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Nonlinear dynamics of forced baroclinic
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In this paper, we study the forcing of baroclinic critical levels, which arise in stratified
fluids with horizontal shear flow along the surfaces where the phase speed of a wave
relative to the mean flow matches a natural internal wave speed. Linear theory
predicts the baroclinic critical-layer dynamics is similar to that of a classical critical
layer, characterized by the secular growth of flow perturbations over a region of
decreasing width. By using matched asymptotic expansions, we construct a nonlinear
baroclinic critical layer theory to study how the flow perturbations evolve once they
enter the nonlinear regime. A key feature of the theory is that, because the location
of the baroclinic critical layer is determined by the streamwise wavenumber, the
nonlinear dynamics filters out harmonics and the modification to the mean flow
controls the evolution. At late times, we show that the vorticity begins to focus
into yet smaller regions whose width decreases exponentially with time, and that the
addition of dissipative effects can arrest this focussing to create a drifting coherent
structure. Jet-like defects in the mean horizontal velocity are the main outcome of
the critical-layer dynamics.
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1. Introduction

A centrepiece in the theory of inviscid shear flow is the classical critical level,
where the phase speed c of a steady wave matches the local mean-flow speed U. In
linear theory, the levels where c=U become singular, demanding the inclusion of the
weak effects of unsteadiness, nonlinearity or viscosity (Maslowe 1986). Although these
inclusions can remove the singularity of the linear inviscid theory, perturbations to the
flow can still develop strongly in the neighbourhood of the critical levels, creating
distinctive flow structures and rearrangements within the so-called critical layers that
may subsequently break down to generate mixing and turbulence. In this vein, Warn
& Warn (1976, 1978) and Stewartson (1978) studied the nonlinear dynamics of the
critical layers of forced Rossby waves. They found that steady waves developed over
the bulk of the shear flow, but that the critical layer remained unsteady, exciting mean-
flow corrections and all the harmonics of the original wavenumber, and twisting up
the background vorticity into a Kelvin cat’s eye pattern. A similar scenario exists for
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883 A12-2 C. Wang and N. J. Balmforth

the critical layers of internal gravity waves travelling vertically through stratified shear
flow, with important repercussions on wave breaking, momentum transport and mixing
in the atmosphere (Booker & Bretherton 1967; Brown & Stewartson 1980, 1982a,b).

If the flow is stratified vertically but sheared horizontally, then a new type of
critical level appears in the linear inviscid wave theory. The new critical levels arise
along the surfaces where the phase speed relative to the background shear flow
matches a characteristic velocity of gravity waves; i.e. c − U = ±N/k, where N is
the buoyancy frequency and k is the streamwise wavenumber. Existing literature on
these ‘baroclinic critical levels’, has mainly focused on the propagation of linear
wave packets. Using ray-tracing theory, Olbers (1981), Basovich & Tsimring (1984)
and Badulin, Shrira & Tsimring (1985) found that wave packets slow down as
they approach the baroclinic critical level, never reaching it. Simultaneously, the wave
amplitude and cross-stream wavenumber grow indefinitely, indicating that linear theory
eventually fails in a wave-trapping process like that found earlier for classical critical
levels (Bretherton 1966). Staquet & Huerre (2002) and Edwards & Staquet (2005)
performed numerical simulations to study the nonlinear evolution during trapping,
concluding that the trapped waves may either break into small-scale turbulence or be
dissipated by dispersion, viscosity and diffusion. More related to the current work is
the study by Boulanger, Meunier & Le Dizès (2007), who explored the analogues
of baroclinic critical levels in stratified, titled vortices, and resolved the resulting
singularities by introducing viscosity.

Baroclinic critical layers have also featured heavily in recently reported computa-
tions of three-dimensional rotating stratified shear flows with self-replicating vortices
(Marcus et al. 2015, 2016; Barranco, Pei & Marcus 2018). The replication process
involves the forcing of baroclinic critical layers by internal waves excited by an
initial vortex; large-amplitude re-arrangements forced in these layers then roll up
to create new vortices, which in turn shed more internal waves to repeat a cycle.
The self-replication eventually filled the computational domain with localized vortical
structures, which was suggested to be trigger for the angular momentum transport
required to drive accretion in astrophysical disks that are too cool to suffer the
magneto-rotational instability.

The aim of the present paper is to theoretically study the evolution of forced
baroclinic critical layers, following the paradigm of Stewartson (1978) and Warn &
Warn (1976, 1978) for Rossby waves, or Booker & Bretherton (1967) and Brown
& Stewartson (1980, 1982a,b) for internal waves in stratified shear flow. The linear
dynamics of a forced baroclinic critical layer is expected to be similar to that of a
classical critical layer, owing to the similarity of the singularities in the linear wave
equations. However, the subsequent nonlinear evolution is likely to be very different
because the location of the baroclinic critical level itself is dictated by the streamwise
wavenumber, which is different among all the harmonics of the original wave. This
suggests that they cannot feature in the nonlinear dynamics within the baroclinic
critical layer, unlike in classical critical-layer theory.

The layout of the paper is as follows: in § 2, we give the model and governing
equations of the problem. In § 3, we solve the linear problem explicitly and draw out
structure that first develops within the baroclinic critical layer. In § 4, we extend the
analysis by considering weakly nonlinear perturbations, which allows us to determine
the time and length scales that characterize the nonlinear critical layer. This leads us,
in § 5, to derive a reduced model of nonlinear dynamics via a matched asymptotic
expansion. We then present numerical solutions of the reduced model and a further
asymptotic analysis of them. We explore the effects of dissipation in the baroclinic
critical layer in § 6, and then discuss the implications of the results and the relation
to previous and future work in § 7.
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Wavemaker at y = 0, u ¢ ei(kxx+kzz)

FIGURE 1. Sketch of the model. A wavemaker with wavenumbers kx and kz is imposed
at y = 0, and baroclinic critical levels are forced at y = ±N/(Λkx), corresponding to
dimensionless locations ±N , where N = NΛ−1. The shading represents a rendering of
the density perturbation based on the linear theory of § 3.

2. Model and governing equations
We consider forced disturbances to an unbounded horizontal shear flow, orientated

in the x-direction with a constant shear rate Λ > 0 in the y-direction. The domain
rotates around the vertical axis at angular velocity Ω , and the fluid is stratified in
z with constant buoyancy frequency N. Waves are driven into the shear flow by a
wavemaker that we locate along y= 0. This forcing has the streamwise and vertical
wavenumbers, kx and kz, respectively. The baroclinic critical levels are located at y=
±N/(Λkx). The sketch of the model is shown in figure 1.

We work with a dimensionless version of the governing fluid equations in which
length, time, velocity, pressure and density perturbations are scaled by k−1

x , Λ−1,
Λk−1

x , ρ0Λ
2k−2

x and ρ0Λ
2/(kxg), respectively. Here, ρ0 is a reference density and g is

gravity. We employ the Boussinesq approximation and, for the most part of our study,
neglect viscosity and diffusion in view of the large spatial scales that characterize
geophysical and astrophysical flows. At the end of the work, we briefly explore
the effect of diffusion. The perturbations to the velocity (u, v, w), pressure p and
perturbation density ρ then satisfy

ut + yux + (1− f )v + uux + vuy +wuz =−px, (2.1)
vt + yvx + fu+ uvx + vvy +wvz =−py, (2.2)

wt + ywx + uwx + vwy +wwz =−pz − ρ, (2.3)

ρt + yρx −N 2w+ uρx + vρy +wρz = 0, (2.4)
ux + vy +wz = 0, (2.5)

where subscripts represent partial derivatives and we have introduced the dimensionless
Coriolis parameter f = 2Ω/Λ and buoyancy frequency N = NΛ−1. Because our
interest lies in the forcing of the baroclinic critical layers of an internal wave,
we consider basic flows that are linearly stable to prevent unstable modes from
dominating the dynamics. Centrifugal instabilities arise when 0 < f < 1 (Emanuel
1994), so we set f > 1 or f < 0 to eliminate them; strato-rotational instability is not
present because it requires reflective boundaries (Yavneh, McWilliams & Molemaker
2001; Wang & Balmforth 2018) which are absent here.
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883 A12-4 C. Wang and N. J. Balmforth

Initially, there is no disturbance, implying u = v = w = ρ = p = 0 at t = 0. The
wavemaker is then switched on to excite waves with baroclinic critical levels. To
idealize the forcing and formulate a concise mathematical problem, we assume that the
wavemaker introduces a time-independent jump in the tangential horizontal velocity at
y= 0, but not in the normal velocity. That is, we impose the jump conditions,

u|y=0+ − u|y=0− = ε0 exp(i x+ imz)+ c.c., v|y=0+ = v|y=0−, (2.6a,b)

where ε0 represents the strength, m = kz/kx, c.c. represents the complex conjugate,
and the ± superscripts indicate the limits from either side. This forcing approximates
a thin, spatially periodic vortex sheet. In the numerical simulation of Marcus et al.
(2013), waves were forced by a periodic array of localized Gaussian vortices. Our
forcing therefore represents an idealization of their model in that we consider the
leading-order Fourier component while neglecting the evolution and cross-stream
thickness of the forcing. The configuration is slightly different to that in the studies
of Stewartson (1978) and Booker & Bretherton (1967), where a wavy boundary forced
the normal velocity. The current configuration implies that waves are generated at
y= 0 and develop with baroclinic critical levels to either side (although simplifications
are afforded by the symmetry described presently). Had we placed the wavemaker
along a boundary at y= 0, only one critical level would have featured, but the wall
may also make the basic flow linearly unstable (Wang & Balmforth 2018). Other
idealizations include wavemakers that gradually switch on (Béland 1976) or have
finite thickness (as for the vortices of Marcus et al.), or that generate disturbances
with finite phase speed (displacing the baroclinic critical levels).

Note that the system in (2.1)–(2.6) is invariant under the transformation,

(u, v,w, ρ)→−(u, v,w, ρ) and p→ p, for (x, y, z)→−(x, y, z). (2.7a,b)

This observation permits us to solve the problem only for y > 0, and we therefore
consider only one baroclinic critical layer and then generate the solution in y<0 using
the implied symmetry conditions.

Also, combining (2.1)–(2.5), we may derive an equation for the vertical component
of vorticity,

D
Dt
(vx − uy)−N−2( f − 1+ vx − uy)

∂

∂z
Dρ
Dt
+wxvz −wyuz = 0, (2.8)

where

D
Dt
=
∂

∂t
+ (y+ u)

∂

∂x
+ v

∂

∂y
+w

∂

∂z
. (2.9)

3. Linear theory
The linearized governing equations are

ut + yux + (1− f )v =−px, (3.1)
vt + yvx + fu=−py, (3.2)
wt + ywx + ρ =−pz, (3.3)
ρt + yρx −N 2w= 0, (3.4)

ux + vy +wz = 0. (3.5)
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Nonlinear dynamics of forced baroclinic critical layers 883 A12-5

The linearized equation of (2.8) reduces to a conservation law of potential vorticity,
qt + yqx = 0, or, given that q= 0 everywhere at t= 0,

q= ( f − 1)ρz −N 2(vx − uy)= 0. (3.6)

In the absence of linear instability, the forcing (2.6) drives a steady-wave response
throughout the bulk of the flow (as can be established by solving the initial-value
problem using Laplace transforms, and then performing a large-time asymptotic
analysis, following Booker & Bretherton (1967) and Warn & Warn (1976)). Near
the baroclinic critical levels, however, the flow remains unsteady, requiring a finer
analysis of those regions similar to that used by Stewartson (1978).

3.1. The steady-wave response outside the baroclinic critical layers
The steady-wave solution outside the critical layers takes the form,

(u, v,w, p, ρ)= [û(y), v̂(y), ŵ(y), p̂(y), ρ̂(y)] exp(ix+ imz)+ c.c. (3.7)

Substituting (3.7) into (3.1)–(3.5), one can derive an equation for p̂(y),

p̂′′ −
2y

y2 − f ( f − 1)
p̂′ −

[
y2
− f ( f + 1)

y2 − f ( f − 1)
+m2 y2

− f ( f − 1)
y2 −N 2

]
p̂= 0, (3.8)

with

û=
( f − 1)p̂′ − yp̂
y2 − f ( f − 1)

, v̂ =
i(yp̂′ − f p̂)

y2 − f ( f − 1)
, ŵ=−

myp̂
y2 −N 2

, ρ̂ =
imN 2p̂
y2 −N 2

(3.9a−d)

(cf. Vanneste & Yavneh 2007). Note that the singularities at y2
= f ( f − 1) in (3.8) and

(3.9) are removable. The baroclinic critical levels y=±N , however, are true singular
points. The Frobenius solutions near y=N are,

p̂A = 1−
m2
[N 2
− f ( f − 1)]
2N

(N − y) log |N − y| − α(N − y)+ · · · , (3.10)

p̂B = y−N + · · · , (3.11)

where α is determined by the condition that p̂A → 0 as y→∞. In terms of these
Frobenius solutions, we express p̂ for y> 0 by

p̂=
{

ALp̂A, y>N ,
ALp̂A + BLp̂B, 0< y<N , (3.12)

where AL and BL are constants.
Although p̂ is bounded for y→ N , the amplitudes of the velocity, (û, v̂, ŵ), and

density, ρ̂, all diverge, signifying that the steady-wave solution fails at the critical
levels. In particular, we observe that

p̂→ AL, ρ̂→
imNAL

2(y−N )
(3.13a,b)
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883 A12-6 C. Wang and N. J. Balmforth

and

û →
[

m2( f − 1)
2N

(log |N − y| + 1)+
α( f − 1)−N
N 2 − f ( f − 1)

]
AL

+


0 y>N ,

f − 1
N 2 − f ( f − 1)

BL y<N ,
(3.14)

for y→N .

3.2. The linear critical layers
We now focus on the baroclinic critical layer at y = N . Here, we search for an
unsteady solution depending on the long time scale T = δt and with the short spatial
scale Y = (y − N )/δ, where δ � 1 is a small parameter organizing an asymptotic
expansion. We then set

(u, v,w, p, ρ)= [ũ(Y, T), ṽ(Y, T), δ−1w̃(Y, T), AL, δ
−1ρ̃(Y, T)] exp(ix+ imz)+ c.c.,

(3.15)

in view of the limits in (3.13)–(3.14).
Combining (3.3) and (3.4) to eliminate w, then substituting in (3.15) now gives, to

leading order in δ, (
∂

∂T
+ iY

)
ρ̃ =−

1
2

mNAL. (3.16)

In the early stage of linear evolution, t ∼ O(1), ρ ∼ O(1), so we have the initial
condition ρ̃→ 0 as T→ 0, which yields

ρ̃ =−
1
2

imNAL
e−iYT
− 1

Y
. (3.17)

Hence

ρ =−
1
2

imNALt
[

e−i(y−N )t
− 1

(y−N )t

]
eix+imz

+ c.c. (3.18)

This solution has a spatial structure dependent on the self-similar combination t(y−
N ). Hence, the amplitude grows linearly and the width of the critical layer shrinks
with time.

Next, the main balance in (3.6) implies that ũY ∼−im( f − 1)N−2ρ̃, or

ũY =−
m2( f − 1)AL

2N
e−iYT
− 1

Y
. (3.19)

But the limits of the steady-wave response in (3.14) imply that ũ jumps by an amount
( f − 1)BL/[N 2

− f ( f − 1)] across the baroclinic critical layer. Hence,

BL =−
m2AL[ f ( f − 1)−N 2

]

2N
lim

L→∞

ˆ L

−L
(e−iYT

− 1)
dY
Y
= iπ

m2
[ f ( f − 1)−N 2

]

2N
AL

(3.20)

(cf. Stewartson 1978).
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6420
y

-2-4-6

(÷ 10-3)

5 y = -n y = n

0

-5

p̂ Im(p̂)

Re(p̂)

FIGURE 2. Steady-wave solution p̂ under a forcing imposed at y = 0, with m = 0.5,
N = 4/3, f = 4/3, ε0 = 0.05 (cf. Marcus et al. 2013). Baroclinic critical levels y=±N
are indicated.

3.3. Closure
We can now apply the forcing condition to close the problem. The symmetry property
(2.7) applied to the steady wave (3.7) indicates that

[û(y), v̂(y), ŵ(y), ρ̂(y)] =−[û(−y), v̂(−y), ŵ(−y), ρ̂(−y)]∗, p̂(y)= p̂(−y)∗, (3.21)

where the superscript ∗ represents the complex conjugate. Hence, substituting the
steady-wave solution into the jump condition (2.6) representing the forcing, we arrive
at

(AL − A∗L)p̂A(0)+ (BL − B∗L)p̂B(0)= 0,
(AL + A∗L)p̂

′

A(0)+ (BL + B∗L)p̂
′

B(0)=−f ε0.

}
(3.22)

Exploiting (3.20), we obtain

AL =−
f ε0( p̂A − iβp̂B)

2( p̂Ap̂′A + β2p̂Bp̂′B)

∣∣∣∣
y=0

, β =
πm2
[ f ( f − 1)−N 2

]

2N
. (3.23a,b)

The amplitude of the pressure perturbation at the critical layer is therefore

ε= |AL| =
| f ε0|

√
p̂2

A + β
2p̂2

B

2|p̂Ap̂′A + β2p̂Bp̂′B|

∣∣∣∣∣
y=0

. (3.24)

A sample steady-wave solution is plotted in figure 2.
Note that equations (3.22)–(3.24) appear to become trivial if f = 0, suggesting that

rotation is essential to the forcing of the baroclinic critical layer. In fact, a deeper
analysis of the Frobenius solutions demonstrates that this is not the case, because
p̂′A(0) and p̂′B(0) become O( f ) in this limit, and the closure relation in (3.22) remains
non-trivial. Consequently, in the model, we may take the limit f→0, highlighting how
rotation is not an essential ingredient to the dynamics.

The same feature does not apply to the vertical wavenumber or stratification,
which control the secular growth inside the critical layer, as seen in (3.17)
and (3.19); without either a vertical dependence in the forcing or stratification,
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883 A12-8 C. Wang and N. J. Balmforth

there is no baroclinic critical-layer dynamics. Note that, despite appearances, the
limit N → 0 in (3.19) is not problematic: further analysis of p̂A and p̂B indicates
that |AL| ∼N / log N for N → 0, and so the secular growth in the critical layer is
eliminated in this limit.

It is also noteworthy that, in the limit that any of the parameters m, f or N are
large, the disturbance decays exponentially from the forcing to the baroclinic critical
levels (cf. Vanneste & Yavneh (2007) and Wang & Balmforth (2018)). The amplitude
ratio ε/ε0 then becomes exponentially small, and the secular growth in the critical
layer is much weakened.

4. The weakly nonlinear critical layer
We now advance beyond linear theory and perform a weakly nonlinear expansion

by setting

(u, v,w, ρ, p)= ε{[u1(Y, T), v1(Y, T), δ−1w1(Y, T), δ−1ρ1(Y, T), p1(Y, T)]eix+imz
+ c.c.}

+ ε2
[u0(Y, T), v0(Y, T),w0(Y, T), ρ0(Y, T), p0(Y, T)]

+ ε2
{[u2(Y, T), v2(Y, T),w2(Y, T), ρ2(Y, T), p2(Y, T)]e2(ix+imz)

+ c.c.}, (4.1)

focussing upon the critical layer with y = N + δY . The scaling of the fundamental
Fourier component follows the linear critical-layer theory outlined above, and we have
ε[u1, v1, w1, ρ1, p1]→ [ũ, ṽ, w̃, ρ̃, AL] at early times (T� 1). The goal of the current
section is to identify the time scale and width of the critical layer (as dictated by
the small parameter δ) for which the mean-flow correction and first harmonic reach a
sufficient strength to modify the evolution of the fundamental mode. This connects δ
to the amplitude parameter ε, establishing the scalings of the nonlinear critical layer.

4.1. Mean-flow response
The mean-flow component of (2.5) gives v0Y = 0, which implies v0= 0 since the mean-
flow response decays outside the critical layer. The streamwise mean-flow velocity u0
is described by the j= 0 component of (2.1), which is

∂u0

∂T
= δ−2(imw1u∗1 − v

∗

1u1Y)+ c.c. (4.2)

To leading order in δ, the mean-flow components of (2.3) and (2.4) are,

ρ0 =−δ
−2v∗1w1Y + c.c., (4.3)

−N 2w0 =−δ
−2(v∗1ρ1Y + imw∗1ρ1)+ c.c. (4.4)

Thus, u0, w0 and ρ0 are all O(δ−2).

4.2. First harmonic
The largest first harmonic components of (2.3), (2.4), (2.5) and (2.8) indicate that

2iNw2 + ρ2 + 2imp2 =−δ
−2(v1w1Y + imw2

1), (4.5)
2iNρ2 −N 2w2 =−δ

−2(v1ρ1Y − imw1ρ1), (4.6)
δ−1v2Y + 2imw2 = 0, (4.7)
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Nonlinear dynamics of forced baroclinic critical layers 883 A12-9

u2Y

δ
+

2im( f − 1)
N 2

ρ2 =
iδ−2

2N

[
2im( f − 1)

N 2
(v1ρ1Y + imw1ρ1)+ (v1u1Y + imw1u1)Y

]
.

(4.8)

However, equation (2.2) demands that p2=O(δu2, δv2) and so p2 is much smaller than
w2 or ρ2. Hence,

w2 =
δ−2

3N 2
[2iN (v1w1Y + imw2

1)− v1ρ1Y − imw1ρ1], (4.9)

ρ2 =
δ−2

3N
[N (v1w1Y + imw2

1)+ 2i(v1ρ1Y + imw1ρ1)], (4.10)

which are O(δ−2), whereas u2 and v2 are O(δ−1).

4.3. Weakly nonlinear feedback
On again combining (2.3) and (2.4), we find the fundamental components,(

∂

∂T
+ iY

)
ρ1 +

1
2

mN p1 =−ε
2δ−1iu0ρ1, (4.11)

with the leading-order nonlinear terms included on the right, and after a considerable
number of cancellations stemming from the use of (4.3), (4.4), (4.9) and (4.10) and the
leading-order relations ρ1 =−iNw1 and v1Y =−imw1. Note that the nonlinear terms
generated by the first harmonic and mean-flow components w0 and ρ0 completely
cancel out at this stage, leaving only the effect of the modification to the streamwise
mean flow u0. But the scaling established for the mean-flow correction implies that
the right-hand side of (4.11) is O(δ−3ε2). Thus, the mean flow feeds back on the
fundamental mode when δ = ε2/3. That is, for

t=O(ε−2/3), y=N +O(ε2/3). (4.12a,b)

These are the scalings for the nonlinear critical-layer theory outlined in the next
section.

Note that we may extend the analysis to consider the higher harmomics. One finds
that when δ= ε2/3, the Fourier component eij(x+mz) with j> 1 is O(εj/3), which signifies
that the higher-order harmonics j > 3 are still weak when the mean-flow correction
begins to feedback on the fundamental. Thus, the higher harmonics play no role in
the nonlinear theory.

5. Nonlinear critical-layer theory
5.1. The reduction

Motivated by the weakly nonlinear analysis, we now introduce the rescalings,

T = ε2/3t, Y =
y−N
ε2/3

. (5.1a,b)

The outer solution for the pressure is

p= εp1ei(x+mz)
+ c.c., p1 =

{
A(T)p̂A(y), y>N ,
A(T)p̂A(y)+ B(T)p̂B(y), 0< y<N , (5.2a,b)
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883 A12-10 C. Wang and N. J. Balmforth

which is a single dominant Fourier mode characterized by the steady-wave solution.
However, the amplitudes A and B now evolve with the slow time T , because the
nonlinear evolution of the critical layer can affect the outer flow. Initially, A and B
are given by the linear analysis,

A(0)=
AL

ε
, B(0)=

BL

ε
. (5.3a,b)

Inside the critical layers, we set

p= εA(T)ei(x+mz)
+ c.c.+ · · · , [w, ρ] = ε1/3

[w1(Y, T), ρ1(Y, T)]ei(x+mz)
+ c.c.+ · · ·

[u, v] = ε[u1(Y, T), v1(Y, T)]ei(x+mz)
+ c.c.+ ε2/3

[U0(Y, T), 0] + · · ·

}
.

(5.4)

Equation (4.11) and the leading-order fundamental-mode components of (2.1), (2.3)–
(2.5) and (2.8) now become

∂ρ1

∂T
+ iYρ1 +

mN
2

A=−iU0ρ1, (5.5)

iN u1 − ( f − 1)v1 + iA=−v1U0Y, (5.6)

w1 =
i
N
ρ1, v1Y =−imw1, (5.7a,b)

N 2u1Y + im( f − 1−U0Y)ρ1 = iN v1U0YY . (5.8)

The initial condition of ρ1 is given by the linear result

ρ1→−
imNA(0)

2
e−iYT
− 1

Y
, T→ 0. (5.9)

Similar to (4.2), the mean-flow velocity U0 is governed by

∂U0

∂T
=−v∗1u1Y + imw1u∗1 + c.c. (5.10)

The initial condition is U0→ 0 as T→ 0, as in early linear evolution the mean-flow
modification is minimal.

It is possible to algebraically manipulate (5.5)–(5.8) and then integrate in T to show
that

U0 =−
2
N 3
|ρ1|

2, (5.11)

a result that can be traced back to the fact that the change to the mean flow is given
by the Eulerian pseudo-momentum (Bühler 2014), which is the right-hand side of
(5.11) to leading order in the critical layer. Hence

∂ρ1

∂T
+ iYρ1 +

1
2

mNA= i
2
N 3
|ρ1|

2ρ1. (5.12)

To match the inner and outer solutions, we first note, from (5.7), that v1Y =mN−1ρ1.
Integrating this relation in Y over the critical layer then provides the jump of the outer
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Nonlinear dynamics of forced baroclinic critical layers 883 A12-11

solution v1 = i(yp1,y − fp1)/[y2
− f ( f − 1)] for the limit of y→N (cf. (3.9b)), which

yields

B=−im
f ( f − 1)−N 2

N 2

ˆ
∞

−∞

ρ1 dY, (5.13)

in a similar manner to § 3.2 and (3.20).
Last, we again use the forcing condition at y= 0 to close the problem,

(A− A∗)p̂A(0)+ (B− B∗)p̂B(0)= 0,

(A+ A∗)p̂′A(0)+ (B+ B∗)p̂′B(0)=−f
ε0

ε
,

 (5.14)

(cf. § 3.3 and (3.22)). Note that the form of the forcing impacts the reduced model
only through the closure relations in (5.14). Had we used a different idealization of
the forcing here, there would be a different algebraic relation between A, B and ε0/ε.
However, this relation still connects A with the forcing amplitude and the integral of
ρ1 over the critical layer, and in the scaled, canonical system presented below, all that
would change would be how the parameters of that system (denoted c0, c1 and c2 in
§ 5.2) depend on the original physical constants. In this sense, the reduced model is
independent of the choice of forcing.

5.2. Canonical system
The final rescalings

ρ1 =

(
mN 4

4

)1/3

γ (η, τ ), T =
(

2N
m2

)1/3

τ , Y =
(

m2

2N

)1/3

η, (5.15a−c)

lead to the canonical form,

∂γ

∂τ
+ iηγ + A= i|γ |2γ , (5.16)

A(τ )= c0 +
ic1

π

ˆ
∞

−∞

γr dη−
c2

π

ˆ
∞

−∞

γi dη, (5.17)

where γ = γr + iγi,

c0 =−sgn
(

f
p̂′A(0)

)
|1+ c1c2|√

1+ c2
1

, (5.18)

and {
c1
c2

}
=

πm2
[ f ( f − 1)−N 2

]

2N

{
p̂B(0)/p̂A(0)
p̂′B(0)/p̂

′

A(0)

}
. (5.19)

For τ� 1, we must match γ (η, τ ) to the corresponding solution of the linear problem,
given by

γ = iA
1− e−iητ

η
, A=

c0(1− ic1)

1+ c1c2
, (5.20a,b)

which provides the initial condition for (5.16).
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The reduced model equations in (5.16)–(5.20) are solved numerically in the next
section. The system is integro-differential in the sense that (5.16) is an equation of
motion in time, solved at each level of η, with the integral constraint in (5.17). There
is no dependence on either x or z, because the leading-order dynamics involves only
the fundamental mode of the forcing wave pattern and the mean-flow response (which
is then prescribed by the pseudo-momentum). The only nonlinearity is the cubic term
on the right of (5.16), which is generic in weakly nonlinear theories of non-dissipative
systems with few degrees of freedom. The model is therefore rather different from
those that emerge for classical forced critical layers, which usually take the form of
partial differential equations in all the spatial variables. The reduced model has the
two parameters, c1 and c2, and the choice of sign for f p̂′A(0) in c0. In most situations
p̂A and p̂B are characterized by a similar exponential away from y= 0, implying c1≈

c2.
From (5.16)–(5.17), one can establish that the quantity,

H=
ˆ
∞

−∞

[
1
2
|γ |4 − η|γ |2 + 2Im(A∗γ )

]
dη+

c1

π

[ˆ
∞

−∞

γr dη
]2

+
c2

π

[ˆ
∞

−∞

γi dη
]2

,

(5.21)

must be conserved, and therefore equal to πc1(1+ c1c2)/(1+ c2
1) in view of the initial

conditions. This constraint implies that the linear-in-time growth of γ (η, τ ) predicted
by linear theory must eventually become arrested, as otherwise the quartic first term in
(5.21) cannot be counter balanced by the remaining quadratic and constant terms. To
determine the manner in which the arrest takes place, we turn to a numerical solution
of the reduced model.

5.3. Numerical solutions
To solve the canonical system of equations numerically, we first select a grid in η
spanning a finite domain (we use 1501 equally spaced grid points over the interval
1.5<η< 3 where γ has large gradients, then 1544 grid points distributed evenly over
−25<η< 1.5 and 3<η< 25). We then integrate (5.16) forward in time numerically
using a fourth-order Runge–Kutta method at each of the grid points. To evaluate the
integrals in (5.17), we use an approach similar to Warn & Warn (1978) to extrapolate
the limits to infinity. We use parameter settings guided by the computations of Marcus
et al. (2013): m= 1/2, f = 4/3, N = 4/3, which yield c1 = 0.238, c2 = 0.219.

Figure 3 displays the evolution in τ of the forced wave amplitudes, A and B, which
is relatively mild with Re(A) ≈ c0 ≈ −1 and Im(A), Re(B) and Im(B) all remaining
small. This mild behaviour results because, in (5.17), |c1| and |c2| are fairly small.
Thus, the forced wave evolves slowly over the bulk of the shear flow (i.e. the outer
region), maintaining a profile similar to the linear distribution in figure 2.

The density perturbation γ (η, τ ), shown in figure 4, exhibits a richer behaviour:
for τ < 1, the numerical solution follows the linear prediction in (5.20), with its
characteristically developing undulations and linear growth near η=0 (see figure 4a,b).
Once |ζ | reaches order-one values there, however, the growth of the numerical solution
saturates, as demanded by the constraint in (5.21). Despite this, the solution continues
to undulate over increasingly shorter spatial scales. Moreover, nonlinear effects distort
the density profile further, shifting the maximum magnitude from η = 0 to a small,
positive level in η and generating pronounced fine structure over a narrow region
nearby.
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FIGURE 3. Evolution of A and B with τ ; m= 1/2, f = 4/3, N = 4/3.

The rapid spatial variation in γ (η, τ ) significantly impacts the critical-layer vorticity,
which depends on the η-derivatives of γ (η, τ ). In particular, the leading-order vertical
vorticity is given by the mean-flow vorticity ζ0,

ζ ∼ ζ0 ≡
∂

∂η
|γ |2. (5.22)

However, from the matched asymptotic expansion, we may reconstruct ζ (x, η, z, t) to
higher orders, incorporating the fundamental Fourier mode ζ1 and first harmonic ζ2,
as summarized in appendix A. The evolution of the reconstructed vertical vorticity
field is plotted in figure 5. For early times, ζ0 � 1, and the vertical vorticity is
actually given by the higher-order linear solution (as in figure 5a, cf. (3.19)). With
the increase of τ , the vorticity distribution tilts over and ζ0 grows to dominate ζ ,
as seen in figure 5(b,c). This growth leads to the distinctive dipolar stripe seen in
figure 5(d). In the later stages of evolution (figure 5e, f ), the stripe becomes stronger
and more focussed, shifting slightly above η= 0, and corresponding to the sharpening
oscillations in γ seen in figure 4.

The behaviour of the numerical solution seen in figures 3–5 is generic for most
parameter settings; for moderate m, f (either f > 1 or f < 0) and N , the parameters
c1 and c2 of the reduced model are relatively small in magnitude, prompting similar
dynamics. Even when |c1| and |c2| become order one, the evolution still bears
qualitative similarities. However, more complicated behaviour can occur in the
reduced model when these parameters take higher values. Such parameter settings can
be achieved at special combinations of m, f and N for which p̂A(0) becomes small,
or perhaps for other types of forcing. We avoid consideration of special situations of
this sort, and instead turn to a deeper analysis of the focussing dynamics observed
in the reduced model.

5.4. Long-time focussing
In view of the result that A changes slowly, we now use the approximation of
A = const. to gain further analytical insights into the focussing phenomenon. This
device was used previously by Stewartson (1978) to obtain an analytical solution
to the nonlinear evolution of Rossby wave critical layers. In our model, constant
A in (5.17) requires c1 = c2 = 0, hence A = −sgn( f p̂′A(0)), which is −1 for the
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FIGURE 4. (a) Real and (b) imaginary parts of the critical-layer density perturbation
γ (η, τ ), shown as surfaces above the (η, τ )-plane. To prevent the viewing perspective from
obscuring parts of the solution, we also show density maps of the solutions underneath.
The insets show corresponding plots of the linear solution in (5.20). Panels (c–f ) plot
snapshots of γ (η, τ ) at the times indicated; the linear result for |γ (η, τ )| is also included.
(m= 1/2, f = 4/3, N = 4/3.)
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FIGURE 5. Snapshots of vertical vorticity ζ within the baroclinic critical layer near
y =N = 4/3, plotted as a colour map on the (x, η)-plane for (a) τ = 0.3, (b) τ = 0.45,
(c) τ = 0.6, (d) τ = 1, (e) τ = 1.5 and ( f ) τ = 1.8. The domain plotted is |η| < 25,
corresponding to |y−N |<0.39, at cross-section z=0 and over one streamwise wavelength
of the forcing pattern. (ε0 = 0.05, ε= 0.0062, m= 1/2, f = 4/3, N = 4/3.)

current parameter setting. The evolution equation (5.16) can then be written as the
one-degree-of-freedom Hamiltonian system,

∂γr

∂τ
=
∂H
∂γi
= 1+ ηγi − γ

2
r γi − γ

3
i ,

∂γi

∂τ
=−

∂H
∂γr
=−ηγr + γ

3
r + γrγ

2
i ,

 (5.23)

with Hamiltonian,

H =− 1
4(γ

2
r + γ

2
i )

2
+

1
2η(γ

2
r + γ

2
i )+ γi (5.24)

(the point-wise version of the conserved quantity H in (5.21) for c1= c2= 0). For the
specific initial condition of our critical-layer problem, H = 0 for all values of η.

Figure 6(a) illustrates the phase portrait of the system (5.23) for the special choice
η= ηc= 3/ 3

√
2. In this case, the orbit from (γr, γi)= (0, 0) lies along a separatrix that

converges to a saddle point at (γr, γi) = (0, −γe), for τ →∞, with γe =
3
√

2 ≈ 1.26.
Trajectories from (γr, γi)= (0, 0) for a spread of values of η around ηc are illustrated
in figure 6(b); the presence of the separatrix at η = ηc implies that these trajectories
bifurcate in direction on the phase plane on passing through that special level. Thus, a
small variation in η about ηc can result in a large change of γ at later times, implying
high values of γη to feed into ζ .
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FIGURE 6. Phase portraits of (γr, γi) for (a) the Hamiltonian system (5.23) with
η = 3/ 3

√
2 and various H, with the thicker line indicating H = 0, (b) trajectories from

the point (γr, γi)= (0, 0) for a selection of values of η and (c) the numerical solution of
§ 5.3, at the five values of η indicated. The black points in (b) and the (red and blue)
pairs marked (A,B) and (C,D) in (c) have the same values of |η− ηc|eστ .

For the numerical solutions of § 5.3, although c1 and c2 do not vanish, the
forced-wave amplitude does remain slowly varying in τ , leading to a qualitatively
similar dynamics: figure 6(c) plots the phase portrait of γ for five values of η
within the region where the dipolar stripe is focussed. As η varies from 2.38 to
2.48, the trajectories for different levels abruptly switch in direction near the point
(γr, γi) = (0, −1.2). Although the slow variation of A(τ ) precludes any trajectory
from reaching a steady value, the numerical solution for η= 2.43 slows down, lingers
and hesitates before selecting one of the two possible directions, much like the orbits
for c1 = c2 = 0 near the separatrix in figure 6(a,b). The level of this trajectory is
slightly shifted from 3/ 3

√
2 ≈ 2.38 because c1 and c2 are non-zero and A(τ ) 6= −1.

Nevertheless, we conclude that the close passage to an effective saddle point on the
(γr, γi) phase plane is responsible for the focussing effect. For the numerical solution,
we therefore define η = ηc ≈ 2.43 to be the level for which γ evolves slowest near
the effective saddle, and refer to this location as the nonlinear critical level.
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Continuing the analysis for c1 = c2 = 0, we may linearize the system (5.23) about
γ =−iγe to find that

∂

∂τ

(
γr

γi + γe

)
=

(
0 η− 3γ 2

e
−η+ γ 2

e 0

)(
γr

γi + γe

)
. (5.25)

The two eigenvalues of the matrix are ±σ , with corresponding eigenvectors v+ and
v−, where

σ =

√
(γ 2

e − η)(η− 3γ 2
e )≈ σc =

√
3

3
√

2
if η≈ ηc. (5.26)

The solution of (5.25) is then(
γr

γi + γe

)
= r+v+eσ(τ−τ0) + r−v−e−σ(τ−τ0), (5.27)

for some constants r± and a time constant τ0 indicating when the orbit reaches the
neighbourhood of the saddle point.

Now, along the separatrix converging to γ =−iγe for η= ηc, the constant r+ must
vanish. But when η is close to, but not at ηc, this factor is small but finite, hence
a local linearization of r+(η) near η = ηc leads us to set r+ ≈ C(η − ηc), for some
constant C. Therefore, (

γr
γi + γe

)
∼C(η− ηc)v+eσc(τ−τ0), (5.28)

at large times. That is, for η near ηc, those pairs of (η, τ ) with the same (η− ηc)eσcτ

should have the same γ . Although this property is derived from the local linearization
about the fixed point, it still holds when trajectories have progressed further along the
unstable manifolds of that saddle because the trajectories shadow those curves. This
is illustrated in figure 6 for both the Hamiltonian system and the numerical solution,
where the pairs of points plotted along sample orbits have the same values for (η−
ηc)eσcτ , and therefore similar γ , even though they correspond to different choices of
(η, τ ). We can express the property mathematically by writing the solutions in the
self-similar form,

γ ≈ F(ξ) and ζ0 ≈ eσc(τ−τ0)
d

dξ
|F(ξ)|2, with ξ = (η− ηc)eσc(τ−τ0), (5.29a,b)

for some function F(ξ) related to the shape of the unstable manifolds of the saddle
point. Thus, the length scale of the nonlinear critical layer at η = ηc decreases
exponentially in time, accounting for the relatively rapid focussing of sharp spatial
variations in γ at later times in figure 4, and the amplitude of the vertical vorticity
grows exponentially. Figure 7 presents four snapshots of ζ0(η, τ ) for the numerical
solution, then replots them against ξ and scaled by eσc(τ−τ0), adopting τ0 = 3; while
the profile of ζ0 keeps sharpening and strengthening, the rescaled profile remains
nearly unchanged, confirming the self-similar structure in (5.29).

The exponential focussing towards the nonlinear critical level is problematic as it
implies that the higher-order harmonics of the forcing pattern, which are neglected
in our nonlinear critical-layer model, grow faster than the re-arrangements of the
mean flow. In particular, one can deduce that the vertical vorticity of the jth Fourier
component, exp[ j(ix+ imz)], grows like e( j+1)σcτ . The model therefore fails once the
solution becomes overly focussed, heralding the onset of a further, more complicated,
stage of evolution.
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FIGURE 7. (a) Evolution of ζ0 near ηc = 2.43 at the times indicated. (b) Scaled profiles,
ζ0e−σc(τ−τ0) against ξ = (η− ηc)eσc(τ−τ0), choosing τ0 = 3; (m= 1/2, f = 4/3, N = 4/3).

6. Effects of diffusion

The increasingly fine scales encountered in the critical layer due to the exponential
focussing suggest that dissipation may also become prominent over later times, even
if small initially. To explore this possibility in more detail, we return to the governing
equations and include the viscous terms ν∇2(u, v,w) in (2.1)–(2.3) and diffusive term
κ∇2ρ in (2.4). We then take the distinguished limit (ν, κ)=O(ε2), which corresponds
to the order when dissipation first becomes important. In particular, with this scaling
of ν and κ , the dissipative terms are too small to affect the quasi-steady wave in the
bulk of the flow, but enter the analysis of the baroclinic critical layers owing to the
reduced spatial scale in y. Equation (5.5) is now replaced with

∂ρ1

∂T
+ iYρ1 +

mN
2

A=−iU0ρ1 +
(ν + κ)

2ε2

∂2ρ1

∂Y2
. (6.1)

The Eulerian pseudo-momentum is no longer equal to the mean-flow response, as in
(5.11), and we have to return to the mean-flow evolution equation,

∂U0

∂T
=

m
N 2

(A∗ρ1 + Aρ∗1 )+
ν

ε2

∂2U0

∂Y2
(6.2)

(following from the substitution of (5.6)–(5.8) into the modified version of (5.10)). The
initial condition is still given by (5.20), the dissipative terms being negligible at early
times when the spatial scales are larger. The closure relations given by the match to
the outer solution remain (5.13) and (5.14). Equations (6.1) and (6.2) can be combined
to furnish the integral relation,

d
dT

ˆ
∞

−∞

(
|ρ1|

2
+

1
2
N 3U0

)
dY =−

(ν + κ)

ε2

ˆ
∞

−∞

∣∣∣∣∂ρ1

∂Y

∣∣∣∣2 dY, (6.3)

provided that ρ1 and U0 decay sufficiently quickly for |Y| → ∞. We now briefly
discuss the dynamics captured by this dissipative version of the model, focussing on
the astrophysically relevant limit ν� κ .
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FIGURE 8. The analytical solution (6.6) for strong diffusion and A = −1, showing
(a) λ1/3γr and (b) λ1/3γi against the scaled space and time variables λ−1/3η and λ1/3τ . The
(red) dots show the final steady-state solution. The insets show corresponding numerical
solutions to the reduced model, computed for λ= 5.3.

6.1. Modified canonical system
A scaling similar to that in § 5.2, now furnishes the modified canonical system,

∂γ

∂τ
+ iηγ + A=−iγU + λ

∂2γ

∂η2
,

∂U
∂τ
= A∗γ + Aγ ∗ (6.4a,b)

and (5.17), where

U(η, τ )=
(

2N
m2

)1/3

U0 and λ=
κN
m2ε2

. (6.5a,b)

This system may be solved numerically. For the task, we now use a Crank–Nicolson
method to evolve the system in time and centred finite differences method to evaluate
spatial derivatives, exploiting Newton iteration at each time step to solve the nonlinear
equations.

Before characterizing the features of the numerical solutions, we first pause to
examine the dynamics in the limit that diffusion is relatively strong, λ� 1. In this
limit, the large diffusive term λγηη in (6.4) must be balanced by introducing the
rescalings, (γ , τ ) = O(λ−1/3), η = O(λ1/3) and U = O(λ−2/3). The advection of the
density perturbation by the mean-flow correction, iγU , is then small in the first
equation in (6.4), and if we again make the approximation that A is constant, we
find

γ ≈−A
ˆ τ

0
e−λq

3/3−iqη dq, (6.6)

which is plotted in figure 8. For τ � 1, equation (6.6) recovers the secular growth
of the linear non-dissipative critical layer (cf. (5.20)), but over longer times, this
solution approaches a steady state, illustrating how diffusion is able to saturate that
growth before nonlinearity (and the advective term iγU ) enters the fray. Figure 8
also illustrates how this dynamics does indeed characterize the full modified model
for larger values of the diffusivity, demonstrating how the analytical solution in (6.6)
agrees satisfyingly with numerical results computed with λ = 5.3. The steady-state
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prediction from (6.6) corresponds to the result of viscous critical-layer theory
presented by Boulanger et al. (2007) for stratified tilted vortices (in which case,
τ→∞ in (6.6) and the solution can be related to the Scorer function).

Nevertheless, the establishment of a steady state with spatial structure in the
density perturbation is inconsistent with the integral relation in (6.3). Indeed, if γ
approaches a steady state, U continues to grow linearly with τ , and for times of
order λ1/3, the advective term iγU can no longer be neglected in (6.4), heralding
the onset of a different, more complicated phase of evolution. Figure 9 shows a
suite of numerical solutions, illustrating this later evolutionary stage for cases with
stronger diffusion (right-hand panels), and other examples with smaller λ (left-hand
panels). For the latter, diffusion is too weak to arrest the linear growth in the
critical layer and nonlinear focussing begins to occur; only when the spatial scale
has reduced sufficiently does the dissipative effect take hold to limit the exponential
amplification found for λ= 0. At that stage, a new phase of evolution again emerges,
much like that found for stronger diffusion. In particular, the oscillations of the
non-dissipative dynamics begin to fade with time, and a localized coherent structure
emerges that drifts to larger η under the advective effect of the mean-flow correction.
The structure leaves in its wake an increasingly strong deficit in U , which is permitted
by the constraint in (6.3) because diffusion may continually lower U as long as the
gradients of γ remain finite.

6.2. Dissipative coherent structures
The drifting coherent structure can be analysed further owing to its fine spatial scale
and the relatively slow time scale over which the system develops once the larger-scale
transients have subsided: assuming that λ� 1 and A is real and constant, we search
for a quasi-steady travelling wave solution in which

γ ≈ γ (ξ) and ξ =
η
√
λ
−

ˆ
c dτ , (6.7a,b)

which characterizes a coherent structure with a length scale of
√
λ� 1 and a drift

velocity given by c. Hence,

− cγ ′ + iη∗γ + A≈−iγU + γ ′′ and − cU ′ ≈ A∗γ + Aγ ∗ ≈ 2Aγr, (6.8a,b)

where ξ = 0, or η∗ =
√
λ
´

c dτ , prescribes the centre of the coherent structure. This
fifth-order system may be solved subject to the far-field constraints that γ and U
approach constant values as |ξ | → ∞. In particular, since the coherent structure
invades a region to the right in which γr = U = 0, but U remains finite to the left
(see figure 9), we demand the limits

(γr, γi, U)→
{
(0,G+, 0) for ξ→∞,
(0,G−, 1U) for ξ→−∞, (6.9)

where G+ = Aη−1
∗

, G− = A(η∗ +1U)−1 and 1U is the jump in the mean flow across
the structure. Equation (6.9) imposes six boundary conditions on (6.8). One must also
remove the translational invariance of the system by imposing an additional constraint.
Thus, given η∗, we solve (6.8) subject to those seven conditions, treating G− and c as
unknown parameters (eigenvalues). This furnishes localized structures taking the form
of ‘pulses’ in γr and ‘fronts’ in γi and U . Note that, as the coherent structure drifts to
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FIGURE 9. Solutions of the modified canonical model, showing (a) γr, (b) γi and (c) U ,
for m= 1/2, f = 4/3 and N = 4/3, c1 = 0.238, c2 = 0.219 with the values of λ indicated
(and corresponding to the three columns). The colour map is the same in the first three
images of (a) and (b), but not the rightmost image. The quasi-steady-wave amplitude
A= Ar + iAi for the four computations is shown in (d).
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FIGURE 10. A coherent structure computed from (6.8) with η∗ = 5.04 and A = −1.2,
showing (a) γr and γi, and then (c) U (solid lines). The dotted lines show the numerical
solution of the modified canonical model (6.4), computed for λ = 0.53 at τ = 17.8 (at
which moment the residual oscillations near η= 0 are less pronounced). In (b,d) we show
G−, c and the jump 1U =−[U]∞

−∞
against η∗ from the solutions to (6.8) for A=−1.2

(solid lines). The dashed lines show the limiting behaviour for η∗ � 1 given in (6.10).
The circles show data for c and 1U measured from the numerical solution of (6.4) with
λ= 0.53 from τ = 5 to τ = 15.4.

the right, η∗ increases, corresponding to an evolution of the coherent structure, which
is treated parametrically in the quasi-steady approximation of (6.7) and (6.8).

Figure 10 shows a sample solution to (6.8) for (A, η∗) = (−1.2, 5.04), giving
G+ =−0.24. These choices for A and η∗ correspond to the numerical solution of the
modified canonical model for λ = 0.53 shown in figure 9 at τ ≈ 18, which is also
plotted in figure 10(a,c). The solution to (6.8) compares satisfyingly well with the
snapshot of the simulations near the core of the coherent structure, although there
are discrepancies further away arising from the influence of the far-field flow.

Figure 10 also includes data computed from (6.8) for G−, c and 1U , as functions of
η∗. In the limit of large η∗, a simple rescaling of (6.8) and (6.9) indicates the limiting
behaviour,

G−→G+ =O(η−1
∗
), c=O(η−5/2

∗
), 1U =O(η∗). (6.10a−c)

The solution of (6.8) is compared to (6.10) together with measurements from the
numerical simulation in the figure. Similarly, the characteristic strength and width of
the structure are γ = O(η−1

∗
), U = O(η∗) and ξ = O(η−1/2

∗
). Thus, as the coherent

structure drifts to the right, and η∗ slowly increases, the drift velocity declines, and
the peak in γr and jump in γi must decrease and narrow. However, the jump in 1U
continues to build up, predicting that the deficit in the mean flow grows linearly with
η for η < η∗.

This behaviour of the coherent structure rationalizes the dynamics of the modified
canonical model seen in figure 9: once the linear dynamics and nonlinear focussing
have subsided, the two features that remain are the decaying oscillations near η = 0
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and the drifting coherent structure. The structure leaves in its wake a slowly diffusing
density perturbation γ ≈ iG− (see the right-hand plots in figure 9b) and a gradually
strengthening mean flow correction 1U , as seen on the right of figure 9(c). Thus, with
diffusion, all growth in the density perturbation becomes arrested, leaving a widening
and strengthening, jet-like defect in the mean flow.

One final concern is the impact of viscosity on the dynamics of the coherent
structure: it is clear from (6.2) that the growth of the mean-flow correction may be
halted when ν = O(ε2). Indeed, in the limit of stronger diffusion, the viscous term
may allow U to also reach a steady state within the critical layer. However, as for
the classical critical layers of Rossby waves (Brown & Stewartson 1978) and clear
from the constraint (6.3), a genuine steady state is not possible with dissipation.
Instead, the mean-flow correction must inevitably spread viscously out of the critical
layer, even if a quasi-steady state is reached locally. Such considerations suggest
that viscosity, if sufficiently strong, may prevent the creation of the drifting coherent
structure, although a widening jet-like defect might still appear in the mean flow.

7. Discussion

In this paper, we have studied the non-dissipative, nonlinear dynamics of forced
baroclinic critical layers using matched asymptotic expansion. In the linear regime, the
forcing establishes a steady-wave response outside the critical layers, but disturbances
grow secularly inside the critical layer, which thins with time. The behaviour is very
similar to the forced critical layers of both Rossby waves (Stewartson 1978; Warn
& Warn 1978) and internal gravity waves (Booker & Bretherton 1967; Brown &
Stewartson 1980). Continuing the analysis, we then studied the weakly nonlinear
dynamics of the critical layer, finding that the adjustment of the mean flow provides
the most important feedback on the growing disturbance there. Guided by the
critical-layer scalings exposed by the weakly nonlinear analysis, we then derived
a reduced model for the nonlinear critical layer. The numerical solution of the
reduced model reveals a continued growth of the vertical vorticity as the disturbance
is focussed exponentially quickly into a finer region within the critical layer. The
focussing progresses uninterrupted until the reduced model breaks down.

Such pathological behaviour is quite different to that of the forced critical layer
of a Rossby wave, where nonlinearity halts the secular linear growth and the mean
vorticity distribution overturns into a distinctive cat’s eye structure (Stewartson 1978;
Warn & Warn 1978; Killworth & McIntyre 1985). In that process, all the harmonics
of the forcing pattern are excited to the same strength as the fundamental component.
By contrast, in our nonlinear theory of the forced baroclinic critical layer, the
adjustment to the mean flow arrests the linear growth and prompts the focussing of
the vorticity before any of the higher harmonics become important. It is only once
the strength and length scale of the focussed vorticity pass out of the asymptotic
regime of our theory that the harmonics will appear. One important contributor to
this feature is that the position of the baroclinic critical level itself is dictated the
streamwise wavenumber. The critical level of the forcing does not therefore coincide
with those of the harmonics. This filtering action weakens the impact of those
harmonics within the baroclinic critical layer, leaving the adjustment the mean flow
as the main nonlinearity.

The nonlinear structures developed in our forced baroclinic critical layers ( jet-like
defects in the mean velocity and dipolar stripes in the vorticity) may well be the
analogues of features seen in the simulations of Marcus et al. (2013) and Wang
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(2016). Unlike in the reduced model, however, where these structures continue to
focus, the mean-flow structures spawned in the simulations roll up into new vortices,
providing part of the chain of events leading to self-replication. Thus, our model
likely misses important secondary instabilities. Indeed, Killworth & McIntyre (1985)
and Haynes (1989) have shown that the nonlinear evolution of a forced Rossby wave
can be susceptible to shorter-wavelength shear instabilities and generate ‘critical-layer
turbulence’ along the filaments of vorticity wrapped around the main cat’s eye
(see also Balmforth & Korycansky (2001)). A roll up of the jet-like defects into
new vortices seems plausible in the present case, and may arrest the uninterrupted
focussing effect within the nonlinear critical layer. However, an extension of the
matched asymptotic analysis is required to capture such dynamics.

Marcus et al. (2016) further argued that self-replication is a finite-amplitude
instability, requiring the amplitude of the initial disturbance to exceed a certain
threshold. By contrast, the secular growth and nonlinear focussing of the disturbance
inside the critical layer are triggered for an arbitrary small forcing amplitude in our
analysis. Nevertheless, we have idealized the driving as a steady wavemaker, and
ignored any possible evolution of that forcing. If the wavemaker cannot be sustained
indefinitely, a threshold likely emerges that demands that the forcing act for sufficient
time and strength to drive the baroclinic critical layers to the point where secondary
instability can arise.

The continued focussing of the mean vorticity layer also indicates that dissipative
effects are likely to become important in the later stages of evolution inside the
baroclinic critical layer. Including the diffusion of density (i.e. heat or salt) in the
theory leads to a modification of the reduced model, which now takes a partial
differential form. A brief exploration of the modified model demonstrates that weak
diffusion can arrest the focussing to the nonlinear critical level. Interestingly, a
drifting solitary-wave like object then emerges, with a structure that can be analysed
analytically. The solitary wave leaves in its wake another jet-like defect in the mean
flow, but this time the defect gradually widens and deepens as the object drifts.

In summary, when a steady forcing drives waves with baroclinic critical levels into a
horizontally sheared flow with vertical stratification, the growing density perturbations
predicted by linear theory become saturated by nonlinear effects. Although this
saturation is demanded by the conservation laws of the governing equations, those
constraints still permit the density perturbation to develop finer spatial structure
over a region within the baroclinic critical layer. This nonlinear focussing effect
takes place exponentially quickly, developing sharp jet-like defects in the mean flow,
which can survive even in the presence of weak dissipation. This dynamics of the
baroclinic critical layers is more destructive than that for the classical critical layers
of Rossby and internal waves, and plausibly rationalizes part of the cycle of vortex
self-replication observed by Marcus et al. in numerical simulations.
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Appendix A. The critical-layer vorticity distribution
The reconstruction of the critical-layer vorticity from the matched asymptotics is,

ζ = ζ0 + [ε
1/3ζ1eix+imz

+ ε2/3ζ2e2ix+2imz
+ c.c.], (A 1)
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where ζ0 is given by (5.22),

ζ1 = i
(

m2

2N

)2/3 [
( f − 1)γ + γ

∂|γ |2

∂η
+

2
m2
v1
∂2
|γ |2

∂η2

]
, (A 2)

ζ2 = ( f − 1)
(

m2

2N 4

)1/3 (1
2

m2γ 2
− v1γη

)
+

i
(2mN )2/3

∂

∂η

[
v1ζ1 +

(
m4N

4

)1/3

u1γ

]
,

(A 3)

and the leading-order fundamental components of the critical-layer horizontal velocity
are

v1 =
im2A

2

[
log

∣∣∣∣∣
(
ε2m2

2N

)1/3

η

∣∣∣∣∣+ 1

]
−

m2

2

 
∞

η

(
γ −

iA
η′

)
dη′ +

iA(αN − f )
N 2 − f ( f − 1)

,

(A 4)

u1 =
( f − 1)v1 − iA+ v1ζ0

iN
, (A 5)

where the decoration on the integral sign implies principal value.
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