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Weakly nonlinear mode interactions in spherical
Rayleigh–Bénard convection
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In an annular spherical domain with separation d, the onset of convective motion
occurs at a critical Rayleigh number Ra = Rac. Solving the axisymmetric linear
stability problem shows that degenerate points (d = dc, Rac) exist where two modes
simultaneously become unstable. Considering the weakly nonlinear evolution of these
two modes, it is found that spatial resonances play a crucial role in determining the
preferred convection pattern for neighbouring modes (`, `± 1) and non-neighbouring
even modes (`, ` ± 2). Deriving coupled amplitude equations relevant to all
degeneracies, we outline the possible solutions and the influence of changes in d, Ra
and Prandtl number Pr. Using direct numerical simulation (DNS) to verify all results,
time periodic solutions are also outlined for small Pr. The 2 : 1 periodic signature
observed to be general for oscillations in a spherical annulus is explained using the
structure of the equations. The relevance of all solutions presented is determined by
computing their stability with respect to non-axisymmetric perturbations at large Pr.

Key words: Bénard convection, absolute/convective instability

1. Introduction
Convective motion arises from a motionless state when the temperature gradient

applied across a fluid layer becomes sufficiently steep. Often the state of motion
arising is characterised by a number of counter-rotating parallel rolls, hexagons or
more exotic patterns. Theoretically, this behavioural tendency was first outlined by
Rayleigh (1916) who demonstrated that a fluid layer heated from below becomes
unstable to two-dimensional (2-D) rolls with a definite horizontal wavenumber. The
stability of this convective motion is of particular interest, as it constitutes an example
of an ordered state in a non-equilibrium system. Its investigation has encouraged a
diverse range of approaches in a dynamical systems context including: numerical
simulation, path continuation, group theoretic methods and model reduction (Gettling
1998; Bodenschatz, Pesch & Ahlers 2000). Most of these studies however, have been
confined to planar geometries. Given that convection plays a prominent role at large
scales in many natural phenomena, such as the solar convection zone for low Prandtl
number (Pr) (Thompson et al. 2003) and the Earth’s mantle for large Pr (Bercovici,
Schubert & Glatzmaier 1989), it is natural to study the behaviour of convection in a
spherical shell.

† Email address for correspondence: pm4615@ic.ac.uk
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This stability problem was first considered by Chandrasekhar (1961) and in a more
complete manner by Joseph & Carmi (1966) using an energy method. Both identified
the stability threshold for convective motion and remarked upon the significance of the
purely conductive thermal base state and functional form of gravity chosen. However
neither work made evident the Prandtl number dependence, nor addressed the 2`+ 1
fold degeneracy of the linear problem to establish the preferred solution at onset.
Young (1974) conducted the first numerical study of spherical convection including
azimuthal dependence using a Galerkin projection, but was restricted to hemispheres.
With limited computational resources he focused on particular cases, but nonetheless
demonstrated a strong dependence on the Prandtl number, shell thickness and initial
conditions chosen. Notably he found stable time-periodic solutions for particular
parameter values. Ignoring the radial structure, Busse (1975) and Busse & Riahi
(1982) tackled the problem of degenerate mode selection, revealing the potential for
numerous patterns or solutions. Applying bifurcation theory and group theoretical
methods, Chossat (1978) performed a detailed analysis of the non-rotating and slowly
rotating problem, focusing in particular on the spectral properties of the linearised
governing equations. Evoking these results he described the possible solutions for the
spherical harmonics of order 2 Ym

`=2(θ, ϕ) where θ, ϕ are as per figure 1. He also
identified stable axisymmetric solutions which bifurcate supercritically.

Combined, these works served to suggest that a solution set containing various
patterns exists, that transformations can be made between solutions or elements of this
set and that for certain parameter values time-dependent behaviour arises. Collectively
these ideas were first investigated by Friedrich & Haken (1986) to identify concretely
the presence of complicated time-dependent behaviour; a physically striking result
in the absence of rotation or periodic forcing. Concurrently, Kidachi (1982) and
Knobloch & Guckenheimer (1983), each working in planar geometries, also used the
existence of degenerate modes to demonstrate that small changes to the geometry
may drastically affect the stability and dynamics of convection. The sensitivity of
these degenerate points is particularly useful as they allow the role of geometry to
be parametrised; a feature of spherical shells we want to understand.

Close to degenerate points, a reduced-order model describing the amplitude of
convection modes may be derived. Amplitudes Ai are chosen for the neutrally stable
modes, with nonlinear terms accounting for their distortion during self and coupled
nonlinear interactions. Unlike other dynamical systems describing convection, those in
an annular domain contain both quadratic and cubic nonlinearities, and are described
by a system of ordinary differential equations (ODEs) of the form

Ȧi =µiAi +
∑

j

iαjAiĀj − Ai

∑
j

cij|Aj|
2, αj, µi, cij ∈R. (1.1)

Nonlinear interactions determined by coefficients αj, cij, are highly dependent upon
the boundary conditions and system parameters, including Pr. The origin of these
quadratic terms was first remarked upon by Proctor & Jones (1988) in a study
of spatially resonant 2-D convection, and independently using a group theoretic
approach by Dangelmayr (1986) who showed that such equations are characteristic
of physical systems with O(2) symmetry in contrast to the O(2)×Z2 symmetry of a
periodic plane layer. Crucially, this implies that in physical systems where mid-plane
reflectional symmetry is absent, such as a spherical annulus, resonant convection will
be prevalent. Capitalising on this notion Mercader, Prat & Knobloch (2001, 2002) and
Cox (1996) studied systems with asymmetric vertical boundary conditions, obtaining
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equations equivalent to (1.1) and demonstrating the influence of spatial resonances on
the convection pattern selected.

The most recent work is motivated by the GeoFlow experiment (Futterer et al.
2010), a spherical fluid annulus in which gravity is modelled by a radial electrostatic
potential. Numerical studies have been conducted by Feudel et al. (2011) and Li
et al. (2005), while a more complete description has been undertaken by Beltrame
& Chossat (2015) who applied a centre manifold reduction to derive a reduced-order
model. Being concerned primarily with the experimental apparatus, these authors
limited their study to spherical harmonics Ym

` for `= 3, 4.
In this paper we derive a weakly nonlinear 2-mode model akin to (1.1) for

axisymmetric spherical convection, leveraging its simplicity to answer the following
questions. How do the Prandtl number, geometry and buoyancy forces influence the
dynamics of convection? How is the temperature field distorted for different Pr?
What determines the preferred state of convective motion in the presence of multiple
solutions? The accuracy of this 2-mode model is assessed using direct numerical
simulation (DNS). Subsequently we investigate numerically the stability of these
solutions to non-axisymmetric disturbances in the high Pr limit.

This approach involves a significant simplification of the physical system and
constrains the range of parameter values we may explore, but it allows us to focus
on the simplest nonlinear interaction possible: a system of just two coupled convection
modes. While axisymmetric solutions do not always represent the preferred solution,
they are a subset of solutions to the full problem and are relevant for larger Prandtl
numbers (Zebib, Schubert & Straus 1980; Zebib et al. 1983). The value of this
approach, akin to those of Friedrich & Haken (1986) and Beltrame & Chossat
(2015) is that a simple dynamical description (readily verifiable by DNS) is made
possible for all axisymmetric mode interactions; as by restriction there are only two
neutrally stable modes at any degeneracy. This helps to provide a concrete validation
and context in terms of the fully nonlinear problem for our results. In contrast a
reduction of the non-axisymmetric problem for neighbouring modes requires 4(`+ 1)
amplitudes.

After outlining the governing equations in § 2, the linear stability of the system
is solved in § 3. In § 4 the amplitude equations are determined for every possible
two mode interaction. It is shown that the weakly nonlinear interaction of convective
modes in an axisymmetric spherical annulus may be described by a real analogue
of (1.1). After calculating system-specific coefficients, an analysis of the derived
equations is presented in § 5. In § 6 a numerical investigation and relevant physical
arguments using the equations derived in § 4 are provided. In § 7 we compute the
stability of all solutions to non-axisymmetric perturbations in the high Pr limit
contextualising the results of previous sections.

2. Formulation of the problem
We consider flow in a spherical annulus as shown in figure 1, and assume a

Boussinesq fluid so that density depends linearly on temperature

ρ(r, θ, t)= ρf [1− β(T(r, θ, t)− T0(r))], (2.1)

where the thermal expansion coefficient β is small and T0(r) is the conductive base
state. The axisymmetric meridional flow u is described by a streamfunction ψ(r, θ, t)

u=∇×
(

0, 0,
ψ

r sin θ

)
=

(
1

r2 sin θ
∂ψ

∂θ
,
−1

r sin θ
∂ψ

∂r
, 0
)
, (2.2)
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FIGURE 1. The domain is a closed annular region between two concentric spheres, of
radii r1, r2= r1+d. Each sphere maintains a constant temperature T1=1,T2=0 and gravity
g acts radially inward. The density of the inner sphere is ρc and of the fluid annulus ρf .

for which the vorticity vector Γ = (0, 0, Γφ) is azimuthal and can be expressed as

Γφ =
−D2ψ

r sin θ
, where D2

=
∂2

∂r2
+

1
r2

∂2

∂θ 2
−

cot θ
r2

∂

∂θ
. (2.3)

We stress that by defining the flow in terms of a streamfunction, we are restricting
the system to axisymmetric solutions only. Non-axisymmetric effects are considered in
§ 7. The flow is thus completely described by the azimuthal vorticity and temperature
equations

∂Γφ

∂t
− [∇× (u× Γ )]φ =

[
∇×

(
ρ(r, θ)
ρf

g
)]

φ

+ ν

(
∇

2
−

1
r2 sin2 θ

)
Γφ, (2.4a)

∂T
∂t
+ u · ∇T = α∇2T, (2.4b)

where ν, α are the kinematic viscosity and thermal diffusivity respectively. The
spherically symmetric gravity field acts radially inward and is expressed as

g=−g0g(r)r=−g0

[
(1− η)

r2
1

r3
+ η

1
r1

]
r, η=

ρf

ρc
, (2.5)

where gravity is normalised with respect to its value g0 on the inner sphere surface,
so that g(r1)= 1. Substituting for Γφ and u in terms of ψ , the governing equations
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are obtained

Pr−1

(
∂D2ψ

∂t
+ sin θ

∂(ψ,D2ψ/r2 sin2 θ)

∂(θ, r)

)
= Ra g(r)r

∂T
∂θ

sin θ +D2D2ψ, (2.6a)

∂T
∂t
+

1
r2 sin θ

∂(ψ, T)
∂(θ, r)

=∇
2T, (2.6b)

where the inner sphere radius r1, and time scale r2
1/α, have been chosen to make the

equations non-dimensional. We define the following non-dimensional parameters

Pr= ν/α,

Ra=
g0β(T1 − T2)r3

1

να
,

d= (r2 − r1)/r1.


Prandtl number
Rayleigh number
annulus width.

(2.7)

For Pr→∞ the advection term in the vorticity equation can be neglected, as the
dominant transport terms are in the temperature equation. For Pr→ 0 however one
must adopt the rescaling

ψ̃ = Pr−1ψ, T̃ = Pr−1T, t̃= Pr t, (2.8a−c)

such that advection terms in the vorticity equation are dominant.
A complete specification of the problem requires boundary conditions. For the case

of perfectly conducting spheres with no slip at the boundaries

ψ(r, θ)=
∂

∂r
ψ(r, θ)= 0, for r= 1, 1+ d

T(1, θ)= 1, T(1+ d, θ)= 0,

 Case A (2.9)

or alternatively when both spheres have stress-free boundaries

ψ(r, θ)= 0=
∂

∂r

(
1
r2

∂

∂r
ψ(r, θ)

)
, for r= 1, 1+ d

T(1, θ)= 1, T(1+ d, θ)= 0.

 Case B (2.10)

Unfortunately, neither of these boundary conditions nor any of their combinations
gives a nice set of eigenfunctions. Hence there is no advantage in choosing stress-free
boundary conditions as is often the case in planar domains. In addition the following
symmetry conditions must be enforced at the symmetry axis

ψ(r, 0)=ψ(r, π)= 0,
∂T(r, 0)
∂θ

=
∂T(r, π)
∂θ

= 0. (2.11a,b)

The basis functions for T and ψ are the Legendre P`(cos θ) and Gegenbauer
G`(θ)= sin θ(∂/∂θ)P`(cos θ) polynomials respectively, which naturally enforce these
symmetry conditions. Solving the equation ∇2T = 0 with boundary conditions (2.9)
the conductive base state T0(r) is obtained

dT0

dr
= T ′0 =

AT

r2
, T0 =−

AT

r
+ BT, AT =

1+ d
−d

, BT =
1
−d

, (2.12a−d)

implying that temperature gradients are greatest near the inner sphere.
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3. Linear theory

Subtracting the conductive base state, we substitute T(r, θ, t)= T0(r)+ T̃(r, θ, t)/r
and drop the tildes so that the governing equations can be written

Pr−1

(
∂D2ψ

∂t
+ Jψ(ψ, ψ)

)
= Ra g(r)

∂T
∂θ

sin θ +D2D2ψ, (3.1a)

∂T
∂t
+ JT(ψ, T)= D̂2T −

1
sin θ

∂ψ

∂θ

T ′0
r
, (3.1b)

where

D̂2f = r∇2( f /r), Jψ( f , g)= sin θ
∂( f ,D2g/(r2 sin2 θ))

∂(θ, r)
, JT( f , g)=

1
r sin θ

∂( f , g/r)
∂(θ, r)

.

(3.2a−c)

Their linearised form may be written as(
∂

∂t
M−L

)
φ1 = 0, (3.3)

where

φ1 =

(
ψ1
T1

)
, M=

(
Pr−1D2 0

0 1

)
, L=

 D2D2 Ra g(r) sin θ
∂

∂θ
−T ′0

r sin θ
∂

∂θ
D̂2

 .
(3.4a−c)

It is shown in appendix A, that operators M and L are self-adjoint with respect to a
weighted inner product and boundary conditions (2.9) provided the condition

d
dr

g(r)r
T ′0
= 0 (3.5)

is satisfied (Joseph & Carmi 1966). This implies the temperature gradient and gravity
fields (2.5) must have the same radial variation. Assuming a dense core so that η= 0
we obtain

g(r)= r−3, T ′0/r= AT/r3. (3.6a,b)

We concentrate on this mathematically convenient self-adjoint case as it provides semi-
explicit solutions to (3.3). Physically it corresponds a very dense core underlying a
light fluid layer (Schubert, Stevenson & Ellsworth 1981). Satisfying (3.5) guarantees
the absence of oscillatory motions at the onset of linear instability. Separable solutions
ψ1, T1 then take the form

ψ`
1 =ψ`(r)G`(θ)eλt, T`1 = T`(r)Pl(cos θ)eλt, λ ∈R, (3.7a,b)

for a prescribed mode `. Provided (3.5) holds, the system is neutrally stable λ= 0 for
a critical Rayleigh number Rac so that the governing equations may be reduced to the
sixth-order ODE

D2
`g(r)

−1D2
`D

2
`ψ`(r)− Rac l(l+ 1)T ′0/rψ`(r)= 0, D2

` =
∂2

∂r2
−

l(l+ 1)
r2

, (3.8a,b)
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with no-slip boundary conditions

ψ`(r)=ψ ′`(r)= 0, D2
`D

2
`ψ`(r)= 0, for r= 1, 1+ d. (3.9a,b)

It should be noted that (3.8) implies the stability threshold is independent of Pr, so
that the Prandtl number only affects the nonlinear problem. The form and solution
of (3.8) in terms of spherical Bessel functions for the special case g(r)= 1, T ′0/r= 1
was initially determined by Chandrasekhar (1961). In our case, substituting (3.6) one
obtains the equation

D2
`r

3D2
`D

2
`ψ`(r)+

Cψ`(r)
r3
= 0, C=−Rac l(l+ 1)AT, (3.10)

whose solutions for a given polar mode `, take the form of complex polynomials

ψ`(r)=
6∑

i=1

Eirzi + c.c., where zi, Ei ∈C. (3.11)

To the authors’ knowledge this solution has not been previously reported. Substituting
(3.11) into (3.10) an implicit expression for the roots zi as function of Rac is obtained

[(z−1)(z−2)−`(`+1)][(z−2)(z−3)−`(`+1)][z(z−1)−`(`+1)]+C=0. (3.12)

This polynomial is symmetric under the transformations z 7→ 3 − z and z + 1.5 7→
z−1.5, and its roots are complex conjugate pairs expressible in terms of real constants
a, b, c

z1 = a± ib, z2 = (3− a)± ib, z3 = 1.5± ic. (3.13a−c)
The boundary conditions (3.9) are now imposed to obtain a set of linear homogeneous
equations for the coefficients Ei of the form

M`(Rac, d)

E1
...

E6

= 0, (3.14)

where M` is a 6× 6 matrix depending on Rac, d and the complex roots zi. Non-trivial
solutions of the linear problem with the required boundary conditions are determined
by solving the system

Re(det(M`(Rac, d)))= 0, Im(det(M`(Rac, d)))= 0, (3.15a,b)

numerically for each `, and for a range of (Rac, d) to determine the neutral curves
(figure 2). Arbitrarily setting E1 = 1+ i, the remaining amplitudes are determined.

In planar convection where d represents the separation of hot and cold plates
Rac(d)d3 shares a common minimum for all mode numbers. In a spherical fluid
annulus this is evidently not the case, a physical difference which may be understood
by considering the volume of fluid being heated relative to the heating element’s
surface area (inner sphere). For d� 1 these are almost coincident, but as d→∞ the
inner sphere becomes in effect a point source, as observed in figure 2. The symmetry
about the annulus centreline (r = (r1 + r2)/2) is also broken (figure 3), with the
effect of replacing the sinusoidal eigenfunctions of planar geometries, by functions
exhibiting a radial oscillatory decay

ψ(r)∼ rx+iy
∼ rxeiy log(r), x, y ∈R. (3.16)

This makes the annular domain Z2 symmetric rather than D2=Z2×Z2 symmetric and
alters the form of the amplitude equations derived in § 4.
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FIGURE 2. Neutral stability curves Rac(d) d3 where the rightmost mode of each figure
is ` = 2. (a) No slip, (b) Stress-free boundary conditions. Select degenerate points are
indicated by hollow dots if neighbouring, and solid black dots if non-neighbouring. These
solutions have previously been obtained numerically for both density ratios (η= 1, η= 0)
by Araki, Mizushima & Yanase (1994) and by Chossat (1978).
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FIGURE 3. Eigenfunctions ψ(r) and T(r) of the marginally stable state. As d → 0
symmetry about the annulus centreline r= 1+ d/2 is approached.

4. Weakly nonlinear theory
The linear theory of § 3 demonstrated that there exist neutral curves for each mode

`. These curves correspond to a stability boundary λ = 0, at which transition from
the stable λ < 0 conductive regime to the unstable λ > 0 convective regime occurs,
as shown in figure 4. Previously Ra d3 versus d was plotted for comparison with the
planar case, but now we plot Ra versus d as Ra is the natural control parameter in
(3.1). One can see from the curves for various modes, that there are special values of
the control parameter Rac and geometry dc where two modes (`, n= `+ 1, 2, . . .) lose
their stability simultaneously, marked by dots in figure 4. These are termed degenerate
points. Linear theory fails to establish the preferred neutral mode so that (3.3) may
be solved by any solution of the form

φ1 = A(t̃)φ`1 + B(t̃)φn
1, A, B ∈R, (4.1)

where

φ`1 =

(
ψ`

1 (r, θ)
T`1(r, θ)

)
, φn

1 =

(
ψn

1 (r, θ)
Tn

1 (r, θ)

)
(4.2a,b)
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FIGURE 4. Neutral stability curves Ra(d). Hollow dots indicate degenerate points where
two modes (`, `+ 1) simultaneously become unstable, while solid black dots indicate the
even degenerate point (2, 4) unstable to the odd `= 3 mode and the odd degenerate point
(1, 3) unstable to the even `= 2 mode.

and the amplitudes A(t̃),B(t̃) are functions of an appropriately chosen slow time scale
t̃. In this section, we concentrate on the dynamics in the vicinity of such points;
deriving a set of coupled ordinary differential equations to describe the time evolution
of the convective amplitudes A,B. Physically this aims to understand how patterns of
convection cells interact and are affected by changes in the annulus width d, buoyancy
forcing Ra and Prandtl number Pr.

As the eigenfunctions are either symmetric or antisymmetric (within the interval
[0, π ]), all possible interactions are summarised by four cases. If mode numbers (`, n)
are both even, their interaction is termed even–even while if (`, n) are odd and even
their interaction is termed odd–even or even–odd. In both scenarios the amplitude
equations contain quadratic terms and are resonant. Finally if (`, n) are both odd, their
interaction is termed odd–odd. This case is the simplest and is studied first, as no
quadratic terms appear. While applicable at all degenerate points, higher interactions
such as (`= 2, n= 11) are unstable to a large number of intermediate modes and so
are less relevant (figure 2).

4.1. Odd–odd interactions
Following Kidachi (1982) we introduce a small parameter ε and define the appropriate
scalings for the odd–odd interaction as

φ = εφ1 + ε
2φ2 + ε

3φ3, (4.3)

with the slow time scale τ1 = ε
2t so that

∂

∂t
= ε2 ∂

∂τ1
, (4.4)

while the Rayleigh number and annulus width scale as

Ra− Rac

Rac
=µε2, d− dc = δε

2. (4.5a,b)
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The effect of varying the outer sphere radius is to modify the radial boundary
conditions from O(ε3). Expanding ψ(r, θ, t) and T(r, θ, t) about r = 1 + dc one
obtains

ψ(1+ d, θ, t)= εψ1 + ε
2ψ2 + ε

3(ψ3 + δψ
′

1)+O(ε4)= 0,

ψ ′(1+ d, θ, t)= εψ ′1 + ε
2ψ ′2 + ε

3(ψ ′3 + δψ
′′

1 )+O(ε4)= 0,

T(1+ d, θ, t)= εT1 + ε
2T2 + ε

3(T3 + δT ′1)+O(ε4)= 0,

 (4.6)

where all terms on the right-hand side are evaluated at r= 1+ dc. Substituting these
scaled expressions into (3.1b) we obtain order by order

O(ε):
Lφ1 = 0, (4.7a)

O(ε2):

Lφ2 =N2(φ1, φ1)≡

(
Pr−1Jψ(ψ1, ψ1)

JT(ψ1, T1)

)
, (4.8a)

where L is given by (3.4) with homogeneous boundary conditions. At order O(ε3)

Lφ3 = N3(φ1, φ2)

≡

−µRac g(r)
∂T1

∂θ
sin θ + Pr−1

(
Jψ(ψ1, ψ2)+ Jψ(ψ2, ψ1)+

∂D2ψ1

∂τ1

)
JT(ψ1, T2)+ JT(ψ2, T1)+

∂T1

∂τ1

 ,
(4.9a)

ψ3 = 0, ψ ′3 = 0, T3 = 0, at r= 1,
ψ3 = 0, ψ ′3 =−δψ

′′

1 , T3 =−δT ′1, at r= 1+ dc.

}
(4.9b)

Solving (4.7) recovers the solution for φ1, which is just the expression (4.1). Inserting
φ1 into (4.8) leads to a linear inhomogeneous problem for φ2. By Fredholm’s
alternative, a solution exists if and only if the conditions

〈φ`1,N2(φ1, φ1)〉 = 0, and 〈φn
1,N2(φ1, φ1)〉 = 0, (4.10a,b)

are satisfied. As L is formally self-adjoint, the adjoint eigenfunctions φ`1, φ
n
1 are

the same as the original ones (cf. appendix A). Having satisfied these conditions,
a general solution for φ2 containing terms proportional to A2, AB, B2 is obtained.
Inserting expressions for φ1,φ2 into (4.9a), a further solvability condition constraining
the amplitudes A, B is encountered. The boundary conditions (4.9b) at this order
are however inhomogeneous, so that the previously defined inner product must be
modified to include terms proportional to δA, δB. Imposing the first solvability
condition for the `-harmonic gives

〈φ`1,Lφ3〉 = 〈φ
`
1,N3(φ1, φ2)〉 = 〈Lφ`1, φ3〉 + boundary terms. (4.11)

Integrating by parts and substituting for (4.9b) the form of these additional terms non-
zero at r= 1+ dc are determined

〈φ`1,Lφ3〉 = 〈Lφ`1, φ3〉 + δA

{∫
θ

(
∂T`1
∂r

)2

sin θ dθ −
AT

Rac

∫
θ

(
∂2ψ`

1

∂r2

)2 dθ
sin θ

}
, (4.12)
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where ψ`
1 , T`1 are as defined in (3.7). An equivalent procedure is adopted to impose

solvability for the n-harmonic, giving terms proportional to δB. Together with the
conditions imposed for (4.9a) the following coupled equations are obtained:

a0
∂A
∂τ1
=µ1A− (d11A2B+ d12AB2

+ d13A3
+ d14B3),

b0
∂B
∂τ1
=µ2B− (d21A2B+ d22AB2

+ d23A3
+ d24B3),

where µ1 = a1µ+ a2δ, µ2 = b1µ+ b2δ,


A∼ ` odd
B∼ n> ` odd (4.13)

and O(1) parameters µ and δ as in (4.5) represent the distance from a degenerate
bifurcation point (dc, Rac), for example the intersection of neutral curves `= 1, n= 3
as shown in figure 4. These parameters may be positive or negative, so that both
geometry changes and buoyancy forces may excite convective motion. All coefficients
ai, bi, dij ∈ R+ are found to be non-zero, highlighting that there are no pure mode
solutions (A, 0) or (0,B). However, given that the interaction of odd modes explicitly
excites intermediate even modes unstable in the vicinity of the bifurcation point, the
relevance of (4.13) for the fully nonlinear problem is diminished. For this reason it is
not considered further.

4.2. Even–even and even–odd interactions
We now consider the interaction of neighbouring and non-neighbouring even modes,
as both cases contain quadratic terms at O(ε2). Following Proctor & Jones (1988) we
adopt an expansion of the type (4.3), but now choose the slow time scale τ1= εt and
scale the control parameters as

(Ra− Rac)/Rac =µε, d− dc = δε. (4.14a,b)

Note that these scalings do modify (4.8) and (4.9a), but for brevity the changes
are not outlined. Proceeding in a manner identical to the odd–odd case, φ1 may
be expressed as per (4.1). Inserting φ1 into the nonlinear terms in (4.8), terms
proportional to P`(cos θ), G`(θ), Pn(cos θ), Gn(θ) are encountered. It is the presence
of these resonant terms at O(ε2) that motivates the alternate time scale and parameter
scalings chosen. Imposing the inner products

〈φ`1,N2(φ1, φ1)〉 = 0, and 〈φn
1,N2(φ1, φ1)〉 = 0, (4.15a,b)

the second-order amplitude equations may be determined. They are of the form

(a) a0
∂A
∂τ1
=µ1A+ cA2

− αB2,

b0
∂B
∂τ1
=µ2B+ αAB,

 A∼ ` even
B∼ n> ` odd (4.16)

(b) a0
∂A
∂τ1
=µ1A− αAB,

b0
∂B
∂τ1
=µ2B+ αA2

+ cB2,

 A∼ ` odd
B∼ n> ` even (4.17)
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for the interaction of neighbouring modes, while for non-neighbouring even modes

(c) a0
∂A
∂τ1
=µ1A+ cA2

− αAB− βB2,

b0
∂B
∂τ1
=µ2B+ αA2

+ βAB+ cB2,

 A∼ ` even
B∼ n> ` even (4.18)

where

µ1 = a1µ+ a2δ, µ2 = b1µ+ b2δ, with ai, bi, α, β ∈R+, (4.19a,b)

and boundary terms ∼δ have been included as previously by modifying the inner
product. It has been proven by Chossat (2001) that when L is self-adjoint, as is the
case in this paper, the coefficient c= 0. When condition (3.5) is not satisfied however
the even mode solution is found to bifurcate subcritically (Beltrame & Chossat 2015).
Alternatively it may be seen that the even mode subspace (0, B), must be invariant
under the map (0, B)→ (0,−B) (Hoyle 2006). While it seems consistent to stop at
O(ε2), the quadratic nonlinearities do not lead to finite amplitudes at large times. As
was demonstrated for the planar case by Proctor & Jones (1988), multiplying the first
and second line of (4.16)–(4.18) by A and B respectively, and adding one obtains

1
2
∂

∂τ1
(a0A2

+ b0B2)=µ1A2
+µ2B2, (4.20)

so that if both µ1 and µ2 are positive the amplitudes tend to infinity. This is resolved
through a regularisation of the equations at O(ε3), even though these terms are an
order ε smaller. Gathering terms proportional to modes `, n we must obtain particular
integrals for the expression

Lφ2 =NR
2 (φ1, φ1)+NN

2 (φ1, φ1), (4.21)

where NR
2 is the resonant part of the inhomogeneous terms whose components are of

the form

Ȧφ`1 + Ḃφn
1 +µAφ`1 +µBφn

1 + A2φn
1 + AB(φ`1 + φ

n
1)+ B2φ`1, (4.22)

and NN
2 contains the non-resonant terms orthogonal to φ1. Overdot notation is now

used to indicate the time derivative. The non-resonant terms may be easily solved for
but the resonant terms demand special treatment. The method of solution is to find a
particular integral denoted by superscript p of (4.21) and then add terms of the form

φ2 =

(
ψ

p
2

Tp
2

)
+

2n+1∑
k=0

6∑
j=1

(
Ekjrzkj−1Gk(θ)

Fkjrzkj−2Pk(cos θ)

)
+ c.c., (4.23)

where the exponents zkj are determined by solving (3.12) for each mode k. For
each k there are six coefficients in Ekj, Fkj which must be chosen to satisfy the six
homogeneous boundary conditions at second order (2.9). Application of these gives
rise to a matrix equation of the form

Mx= bχ , (4.24)

where x is a 6-vector of coefficients, matrices M, b have size 6× 6, 6× 7 and

χ =
(
Ȧ, Ḃ, µA, µB, A2, AB, B2

)T
. (4.25)
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While this system may be solved easily for k 6= `, n, for k = `, n the matrix M is
singular, Mx0 = 0 = ȳT

0 M . Applying a solvability condition, we remove the resonant
component of each column bi of b,

bi = bi − 〈ȳ0, bi〉x0, where 〈ȳ0, x0〉 = 1. (4.26)

The solution space is then restricted by solving the invertible bordered system
(Kuznetsov 2004). (

M x0

ȳT
0 0

)(
x
σ

)
=

(
bχ

0

)
, where σ ∈R. (4.27)

Having satisfied the boundary conditions, the last step in calculating φ2 is to add
suitable multiples of φ`1, φ

n
1 so that the orthogonality conditions

〈φ`1, φ2〉 = 0, and 〈φn
1, φ2〉 = 0, (4.28a,b)

are satisfied. Substituting solutions φ1,φ2 into (4.9a), and taking the appropriate inner
product we obtain the following equations. Describing the even–odd interaction

ã0Ȧ= µ̃1A− α̃3B2
+ ε{ẽ11AȦ+ ẽ14BḂ+ d̃12AB2

+ d̃13A3
},

b̃0Ḃ= µ̃2B+ β̃2AB+ ε{ẽ22AḂ+ ẽ23BȦ+ d̃21A2B+ d̃24B3
},

}
A∼ ` even
B∼ n> ` odd

(4.29)

where

µ̃1 = a1µ+ a2δ + εa1µ
2, µ̃2 = b1µ+ b2δ + εb1µ

2, α̃3 = α3 + εµα13,

β̃2 = β2 + εµβ12, ã0 = a0 + εµa0, b̃0 = b0 + εµb0,

}
(4.30)

and for the alternate odd–even case one obtains

ã0Ȧ= µ̃1A− α̃2AB+ ε{ẽ12AḂ+ ẽ13BȦ+ d̃12AB2
+ d̃13A3

},

b̃0Ḃ= µ̃2B+ β̃1A2
+ ε{ẽ21AȦ+ ẽ24BḂ+ d̃21A2B+ d̃24B3

},

}
A∼ ` odd
B∼ n> ` even (4.31)

where

µ̃1 = a1µ+ a2δ + εa1µ
2, µ̃2 = b1µ+ b2δ + εb1µ

2, α̃2 = α2 + εµα12,

β̃2 = β2 + εµβ11, ã0 = a0 + εµa0, b̃0 = b0 + εµb0.

}
(4.32)

For the even–even case of two non-neighbouring modes

ã0Ȧ= µ̃1A− α̃2AB− α̃3B2
+ ε{ẽ11AȦ+ ẽ12AḂ+ ẽ13BȦ+ ẽ14BḂ

+ d̃11A2B+ d̃12AB2
+ d̃13A3

+ d̃14B3
},

b̃0Ḃ= µ̃2B+ β̃1A2
+ β̃2AB+ ε{ẽ21AȦ+ ẽ22AḂ+ ẽ23BȦ+ ẽ24BḂ

+ d̃21A2B+ d̃22AB2
+ d̃23A3

+ d̃24B3
},


A∼ ` even

B∼ n> ` even

(4.33)
where

µ̃1 = a1µ+ a2δ + εa1µ
2, µ̃2 = b1µ+ b2δ + εb1µ

2, α̃2 = α2 + εµα12,

α̃3 = α3 + εµα13, β̃1 = β1 + εµβ11, β̃2 = β2 + εµβ12,

ã0 = a0 + εµa0, b̃0 = b0 + εµb0,

 (4.34)
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and terms proportional to coefficients ẽij may be simplified using the appropriate
second-order equation (4.16)–(4.18) for each case. For convenience no sign is
prescribed to the coefficients.

Generalisations of (4.31) including non-axisymmetric effects, have previously been
determined by Friedrich & Haken (1986) for the ` = 1, 2 and by Beltrame &
Chossat (2015) for the ` = 3, 4 interactions. In this paper we focus rather on all
axisymmetric interactions. This is justified by the tendency of axisymmetric poloidal
flows to remain axisymmetric at large Pr. By computing the stability of solutions to
non-axisymmetric disturbances in § 7 this claim is later clarified. When neighbouring
modes are even and odd respectively we obtain (4.29), in which the roles of quadratic
terms are interchanged. Alternatively by choosing both modes to be even (`, `± 2),
equation (4.33) is obtained. The relevance of (4.33) may be queried as it fails to
consider the influence of the unstable intermediate modes `± 1 present at even–even
degeneracies (figure 2). We argue, however, that as the nonlinear interaction of
even modes excites even modes only, this equation remains valid in the absence
of odd mode perturbations. This contrasts with the odd–odd interaction where even
modes are explicitly excited. In § 7 we confirm the stability of such even solutions
numerically at large Pr. Following an investigation of (4.33) in § 5 the motivations
for its investigation are supported using DNS in § 6.

5. Analysis of the evolution equations
This section is divided between an analysis of neighbouring mode interactions

(`, ` ± 1), whose results are shown to compare directly with DNS, and an analysis
of even non-neighbouring mode interactions (`, ` ± 2) whose results compare with
DNS in which odd modes are suppressed. By calculating the coefficients in (4.29) to
(4.33) for Pr ∈ [10−3, 103

] deemed sufficient to attain limiting behaviour, the effect
of varying Pr in all (`, n) degeneracies is clarified. Mapping solutions in terms of
bifurcation parameters (δ, µ) regions of distinct convective behaviour for different
Pr are demarcated. This approach aims to determine: How do the solutions obtained
depend on system parameters? And which solutions are possible? In this section ε= 1
is fixed, as our interest is in the form and stability of the solutions to (4.16)–(4.18)
which do not dependent on its magnitude.

5.1. Neighbouring mode interactions
5.1.1. Even–odd ` < n

The equations for even–odd interactions are

Ȧ=µ1A+ α3B2
+ d12AB2

+ d13A3,

Ḃ=µ2B+ β2AB+ d21A2B+ d24B3,

}
A∼ ` even
B∼ n> ` odd

(5.1)

where
µ1 = a1µ+ a2δ, µ2 = b1µ+ b2δ ai, bi ∈R+. (5.2a,b)

The quadratic coefficients αi, βi in (5.1) have opposite signs, while the cubic
coefficients dij are negative for all Pr as shown in figure 5. Subject to the coefficients
outlined (5.1) have the fixed points

A= 0, B= 0, trivial solution
A=±

√
−µ1/d13, B= 0, pure modes

(A1,±B1), (A2,±B2), (A3,±B3), mixed modes

 (5.3)
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FIGURE 5. (Colour online) Variation of the equation coefficients with Pr for modes
` = 2, 3. The kink obtained at Pr = 1 is a consequence of the rescaling (2.8).
Quadratic coefficients increase or decrease to a limit as Pr varies about unity. Cubic
coefficients demonstrate markedly different limiting values for Pr→∞ and Pr→ 0. The
magnitudes of coefficient d13, d24 pertaining to terms A3 and B3 respectively interchange
when Pr' 0.28.

highlighting that even modes are symmetric under the transform (A, 0)→ (−A, 0)
and mixed modes under the transform (A, B)→ (A, −B). We also remark that for
d� 1 the least stable modes are `, n� 1, so that the quadratic coefficients αi, βi→ 0,
behaviour concordant with regression towards a planar geometry. For d � 1, the
degenerate points are spaced further apart, favouring smaller mode numbers for
which fewer linearly unstable interactions occur (figure 2). It is for this reason lower
mode numbers are used to demonstrate more general results.

Figure 6 shows the two parameter continuation of bifurcation points in (δ, µ)
parameter space. All such calculations are performed with the numerical continuation
software XPPAUT (Ermentrout 2002). The loci shown may be interpreted as a tracing
of the different bifurcations points which emerge as the parameters (δ, µ) are varied
from the degenerate point (δ, µ)= (0, 0). These are used to demarcate the existence
of stable pure modes in region 1, stable pure modes and unstable mixed modes in
region 2, stable pure and mixed modes in region 3, stable mixed modes only in
region 4, unstable pure modes and stable mixed modes in region 5 and finally a
stable pure mode and stable mixed modes in region 6. All solutions emerge from
pitchfork bifurcations apart from the mixed modes in region 3 which emerge via an
imperfect pitchfork bifurcation. Mixed mode solutions from region 4 and pure mode
solutions from region 1 both remain stable if continued into region 3. Within region
3, the transition between these states exhibits hysteresis and occurs via a saddle node
shown in frame 3 of figure 7. Notably, the equilibrium attained depends on the initial
condition.

In region 4, only stable mixed modes exist for µ1 < 0, µ2 > 0, corresponding to a
balance of linear and quadratic terms as is apparent by considering (5.1) without its
cubic terms.

0=µ1A+ α3B2,

0= (µ2 + β2A)B.

}
A∼ ` even
B∼ n> ` odd.

(5.4)

The fixed points are thus approximated by B=±
√
−(µ1µ2)/(α3β2) and A=−µ2/β2

and the lower-order equations hold in this scenario only. In the limit Pr→ 0, the odd
B-mode dominates the mixed mode solutions as |d24|< |d13|, while for Pr→∞ both
modes are of similar magnitude.
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FIGURE 6. (Colour online) Bifurcation diagram of the `= 2, 3 mode interaction for Pr=
10. Solid lines —— denote a pitchfork and dotted lines · · · · · · an imperfect pitchfork
bifurcation. Region 1: stable pure `= 2 mode; region 2: stable pure modes and unstable
mixed modes; region 3: stable pure `= 2 modes and stable mixed modes (initial condition
dependent); region 4: stable mixed modes; region 5: stable mixed modes and unstable
pure modes; and region 6: a single stable pure mode and stable mixed modes. The 3-D
stability of axisymmetric solutions at large Pr is shown in colour inset. Within the red
hatched region (top right) (−A, 0) is stable, but below loses stability to m= 1. Within the
blue hatched region (centre) (A,±B) is stable, but below loses stability to m= 3 (cf. § 7).

5.1.2. Odd–even ` < n
This interaction is described by the equations

Ȧ=µ1A+ α2AB+ d12AB2
+ d13A3,

Ḃ=µ2B+ β1A2
+ d21A2B+ d24B3,

}
A∼ ` odd
B∼ n> ` even (5.5)

whose fixed points are as before with the modes reversed, so that pure (0, ±B)
modes are now even. All cubic coefficients dij < 0 are negative, while the quadratic
coefficients have opposite signs as shown in figure 8.

Figure 9 plots the bifurcation diagrams of the (1, 2) and (3, 4) mode interactions.
The plot is akin to the even–odd interaction with the roles of the even and odd modes
interchanged; in this case it is the odd A mode which excites the even B mode in the
mixed mode solutions. A disparity in size between regions 1, 3, 4 between the figures
(a), (b) highlights that the degeneracies of higher modes exhibit are more sensitive
to changes in the annulus width. As the phase planes are qualitatively similar to the
even–odd case (figure 7) they are not presented.

In both the neighbouring mode interactions presented, there are no pure odd mode
solutions. In region 4 of figure 9 only mixed mode solutions exist where the even
(0,±B) modes are linearly unstable. This may be attributed to the self-interaction of
odd or even modes generating even modes only

(P`(cos θ))2 =
`∑

k=0

c2kP2k(cos θ), c2k ∈R, (5.6)
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FIGURE 7. (Colour online) Phase-plane diagrams (A, B) describing the even–odd
interaction for mode numbers ` = 2, 3 and Pr = 10. Fixed points are denoted as: stable
node – u, unstable node – E, saddle point – q. Region 1: only pure (±A, 0) modes
exist; region 2: stable pure modes and unstable mixed modes (A, ±B); region 3: stable
pure modes and stable mixed modes (initial condition dependent); region 4: stable mixed
modes; region 5: stable mixed modes and unstable pure modes; and region 6: a single
stable pure mode and stable mixed modes.
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FIGURE 8. (Colour online) Prandtl number dependency of coefficients for the ` = 3, 4
interaction. The kink obtained at Pr= 1 is a consequence of the rescaling (2.8). Distinct
from the even–odd case in figure 5, the relative size of cubic coefficients does not change
as Pr varies. Quadratic coefficients are now smaller in magnitude relative to the cubic
terms of the previous case for a wider annulus.

implying that the saturation of odd modes does not decouple from even modes, a
result stemming directly from the eigenfunctions. The (1, 2) mode interaction is
the lowest interaction possible, occurring for the annulus separation dc ≈ 4.89. Its
coefficients shown in figure 10 demonstrate a particular behaviour in the limit Pr→ 0;
where cubic coefficients d13 � 1 and d24 � 1 so that the quadratic and cross terms
now dominate the saturation process.
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FIGURE 9. (Colour online) Bifurcation diagram for the odd–even mode interactions with
Pr= 10. Region 1: stable pure (0,±B) modes; region 2: stable pure modes and unstable
mixed modes; region 3: stable pure modes and stable mixed modes (±A, B) (initial
condition dependent); region 4: stable mixed modes; region 5: stable mixed modes and
unstable pure modes: and region 6: a single stable pure mode and stable mixed modes.
The 3-D stability of axisymmetric solutions at large Pr is shown in colour inset (cf. § 7).
(a) Within the red hatched region (0, −B) is stable, but below loses stability to m = 1.
Within the blue hatched region (0, +B) is stable, but below loses stability to m = 2.
(b) Within the dotted region (0,−B) is stable and in the dashed region (0,+B) is stable.
Within the unhatched region (±A, B) is stable but below loses stability to m= 1, 3.
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FIGURE 10. (Colour online) Variation of the amplitude equation coefficients with Pr for
`= 1, 2. The kink obtained at Pr= 1 is a consequence of the rescaling (2.8). In the limit
Pr→ 0 coefficients d13� 1 and d24� 1, while for large Pr the behaviour is akin to that
of the ` = 3, 4 case. Quadratic and cubic coefficients are of similar magnitude for this
interaction.

5.2. Non-neighbouring mode interactions
5.2.1. Even–even (`, `± 2)

This interaction is governed by the equations

Ȧ=µ1A+ α2AB+ α3B2
+ d11A2B+ d12AB2

+ d13A3
+ d14B3,

Ḃ=µ2B+ β1A2
+ β2AB+ d21A2B+ d22AB2

+ d23A3
+ d24B3,

}
A∼ ` even
B∼ `± 2.

(5.7)

The quadratic coefficients αi, βi have opposite signs, and the cubic coefficients remain
negative as shown in figure 11, so that (5.7) may have mixed mode solutions only.
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FIGURE 11. (Colour online) Variation of the amplitude equation coefficients with Pr for
modes `= 2, 4. The kink obtained at Pr= 1 is a consequence of the rescaling (2.8). As
Pr→ 0 coefficients of A3 terms d13� 1, d23� 1, while coefficients d14, d24 of B3 terms
are always larger in magnitude. This behaviour is akin to previous interactions where the
higher mode dominates the saturation process.
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FIGURE 12. (Colour online) Bifurcation diagram of the even–even interactions (a) `= 2, 4
and (b) `= 4, 6 with Pr= 10. Region 1 contains two mixed modes (A1,+B1), (A2,−B2);
region 2 two stable and unstable mixed modes; region 3 a single stable fixed point;
and region 4 two stable spirals (−A1, B1), (−A2, B2). The 3-D stability of axisymmetric
solutions at large Pr is shown in colour inset (cf. § 7). (a) Within the red hatched region
(A,B) is stable, but below loses stability to m=2,3. (b) Within the densely hatched region
(left) (A, B) is stable and in the lightly hatched region (right) −(A, B) is stable. Below
these regions the unstable azimuthal wavenumber m varies.

In contrast to the neighbouring mode interactions no pure mode solutions exist, as
(5.7) no longer has symmetry.

Figure 12 shows the bifurcation diagram and figure 13 the corresponding phase
plane for the even–even mode interaction. The absence of symmetry in (5.7) results
in two distinct fixed points in each region of 12. In region 4 where the ` mode
dominates there are two stable spiral nodes. Transitioning to region 3 via an unstable
Hopf bifurcation there is a single stable fixed point. Transitioning into region 2 and
subsequently region 1 where the ` + 2 mode dominates, an additional stable fixed
point appears.

6. Comparison with direct numerical simulation
Equations (4.29)–(4.33), derived using weakly nonlinear theory, apply rigorously

only in an O(ε) neighbourhood of the degenerate points (dc, Rac) seen in figure 4.
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FIGURE 13. (Colour online) Phase-plane diagrams (A, B) describing the even–even
interaction for mode numbers ` = 2, 4 and Pr = 10. In region 1 mixed modes
(A1,+B1), (A2,−B2) exist; in region 2 two stable and unstable mixed modes; in region 3 a
single stable mixed mode; while in region 4 two stable spiral nodes (−A1, B1), (A2, B2)
are obtained.

For this reason it is reasonable to question their validity in the context of the full
problem. We validate previous results by performing DNS of the full equations
(2.6). The numerical code is spectral in θ and uses a second order finite difference
discretisation radially. A second-order Crank–Nicolson Adams–Bashforth scheme is
used for time stepping. A minimum resolution of 15 polynomials in θ and 40 grid
points in r was used in all computations. Specifying values of (d,Ra) a full numerical
simulation is run, whose mode amplitudes are computed from the inner products

Anum(t)=
〈ψnum,ψ`〉

〈ψ`,ψ`〉
, Bnum(t)=

〈ψnum,ψn〉

〈ψn,ψn〉
, where 〈 f , g〉 =

∫
r

∫
θ

f g
sin θ

dr dθ.

(6.1a,b)
Vectors ψ`, ψn are the eigenfunctions (3.11) evaluated at the grid points of the
numerical finite difference solution ψnum. For comparison with weakly nonlinear
theory, values for µ, δ, ε are specified and the solution determined by solving the
relevant amplitude equations. Setting µ=±1 we obtain

ε =
Ra− Rac

Rac
, δ =

d− dc

ε
. (6.2a,b)

Simulating (4.29)–(4.33) with these values we obtain a solution (A, B), which is
rescaled according to the original expansion (4.3). Amplitudes of the weakly nonlinear
theory are obtained as

Awkly = εA, Bwkly = εB. (6.3a,b)

6.1. Neighbouring mode interactions
The even–odd case is simulated for parameter values corresponding to regions 3
and 4 of figure 7 where both mixed and even solutions are found. This region is
chosen in order to test the initial condition dependency predicted by theory. In the
initial condition dependent region 3, even solutions are readily obtained from even
initial conditions, as the linear stability of the even solutions tends to ensure that the
solution remains even. Mixed solutions are not so easy to find, but can be located
by continuation from the mixed solutions of region 4. The numerical values of each
mode shown in table 1 confirm that odd modes maintain a larger amplitude in mixed
mode solutions. Corresponding solutions of the flow field are shown in figure 14.

A similar procedure is adopted for the odd–even case to simulate mixed solutions
in region 3 of figure 9. Only in certain sections of region 3 are even solutions found
to be stable to odd mode perturbations. In addition to finding solutions corresponding
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FIGURE 14. (Colour online) Numerical solutions ψ(r, θ) in the neighbourhood of the `=
2,3 degenerate point (dc=1.9883,Rac=857.53) for Pr=1. (a) Corresponds to region 3 of
figure 7 for the `= 2 mode (dc,Ra= 900.0), (b) region 3 for the mixed (d= 1.946,Ra=
950.0), (c) region 4 the mixed (d= 1.9481, Ra= 900.0).
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FIGURE 15. (Colour online) Numerical solutions ψ(r, θ) in the neighbourhood of the
` = 3, 4 degenerate point (dc = 1.2291, Rac = 2381.1) with Pr = 1. (a) Corresponds to
region 3 of figure 9 for the n= 4 mode (d = 1.2291, Ra= 2650.0), (b) region 3 for the
mixed (d= 1.2674, Rac), (c) region 4 for the mixed (d= 1.2674, Ra= 2230.0).

to figure 9, the ratio of mixed mode amplitudes also matches well for even solutions
in region 3 and mixed solutions in region 4 (see tables 1 and 2). For mixed solutions
in region 3, however, the contribution of modes `= 2, 4 becomes non-negligible for
the values of ε considered. The discrepancy between theory and DNS is attributed to
the omission of these modes for the respective cases. Corresponding solutions of the
flow field are shown in figure 15.

6.2. Non-neighbouring mode interactions
The even–even interaction described by (4.33) may seem of limited relevance, as
solutions obtained for small ε are necessarily unstable to odd mode perturbations.
A rigorous reduced-order model of this interaction point would therefore have to
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FIGURE 16. (Colour online) Symmetric solutions ψ(r, θ) near the ` = 2, 4 degenerate
point (dc = 1.5807, Rac = 1515.399) for Pr = 10. Panel (a) corresponds to region 1 of
figure 12 with (d = 1.5507, Ra = 1591.392), (b) region 3 for (dc, Ra = 1591.392), and
(c) region 4 for (d = 1.6132, Ra = 1480). In (a) and (c) only modes ` = 4 and ` = 2
respectively are linearly unstable.

include the effect of unstable intermediate modes for example, the `= 3 mode in the
(` = 2, 4) case. However, when we compute the stability of saturated solutions for
large ε in § 7, we find that some even solutions are in fact stable to odd perturbations.
Such interactions are also thought to exhibit strong resonances and be of physical
significance in mantle convection (Chossat & Stewart 1992). We compare DNS runs
with and without screening of the odd modes to determine their validity for the fully
nonlinear problem.

Unsurprisingly, the screened simulations (figure 16) near the ` = 2, 4 degenerate
point are found to agree better with theory than those with odd modes. The numerical
values are outlined in table 3. Given that the solution energy is quantised between
fewer linearly unstable modes this improved agreement is anticipated.

For the same parameter values, unscreened simulations near the ` = 2, 4 point
lose stability to odd mode perturbations as expected, with significant components of
modes `= 1, 2, 3, 4 remaining. Increasing the Rayleigh number beyond Ra u 1.7Rac
(measured from the `= 2, 4 degenerate point), stable mixed periodic solutions emerge
for low Pr. This is depicted in figure 17 where the amplitude of each mode is
plotted as a function of time. Granted that no oscillatory solutions are found for
two mode interactions we enquire: Why are odd mode components necessary to
maintain a regular oscillation? And why is the oscillation period of even modes
approximately twice that of odd modes? We stress that these time-periodic solutions
emerge for ε ∼ O(1), Pr� 1 and are, strictly speaking, beyond the scope of weakly
nonlinear theory. Nonetheless using the structure of (1.1) it is possible to explain
their oscillation signature.

6.3. Oscillation signature
A distinctive feature of the time-periodic solutions shown in figure 17 is that even and
odd modes oscillate with approximately a 2 : 1 frequency ratio. Also notable is that
the time signature for smaller d becomes increasingly modulated when compared with
that of lower mode numbers. Running DNS near each degeneracy with odd modes
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FIGURE 17. (Colour online) DNS oscillation signature for the periodic solutions near
the even–even and odd–odd degeneracies with Pr = 0.05. Solutions are simulated at
(a) Rac = 440.852, ε = 5.85, (b) Rac = 1515.41, ε = 0.847, (c) Rac = 3425.94, ε = 0.4594.
Notably the Rayleigh number required to sustain oscillations increases as `, n decrease.
Even modes oscillate out of phase with equal period, while the odd mode oscillates
with double the period of even modes. As the mode numbers increase additional modes
contribute and the signal becomes increasingly modulated. Animations corresponding to
panels (a), (b), (c) may be found online as Movie 1, Movie 2, Movie 3, respectively at
https://doi.org/10.1017/jfm.2019.440.

suppressed we find that the time periodic solutions presented in figure 17 no longer
persist. This suggests the bifurcation to time-periodic solutions at low Pr is an odd
mode instability.

We attribute the 2 : 1 resonance to a double-Hopf bifurcation whose weakly
nonlinear behaviour may be described locally by a complex analogue of (5.5) cf.
(Knobloch & Proctor 1988; Proctor & Jones 1988). Thus by dictating the nonlinear
terms permissible in (5.5) the eigenfunctions constrain the phase of even and odd
modes in standing wave solutions. Near the `=1,3 degeneracy, the set of contributing
modes is small so that few harmonics are generated. At higher degeneracies, more
modes contribute generating additional harmonics which modulate the oscillation
signature observed in figure 17.

7. Stability of axisymmetric solutions to azimuthal perturbations
Due to the degeneracy of the linear eigenvalue problem (Busse 1975) one cannot

determine whether the preferred motion is axisymmetric or non-axisymmetric without
considering the nonlinear terms. Given that the analysis of the fully three-dimensional
problem is both more complicated and involved, only the axisymmetric problem has
so far been investigated in this paper. The validity of solutions presented for the
full problem is now investigated by computing their stability to non-axisymmetric
perturbations. Following Zebib et al. (1980, 1983), who numerically investigated the
case with stress-free boundary conditions, we simplify the problem by considering
the limit Pr→∞. In addition to this calculation being simpler, we anticipate that
the flow is most likely to remain axisymmetric for large Pr, as for low Pr advection
terms in the momentum equation become destabilising (Jones & Moore 1978).

The equations governing the three-dimensional problem for Pr → ∞ with
homogeneous no-slip boundary conditions are

Ra∇× (rg(r)T)+∇×∇2u= 0,
∂T
∂t
+ u · ∇(T + T0(r))=∇2T, ∇ · u= 0.

 (7.1)
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The solenoidal velocity field u can be expressed in terms of its poloidal and toroidal
components

u=∇×∇×
(
Φ

r
r
)
+∇×

(
Ψ

r
r
)
, (7.2)

which automatically satisfy continuity. In the limit Pr→∞, however, the flow may
be shown to be purely poloidal, Ψ → 0 (Zebib et al. 1980), so that by substituting
(7.2) into (7.1) and operating on the momentum equation with r ·∇×, one can express
(7.1) in terms of Φ and T only. This allows the problem to be recast as(

0 0
0 1

)(
Φt

Tt

)
=

(
∇

2
∇

2(r−1) −Ra g(r)
−(T ′0(r)/r

2)L2
∇

2

)(
Φ

T

)
−

(
0

u · ∇T

)
, (7.3)

where the velocity vector u and the operator L2 are given by

u=
(

L2Φ

r2
,

1
r
∂2Φ

∂r∂ϕ
,

1
r sin θ

∂2Φ

∂r∂ϕ

)
, L2

≡−
1

sin θ
∂

∂θ
sin θ

∂

∂θ
−

1
sin2 θ

∂2

∂ϕ2
. (7.4a,b)

The scalar Φ is related to the Stokes streamfunction by ψ = −sin θ(∂Φ/∂θ).
To compute the stability of an axisymmetric steady state (Φ, T)T we add a
non-axisymmetric perturbation (εΦ ′, εT ′)T and retaining terms of O(ε) obtain the
linear system

λMX′ =LX′ −
(

0 0
N1(T) N2(Φ)

)
X′, where X′ = (Φ ′, T ′)T. (7.5)

The matrix operators M,L are those of (7.3) and the terms N1(T) and N2(Φ) come
from the linearisation of u · ∇T . In writing (7.5) we have assumed that X′ has
exponential time dependency. To compute the growth rate λ ∈ R we represent the
numerically determined axisymmetric state by a finite sum of Legendre polynomials

Φ '

Nθ∑
p=1

Φp(r)Pp(cos θ), T '
Nθ∑

p=0

Tp(r)Pp(cos θ), (7.6a,b)

and the perturbation by a finite sum of associated Legendre polynomials

Φ ′ '

Nθ∑
`=m

Φ ′`m(r)P
m
` (cos θ)eimϕ, T ′ '

Nθ∑
`=m

T ′`m(r)P
m
` (cos θ)eimϕ. (7.7a,b)

Representation in this manner allows the θ -dependency of (7.5) to be integrated out,
yielding a system of Nθ coupled ODEs dependent on the radial coordinate r and
azimuthal wavenumber m only. Discretising the radial direction using second-order
finite differences, the growth rate λ is computed for a range of Ra and different
m. The results of this computation are summarised in tables 4 and 5 and have
been included as neutral stability curves λ(δ, µ, m)= 0 in the bifurcations diagrams
presented in § 5 figures 6, 9 and 12. For ease of comparison with these figures the
parameters

µ= (Ra− Rac)/Rac, δ = d− dc (7.8a,b)

are used. As before, (dc, Rac) represents the coordinates of a given degenerate point.
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Degeneracy Solution m= 0 m= 1 m= 2 m= 3 m= 4

`= (1, 2) (±A, B) U N U — —
(0,−B) U U S — —
(0,+B) S S S if µ> 0.5 – —

`= (2, 3) (±A, B) S N S S if µ> 0.4 —
(−A, 0) S N U S —
(+A, 0) S N U U —

`= (3, 4) (±A, B) S S U S S
(0,−B) S N S S if µ> 0.1 S if µ> 0.19
(0,+B) S N S if µ> 0.13 S if µ> 0.18 S if µ> 0.13

TABLE 4. Three-dimensional stability at large Pr and δ = 0 of axisymmetric solutions to
azimuthal perturbations of wavenumber m at each (`, `+1) degeneracy. In all cases the Ra
required for 3-D stability is measured from the degenerate point (dc,Rac) specific to each
case. The stability of solutions is denoted U = unstable for λ > 0, S = stable for λ < 0
or N = neutral in the special case where the m = 1 mode is neutrally stable. Higher
wavenumbers m> 4 were found to be stable for the range of Ra considered.

Degeneracy Solution m= 0 m= 1 m= 2 m= 3 m= 4

`= (2, 4) (A, B) S if µ> 0.87 N S if µ> 1.01 S if µ> 0.45 S

`= (4, 6) (A, B) S if µ> 0.42 N S if µ> 0.45 S if µ> 0.15 S if µ> 0.1

TABLE 5. Three-dimensional stability at large Pr and δ = 0 of axisymmetric solutions
at even (`, ` + 2) degeneracies to azimuthal perturbations of wavenumber m. Higher
wavenumbers m> 4 were found to be stable for the range of Ra considered.

The results are broadly similar to those of Zebib et al. (1980, 1983) who considered
the case of stress-free boundaries. In general our calculations indicate that just above
the critical Rac axisymmetric solutions are unstable to some azimuthal wavenumbers,
but once established at larger Ra we find that solutions stabilise. Therefore in this
regime the axisymmetric flows are stable solutions of the full 3-D system (7.1),
although they need not be the preferred state for arbitrary initial conditions. Because
of the reflectional symmetry of mixed solutions, it is only necessary to consider three
solution types in tables 4 and 5. An azimuthal wavenumber m is denoted by U for
unstable if λ> 0, S for stable if λ< 0 and N for neutrally stable if λ= 0.

7.1. Odd–even and even–odd interactions
The stability of solutions for different (δ, µ) is computed and the region of parameter
space for which the axisymmetric solutions are stable is included in figures 6 and 9.
Specifically we find that near the `= (1, 2) degenerate point, even solutions (0,±B)
are stable in regions 3 and 6 of figure 9, while mixed solutions (±A, B) are stable
in region 4 only. Near the ` = (2, 3) degenerate point, even solutions (−A, 0) are
stable only for large δ, µ, as shown in figure 6. Stable mixed solutions are found
for δ < 0.22, but above this threshold are destabilised by m= 2. Near the `= (3, 4)
degenerate point, stable solutions of both even and mixed form are found. For δ > 0
the mixed solutions are stable, while for δ < 0.2 stable even mode solutions are found
as shown in figure 9. Notably, the stability behaviour of different even solutions near
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the same degeneracy can vary. It was shown by Zebib et al. (1980, 1983) for the case
of stress-free boundaries, that the heat transfer achieved by each of these solutions
differs as µ is increased from the bifurcation point. Our numerical simulations identify
similar behaviour for the even mode cases. Results for δ=0 are summarised in table 4
to indicate the behaviour of different azimuthal wavenumbers.

7.2. Even–even interactions
Despite the presence of linearly unstable odd modes near even–even degeneracies,
stable even solutions of the full problem may also be found. Near the ` = (2, 4)
degeneracy solutions are stable to axisymmetric odd mode perturbations for µ> 0.87
and to all non-axisymmetric perturbations for µ> 1.01. These thresholds are however
larger than those of neighbouring `, `± 1 degeneracies. Near the `= (4, 6) degeneracy
solutions are found to be stable above a threshold whose unstable wavenumber m
varies with δ as shown in figure 12. Notably, the threshold for 3-D stability at the
`= (4, 6) degeneracy is lower than that of the `= (2, 4) case. Results for δ = 0 are
summarised in table 5 to indicate the behaviour of different azimuthal wavenumbers.

8. Discussion
Equations (4.29)–(4.33) are derived using weakly nonlinear theory and apply,

strictly, only within a small region of the degenerate points. Nevertheless, using DNS
and 3-D stability calculations we have demonstrated their extended value, in particular
the insight they provide into the form of the dominant nonlinearities and the role
of Pr. The latter is a numerically challenging task granted the large diffusion times
for both small and large Pr. The physical implications of these equations are now
considered.

The spatial resonances between odd and even modes are found to be central in
the description of spherical convection. Contributing quadratic terms to the amplitude
equations they limit both the range of possible fixed points and the relative frequencies
of odd and even modes in periodic solutions. Only even modes can have pure mode
solutions, while odd modes can exist only as the larger component of mixed mode
solutions. Mapping out the parameter space near degenerate points it is found that
stable solutions may be initial condition dependent, and that hysteresis exists between
pure and mixed mode states. This behaviour has also been reported by Kidachi (1982)
and Knobloch & Guckenheimer (1983) for planar geometries. While these results are
easily verified using full numerical simulation, the range of possible solutions and their
stability is not readily apparent without the aid of amplitude equations.

A surprising result is the presence of standing wave solutions for Pr � 1 in
which the even and odd components of solutions oscillate in a 2 : 1 frequency ratio.
Notably, this relation appears general to all standing wave solutions and persists for
large Ra provided d > 1. While these solutions are likely to become unstable to
non-axisymmetric perturbations, we suspect that this relation will hold for standing
wave solutions in a fully 3-D spherical annulus. This is on the basis that equations
derived by Friedrich & Haken (1986) and Beltrame & Chossat (2015) to describe the
(1, 2) and (3, 4) mode interactions in a fully 3-D domain possess a structure identical
to (5.1).

Investigating the stability of axisymmetric states calculated for three-dimensional
perturbations, we found that slightly above the onset of convection, axisymmetric
solutions are stable solutions of the full problem for large Pr. In particular, even
axisymmetric solutions near even–even degeneracies, despite being linearly unstable
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at onset, are found to stabilise. It is possible that for arbitrary initial conditions, a
large amplitude non-axisymmetric state might be preferred.

While the approach adopted in this paper has used significant simplifications, it
appears a useful reduction, as it predicts the amplitude of the flow using just two
coupled ODEs. Compared to the large dimension of systems obtained when studying
the 3-D problem either numerically, or by analogous model reduction methods,
this is a vast simplification. We would finally like to emphasise that while the
results presented focus on small (`, n), the theory derived applies generally to any
combination of two degenerate modes. We anticipate the greatest relevance for wide
spherical shells, d> 1, as the degenerate points are widely spaced for the small mode
numbers typical of that regime.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2019.440.

Appendix A. Self-adjointness of the operator L
For a vector φ and operator L as outlined

φ =

(
ψ(r, θ)
T(r, θ)

)
, L=

 D2D2 Racg(r) sin θ
∂

∂θ

−
T ′0
r

1
sin θ

∂

∂θ
D̂2

 , (A 1a,b)

an inner product may be found such that

〈φ+,Lφ〉 = 〈Lφ+, φ〉. (A 2)

Operators D2 and D̂2 are defined as

D2
=
∂2

∂r2
+

sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
, D̂2

=
∂2

∂r2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (A 3a,b)

Assuming homogeneous boundary conditions (2.9) a sufficient condition for this
system to be self-adjoint requires that the functional form of the temperature gradient
and gravity field g(r) satisfy

d
dr

g(r)r
T ′0
= 0. (A 4)

The relevant inner product or volume integral is defined as

〈
ATψ

+(r, θ)
Racr2 sin2 θ

T+(r, θ)
r2

 ,
 D2D2 Racg(r) sin θ

∂

∂θ

−
T ′0
r

1
sin θ

∂

∂θ
D̂2

(ψ(r, θ)T(r, θ)

)〉
= 〈φ+,Lφ〉,

(A 5)
where the additional factors included are chosen to satisfy (A 2). Provided T ′0/r =
ATg(r) this can be expanded as a volume integral with g(r) factorised so that one
obtains ∫

θ

∫
r

{
ATψ

+

Racr2 sin2 θ
D2D2ψ +

ATg(r)
r2

(
ψ+

1
sin θ

∂T
∂θ
− T+

1
sin θ

∂ψ

∂θ

)
+

T+

r2
D̂2T

}
r2 sin θ dr dθ. (A 6)
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As the Stokes operator D2 and the operator D̂2 may be related to the Laplacian (which
for homogeneous boundary conditions is self-adjoint) using

1
r sin θ

D2ψ =

(
∇

2
−

1
r2 sin2 θ

)
ψ

r sin θ
,

1
r

D̂2T =∇2 T
r
, (A 7a,b)

the first and fourth term of (A 6) automatically satisfy (A 2). Considering the second
and third terms, we multiply through by factors r2 sin2 θ to yield∫

r

∫
θ

ATg(r)
(
ψ+

∂T
∂θ
− T+

∂ψ

∂θ

)
dr dθ. (A 8)

Integrating by parts with respect to θ we obtain∫
r

ATg(r)
{
ψ+T|θ=0,π −

∫
θ

T
∂ψ+

∂θ
dθ − T+ψ |θ=0,π +

∫
θ

∂T+

∂θ
ψ dθ

}
dr. (A 9)

Applying the boundary conditions at θ =0, π terms outside the integral vanish yielding
the desired result. Factorising r2 sin θ terms from this expression we may rewrite the
expression as ∫

r

∫
θ

ATg(r)
r2

{
−

T
sin θ

∂ψ+

∂θ
+

1
sin θ

∂T+

∂θ
ψ

}
r2 sin θ dr dθ, (A 10)

so that these terms also satisfy (A 2).
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