

Predictive joint motion limiting in robotic applications
Edward Red and Brian Fielding
Department of Mechanical Engineering, Brigham Young University, 435 CTB, P.O. Box 24201, Provo, Utah 84602–4201
(USA)

(Received in Final Form: September 20, 2002)

SUMMARY
Three joint space algorithms slow the Cartesian path motion
when it appears that joint motion is approaching a joint,
speed, or acceleration limit. All three algorithms use
quadratic curve fitting to predict where the joint motion is
heading, followed by a prediction as to how much time
would elapse until a limit is reached.

If a joint motion limit is encountered in the time-to-stop
the Cartesian motion, these algorithms reduce the Cartesian
speed using pulsed speed settings so that the robot or
machine tool will have the necessary time to come to a
complete stop. The joint space velocity and acceleration
control algorithms set the override Cartesian speed to either
full or some reduced speed, several times a second. This
allows the joints to reach, but not exceed, their maximum
velocity and accelerations limit, while remaining within the
physical joint limits.

KEYWORDS: Direct control; Joint motion limiting; Robotic
applications.

1. INTRODUCTION
A new architecture for controlling mechanisms, such as
robots and machine tools, has been developed at Brigham
Young University.1–3 Initially directed towards Direct
Machining And Control (DMAC), the acronym context is
easily broadened to direct mechanism applications control,
extending to all mechanisms, including robotics.

By using advances in digital networking, digital power
electronics (e.g. PWM), and PC-based real-time operating
systems, DMAC can directly control a mechanism from a
process planning application, such as Computer-Aided
Manufacturing (CAM), including robotic simulation soft-
ware such as RobCad, IGRIP, or CODE.

DMAC’s architectural goal is to make mechanisms look
like part printers connected to design and process
application software. This approach parallels the document
printing paradigm that we use today. We simply select
the Print option and the screen documents issue from the
printer. Most of the printing complexity is hidden from
the user as a device driver.

Direct control uses a single PC to integrate the process
planning application, running under Windows on one
processor, with the DMAC controller running under a real-
time OS on a second processor. The controller’s motion
planning and trajectory generation subsystem, along with

the servo-control loops, are configured in software on the
PC.

DMAC eliminates most analog control hardware, includ-
ing the servocard and A/D and D/A I/O interfaces. What
remains are an integrated digital current/torque amplifier,
and motor-encoder combination, interfaced to the PC
through a digital high speed control network that functions
dually as a digital communications interface and servo-
control loop.

1.1. What this architecture means?
Direct control eliminates the need to pre-process and
sometimes tessellate moves into simpler move types using
standardized control languages and files, such as APT, CL,
and M&G. This quasi-static control environment requires
several process steps between the process application and
actual mechanism control. The advantage of the contempo-
rary process planning environment is that moves can be
closely examined for motion limiting and be adjusted
accordingly. The disadvantage is that the mechanism’s
inverse kinematics must be available to the process planning
software.

DMAC replaces this quasi-static process with one that is
dynamic and direct, not requiring kinematics in the CAM
application. Both simple and complex moves (e.g. NURBS
paths) are directly passed to the DMAC controller in their
native mathematical form. But moving along complex paths
without pre-processing the path can lead to motion limiting
in joint space.

This paper presents several algorithms designed to
dynamically adjust the motion in Cartesian space, on the
controller, when joint motion approaches a physical, speed
or acceleration limit.

2. CARTESIAN VERSUS JOINT SPACE
When a machine tool or robot end-effector is moved along
a pre-defined Cartesian path, the mechanism joints must be
coordinated to achieve this motion. The mapping between
the Cartesian tool frame pose (position and orientation) and
joint configuration is achieved through inverse kinematics.
The mapping between Cartesian velocity and joint speeds is
achieved through a familiar matrix relationship involving
the Jacobian: v̇=J q̇ where v̇ is the vector of Cartesian linear
and angular velocity components, and q̇ is the vector of joint
rates.J, the Jacobian, varies as a function of joint values.

Derivatives of the v̇=J q̇ equation can be used to map
Cartesian accelerations into joint accelerations, but a

Robotica (2003) volume 21, pp. 531–540. © 2003 Cambridge University Press
DOI: 10.1017/S0263574702004915 Printed in the United Kingdom

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

numerical derivative of the joint speeds is often sat-
isfactory.

At times, a commanded move in Cartesian space may
cause a joint to exceed a physical limit, speed limit, or
acceleration limit. When a joint physical limit is reached,
the robot physically cannot travel to the commanded target
frame. And mechanism breakage or misalignment may
occur.

If a joint is commanded to travel to speeds or accelera-
tions that exceed the motor limits, the motor will saturate,
and path deviation may occur.

This paper presents three algorithms to modify the
Cartesian motion when it appears that joint motion is
approaching a limit. All three algorithms have a similar
foundation as discussed in later sections.

3. MOTION LIMITING ALGORITHMS
The algorithms in this paper do not have to understand the
mathematical relationships between Cartesian motion and
joint motion for a particular mechanism. The method is thus
called predictive joint motion limiting. These algorithms are
mechanism independent.

This black box approach contrasts to other approaches.
Researchers typically use mathematical relationships
between Cartesian and joint space for their motion limiting
avoidance algorithms. These approaches require mecha-
nism-specific models for the Jacobian, inverse Jacobian and
derivatives, dynamical equations, and inverse kinematics.

Chiacchio4 develops methods to avoid joint velocity
limits using first-order inverse kinematics algorithms. This
technique guarantees tracking of the desired end-effector
path. The algorithms slow down the task-space trajectory
when joint velocity limits are encountered. A virtual time is
introduced so that the time law can be modified through a
time warp, thus satisfying the velocity constraints.

Chiaverini5 expands Chiacchio’s approach to avoid joint
acceleration limits. A second-order inverse kinematics
algorithm ensures that both joint velocity and acceleration
bounds are not violated. The acceleration is mapped using
the Jacobian and other feedback correction terms.

A motor is limited in the torque it can output. The torque
required to achieve a desired joint speed depends on the
mechanism configuration. Zlajpah6 develops algorithms to
ensure joint speeds stay within the given bounds, while
maintaining the motor torques within acceptable limits.
Mechanism dynamical equations are used to map Cartesian
motion to joint torques, subject to task constraints (in speed
and torque).

Ohishi7 considers three algorithms to control torque
saturation: (1) a joint space torque limiting algorithm; (2) a
Cartesian motion control adjustment algorithm; and (3) an
adjustment algorithm of motion reference in Cartesian
space. Path tracking is smooth, with little torque saturation.

Robot redundancy is another way to avoid motion
limiting, particularly for mechanisms that exhibit troubling
singularities. Since this paper focuses on conventional
mechanisms, only two papers are considered.

The minimum number of coordinates needed to define
any pose in space is six (3 position coordinates, 3
orientation coordinates). If a robot has more than six

degrees of freedom, it is redundant. However, some
Cartesian tasks require fewer than six coordinates to
describe a tool pose. In such cases even normal mechanisms
can be redundant. Consider, for example, an axisymmetric
ball endmill used in machining, or a waterjet cutting
nozzle.

Chan8 avoids joint limiting by a weighted least-norm
(WLN) solution. This solution is compared to the gradient
projection method (GPM), and both methods are imple-
mented on a 7-DOF robotic manipulator. A weighting scale
approaches infinity at the joint limits. The WLN scheme
reduces the joint motion cost, and dampens joint motion
only in the direction of the limits, as opposed to the GPM
that maximizes the distance from the joint limits. Chan
shows that the WLN joint trajectories are oscillation free
and that joint limit avoidance is guaranteed.

Park9 uses redundancy to reconstruct the inverse kine-
matics routines to ensure task motion errors do not occur. A
method is proposed to overcome hardware limitations,
which is called joint velocity reconstruction. The idea
behind this method is that the errors induced by hardware
limitations can be removed by adjusting the velocity of the
joints that have no limit.

In commercial robots and machine tools, the practical
approach to motion limiting is to use soft limits as a buffer
zone. The mechanism is instantly stopped when any soft
limit is violated. The buffer width limits the top speed
allowed for the mechanism, and also reduces the practical
working volume for the mechanism.

4. PREDICTIVE JOINT MOTION LIMITING
As a mechanism is moved along a Cartesian path, DMAC
applies kinematics routines to return instantaneous joint
values and rates at each trajectory step. The predictive
routines described in this paper only need the current
motion state in both Cartesian and joint space, plus several
previous motion states to determine the quadratic coeffi-
cients for the predictive equations.

At each trajectory step the joint motion is examined for
proximity to the motion limits. The joint motion is curve
fitted into a quadratic equation by using three data points:
the current value and two previous values. Using the
quadratic equation, a prediction is made as to how much
time would elapse before a limit is reached. These predicted
times are stored and compared to the time to stop the
Cartesian move, given its current motion state. Time is
the invariant between the two spaces.

To understand the implementation details we must first
consider the velocity profile (trajectory) generator used in
DMAC. Then we consider the predictive methods applied to
motion limiting.

4.1. S-curve profile generator
The velocity profile generator used in DMAC was
developed by Red.10 Applying constant jerk transitions
between the constant acceleration and deceleration periods
of the trajectory, the trajectory will optimally transition to
the desired speed setting. This profile generator is an
integral member of the predictive algorithms, because it

Robotic application532

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

allows efficient time-to-stop calculations to be made in
Cartesian space.

As we will see, the predictive algorithms pulse the
Cartesian speed setting when motion limits are approached.
Figure 1 shows how the S-curve profile generator readily
adapts to these pulses.

4.2. Time-to-stop Cartesian moves
The S-curve cannot reach the desired max rise and fall
accelerations if the desired speed change is small. An
intermediate acceleration must be determined, that Red
describes as an acceleration transition. This case points out
that there are an interesting set of conditions that determine
the time to stop in Cartesian space. These cases depend
on the entry acceleration, necessary speed changes, remain-
ing move distance, and the jerk and acceleration allowables
for the mechanism.

Tables I and II summarize the conditions and calculations
as a function of the entry speed and acceleration. The Table
I equations depend on calculating an intermediate speed
when the entry acceleration is positive: A0 ≥0.

The intermediate speed is the minimum speed obtained
when the jerk is immediately applied to reduce the current
acceleration to zero – see Figure 2. It is determined by first
computing the time to change the current acceleration value
from A0 to zero, then applying constant jerk transitions to

reduce the speed and acceleration to zero. A constant jerk
(Jm) transition reduces the acceleration to zero in the rise
time:

trise =
A0

Jm

(1)

Substituting this time into the speed equation Vint =V0 +A0

t�Jm t2/2 with t= trise yields the intermediate speed:

Vint =V0 �
A2

0

2Jm

(2)

Given Vint, Table I presents the time-to-stop the Cartesian
move when A0 ≥0. For the special case of A0 =0, we apply
the Table I conditions letting Vint =V0.

Table II lists the conditions for A0 <0. These conditions
are again functions of the motion conditions and described
in Fielding’s11 thesis.

Fig. 1. S-curve adapting to speed changes.

Table I. Time-to-stop (ttotal) when A0 ≥0.

If Then And

Vint >
A2

f

Jm tfall =� Vint

Af

+
Af

Jm
� ttotal =� Vint

Af

+
Af

Jm

T� +
A0

Jm

Vint =
A2

f

Jm tfall =� 2Af

Jm
� ttotal =� 2Af

Jm
� +

A0

Jm

Vint <
A2

f

Jm tfall =2�Vint

Jm

ttotal =2�Vint

Jm

+
A0

Jm

Table II. Time-to-stop (ttotal) when A0 <0.

First calculate: V1 =
A2

f

2Jm

, and V2 =V0 +
A2

0 �A2
f

2Jm

If enter on S_FALL_CONVEX, time-to-stop=ttotal as follows.
If enter on S_FALL_CONCAVE, replace Jm with �Jm for time-to-
stop.

If Then

V2 >V1

ttotal =
A0

Jm

�
3Af

2Jm

�
V2

Af

V2 =V1

ttotal =
A0 �2Af

Jm

V2 <V1

ttotal =2�V0

Jm

+
A2

0

2J2
m

+
A0

Jm

If enter on S_FALL_LIN, then time-to-stop follows.

ttotal =�
V0

Af

�
Af

2Jm

Fig. 2. Constant jerk transition to Vint.

Robotic application 533

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

To illustrate the Table I and II conditions, we consider the
case where the entry acceleration is A0 <0. We assume that
the remaining distance has already caused us to begin
stopping the move. We determine two speeds, V1 and V2, to
determine whether the deceleration transition requires at
most three deceleration transitions, identified as S_FALL-
_CONVEX, S_FALL_LIN, and S_FALL_CONCAVE.
S_FALL-_CONVEX only applies if the entry conditions
(V0, A0) place the motion state in the convex fall portion –
see Figure 3. S_FALL_LIN is for entry conditions on the
linear portion (A0 =Af). S_FALL_CONCAVE is the final
concave deceleration to zero speed and zero acceleration.

V2 and V1 are determined respectively by applying a
constant jerk to first change A0 to the maximum allowed
deceleration, Af, then to bring Af back to zero acceleration at
the end of the move. If V2 >V1, a linear, constant decelera-
tion period is inserted between V2 and V1.

If we assume that we enter on the S_FALL_CONVEX
transition, the time to change from A0 to Af is:

tconv =
A0 �Af

Jm

(3)

Using this time we get V2:

S_FALL_CONVEX: V2 =V0 +
A2

0 �A2
f

2Jm

(4)

Similarly, we get V1:

S_FALL_CONCAVE: V1 =
A2

f

2Jm

(5)

Now let us assume that the conditions are such that V2 >V1.
We insert a constant deceleration (linear) period to reduce
the speed from to V2 to V1. The period from V0 to V2 is S_
FALL_CONVEX. The period from V2 to V1 is
S_FALL_LIN. The period from V1 to zero speed is S_
FALL_CONCAVE. The cumulative transition time is shown
in Table II as

ttotal =
A0

Jm

�
3Af

2Jm

�
V2

Af

(6)

4.3. Quadratic time-to-limits
To predict joint motion directional properties, a curve fit is
performed. Quadratic curve fitting uses invariant time to

provide a localized map between motion in Cartesian space
and the joint space motion response.

A quadratic curve requires three points to solve for the
unknown coefficients a, b, and c:

y=at 2 +bt+c (7)

Joint values, speeds, and accelerations for each joint are
curve fitted using the current value and two previous values,
stored in three n� 3 arrays, and where n is the number of
joints.

We let P represent a joint vector from this array, so that
P[0], P[1], and P[2] represent the present, previous, and last
data values stored for a particular joint. Applying these
values we can solve for a, b, and c as:

c=P[0] (8)

b=(�1.5 P[0]+2 P[1]�0.5 P[2])/Ts (9)

a=(0.5 P[0]�P[1]+0.5 P[2])/T s
2 , (10)

where Ts is the trajectory step size.
The coefficients a, b, and c are used in a quadratic

solution to generate, for each joint physical, speed, or
acceleration limit, the time-to-limit(s) solution points tij,
where i=1 to n and j=1, 2, or 3 for the three stored points
(present plus two previous values). See Figure 4.

The minimum-real-positive time is checked against the
time-to-stop. If any joint physical/speed/acceleration time-
to-limits exceeds the time-to-stop, the Cartesian speed
setting is pulsed to a value less than the desired speed.

In its most primitive form, the algorithm pulses the
Cartesian speed to zero, and then resets it to the desired (or
reduced proximity) speed once the time-to-stop is less than
the intersection time for all joints. In some adaptations we
reset the Cartesian speed to a fraction of the desired speed
based on proximity to the joint boundaries – see the section
Five-Axis Machine Tool Example.

4.4. Joint limits example
In the first example we consider a simple two link
mechanism with revolute joints. The commanded Cartesian
path is a straight line for the Link 2 tip, as shown in Figure
5 by the start and end points. The tip speed is referred to as
the TCF (tool control frame) speed. Speed and acceleration
limiting is not considered in this example.

A physical joint limit is imposed on Link 1 at 90°.
Without Cartesian predictive speed limiting, Figure 5 shows

Fig. 3. S-curve fall periods.

Fig. 4. Quadratic intersection points (shown for physical limits).

Robotic application534

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

that Link 1 violates this physical limit. Link 1 speed is about
360° per second when its physical limit is violated.

Figure 6 shows the motion of the robot with the predictive
algorithm applied. The mechanism is not allowed to travel
where commanded; thus, it stops.

Figure 7 shows the TCF set speed (800 mm/s), and the
actual Cartesian path speed as the set speed is reduced in
proximity to the joint limit. The S-curve smoothly slows the
TCF path speed to zero.

4.5. Speed limiting
Fielding11 notes that predictive speed limiting can be treated
more moderately than physical limits. He multiplies a
scaling factor to the time-to-limits value so that the
Cartesian speed is only pulsed down when very near a joint
speed limit. Scaling factors of 1.5 to 2 generate smooth
speed reductions in Cartesian space when a joint approaches
its speed limit.

4.6. Acceleration limiting
Joint accelerations are inherently more noisy and oscillatory
than speed, which is correspondingly more oscillatory than
position. This occurs because the S transitions adjust the
acceleration many times to move through the path distance
while maintaining the path speed. Figure 8 shows the joint
acceleration response for the two link mechanism when
velocity predictive control is applied to avoid joint speed
limiting. With such response characteristics the time-to-
limits predictions for acceleration limiting will be
inaccurate.

The primary difference in the predictive acceleration
algorithm is that an exponentially weighted moving average
is used to filter out rapid fluctuations in the joint

accelerations. This results in smooth, filtered data so that
curve fitting can reasonably predict the joint acceleration
response.

There are several modes of filtering out noise, but the one
implemented12 is called exponentially weighted moving
averages. It is similar to a simple moving average filter,
except that it gives a higher weighting to the most recent
points. More data points will cause a greater filtering effect,
but increase the prediction lag.

This filter was chosen because of the simple mathemat-
ical computations involved: one subtraction, one addition,
and two multiplications at each time step:

x̄k =�x̄ k�1 +(1��)x k (11)

x̄ k is the current exponentially weighted moving average;
x̄k�1 is the average on the previous step; and �, the filtering
factor, is a function of the total number of data points, m:

�=
m

m+1
(12)

Equation (11) is converted to a standard difference equation
to determine a digital transfer function by the equation:

ym =� · ym�1 +(1��)x m (13)

Converting this transfer function into a continuous time
domain transfer function yields a simple first-order transfer
function:

Fig. 5. No predictive limiting.

Fig. 6. Straight line, with predictive control.

Robotic application 535

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

H(s)=
1

�s+1
(14)

where �, the time constant, is a function of the number of
data points used in the filter and the trajectory step size Ts:

�=m Ts (15)

The magnitude of (14) is:

Mag(H(s))=
1

�(��)2 +1
(16)

At the cutoff frequency (�c), the magnitude is 70.7% of the
input and has a phase lag of 45. Anything beyond this
frequency begins to be filtered out. The higher the
frequency, the less effect it will have on output.

The question that is raised is what should the cutoff
frequency be? Fortunately, the S-curve acceleration

response time when changing from zero to full acceleration
can be estimated from equation (1). A reasonable S-curve
acceleration frequency is the inverse.

Using a conservative 95% magnitude for the transfer
function magnitude, we solve for � from:

�=
Ar

Jm
�1�0.952

0.952 (17)

giving

m=
Ar

Ts Jm
�1�0.952

0.952 (18)

The number of data points used in the exponentially
weighted moving average filter is then a function of the

Fig. 7. Tip speed slowing by predictive pulsing.

Fig. 8. Joint acceleration oscillations.

Robotic application536

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

maximum rise acceleration, maximum jerk, and trajectory
step size. Using the filter for the Figure 8 gives the response
shown in Figure 9.

4.7. Acceleration predictive algorithm
Fielding11 notes that predictive acceleration limiting can be
treated more moderately than physical limits. Like the speed
algorithm, he multiplies a scaling factor to the time-to-limits
value so that the Cartesian speed is only pulsed down when
near a joint acceleration limit. Tests showed that a scaling
factor of 3 generates smooth speed reductions in Cartesian
space when a joint approaches its acceleration limit.

4.8. Predictive acceleration example
In this example we choose a maximum rise/fall acceleration
of 3000 mm/s2, jerk of 40,000 mm/s3, and trajectory step
size of 1 millisecond. The number of filtering data points is
calculated as approximately 25.

Figure 10 shows the two link mechanism tracing a
circular path at a speed of 800 mm/s. Both speed and
acceleration predictive limiting is being applied with the
joint speed and acceleration limits being set at 4 rad/s and
40 rad/s2.

Figures 11 and 12 show the joint speed and acceleration
responses when the speed is pulsed near the limits. Note that
both speed and acceleration values remain within their
limits.

5. SINGULARITIES
Robots and 5-axis machine tools may have singular
configurations where a nominal Cartesian speed results in
unexpected large joint rates. The singularity issue has not
been directly addressed by these algorithms. Nevertheless,
these algorithms will attempt to slow down the Cartesian
velocity when a singularity is encountered, but no guarantee
can be made that the joint rates will be kept within their
limits.

Y. Nakamura13 presents a method for inverse kinematics
with singularity robustness. He also presents a “manipul-
ability” function (originally derived by T. Yoshikawa),14

which equals zero at a singular point and becomes larger the
further distance away from the singular point. These
equations might provide a foundation for implementing a
singularity robust algorithm into these motion limiting
algorithms.

6. FIVE-AXIS MACHINE TOOL EXAMPLE
We now consider a practical application of the predictive
limiting algorithms on a 5-axis (X-Y-Z-A-C) machine tool.
Table 3 lists the physical properties for the mechanism.
Units are in mm (X-Y-Z) and degrees (A-C), with rates in
per s, per s2, or per s3.

The predictive algorithms were simplified in the case of
speed and/or acceleration limiting, only pulsing the Carte-
sian speed lower when in close proximity to these limits.
The joint physical limits algorithm was implemented as

Fig. 9. Acceleration response with filter.

Robotic application 537

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

previously described, except that the pulsed feedrate
magnitude was linearly reduced in proximity to the joint
limit boundaries.

A safety buffer zone (soft limits) of 6.6 mm was
implemented for the X, Y, and Z axes. In an abort situation
occurred by violating a soft limit, a trapezoidal deceleration
would limit the maximum possible Cartesian speed (fee-
drate) as determined by:

Vmax =�2Af L (19)

Using the values Af =3000 mm/s2 and L=6.6 mm, we
calculate Vmax to be about 200 mm/s, a normal maximum
feedrate for a mechanism with this working volume.

We apply a sequence of linear moves with a speed setting
of 300 mm/s and purposely violate the joint limits, also
watching the joint speed and acceleration rates for possible
limiting conditions. It is not important to detail the move

sequence; rather observe the joint performances in Figures
13 and 14.

Figure 13 shows the X-Y-Z joint speed response for the
planned sequence of moves, in the case where soft limits are
active. Note that this 5-axis machine tool would probably be
sold with a feedrate capability advertised as 200 mm/s. But
the predictive limiting algorithms allow the machine to
maintain speeds near 280 mm/s when not in close proximity
to its physical limits. This is a performance boost for such
mechanisms.

Figure 14 shows the joint rate performance when soft
limits are not active. The predictive algorithms will slow the
Cartesian motion to near zero speed when approaching the
physical limits, regardless of the commanded speed. This
may or may not be acceptable, but does err on the side of
caution. Again, the moves can run at higher speeds when
away from the physical limits.

Fig. 10. Following a circular path.

Fig. 11. Joint speeds with limits at 4 rad/s.

Robotic application538

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

CONCLUSION
Time, the invariant between Cartesian and joint space, is
used to predict time-to-limits in joint space, so that it does
not exceed the time-to-stop in Cartesian space. The
predictive motion limiting algorithms prove quite effective
for protecting mechanisms from violating their physical and
rate limits. More importantly, they are simple and need not
understand the kinematics and dynamical equations of
motion for a mechanism.

On a few occasions, the mechanism could not respond
quick enough to keep the joint motion within the limits.
This, however, only occurred when settings were unrealis-
tic. For example, when the maximum jerk was set extremely
low, the S-curve trajectory generator exhibits a slow
response. In such unusual applications the algorithm could
not always keep the joint speeds within their limits at all
times.

Mechanism singularities could pose a problem for the
algorithms, but practical applications will design processes
to avoid singularities.

The predictive algorithm could be applied in a number of
ways. It could be used in a dry run to verify that joint limits
are not violated. Then it could be used during actual
processes with only speed and acceleration limiting
checked. Or the algorithm could always be on to ensure that
motion limits are never violated.

References
1. C.P. Bassett, C.G. Jensen, J. Bosley, Y. Luo, W.E. Red and M.

Evans, “Direct Machining Architectures Using CAD-CAM
Generative Methods”, Proceedings of the IASTED Inter-
national Conference Control and Applications (May 24–27,
2000) pp. 287–294.

2. C.P. Bassett, et. al., “Direct Machining: A New Paradigm for
Machining Data Transfer”, ASME 5th Design for Manu-
facture Conference, Baltimore, Maryland (Sept. 10–13, 2000)
paper # DFM-1498.

3. W.E. Red, M. Evans, C.G. Jensen, J. Bosley and Y. Luo,
“Motion Planning and Trajectory Control of a Direct
Machining Application”, Proceedings of the IASTED Inter-
national Conference Control and Applications (May 24–27,
2000) pp. 484–489.

Fig. 12. Acceleration response with speed & accel limiting (accel limit at 40 rad/s2).

Table III. X-Y-Z-A-C motion example parameters.

Lower Upper Speed Accel
Axis Limit Limit Limit Limit Jerk

X �150 150 300 3000 30000
Y �150 150 300 3000 30000
Z �100 100 300 3000 30000
A �145 145 10 100 3000
C Infinite 10 100 3000

Fig. 13. X-Y-Z axis speeds for commanded feedrate of 300 mm/s
and 7 mm buffer applied to limits.

Fig. 14. X-Y-Z axis speeds for commanded feedrate of 300 mm/s
and no safety buffer.

Robotic application 539

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

4. P. Chiacchio and S. Chiaverini, “Coping With Joint Velocity
Limits In First-Order Inverse Kinematics Algorithms: Analy-
sis And Real-Time Implementation”, Robotica 13, Part 5,
515–519 (1995).

5. S. Chiaverini and G. Fusco, “A New Inverse Kinematics
Algorithm With Path Tracking Capability Under Velocity and
Acceleration Constraints”, Proceedings of the 38th Con-
ference on Decision and Control (May, 1999)
pp. 2064–2069.

6. L. Zlajpah, “On Time Optimal Path Control of Manipulators
with Bounded Joint Velocities and Torques”, International
Conference on Robotics and Automation (April, 1996)
pp. 1572–1577.

7. K. Ohishi and T. Someno, “Robust Robot Manipulator
Control with Autonomous Consideration Algorithm for
Torque Saturation”, Advanced Robotics 12 Nos 7 & 8,
755–769 (1999).

8. T. Chan and R. Dubey, “A Weighted Least-Norm Solution
Based Scheme for Avoiding Joint Limits for Redundant Joint
Manipulators”, IEEE Transactions on Robotics and Automa-
tion 11, No. 2, 286–293 (April, 1995).

9. J. Park, W. Chung and Y. Youm, “Reconstruction of the
Inverse Kinematic Solution Subject To Joint Kinematic Limits
Using Kinematic Redundancy”, Advanced Robotics 11, No. 4,
377–395 (1997).

10. E. Red, “A Dynamic Optimal Trajectory Generator for
Cartesian Path Following”, Robotica 18, Part 5, 451–458
(2000).

11. B. Fielding, “Predictive Joint Motion Limiting in Robotic
Applications,” M.S. Thesis (Brigham Young University, April,
2002).

12. Newcastle University’s Chemical and Process Engineering
Web Server, “Dealing with Measurement Noise”, © M.T.
Tham (1996–1998). See Web URL: http://lorien.ncl.ac.uk/
ming/filter/fiewma.htm.

13. Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions
with Singularity Robustness for Robot Manipulator Control”,
Journal of Dynamic Systems, Measurement, and Control 108,
No. 3, 163–171 (Sept. 1986).

14. T. Yoshikawa, “Manipulatability of Robotic Mechanisms”,
2nd International Symposium of Robotics Research, Tokyo,
Japan (1984) pp. 91–98.

Robotic application540

https://doi.org/10.1017/S0263574702004915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004915

