theorem 1.6. It holds that μn,α → ∞.
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Proof. It suffices to show that (3.30) tends to infinity. Two classical theorems attributed to Euler
(see [18]) and Chebyshev (see [1]), respectively, state that for sums of primes smaller than n

∑
p�n

1
p

= log logn+O(1) and ∑
p�n

log p
p

= logn+O(1).

Recalling that Pn = P∩ [bn,n], it follows that (3.30) is asymptotic to

logn log
logn
logbn

− log
n
bn

.

We can express the second term precisely:

log
n
bn

= logexp(ω(n)
√

logn) = ω(n)
√

logn. (3.31)

Similarly we compute the order of the first term. Notice that

log
logn
logbn

= log

(
logn

logn−ω(n)
√

logn

)

= log

(
1+

ω(n)
√

logn

logn−ω(n)
√

logn

)
. (3.32)

As ω(n) � 4
√

logn the above term is log(1−o(1)). Using the fact that log(1− x) ≈−x as x → 0
we have that (3.32) is asymptotic to

ω(n)
√

logn

logn−ω(n)
√

logn
.

Reintroducing the logn factor, we now have

logn∑
Pn

1
p
≈ logn

ω(n)
√

logn

logn−ω(n)
√

logn
. (3.33)

Combining (3.31) and (3.33) gives

μn,α ≈ logn
ω(n)

√
logn

logn−ω(n)
√

logn
−ω(n)

√
logn

= ω(n)2 logn

logn−ω(n)
√

logn

= ω(n)2(1−o(1)).

Since ω(n) → ∞, we conclude that μn,α → ∞.

Now we set our sights on proving Theorem 1.3. This will require Theorems 1.5 and 1.6, as
well as a few additional lemmas.

Lemma 3.9. Let 0 < γ < 1 and ψ(n) → ∞ such that ψ(n) = o(logn). The probability that
simultaneously for all 2 � r � exp(ψ(n)) there exists Cjr > 0 such that jr > nγ and r � jr is
1−o(1).

Proof. Let r0 = exp(ψ(n)) and consider the complement of the event in question:

E = {∃r < r0 : r | j for all nγ < j such that Cj > 0}.
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It suffices to show that P[E] = o(1). In order to model the values Cj with independent Poisson
random variables we will work with a larger event. For any γ < γ ′ < 1, we consider

Eγ ′ = {∃r < r0 : r | j for all nγ < j < nγ ′ such that Cj > 0}.

A union bound leads to

P[Eγ ′ ] �
r0

∑
r=2

P[r | j for all nγ < j < nγ ′ such that Cj > 0]

=
r0

∑
r=2

P[Cj = 0 for all nγ < j < nγ ′ such that r � j]. (3.34)

Let Ar be the set of integers in (nγ ,nγ ′ ] that r fails to divide. Formally,

Ar = [nγ ,nγ ′ ]∩ ([n]\{ir : i � �n/r�}).

As nγ ′ = o(n) we can apply [3, Theorem 3.1] to conclude that C[nγ ,nγ ′ ] TV→ Y [nγ ,nγ ′ ]. Thus, the
probabilities in (3.34) converge to

r0

∑
r=2

∏
j∈Ar

P[Yj = 0] =
r0

∑
r=2

exp

(
− ∑

j∈Ar

α
j

)
. (3.35)

The quantity ∑ j∈Ar
(α/ j) is minimized at r = 2, and in this case ∑ j∈A2

(1/ j) 
 logn. We can
apply this to (3.35) to obtain

P[Eγ ′ ] �
r0

∑
r=2

n−δ � r0n−δ = o(1),

for some δ > 0. As E ⊆ Eγ ′ , this completes the proof.

Lemma 3.10. Let δ = δ (ε,α) = 1− (α + ε) log2. For any ε > 0, there exists a constant c =
c(ε,α) such that the probability of π fixing a set of size k is bounded by ck−δ uniformly for all
1 � k � n/2.

Proof. In Lemma 4.1 we show that P[k ∈ L(X(α))] � Ck−δ for some C and all k � n. The
Feller coupling lets us relate the probability of a fixing a set size to this quantity, the only
complication is a possible contribution from 1{Jn = �}. However, the location of this extra cycle
is unconcentrated enough to not alter the order of these probabilities.

Inequality (3.3) of Lemma 3.1 ensures that P[Jn = �] � α/(n− �). We make use of this as we
condition on the value of Jn:

P[π has a k-cycle] � P[k ∈ L(X(α))]+ ∑
��k

P[k− � ∈ L(X(α))]P[Jn = �] (3.36)

� Ck−δ + ∑
��k

C(k− �)−δ α
n− �

(3.37)

� Ck−δ +
2α
n ∑

��k

C�−δ (3.38)

� Ck−δ +C′n−δ ,

https://doi.org/10.1017/S096354831800007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800007X


878 G. Brito, C. Fowler, M. Junge and A. Levy

where in (3.37) we use our bound on P[k ∈ L(X(α))] from Lemma 4.1 and bound P[Jn = �] with
(3.3) of Lemma 3.1. The next line, (3.38), reindexes the sum and uses that � � n/2 to bound
α/(n− �) � 2α/n. Our claim then follows by bounding the leftmost sum by n−δ times some
constant C′, and the fact that k−δ > n−δ .

We now prove a result analogous to [26, Theorem 1]. Namely, if a permutation sampled
according to the Ewens sampling formula is in a transitive subgroup, this subgroup is likely
to be either all of Sn or the alternating group, An. Although the lemmas leading up to this used
rather different arguments, our proof from here closely follows that of [26]. Recall that a primitive
subgroup is a transitive subgroup that does not fix any partition of [n].

Proof of Theorem 1.3. Let π ∈ G for a transitive subgroup G. According to [23], it follows
from results of [7] that the minimal degree of a primitive subgroup not containing An is at least
(
√

n−1)/2. On the other hand, by Theorem 1.5, with high probability the minimal degree of 〈π〉
is less than n0.4. Thus, the probability that G is primitive is o(1).

Assume G is a non-primitive, transitive subgroup. Then it must fix some partition {Bi}r
i=1 of

[n]. By transitivity every block in such a partition will be mapped to every other, thus the partition
must be into blocks of equal size, that is,

|Bi| =
n
r
.

Note that any cycle of a permutation that preserves this partition must have the same number
of elements in each block it acts on. We will use this to establish that any π ∈ G with high
probability cannot fix this partition for any r.

We consider three cases for the possibly amount, r, of blocks.

Case 1. 2 � r � r0 = exp(log logn
√

logn). By Lemma 3.9 with ψ(n) = log logn
√

logn, with
high probability for every r there exists jr > n.99 such that π contains a cycle of length jr and
r � jr. Fix some r and jr, and let B be the union of all blocks this cycle acts upon. Because r does
not divide jr, B is a proper invariant subset of [n] with size sn/r, where s is the number of blocks
in B. By Lemma 3.10 this occurs with probability bounded by

r0

∑
r=2

r

∑
s=1

c(sn/r)−δ � cr2
0(n/r0)

−δ = o(1).

Case 2. r0 � r � n/r0. By Theorem 1.6, with high probability there exists a prime q > n/r0

that divides Ω(π). Thus there exists a cycle of length j such that q | j. Let t � r be the number of
blocks this cycle intersects. Because of the bounds on r we have

j
t

� |Bi| =
n
r

� n
r0

< q.

Since q divides j = t( j/t) and j/t < q by the above inequality, we must have that q | t. However,
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the total number of blocks r satisfies

r <
n
r0

< q,

so this is impossible.

Case 3. n/r0 � r < n. Let a be as in Proposition 3.4 and ε > 0 such that a + ε < 1. Using
Lemma 3.9 with ψ(n) = log logn

√
logn one more time, we now find j > na+ε such that π

contains a cycle of length j and the block size, s = n/r does not divide j. Again, let B be the
union of blocks which intersect this cycle. Because the size of the blocks does not divide j, this
intersection is a proper subset of B. We conclude that π must contain another cycle of length j′

that intersects each block in B. Hence both cycle lengths j and j′ are divisible by the number of
blocks in B. We bound the number of blocks:

|B|
s

>
j
s

>
na+ε

s
> na.

However, by Proposition 3.4, with probability 1− o(1) no two cycle lengths have a common
divisor greater than na. This completes our proof.

3.3. Proving Proposition 2.1
To rule out generating An we need an estimate that shows an ESF(α,n) permutation is odd with
probability bounded away from zero. Of course, this probability ought to converge to 1/2, but
we were unable to find a proof. We make do with an absolute lower bound.

Lemma 3.11. Let π ∼ ESF(α,n). Then

inf
n�2

min{P[π is odd],P[π is even]} � min

{
1

α +1
,

α
α +1

}
.

Proof. We will proceed by induction. It is straightforward to check via the Feller coupling that
an ESF(α,2) permutation is odd with probability α/(α +1), and it is even with probability
1−α/(α +1) = 1/(α +1).

Suppose that for 2 � m � n−1. If πm ∼ ESF(α,m), then

min{P[πm is odd],P[πm is even]} � ε,

for some yet to be determined ε > 0. Now, it suffices to prove that

min{P[π is odd],P[π is even]} � ε. (3.39)

Consider the sequence ξ1,ξ2, . . . of Bernoulli random variables for the Feller coupling. Recall
that Jn = (n + 1)−Rn, with Rn the index of the rightmost 1 in ξ1, . . . ,ξn. We will condition on
the value of Jn, but also need to take into account the parity of n.

n is odd. We condition on the value of Jn. For convenience let q� = P[Jn = �]. If Jn = �, then
ξn+1−� = 1 and we can view the beginning sequence ξ1, . . . ,ξn−�,1 as corresponding to a random
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permutation sampled with distribution ESF(α,n− �). We denote such a permutation by πn−�.
Noting that when Jn = n, π is a single n-cycle and therefore even, it follows that

P[π is odd] =
n−3

∑
� odd

P[πn−� is even]q� +
n−2

∑
� even

P[πn−� is odd]q� +qn−1.

By the induction hypothesis,

P[π is odd] �
n−2

∑
�=1

εq� +qn−1.

Since ∑n
1 q� = ∑n

1 P[Jn = �] = 1, it suffices to prove that qn−1 � ε(qn−1 + qn). Equivalently, this
requires that (1− ε)qn−1 � εqn. Notice that

qn−1 = P[ξ2 = 1]
n

∏
i=3

P[ξi = 0] and qn =
n

∏
i=2

P[ξi = 0].

Much of this cancels when we solve (1− ε)qn−1 � εqn, so we arrive at the requirement

(1− ε)
P[ξ2 = 1]
P[ξ2 = 0]

� ε.

The ratio P[ξ2 = 1]/P[ξ2 = 0] = α , and thus we require

(1− ε)α � ε. (3.40)

n is even. The argument is similar. The key difference is that we instead need qn � ε(qn−1 +qn).
Rewriting as before, this is the same as

εα � (1− ε). (3.41)

After solving for ε in (3.40) and (3.41), we see that (3.39) holds whenever

0 < ε � min

{
1

α +1
,

α
α +1

}
.

Remark 3.12. When α = 1, this confirms the intuition that even and odd permutations occur
with probability 1/2 for all n � 2.

Corollary 3.13. Let δ = δ (α,ε) and c = c(α,ε) be as in Lemma 3.10. It holds for all k � n/2
that

P[π fixes a k-set | π is odd] � ck−δ ·max

{
α +1

α
,

α +1
1

}
.

Proof. We start with the reformulation

P[π fixes a k-set | π is odd] =
P[π fixes a k-set and π is odd]

P[π is odd]
.
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The numerator is bounded by P[π fixes a k-set], which is less than ck−δ by Lemma 3.10. We
bound the denominator away from zero by Lemma 3.11, completing our proof.

4. The upper bound for sα

We carry out the plan described in Section 1.4. First we bound the quenched probability p̃k

defined formally below. The proof is similar to [31, Lemma 3.1]. We repeat a selection of the
details for clarity, and point out where the argument differs with general α . Subsequently, we
mirror [31, Theorem 3.2] as we apply the Borel–Cantelli lemma.

Recall the functions fk and gk from (1.5), namely that fk is the number of available summands
smaller than k, and gk is the largest sum attainable with them. Also, define

τε := sup{k : fk � (α + ε) logk},
τ := sup{n : gλk

� k},

where ε > 0 is yet to be chosen, but small, and λk := �k/(α logk)�. The proofs of [31, Lem-
mas 2.1, 2.2] generalize in a straightforward way, so that T = T (ε,δ ) := max{τε ,τ} is almost
surely finite. As P[T > λk] → 0, we define the quenched probabilities to avoid this diminishing
sequence of events:

p̃k := P[T < λk and k ∈ L (X)].

Lemma 4.1. Suppose that α < 1/ log2. For each ε > 0 there exists C = C(ε) such that for all
k � 1,

p̃k(α) � Ck−1+(α+ε) log2.

Proof. Fix ε > 0. Let Gk be the event that T < λk while also k ∈ L (X). Call a sequence
y = (y1,y2, . . .) admissible if it is coordinate-wise less than or equal to X. When Gk occurs, it is
not possible for n to be a sum of ∑ j jy j for an admissible y with y j vanishing for j > λk. Indeed,
on the event Gk, we have ∑ j�λk

jXj < k. The event satisfying the following three conditions
contains Gk:

(i) fλk
� (α + ε) logλk,

(ii) gλk
< k,

(iii) there is some k with k = ∑ j(y
′
j + y′′j ) with y′ supported on [0,λk] and y′′ non-zero and

supported on [λk +1,k], with both y′ and y′′ admissible.

Define the probability p′k = P[ fλk
� (α + ε) logλk and gλk

< n and � = ∑ j jy′j], where y′ is ad-

missible and supported on [1,λn]. Also, define p′′� = P[� = ∑ j jy′′j ], where y′′ is admissible and
supported on [λk + 1,k]. Using independence we can obtain an upper bound on p̃k by
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decomposing into these two admissible vectors:

p̃k �
k

∑
k=λk+1

p′k−� p′′�

�
( k

∑
�=λk+1

p′k−�

)
max

λk���k
p′′� . (4.1)

The first factor above is (by Fubini’s theorem) equal to E|L (X)∩ [0,λk]|. Using the trivial bound
where we assume each sum from X is distinct and that we are working on the event fλk

�
(α + ε) logλk, we have

|L (X)∩ [0,λk]| � 2Zm � λ (α+ε) log2
k

. (4.2)

We now bound the second term. We will show that there exists a constant C such that

p′′� � C
log2 k

k
, for all � ∈ [λk +1,k]. (4.3)

Let H be the event that Xj � 2 for some j ∈ [λk,k]. As P[Xj � 2] � α/ j2, we can write

P[H] �
k

∑
j=λk

α/ j2 � α/λk �
logk

k
. (4.4)

The event that � = ∑ j jy′′j for an admissible � supported on [λk,k], but that H does not occur,
is contained in the union of events Ej that Xj = 1 and � = j = ∑i iy

′′
i for some admissible y′′

supported on [λk,k]\{ j}. Using independence of Xj from the other coordinates of X, along with
our description of what must happen if H does not, we obtain

p′′� � P[H]+
k

∑
j=λk

1
j

p′′�− j

� P[H]+
1
λk

k

∑
j=λk

p′′�− j

� logk
k

(
1+

k

∑
j=λk

p′′�− j

)
. (4.5)

It remains to bound the summation in the last factor. Here taking α �= 1 is a minor nuisance,
but we circumvent any difficulties with the crude bound α � 2. The idea is to use the generating
function

F(z,X) := ∏
j∈[λk ,k]:Xj=1

(1+ z j),

writing [z j]F for the jth coefficient of F . Observe that this corresponds to forming j using the
j ∈ [λk,k] for which Xj = 1. It follows that

k

∑
j=λk

p′′�− j �
k

∑
j=λk

E([z�− j]F(z,X)).
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Using that [z j]F(z,X) � F(1,X), we can bound the above line by EF(1,X). This is tractable
using independence of the Xj. Carrying the calculation out we obtain

EF(1,X) =
n

∏
j=λk

E[1+1{Xj = 1}]

=
k

∏
j=λk

(
1+

α
j

)

�
n

∏
j=λk

(
1+

2
j

)
.

The last term can be expanded and written as

k2 +3k +2
λ 2

k +λk

� k2

λ 2
k

� log2 k.

Combine this with (4.5) and we have

p′′� �
logk

k
(1+ log2 k) � log3 k

k
.

This yields (4.3). To conclude, we plug (4.2) and (4.3) into (4.1) and arrive at

p̃k � C(k−λk)
(α+ε) log2 log3 k

k
.

This is bounded above by a constant multiple of k−1+(α+2ε) log2, which, after swapping all ε for
ε/2, establishes the lemma.

Proposition 4.2. Let sα be as in Theorem 1.7 and h(α) be as in (1.4). For continuity points of
h it holds that sα � h(α), and sα � h(α)+1 for all α .

Proof of Proposition 4.2. Fix a small ε > 0 and let sα,ε = �(1− (α − 2ε) log2)−1�. Sample
sα,ε vectors X(1), . . . ,X(sα,ε ) and let T (X(1)), . . . ,T (X(sα,ε )) be the a.s. random times distributed
as T . Take T ∗ = max{T (X(i))}sα,ε

1
. By independence of the X(i) and the bound in Lemma 4.1

we have the probability that T ∗ < λk and k ∈ L (X(i)) for all 1 � i � sα,ε is at most a constant
multiple of ksα,ε (−1+(α+ε) log2). Our choice of sα,ε ensures that the exponent is less than −1. The
series is thus summable. It follows that finitely many k > T ∗ belong to the intersection of the
L (X(i)). As T ∗ is almost surely finite (the proof of this can be found in [31, Section 2]), the
result follows by letting ε → 0 so that sα,ε → h(α).

5. The lower bound for sα

Here we establish the lower bounds on mα .

Proposition 5.1. Let sα be as in Theorem 1.7 and h(α) be as in (1.4). For 0 � α < 1/ log2, it
holds that sα � h(α). Moreover,

⋂h(α)
i=1 L (X(i)(α)) = ∞ a.s. Lastly, when α � 1/ log2 it holds

that sα = ∞.
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The proof is at the end of this section. The idea is to use Fourier analysis like in [15]. We begin
by considering continuity points α of h, and set m = h(α). If α � 1/ log2 so that h(α) = ∞, we
take m to be a fixed arbitrarily large integer. We then fix m i.i.d. Poisson vectors X(1), . . . ,X(m).

Lemma 5.2. Let I = (0,k] and ε > 0. Then the event

A =

{
m⋃

i=1

L (I,X(i)) ⊂
[

0,
mk
αε

]}

holds with probability P[A] � 1− ε .

Proof. This is a straightforward application of Markov’s inequality.

Recall our notation that X(i) = (X (i)
j

)∞
i=1.

Lemma 5.3. Fix ε ∈ (0,1/2). For any δ > 0, there is a constant C = C(ε,δ ,m,α) such that
the event

E = E(ε,δ ,m,α) :=
{

min
i

∑
�< j�k

X (i)
j � (1−δ )α log(k/�)−C ∀1 � � � k

}
(5.1)

holds with probability P[E] � 1− ε .

We remark that this is a straightforward generalization of [15, Lemma 3.3].

Proof. In fact, we will take C 
 (1/(αδ 2)) log(m/ε) while ensuring that C � 1. Note that the
claim holds vacuously when � � e−Ck, so we need only consider the case � < e−Ck.

Fix 1 � i � m and let B denote the event that

∑
�< j�k

X (i)
j < (1−δ )α log(k/�)−1 for some � � e−Ck.

Writing �′ for the smallest power of 2 with �′ > �, we thus have

∑
�′< j�k

X (i)
j � α(1−δ ) log(k/�′) (5.2)

on B.
Let D = {2i}i�0 denote the set of non-negative powers of 2. From (5.2) it follows that

1B � ∑
�′�2e−Ck,

�′∈D

(1−δ )∑�′< j��
X (i)

j
−α(1−δ ) log(k/�′). (5.3)

Each of the variables X (i)
j

is independent and Poisson with mean EX (i)
j

= α/ j. For a Poisson

variable P with mean λ , we have EaP = eλ (a−1). Moreover, the sum ∑�′< j�k X (i)
j

is Poisson with

mean α log(k/�′)+O(1). Taking expectations on both sides of (5.3) therefore yields

P[B] � ∑
�′�2e−Ck,

�′∈D

exp[−αδ −α(1−δ ) log(1−δ )] log(k/�′)
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Near zero, −δ − (1−δ ) log(1−δ ) = −(1+o(1))δ 2. Therefore

P[B] � ∑
�′�2e−Ck,

�′∈D

(k/�′)−αδ 2 � e−αδ 2C,

since the sum of the geometric series is bounded by a constant multiple of its first term. Choosing
C 
 (1/(αδ 2)) log(m/ε) ensures that P[B] � ε/m, and now the claim follows by the union of
events bound.

An insight of Eberhard, Ford and Green [15] (which they credit to Maier and Tenenbaum [27])
is that Fourier analysis may be used to obtain a lower bound on the size of the set

S(I;X(1), . . . ,X(m)) := {(ni −nm)1�i<m : ni ∈ L (I,X(i))}. (5.4)

We show that the technique extends to the present level of generality. Note that the analysis of
[15] may be regarded as the special case m = 3 and α = 1 of our arguments.

Let T = R/Z be the unit torus. For θ ∈T, let ‖θ‖ denote the distance to Z and set e(z) = e2πiz.
Write θ = (θ1, . . . ,θm) ∈ Tm. Define

Tm
0 = {θ ∈ Tm : θ1 + · · ·+θm = 0}.

Fix an interval I. We define the function F(θ) = FI(θ ,X(1), . . . ,X(m)) via the formula

F(θ) := ∏
j∈I

m

∏
i=1

(
1+ e( jθi)

2

)X (i)
j

. (5.5)

Writing θm = −θ1 −·· ·−θm−1, we regard F(θ) as a function on Tm−1. It is straightforward to
verify that its Fourier transform is a function F̂ : Zm−1 → C supported on S(I;X(1), . . . ,X(m))
defined above in (5.4).

The Cauchy–Schwarz inequality yields that

∑
a∈Zm−1

|F̂(a)|2 ∑
a:F̂(a)�=0

1 �
[

∑
a∈Zm−1

F̂(a)

]2

. (5.6)

Recognizing that

S(I;X(1), . . . ,X(m)) � |{a : F̂(a) �= 0}|,

that ∑a∈Zm−1 F̂(a) = F(0) = 1, and that by Parseval’s identity

∑
a∈Zm−1

|F̂(a)|2 =
∫

Tm
0

|F(θ)|2 dθ ,

it follows from (5.6) that

|S(I;X(1), . . . ,X(m))| �
(∫

Tm
0

|F(θ)|2 dθ
)−1

. (5.7)

Our next task is to bound the integral appearing in (5.7). We will achieve this in two steps:
first, by obtaining a pointwise bound with respect to θ in Lemma 5.4, and second, by integrating
out the θ dependence in Corollary 5.5.
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Let β ∈ (0,1) be a real parameter satisfying

βα log2 = 1−m−1 +δ2,

where δ2 > 0 and δ2 = oδ (1) is the parameter occurring in (5.1). (Note that this is possible since
α is a continuity point of h, so m < (1−α log2)−1.) Recall the event E = E(ε,δ ,m,α) from
Lemma 5.3.

Lemma 5.4. Fix ε ∈ (0,1/2) and let I denote the interval I := (k1−β ,k]. For a tuple θ =
(θ1, . . . ,θm), let j(θ) denote an index for which ‖θ j‖ is maximal. Then

E
X(1),...,X(m)1E |F(θ)|2 �ε,m ∏

i : 1�i�m,
i�= j(θ)

(‖k θi‖∨1)−1+δ2 . (5.8)

Proof. For each 1 � i � m, set ti := k θi and define the cut-off parameter

ki :=

⎧⎪⎪⎨
⎪⎪⎩

kβ ‖ti‖ � kβ ,

‖ti‖ 1 < ‖ti‖ < kβ ,

1 ‖ti‖ � 1.

Note that ki � 1 and ki � ‖ti‖β . For each 1 � i � m, let Yi denote the expression

Yi := ∑
ki< j�k

X (i)
j .

By definition of the event E, when it occurs we have that

m

∑
i=1

Yi � α(1−δ )
m

∑
i=1

logki −C(ε).

It will be convenient to rewrite this bound in the form

1E �ε

m

∏
i=1

k−α(1−δ ) log2
i

m

∏
i=1

2Yi . (5.9)

We define the quantity

R = R(θ ,X(1), . . . ,X(m),ε,δ ,α) := |F(θ)|2
m

∏
i=1

2Yi . (5.10)

To establish the bound (5.8), we will first show that E
X(1),...,X(m)R �ε,m 1. Once this has been

established, it will follow directly from (5.9) that

E1E |F(θ)|2 �ε,m

m

∏
i=1

k−α(1−δ ) log2
i . (5.11)

Obtaining (5.8) from (5.11) is a simple exercise in lower-bounding the maximum of a sequence
by its geometric mean. Recalling the definition of j(θ) above, we have that

k j(θ) � ∏
i : 1�i�m,

i�= j(θ)

k1/(m−1)
i .
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Consequently
m

∏
i=1

k−α(1−δ ) log2
i � ∏

i : 1�i�m,
i�= j(θ)

k−(m/(m−1))α(1−δ ) log2
i . (5.12)

Substituting the lower bound ki � (‖k θi‖∨1)β into (5.12), we see that (5.11) implies

E1E |F(θ)|2 �ε,m ∏
i : 1�i�m,

i�= j

(‖k θi‖∨1)−(m/(m−1))αβ (1−δ ) log2,

and since
m

m−1
αβ (1−δ ) log2 = 1+oδ (1)

by definition of β , the desired bound follows.
Finally we justify that E

X(1),...,X(m)R �ε,m 1. Substituting (5.5) into (5.10) yields that

R =
m

∏
i=1

[
2Yi ∏

j∈I

∣∣∣∣1+ e( jθi)
2

∣∣∣∣
2X (i)

j

]
.

Recall that Yi = ∑ki< j�k X (i)
j

and that I = (k1−β ,k]. Thus

R =
m

∏
i=1

[
∏

k1−β < j�ki

∣∣∣∣1+ e( jθi)
2

∣∣∣∣
2X (i)

j

∏
ki< j�k

∣∣∣∣1+ e( jθi)√
2

∣∣∣∣
2X (i)

j

]
.

To compute ER, we recall that if P is a Poisson random variable with mean λ , then we have
logEaP = eλ (a−1). Since the variables X (i)

j
are independent Poisson variables with mean EX (i)

j
=

α/ j, it follows after some simplification that

ER = exp
m

∑
i=1

[
∑

k1−β < j�ki

α(cos(2π jθi)−1)
2 j

+ ∑
ki< j�k

α cos(2π jθi)
j

]
. (5.13)

Next we apply the following bound from [15, Lemma 3.4]:

∑
j�k

cos(2π jθ)
j

= logmin(k,‖θ‖−1)+O(1). (5.14)

Substituting into (5.13) yields that

ER = expα
m

∑
i=1

[
1
2

log
kβ ∨‖k θi‖
ki ∨‖k θi‖

− 1
2

log
kβ

ki
+ log

ki ∨‖k θi‖
1∨‖k θi‖

+O(1)
]
.

By definition of ki, each summand is O(1). Therefore ER �ε,m 1, as desired.

Finally we integrate the bound (5.8) with respect to θ to obtain a bound on the integral
appearing in (5.7).

Corollary 5.5. Let I = (k1−β ,k] and recall the function F(θ) = FI(θ) from (5.5). Then∫
Tm

0

E1E |F(θ)|2 dθ �ε,m k1−m.
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Proof. After the change of variables t = kθ , the bound reduces to verifying that∫
k·Tm

0

E1E |F(θ)|2 dt �ε,m 1.

Applying Lemma 5.4, we have∫
k·Tm

0

E1E |F(θ)|2 dt �ε,m

∫
k·Tm

0

∏
i : 1�i�m,

i�= j(t)

(‖ti‖∨1)−(1+δ2) dt. (5.15)

By symmetry, we may upper-bound the integral (5.15) by

m
∫

k·Tm
0

m−1

∏
i=1

(‖ti‖∨1)−(1+δ2) dt = m

(∫ k/2

−k/2
(|ti|∨1)−(1+δ2) dti

)m−1

. (5.16)

The rightmost integral in (5.16) is bounded above by

m

(
2

∫ ∞

1
t−(1+δ2)
i

dti +2

)m−1

.

The desired result now follows since the latter integral is finite and independent of k.

Substituting the result of Corollary 5.5 into (5.7) lets us show

|S(I;X(1), . . . ,X(m))| 
 km−1

with high probability.

Proposition 5.6. Let I = (k1−β ,k]. With probability greater than 1/2,

S(I;X(1), . . . ,X(m)) ⊂ [−ck,ck]m−1

for some constant c and |S(I;X(1), . . . ,X(m))| 
 km−1.

Proof. By Lemma 5.2 with ε = 1/3, with probability greater than 2/3 we have

L (I,X(i)) ⊂
[

0,
3mk
α

]
⊂ [0,ck]

for some constant c and all i. It follows that

S(I;X(1), . . . ,X(m)) ⊂ [−ck,ck]m−1.

By Lemma 5.3 with ε = 1/20, the event E(ε,δ ,m,α) holds with probability greater than
19/20, and by Corollary 5.5, ∫

Tm
0

E1E |F(θ)|2 dθ �ε,m k1−m.
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It follows by Markov’s inequality that for some sufficiently large L,

P

[{∫
Tm

0

|F(θ)|2 dθ � k1−m

}c]
� P[Ec]+P

[
1E

∫
Tm

0

|F(θ)|2 dθ > Lk1−m

]

� 1
20

+
E1E

∫
Tm

0
|F(θ)|2 dθ

Lk1−m

� 1
10

.

It then follows from (5.7) that with probability at least 9/10,

|S(I;X(1), . . .X(m))| �
(∫

Tm
0

|F(θ)|2 dθ
)−1


 km−1.

Both events then occur simultaneously with probability at least 1/2, completing our proof.

Proposition 5.7. Let D be a sufficiently large constant and let I = (k1−β ,Dk]. With probability
bounded away from zero there exists an array (x(i)

j
: 1 � i � m, j ∈ I) for which

0 � x(i)
j � X (i)

j

for all i and j ∈ I, and

∑
j∈I

jx(1)
j = · · · = ∑

j∈I

jx(m)
j .

Proof. We define the interval I′ = (k1−β ,k]. By Proposition 5.6, with probability greater than
1/2,

S(I′;X(1), . . . ,X(m)) ⊂ [−ck,ck]m−1

and |S(I′;X(1), . . . ,X(m))| 
 km−1.
Let d = 2(5/2)1/α . Straightforward calculations tell us that independently with probability

greater than 1/2 there exists jm ∈ (2ck,cdk] such that X (m)
jm

> 0. Given this jm, there are 
 km−1

collections of constants { j�}m−1
1 ∈ (ck,(d +1)ck]m−1 such that

( jm − j1, . . . , jm − jm−1) ∈ S(I′;X(1), . . . ,X(m)).

Therefore, independently with probability bounded away from zero, there is one such collection
{ j�}m−1

1 such that X (�)
j�

> 0 for all �.

By the definition of S(I′;X(1), . . . ,X(m)), we have a set of values (ni ∈L (I′,X(i)))m
i=1 such that

(n1 −nm)m−1
1 = ( jm − j�)

m−1
1 .

Manipulating the terms coordinate-wise yields

j1 +n1 = · · · = jm +nm.

Our claim follows by setting D = (d +1)c.

Corollary 5.8.
⋂m

i=1 L (X(i)) is almost surely infinite.
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Proof. We define k1 to be sufficiently large for Proposition 5.7 to hold, then inductively define
ki+1 = (Dki)

1/(1−β ). The intervals Ii = (k1−β
i

,Dki] are pairwise disjoint and the set

m⋂
j=1

L (Ii,X
( j))

is non-empty with probability bounded away from zero. Since these events are independent for
distinct values of i, the claim now follows from the second Borel–Cantelli lemma.

Proof of Proposition 5.1. When α < 1/ log2, as we had fixed m = h(α), by Corollary 5.8
sα � h(α) holds for continuity points of h. For points of discontinuity, we fix α ′ < α such that
h(α ′) = h(α) = m. We couple two sets of independent realizations X(1)(α), . . . ,X(m)(α) and
X(1)(α ′), . . . ,X(m)(α ′) such that X (i)(α ′) ⊆ X (i)(α) for all i. Now

⋂m
i=1 L (X(i)(α ′)) is almost

surely finite by Corollary 5.8. Our coupling ensures L (X(i)(α ′) ⊆ L (X(i)(α)) for all i, so

m⋂
i=1

L (X(i)(α ′)) ⊆
m⋂

i=1

L (X(i)(α)).

Thus the second intersection is almost surely infinite, and our claim follows. When α � 1/ log2,
all of the preliminary results in this section hold for arbitrarily large m, and thus every finite
intersection is almost surely infinite.

Proof of Theorem 1.7. This now follows immediately from Propositions 4.2 and 5.1.
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