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ABSTRACT

We propose a new inference strategy for general population mortality tables
based on annual population and death estimates, completed by monthly birth
counts. We rely on a deterministic population dynamics model and establish
formulas that link the death rates to be estimated with the observables at hand.
The inference algorithm takes the form of a recursive and implicit scheme
for computing death rate estimates. This paper demonstrates both theoreti-
cally and numerically the efficiency of using additional monthly birth counts
for appropriately computing annual mortality tables. As a main result, the
improved mortality estimators show better features, including the fact that
previous anomalies in the form of isolated cohort effects disappear, which con-
firms from a mathematical perspective the previous contributions by Richards,
Cairns et al., and Boumezoued.
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1. INTRODUCTION

General population mortality tables are crucial inputs for actuarial studies
as they provide estimates of mortality rates for several age classes at several
periods in time. Since the publication of the first mortality tables (attributed
to John Graunt in 1662), the mathematical problem of providing consis-
tent statistical estimates of mortality has fascinated mathematicians – for a
brief history, the reader is referred to the well-documented dedicated part of
the introduction of Daley and Vere-Jones (2003). Two centuries later, there
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was a huge development of graphical formalizations of life trajectories within
a population by Lexis (1875) and his contemporaries. These first demogra-
phers showed that it is crucial to address simultaneously two components: (1)
consider the fact that the death rate depends on both age and time (nonhomo-
geneous setting) and (2) understand the mortality rate as an aggregate quantity
which depends on an underlying population dynamics.

Recently, several papers and publications paid attention to data quality
issues in the way we usually build mortality tables, especially in relation to the
“discrete time” nature of population estimates provided by national censuses.
To our knowledge, the first insights have been suggested by Richards (2008);
his conjecture was focused on the 1919 birth cohort for England & Wales, for
which he suggested that errors occurred in the computation of mortality rates
due to shocks in the birth series. The ONS methodology has then been studied
by Cairns et al. (2016) in several directions, who confirmed the conjecture by
Richards (2008) and proposed an approach to illustrate and correct mortal-
ity tables, applied to the data for England & Wales; the Convexity Adjustment
Ratio introduced in their work has then been adapted by Boumezoued (2020)
who focused on the Human Mortality Database, HMD (2018) – which pro-
vides mortality tables for more than 30 countries and regions worldwide –
and showed that these anomalies are universal while using the “population
dynamics” point of view to properly define mortality estimates. To build new
mortality tables for several countries, a link with the Human Fertility Database
(HFD 2018, the HMD counterpart for fertility) has been made to correct such
errors in a systematic way.

However, all precedent contributions did not succeed to introduce a proper
mathematical setting for computing mortality rates based on information
extracted from censuses. In this paper, we aim at performing a first step in
this direction by deriving an inference strategy from a deterministic population
dynamics model. The derivation of a consistent theory in the stochastic setting
is in parallel provided in a companion theoretical paper, see Boumezoued et al.
(2018).

The main difficulty in establishing a consistent theory to estimate mortality
rates lies in points (1) and (2) mentioned above, which can be summarized as
follows: inferring an age and time-dependent mortality rate based on a pop-
ulation dynamics model. In the literature, we argue that each point is treated
separately.

The inference of a time-dependent death rate also depending on a time-
dependent covariate (possibly age), which relates to point (1), has been
addressed from a nonparametric perspective by Beran (1981), Dabrowska
(1987), Keiding (1990), McKeague and Utikal (1990), Nielsen and Linton
(1995), Brunel et al. (2008), and Comte et al. (2011). From Keiding (1990),
“One way of understanding the difficulties in establishing an Aalen theory in the
Lexis diagram is that although the diagram is two-dimensional, all movements are
in the same direction (slope 1) and in the fully non-parametric model the diagram
disintegrates into a continuum of life lines of slope 1 with freely varying intensities
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across lines. The cumulation trick from Aalen’s estimator (generalizing ordinary
empirical distribution functions and Kaplan & Meier’s (1958) non-parametric
empirical distribution function from censored data) does not help us here.” This
explains why data aggregation and smoothing is required to derive an estimate
with two crossing dimensions, age and time.

On the other side, the inference of an age-dependent death rate in an homo-
geneous birth-death model (or similar) – point (2) – has been addressed by
Clémençon et al. (2008), Doumic et al. (2015), and Hoffmann and Olivier
(2016). To our knowledge, no statistical method deals with the usual problem
faced by demographers related to the construction of a mortality table based
on population estimates and death counts.

In this paper, we rely on a deterministic age-structured population model
and derive exact formulas in the so-called Lexis diagram, allowing to build
new and improved mortality estimates. The inference problem is summarized
as follows:

• The death rate depends on both age and time and is to be estimated,
• The population evolves as an age-structured and time inhomogeneous birth–

death dynamics,
• The following observables are available in the Lexis diagram:

– The number of individuals in each 1-year age-class assumed to be
recorded at each beginning of year,

– The number of deaths in annual Lexis triangles,
– The number of births available each month (or more generally at some

intra-year frequency).

Note that the practical availability of annual population estimates as well
as death counts in the Lexis triangle can be achieved according to the HMD,
whereas the HFD is a public source providing in a particular number of births
by month for several countries. Such population, death, and fertility data allow
at this date the method proposed in this paper to be applied to around 10 coun-
tries. For other countries, the data (especially number of births by month) have
to be reached by means of national institutes.

The paper is organized as follows. In Section 2, we present the nonho-
mogeneous birth–death model and derive the inference strategy – the related
interpretations and link with existing estimators is discussed in Section 2.6.
In Section 3, we compute mortality tables according to our method and com-
pare it to those obtained by the usual formulas. The paper ends with some
concluding remarks in Section 4.

2. MODEL AND INFERENCE STRATEGY

2.1. Nonhomogeneous birth–death dynamics

Let us denote by μ(a, t) the mortality rate at exact age a ∈R+ = [0,∞) and
exact time t ∈R+, with an arbitrary time origin – let us also denote by g(a, t)
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the population density at (a, t), a nonnegative real value. In its core definition,
the death rate drives the number of living in a closed population. Formally,
consider g(0, ν) the newborn at (exact) time ν (starting number in the cohort
born at time ν), then the survivors at some age a> 0 in the cohort write

g(a, ν + a)= g(0, ν) exp
(
−
∫ a

0
μ(s, ν + s)ds

)
.

Changing variables to represent g(a, t), and differentiating by age and time,
leads to the transport component of the so-called McKendrick–Von Foerster
equation (see McKendrick (1926) and Von Foerster (1959)):

( ∂a + ∂t)g(a, t)=−μ(a, t)g(a, t), (1)

with notation ∂a ≡ ∂/∂a. Clearly, at this stage, the population dynamics of
g(a, t) is not fully specified as the future path of g(a, t) depends on the quantity
g(0, t− a). The McKendrick–Von Foerster equation specifies how births are
given in the (asexual) population, based on a birth rate b(a, t), as

for each time ν > 0, g(0, ν)=
∫ ∞
0

g(a, ν)b(a, ν)da.

That is simply, the newborn at each time is given by the total number of births
from all parents alive at the same time.

2.2. Observables in the Lexis diagram

We work here in the Lexis diagram – that is, we study lifelines in the time× age
coordinates. In an ideal demographic world, two kinds of population estimates
are recorded in the 1-year age × time square:

• Population at exact time t, with age x at its last birthday:

P(x, t)=
∫ x+1

x
g(a, t)da. (2)

• Individuals who attained exact age x during the year [t, t+ 1):

N(x, t)=
∫ t+1

t
g(x, s)ds.

An illustration of population estimates P(x, t) for the French population
extracted form the HMD is given in Figure 1. This can be analyzed in the
light of a Lexis diagram in several directions. First, the diagonal effects appear
clearly showing that generations (or cohorts) are not equally represented: as
an example, the generations born between around 1915 and 1920 are less rep-
resented (World War I), whereas the generations born after around 1946 are
highly represented (Baby Boom). In this work, the impact of the discrepancy
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Population estimates 1st January (France)
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FIGURE 1: Population estimates for France by year for 1-year age classes extracted from the Human
Mortality Database.

between birth patterns from 1 year to the next is of interest, as it introduces
some bias in the classical formulas used in practice for death rate estimation.

Also, death counts are provided on the upper and lower triangles of the
Lexis diagram, as defined below.

Definition 1. The upper (U) and lower (L) triangles for each age range x and
observation year t are the age × time sets defined by

TU (x, t)= {(a, s) : a ∈ [x, x+ 1) and s ∈ [t, t− x+ a)}, (3)

and

TL(x, t)= {(a, s) : a ∈ [x, x+ 1) and s ∈ [t− x+ a, t+ 1)}. (4)

Based on this definition, the number of deaths in the Lexis triangles can be
written as

DU (x, t)=
∫∫

TU (x,t)
μ(a, s)g(a, s)dads and DL(x, t)=

∫∫
TL(x,t)

μ(a, s)g(a, s)dads.
(5)

An illustration of death counts in the Lexis triangles (x, t) for the French
population extracted from the HMD is represented in Figure 2. Variations
in number of deaths are closely linked not only to those of the underlying
exposure (Figure 1) but also to the death rate itself, which is to be estimated.

Assuming that the population is closed, the following fundamental rela-
tions apply (which can be proved by integration by parts):

N(x+ 1, t)=P(x, t)−DU (x, t),
P(x, t+ 1)=N(x, t)−DL(x, t).

(6)
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Deaths in lower triangles (France)
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Deaths in upper triangles (France)
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FIGURE 2: Death counts in Lexis triangles extracted from the Human Mortality Database.
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Number of births by month (France)

FIGURE 3: Number of birth by month extracted from the Human Fertility Database.

The assumption of closed-population is further discussed in Section 2.6.
In addition to population estimates and death counts, we aim at including

birth counts by month in the inference process, as also used by Cairns et al.
(2016) and Boumezoued (2020) in their estimation procedures – these can be
extracted from the HFD for a variety of countries. The dynamics of number
of births by month in France is illustrated in Figure 3. The interpretation of
this dynamics can be linked to that of Figures 1 (population estimates, see
(2)) and 2 (death counts in Lexis triangles, as defined in (5)). Indeed, a simi-
lar information arises as the number of births are low in the period 1915–1920,
which explains in particular the diagonal effect in Figure 1. Even more impor-
tantly, the dynamics at the monthly scale gives insight on what happens inside
each year, then can be used to assess how the population is distributed inside
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a given age band. This is of great interest as the population distribution appears
classically in the form of an “exposure-to-risk”, and more precisely the formu-
las we exhibit in order to estimate the death rate rely explicitly on the births
distribution – as such, number of births by month are the key inputs for the
inference strategy proposed here as it refines standard annual estimates. This is
developed in the following.

2.3. Death rate inference

When two time-dependent dimensions are involved (here age and calendar
time), the natural generalization of classical nonparametric estimates of the
death rate is not direct (see again the discussion in Keiding (1990)); there-
fore, smoothing is required – see, for example, McKeague and Utikal (1990)
and Nielsen and Linton (1995) for the analysis of such two-dimensional ker-
nel estimator based on continuous observation. Unfortunately, for building
national mortality tables, one does not observe continuously the living popu-
lation (only possibly the date of death through death certificates); therefore,
standard kernel smoothing techniques are neither applicable here. This leads
to define some geometry on which the death rate is assumed to be piecewise
constant, which allows us to use aggregate information by year and age-class
to derive (approximate) estimators.

In the classical demographic and actuarial practice, two versions of gen-
eral population mortality tables are considered: period and cohort. We pro-
pose here a brief discussion of these two versions and refer the reader to
Boumezoued (2020) for more details (and a study dedicated to period mortality
tables). The two versions are illustrated in Figure 4.

• The period table provides death rate estimates based on the assumption that
it is piecewise constant on squares in the Lexis diagram; each square (x, t)
is equal to the region TU (x, t)∪TL(x, t), where the Lexis triangles TU and
TL have been defined in Equations (3) and (4). The key advantage of period
tables is that they provide an estimate of death rate by using information
of a single year; the related drawback is that two generations (cohorts) are
merged for a given death rate at (x, t): the lifelines crossing the triangle
TL(x, t) are born in year t− x, whereas those crossing TU (x, t) are born in
year t− x− 1. This way, the period tables do not strictly reflect the mortality
of single cohorts.
• The cohort table is based on the assumption that the death rate is constant

on parallelograms TL(x, t)∪TU (x, t+ 1), with the advantage that a given
death rate at (x, t) relates to lifelines arising from a single cohort: that of
people born in year t− x. However, the information provided by this death
rate reflects conditions of the two consecutive years t and t+ 1, as illustrated
in Figure 4.

Overall, period and cohort tables provide complementary information and
their use is driven by the underlying objective. In this paper, we illustrate our
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FIGURE 4: Population used (in gray) for the computation of the cohort death rate (left) and period death
rate (right) for age 64 and year 2009.

method on the computation of triangle-based mortality tables, which gener-
alize period and cohort mortality tables in a natural way as the death rate
is assumed to be piecewise constant on Lexis triangles, instead of squares or
parallelograms. This will allow us to draw analyses at a more granular scale
compared to the two versions available in practice.

2.4. Main result

In the derivation of the inference formulas, we assume that the death rate is
piecewise constant on Lexis triangles:

Assumption 1. The death rate is piecewise constant on Lexis triangles, that is, for
each integer x and t,

∀(a, s) ∈TL(x, t), μ(a, s)=μL(x, t),
∀(a, s) ∈TU (x, t), μ(a, s)=μU (x, t).

From the transport component described in Equation (1), for any upper or
lower triangle which we denote T , and on which the death rate is constant and
equal to μT , it follows that:∫∫

T
( ∂a + ∂s)g(a, s)dads=−

∫∫
T

μ(a, s)g(a, s)dads=−μT

∫∫
T
g(a, s)dads.

Note that the middle equation is the negative of the number of deaths (5);
therefore, the death rate can be written as the ratio:

μL(x, t)= DL(x, t)
EL(x, t)

and μU (x, t)= DU (x, t)
EU (x, t)

,

where

EL(x, t)=
∫∫

TL(x,t)
g(a, s)dads and EU (x, t)=

∫∫
TU (x,t)

g(a, s)dads,
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are the so-called “exposures-to-risk” in the lower and upper triangles, respec-
tively.

Now, the number of deaths in Lexis triangles being observed (as provided
by the HMD), it remains to appropriately compute the exposure-to-risk. In
the literature dedicated to longevity studies, this quantity is approximated
by annual observables, see, for example, Brown (1997) and Pitacco et al.
(2009) Section 2.3.4, as well as the Version 5 Methods Protocol of the Human
Mortality Database, see Wilmoth et al. (2007). The recent update of the HMD
methodology, which allows the inclusion of monthly birth data, is further dis-
cussed in Section 2.6. The standard annual approximation can be illustrated
for period tables (see Section 2.3) for which the exposure-to-risk writes

E(x, t)=
∫ t+1

t

∫ x+1

x
g(a, s)dads=

∫ t+1

t
P(x, s)ds.

A possible approximation is therefore given by the trapezoid rule as

E(x, t)≈ 1
2
[P(x, t)+P(x, t+ 1)] .

On the other hand, the exposure-to-risk (period table) can also be written as
E(x, t)= ∫ x+1x N(a, t)da and then approximated by 1

2 [N(x, t)+N(x+ 1, t)]=
1
2 [P(x, t)+P(x+ 1, t)]+ 1

2 [DL(x, t)−DU (x, t)], which leads to another possi-
ble approximation. Note that the Version 5 estimates of the HMD rely on
a demographic reasoning leading to an approximation in between the two
previous ones – see the analysis in Boumezoued (2020) for more details.

Overall, classical approximations have the advantage of being based on
observables only, leading to a closed-form for the death rate estimate. The
counterpart of this feature is that the validity of the underlying approximation
can be put into question for years in which the population curve s 	→P(s, x)
appears far from linear.

We now detail the recursive and implicit scheme for computing death rate
estimates, based on equations linking the death rate with the observables in
the Lexis diagram introduced in Section 2.2. Before stating the main result,
we introduce two key quantities: first, the Laplace transform of the random
variable “date of birth in year y,” introduced as:

Ly(θ)=
∫ 1
0 g(0, y+ v) exp (− θv)dv∫ 1

0 g(0, y+ v)dv
, (7)

and second, the cumulative gain in longevity at age x last birthday within
the same cohort born in year t− x (a diagonal in the Lexis diagram), that is,
between those born at exact time t− x and those born at the end of the year
[t− x, t− x+ 1), defined by:
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H(x, t)=
x−1∑
y=0

{
μU (y, t− x+ y+ 1)−μL(y, t− x+ y)

}
, x ∈N∗. (8)

The result at the core of the inference strategy is stated below:

Proposition 1. Consider the transport Equation (1). Under Assumption 1, the
following equalities hold:

exp (−μL(x, t))Lt−x
(
H(x, t)−μL(x, t)

)=(1− DL(x, t)
N(x, t)

)
Lt−x

(
H(x, t)

)
, (9)

and

Lt−x−1
(
H(x, t− 1)−μL(x, t− 1)

)
=
(
1+ DU (x, t)

N(x+ 1, t)

)
Lt−x−1

(
H(x, t− 1)−μL(x, t− 1)+μU (x, t)

)
.

(10)

The proof is detailed in the next part, along with a detailed discussion in
Section 2.6. The resulting algorithm is described in Section 3.

2.5. Proof of Proposition 1

To prove (9), let us first focus on the exposure-to-risk in the lower triangle
EL(x, t)=

∫ t+1
t

∫ x+s−t
x g(a, s)dads. According to the transport equation (1), the

population density in the lower triangle can be expressed as

g(a, s)= g(x, s− a+ x) exp
(
−
∫ a

x
μ(u, s− a+ u)du

)
= g(x, s− a+ x) exp (−(a− x)μL(x, t)) .

where the last equality comes from the assumption of a piecewise constant
death rate on Lexis triangles. By the change of variable v← s− a+ x− t, the
exposure-to-risk can then be rewritten as

EL(x, t)=
∫ t+1

t

∫ x+s−t

x
g(x, s− a+ x) exp (−(a− x)μL(x, t)) dads

=
∫ 1

0

∫ t+1

t+v
g(x, t+ v) exp (−(s− v− t)μL(x, t)) dsdv.

By straightforward computation, one finally gets the following expression for
the exposure-to-risk in the lower triangle:

EL(x, t)=
∫ 1

0
g(x, t+ v)1− exp ((v− 1)μL(x, t))

μL(x, t)
dv. (11)
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Also note that DL(x, t)=μL(x, t)EL(x, t)=
∫ 1
0 g(x, t+ v)(1− exp ((v− 1)

μL(x, t)))dv and N(x, t)= ∫ 1
0 g(x, t+ v)dv so that

N(x, t)−DL(x, t)=
∫ 1

0
g(x, t+ v) exp ((v− 1)μL(x, t)) dv.

Let us now derive the population density at exact age x, for any v ∈ [0, 1),

g(x, t+ v)= g(0, t− x+ v) exp
(
−
∫ x

0
μ(u, t− x+ v+ u)du

)

= g(0, t− x+ v) exp
⎛⎝− x−1∑

y=0

∫ y+1

y
μ(u, t− x+ v+ u)du

⎞⎠
= g(0, t− x+ v) exp

⎛⎝− x−1∑
y=0

∫ y+1−v

y
μ(u, t− x+ v+ u)du

−
x−1∑
y=0

∫ y+1

y+1−v
μ(u, t− x+ v+ u)du

⎞⎠
= g(0, t− x+ v) exp

⎛⎝−(1− v) x−1∑
y=0

μL(y, t− x+ y)

−v
x−1∑
y=0

μU (y, t− x+ y+ 1)

⎞⎠
= S(x, t)g(0, t− x+ v) exp (−vH(x, t)) ,

(12)

where S(x, t)= exp
(
−∑x−1

y=0 μL(y, t− x+ y)
)
is the survival function at age x

for individuals which attained (exact) age x at (exact) time t, and where the
cumulative death rate differential within the cohortH(x, t) has been introduced
in Equation (8). Let us now combine the previous results to get

N(x, t)−DL(x, t)= S(x, t)e−μL(x,t)

∫ 1

0
g(0, t− x+ v)e−v(H(x,t)−μL(x,t))dv,

and finally, let us apply some renormalization of the right-hand side, first by
N(x, t) and second by

∫ 1
0 g(0, t− x+ v)dv to get the following formula, which

reduces to Equation (9):

1− DL(x, t)
N(x, t)

= S(x, t)e−μL(x,t)
∫ 1
0 g̃(0, t− x+ v)e−v(H(x,t)−μL(x,t))dv

S(x, t)
∫ 1
0 g̃(0, t− x+ v)e−vH(x,t)dv

.

where g̃(0, t− x+ v)= g(0,t−x+v)∫ 1
0 g(0,t−x+v)dv

.
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The proof of (10) follows similarly. Since EU (x, t)=
∫ t+1
t

∫ x+1
x+s−t g(a, s)dads

and g(a, s)= g(x+ 1, s+ x+ 1− a) exp ((x+ 1− a)μU (x, t)), then by changing
variables, one gets EU (x, t)=

∫ 1
0 g(x+ 1, t+ v) exp(vμU (x,t))−1

μU (x,t)
dv, so that

N(x+ 1, t)+DU (x, t)=
∫ 1

0
g(x+ 1, t+ v) exp (vμU (x, t)) dv.

Then as g(x+ 1, t+ v)= g(0, t− x− 1+ v)S(x+ 1, t) exp (−vH(x+ 1, t)), one
finally obtains(

1+ DU (x, t)
N(x+ 1, t)

)
Lt−x−1 (H(x+ 1, t))=Lt−x−1 (H(x+ 1, t)−μU (x, t)) ,

which leads to the result, as the following equality is verified from the definition
in Equation (8):

H(x+ 1, t)=H(x, t− 1)+μU (x, t)−μL(x, t− 1).

2.6. Discussion

Exposure-to-risk interpretation.The equality (11) can be interpreted as fol-
lows: for each individual attaining exact age x at time t+ v, its contribution
to the exposure-to-risk in the lower triangle is 1−exp((v−1)μL(x,t))

μL(x,t)
, which depends

on the unobserved death rate to be estimated. This contrasts with classi-
cal methods which compute approximations of the exposure-to-risk based on
observables. At first order, assumingμL(x, t)<< 1, one recovers thatEL(x, t)≈∫ 1
0 g(x, t+ v)(1− v)dv and the related interpretation that the contribution of
any individual which attained exact age x at time t+ v and living through the
lower triangle is simply 1− v as it can be measured in the Lexis diagram.

Biased birthday density.The formula derived in (12) shows that the birthdays
density at some age x is exponentially biased through H(x, t) compared to the
initial birthdays distribution (at age zero). This is true in general in the triangle
model for the piecewise constant death rate (Assumption 1), as well as in the
period table for which the cumulative death rate difference matrix reduces to
H(x, t)=∑x−1

y=0
{
μ(y, t− x+ y+ 1)−μ(y, t− x+ y)} where μ(x, t) denotes the

period death rate for the square (x, t). Moreover, as one expects in general some
mortality improvement over the years, age being fixed, one may be interested in
interpreting the caseH(x, t)< 0 – in this situation, one sees that the initial birth-
days distribution is distorted to the highest birthdays (youngest individuals) in
the cohort as age goes. This demonstrates how even in a discrete time specifica-
tion, individuals in the same cohort may experience different death rates over
life (more precisely they pass through the same rates but do not “spend the
same time” in each triangle or square, so that the resulting survival functions
are different). However, it is interesting to note that for the cohort table, which
by definition assumes that μU (y, t− x+ y+ 1)=μL(y, t− x+ y), theH matrix
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vanishes, so that the initial birthdays distribution perfectly propagates toward
highest ages.

Closed population assumption.The main result in Proposition 1 is obtained
using the assumption on the population being closed, that is, no migration
flows are considered. This is of course a limit as migration flows do exist, which
may distort (a) the time of birth distribution, (b) the population counts, and
(c) aggregate mortality; indeed, mortality rates of immigrants, emigrants, and
local population can have different levels and dynamics. As for point (a), it
could be argued that the main features of the birthdays distribution are driven
by shocks, as of interest in this paper; moreover, one could expect that emi-
grants or immigrants birthdays distribution is more uniform; this is left for
further investigation.

For point (b), note that Equations (9) and (10) make use of the actual pop-
ulation count N(x, t) of individuals attaining exact age x in calendar year t;
therefore, the population counts used in the estimation procedure of the death
rates at age x and calendar year t are only assumed to come from a population
closed within calendar year t; in other words, the estimation for year t restarts
from a revised estimate N(x, t) so it does not assume that the population count
at time t is the result of a pure decrement due to deaths of an initial population
N(0, t− x) in a closed cohort.

The problem (c) is probably the most difficult topic to handle, as it refers
to building coherent estimation procedures for an heterogeneous population
made of several subpopulations with different mortality rates. This is left for
further research.

Finally, it is worth mentioning that the modeling framework could be
extended to open populations as follows. Assuming that an individual emigra-
tion rate e(a, t) and a total immigration rate I(a, t), the transport component
(1) would rewrite into:

( ∂a + ∂t)g(a, t)=− (μ(a, t)+ e(a, t)) g(a, t)+ I(a, t).
The estimation of the emigration and immigration rates from the data remains
the core challenging issue and is beyond the scope of the present paper.

Link with estimates of the Human Mortality Database. It is worth mentioning
that at the time of writing, the HMD released an update on February 2018,
including in particular a revision of exposure calculation based on monthly
birth counts. We now make the link with both the new Version 6 and the old
Version 5 of the Methods Protocol.

From (11), it can be shown by performing a first-order expansion in μL(x, t)
that

EL(x, t)≈E(1)
L (x, t)−μL(x, t)E

(2)
L (x, t),
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where

E(1)
L (x, t)=N(x, t)

(
1+ L′t−x(H(x, t))

Lt−x(H(x, t))

)
,

and

E(2)
L (x, t)= 1

2
N(x, t)

[
1+ 2L′t−x(H(x, t))+L′′t−x(H(x, t))

Lt−x(H(x, t))

]
.

Let us denote by Bt−x the random variable with values in [0, 1] that represents
the time of birth in the year t− x, with mean mt−x :=E [Bt−x] and variance
σ 2
t−x :=Var(Bt−x). Note that the corresponding density is

[0, 1] � v 	→ g̃(0, t− x+ v)= g(0, t− x+ v)∫ 1
0 g(0, t− x+ v)dv

,

so that the mean and variance write

mt−x =
∫ 1

0
vg̃(0, t− x+ v)dv and σ 2

t−x =
∫ 1

0
v2g̃(0, t− x+ v)dv−m2

t−x.

Under the assumption H(x, t)= 0, that is, no mortality improvement
between the youngest and oldest individuals within the same cohort, one can
write

EL(x, t)≈N(x, t) (1−mt−x)− 1
2
μL(x, t)N(x, t)

(
(1−mt−x)2 + σ 2

t−x
)
.

Note again that the assumptionH(x, t)= 0 is not consistent with the piecewise
constant death rate assumption on Lexis triangles, nor with the framework
underlying the period tables.

Now, if one uses (6) and replaces μL(x, t)= DL(x,t)
EL(x,t)

by its zero-order approx-
imation

μL(x, t)≈ DL(x, t)
N(x, t) (1−mt−x)

,

one finally obtains the formula (51) displayed in the Version 6 in the methods
protocol, see the Appendix for a derivation:

EL(x, t)≈P(x, t+ 1) (1−mt−x)+ DL(x, t)
2(1−mt−x)

(
(1−mt−x)2 − σ 2

t−x
)
. (13)

Finally, if one assumes births to be uniformly distributed, then mt−x = 1
2 and

σ 2
t−x = 1/12 so that the classical formula in Version 5 methods protocol is

recovered (see Appendix E therein for the original derivation and again the
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Appendix in the present paper):

EL(x, t)≈ 1
2
P(x, t+ 1)+ 1

6
DL(x, t).

3. IMPLEMENTATION AND NUMERICAL RESULTS

3.1. Implementation

The purpose of this subsection is to detail the step-by-step procedure that
allows to apply the method provided in Proposition 1, especially how it is made
use of the monthly birth records.

Preliminary step.As Equations (9) and (10) rely on the Laplace transform
Ly(θ) of the distribution of times of birth within year of birth y, a preliminary
step is to build an estimator of this function, for any θ , by considering the
following integral approximation:

Ly(θ)=
∫ 1
0 g(0, y+ v) exp (− θv)dv∫ 1

0 g(0, y+ v)dv

= 1∫ 1
0 g(0, y+ v)dv

11∑
i=0

∫ i+1
12

i
12

g(0, y+ v) exp (− θv)dv

≈ 1∫ 1
0 g(0, y+ v)dv

11∑
i=0

exp
(
−θ

(
2i+ 1
24

)) ∫ i+1
12

i
12

g(0, y+ v)dv,

where we remark that for i ∈ {0, ..., 11}, ∫ i+1
12
i
12

g(0, y+ v)dv is the number of

births in month i+ 1 within year y (as the continuous sum over the month
of individuals with exact age zero) and that the quantity

∫ 1
0 g(0, y+ v)dv is the

number of births within year y. These estimates can therefore be calculated
using the monthly birth data provided in the HFD. As a result of this prelim-
inary step, the functions Ly(.) are computed for any year of birth y for which
monthly birth records are available.

We now provide the detail of the algorithm for the recursive computation
of the death rates, resulting from Proposition 1. In the following, the first three
steps are discussed in detail, then the generic algorithm is provided.

First step (age 0, lower triangle).Considering age x= 0 for a given calendar
year t, then Equation (9) simplifies into:

exp (−μL(0, t))Lt

(
μL(0, t)

)=(1− DL(0, t)
N(0, t)

)
.
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The right-hand side is known, as well as the function Lt(.), see above; therefore,
an implicit equation in the lower triangle death rate μL(0, t) appears, which can
be solved using a standard optimization routine. As a result, for any calendar
year t, the death rates μL(0, t) have been estimated.

Second step (age 0, upper triangle).Switching now to Equation (10), for any
year t and still considering age x= 0, one obtains:

Lt−1
(−μL(0, t− 1)

)=(1+ DU (0, t)
N(1, t)

)
Lt−1

(−μL(0, t− 1)+μU (0, t)
)
.

First recall that the function Lt−1(.) is known from the preliminary step
described above, and that the death rate μL(0, t− 1) has been estimated from
the first step; the remaining single unknown is the death rate μU (0, t) on
the right-hand side which is to be estimated relying, again, on any standard
optimization method.

Third step (age 1, lower triangle).Finally, we illustrate the third step of the
algorithm, which goes back to Equation (9) in order to infer the mortality rate
of the lower triangle at age one, leading to:

exp (−μL(1, t))Lt−1
(
H(1, t)−μL(1, t)

)=(1− DL(1, t)
N(1, t)

)
Lt−1

(
H(1, t)

)
,

where by Equation (8),

H(1, t)=μU (0, t)−μL(0, t− 1).

Note that H(1, t) is known as the result of the first and the second steps, there-
fore the only unknown is μL(1, t) in the left-hand side, which can be solved
numerically.

Generic algorithm.The general recursive algorithm for computing the death
rates is described below in a generic form:

Algorithm 1. For age x starting at zero:
(i) Solve Equation (9) to estimate the death rate μL(x, t) for the lower triangles
of any available year t,
(ii) Then based on the previous estimates, solve Equation (10) to infer the death
rate μU (x, t) for the upper triangles of any available year t,
(ii) Compute the value for H(x+ 1, t)=H(x, t− 1)+μU (x, t)−μL(x, t− 1)
for all possible years t, let x← x+ 1 and go to step (i).

Remark 1. Note that the method is past-dependent – this is natural as any change
in past death rates modifies the future birthdays distribution in the cohort. This
way, any revision of past death or population count at (x, t), which may occur in
practice, requires the reuse of the methodology which will provide an update of
the mortality rates at (y, t+ y− x) for y≥ x.
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FIGURE 5: Left: death rates estimated based on the new inference method (in black) and compared to
estimates using the standard method based on annual population records (in red). Right: ratio between new

and old estimates. Top: upper triangle. Bottom: lower triangle.

3.2. Numerical results

In Figures 5, 6, 7, and 8, we depict the death rate estimates obtained with
the method developed in this paper applied to French data sourced from the
HMD (annual population estimates, Figure 1 and number of deaths in Lexis
triangles, Figure 2) and the HFD (births by month, Figure 3). The number of
births by month is used to approximate the Laplace transform of the birthdays
distribution which is used in the inference process.

The results are compared with estimates as they would be classically com-
puted based on annual observables (seeWilmoth et al. (2007) and Boumezoued
(2020) for further details):

μ̂L(x, t)= DL(x, t)
1
2N(x, t)− 1

3DL(x, t)
and μ̂U (x, t)= DU (x, t)

1
2N(x+ 1, t)+ 1

3DU (x, t)
.
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FIGURE 6: Left: death rates estimated based on the new inference method (in black) and compared to
estimates using the standard method based on annual population records (in red). Right: ratio between new

and old estimates. Top: upper triangle. Bottom: lower triangle.

Each figure includes on the right the ratio between the new and the old esti-
mates, which helps quantify the differences between both. First, the ratio is for
several age classes close to one, which indicates that the new estimate does not
differ much from the classical one, in other words that the classical approxi-
mation is valid. However, one sees strong deviations for specific ages in time,
and this translates over time and ages, so that it appears that the anomalies
belong to specific generations. As displayed, relative discrepancies between the
two estimates can reach up to around +/− 20%.

Note that one can also observe that the fluctuations of the ratio are mostly
characterized by opposite adjustments for consecutive years. This phenomenon
has been analyzed in Cairns et al. (2016), where it has been first shown how sud-
den break in the birth series in a year creates some convexity then concavity of
the population curve, leading to consecutive over- and under-estimation of the
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FIGURE 7: Left: death rates estimated based on the new inference method (in black) and compared to
estimates using the standard method based on annual population records (in red). Right: ratio between new

and old estimates. Top: upper triangle. Bottom: lower triangle.

exposure-to-risk. This can be particularly observed for the periods character-
ized by major birth fluctuations, see, for example, cohorts 1940 and 1941 in
Figure 5 bottom right panel.

To further analyze these discrepancies, we depict in Figure 9, mortality
improvement rates separated between upper and lower triangles as

μL(x, t+ 1)−μL(x, t)
μL(x, t)

and
μU (x, t+ 1)−μU (x, t)

μU (x, t)
.

Clearly, the isolated cohort effects disappear in the new mortality tables:
mainly the diagonals around 1915 and 1920 and to a lower extent those
born around 1940; note that this indeed corresponds to the shocks in birth
numbers as illustrated in Figure 3, which confirms from a mathematical per-
spective the previous contributions by Richards (2008), Cairns et al. (2016),
and Boumezoued (2020).
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FIGURE 8: Left: death rates estimated based on the new inference method (in black) and compared to
estimates using the standard method based on annual population records (in red). Right: ratio between new

and old estimates. Top: upper triangle. Bottom: lower triangle.

Further comparison with previous work on data correction.Recall that Cairns
et al. (2016) and Boumezoued (2020) proposed methods to detect and correct
death rate estimates in period tables based onmonthly birth counts. The empir-
ical method applied by Boumezoued (2020) to the HMD Version 5 relied on a
so-called correction indicator for each cohort, as a ratio between two estimates
of the exposure-to-risk at age zero, based on either monthly or annual birth
counts; let us emphasize that these ratios were obtained at age zero and did not
account for deaths; they were then applied to the uncorrected mortality rates at
all ages within each cohort to provide new estimates which apparently removed
the strong isolated cohort effects.

It is worth mentioning that such previous works relied on a set of empirical
choices and approximations, as it is also the case for the Version 5 and 6 esti-
mates, see the discussion in Section 2.6 as well as the detail of the underlying
reasoning in Appendix. Also, we recall that the focus of Boumezoued (2020) is
on period tables, whereas we develop a model to infer mortality rates in each
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triangle of the Lexis diagram; at this granularity, this fully illustrates how previ-
ous estimators provided biased values (more than 15% deviation, see Figures 5,
6, 7, and 8); moreover, we think that the inference at Lexis triangle scale can be
leveraged for further research in the field of stochastic mortality modeling, as it
duplicates the number of observed points while allowing for a refined analysis
of the age and period effects which may differ, as illustrated in Figure 9.

Therefore, we claim that the core advantage of the method proposed in
this paper lies in the mathematical basis and the weaker assumptions needed
to derive the estimates; from such viewpoint, the estimates provided are more
reliable. From a numerical standpoint, although the algorithm is new, since the
implementation is done the derivation estimates are output with insignificant
computational cost.

In order to refine our analysis, let us focus on another core assumption in
the previous work by Boumezoued (2020) who suggested that the ratio between
corrected and crude estimates is the same for each age within a given cohort.
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FIGURE 10: Ratio of corrected and crude mortality rates of the lower triangles. Each figure corresponds to a
specific cohort: 1915, 1919, 1940, and 1941.

We analyze in our case the value of this ratio for cohorts 1915, 1919, 1940, and
1941, focusing on the lower triangles for illustration; these results are depicted
in Figure 10. At first sight, the figures illustrate that the ratio between corrected
and crude mortality estimates is roughly stable over ages within a given cohort;
note that this would have been already observable in Figures 5, 6, 7, and 8:
when fixing a cohort, one observes that the magnitude of the correction remains
in the same order at the several ages. Overall stability is observed after age
around 50 for cohorts 1919, 1940, and 1941, although this general remark does
not hold for cohort 1915, which shows at high ages an increasing correction
magnitude. In more details, it appears that the variations can reach several
percentages between – as an example, the cohort 1919 shows a correction at
age zero which seems lower by at least 2% than that at the other ages.

Impact on stochastic mortality modeling.The correction of the mortality data
in general, and the removal of isolated cohort effects in particular, has already
been discussed in the context of stochastic mortality modeling by Cairns et al.
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(2016) and Boumezoued (2020). The purpose of this subsection is to show how
previous conclusions still hold with the proposed new method, as well as to
discuss additional insights. We focus on the classical Lee and Carter (1992)
as well as on some extension with cohort component, derived from Renshaw
and Haberman (2006). In the following, we again focus on the lower trian-
gle mortality rates; similar conclusions can be drawn from the analysis of the
upper triangles. The experiment is carried out using the StMoMo R package,
see Villegas et al. (2018), using the standard log-Poisson calibration. The age
range for model inference is 20–90, and the period is 1954–2013.

The Lee–Carter model applied to lower triangle mortality rates that can be
written as follows:

lnμL(x, t)= α(x)+ β(x)κ(t).

In this model, α(x) captures the static age structure of mortality rates in the
log-scale, κ(t) represents the time dynamics, whereas β(x) is the sensitivity of
age class x to mortality yearly variations.

The results of the model fitting are depicted in Figure 11. It can be seen
that the parameters order of magnitude and shape are rather unchanged,
although the absolute differences exhibit changes in the age parameters α(x)
and β(x), especially at high ages, and in the period parameter κ(t) which seems
in particular under-estimated in the crude data for the period 1960–1990 and
overestimated for the period 1990–2013. This results in a slight adjustment in
the mortality rate forecasts, which are lower using new mortality estimates for
ages 20, 30, and 60, as illustrated in Figure 12 assuming a standard random
walk with drift for the period parameter κ(t). Note however that for age 90 the
predicted mortality confidence interval is higher and shows a clear reduction
in volatility, which can be explained since the β(x) parameter is significantly
reduced at this age using the new mortality estimates.

As expected, the major difference in the two model inference exercises
is captured in the residuals, as it can be seen in Figure 13, where the iso-
lated diagonal appears in the fitting using the crude data. This translates into
an improvement of the log-likelihood from −33, 559 (raw mortality table)
to −29, 405 (new mortality table). It is worth mentioning that “true” cohort
effects do remain in the new table, as large diagonal trends can still be observed
in the residuals. This observation typically leads to consider stochastic mor-
tality models including a so-called cohort component, as we present in the
following.

In order to assess the impact on mortality models including cohort param-
eters, we rely on a simplification of the model by Renshaw and Haberman
(2006), which reduces to an extension to the Lee–Carter model to account for
cohort effects:

lnμL(x, t)= α(x)+ β(x)κ(t)+ γ (t− x).
The reason for illustrating the results using this simplification lies in the chal-
lenge to infer properly the general model parameters, which can distort the
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FIGURE 11: Comparison of fitting results for the Lee–Carter between crude estimates and proposed method.
Left: fitted values; right: absolute differences.

https://doi.org/10.1017/asb.2020.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.5


A NEWMORTALITY TABLE INFERENCE STRATEGY 349

2000 2010 2020 2030 2040

2e
−0

4
3e

−0
4

4e
−0

4
6e

−0
4

LC projections − Adjusted vs Raw data

year

m
or

ta
lit

y 
ra

te
 a

t a
ge

 2
0 

(lo
g 

sc
al

e)

2000 2010 2020 2030 2040

2e
−0

4
3e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

LC projections − Adjusted vs Raw data

year

m
or

ta
lit

y 
ra

te
 a

t a
ge

 3
0 

(lo
g 

sc
al

e)

2000 2010 2020 2030 2040

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

7
0.

00
9

LC projections − Adjusted vs Raw data

year

m
or

ta
lit

y 
ra

te
 a

t a
ge

 6
0 

(lo
g 

sc
al

e)

2000 2010 2020 2030 2040

0.
04

0.
06

0.
08

0.
10

0.
12

0.
16

LC projections − Adjusted vs Raw data

year

m
or

ta
lit

y 
ra

te
 a

t a
ge

 9
0 

(lo
g 

sc
al

e)

FIGURE 12: Comparison of 99% confidence intervals forecasts by the Lee–Carter model between crude
estimates (red) or proposed method (blue). From left to right: age class 20, 30, 60, and 90.
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FIGURE 13: Comparison of residuals for the Lee–Carter model using crude estimates (left) or proposed
method (right).
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FIGURE 14: Comparison of fitting results for the Renshaw–Haberman model between crude estimates and
proposed method. Left: fitted values; right: absolute differences.

comparison between the crude and the new data if the optimization algo-
rithm does not converge. The results of the fitting procedure are depicted in
Figure 14. The major differences are observed for the cohort parameter, where
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FIGURE 14: Continued.

especially the spikes of the original estimate are removed. The analysis of the
forecast, see Figure 15, also demonstrates a reduction in the volatility, with
the exception of age 30 starting from 2030, as well as age 20 overall, for which
higher possible increase of the mortality rates is especially forecast by the model
using the updated mortality estimates. It can also be observed a smoother
confidence interval at age 90 for projection years around 2030, which bene-
fits from a more regular cohort parameter around year of birth 1940. Finally,
as expected, the residuals of the (simplified) Renshaw–Haberman model are
rather unchanged, see Figure 16, since the cohort parameter adjusts to the
original data anomalies. Finally, the removal of the abnormal cohort effects
tends to less favor this model by decreasing the log-likelihood from −24, 839
to −24, 954.

4. CONCLUDING REMARKS

In this paper, we proposed an inference strategy for general population mor-
tality tables based on the derivation of formulas in the Lexis diagram, which
relate the death rate to annual observables and the intra-year distribution of
birthdays over ages. The method therefore uses monthly birth counts to refine
classical mortality estimates. The new mortality tables show better features,
including the fact that previous anomalies in the form of isolated cohort effects
disappear, which confirms from a mathematical perspective of the previous
contributions by Richards (2008), Cairns et al. (2016), and Boumezoued (2020).

Several topics remain to be addressed to strengthen the methodology.
First, it is of interest to account for population flows which may for several
countries deform the closest population count, as well as distort the birth-
days distribution over ages. Second, we emphasize that it is of importance to
derive confidence intervals for the prediction, by going beyond the classical
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FIGURE 15: Comparison of 99% confidence intervals forecasts by the Renshaw–Haberman model between
crude estimates (red) or proposed method (blue). From left to right: age class 20, 30, 60, and 90.
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FIGURE 16: Comparison of residuals for the Renshaw–Haberman model using crude estimates (left) or
proposed method (right).
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Poisson approximation to measure sampling risk. To this extent, a stochas-
tic population dynamics model is required, as well as a dedicated statistical
framework.
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APPENDICES

The purpose of these appendices is to detail the reasoning underlying the death rate estimate
formulas as successively developed in the Versions 5 and 6 of the HMD. We emphasize that
the full methodology on building mortality tables is far more complete (including high-ages
extrapolation and inter-census estimates), and we only focus here on the death rate estimate
formula, which is of interest in this paper.

APPENDIX A. VERSION 5 ESTIMATES

The reasoning for the approximation of the exposure-to-risk is made into two steps:

1. The first step is to assume that no death occurs in the square (x, t). As it is already noticed
in Wilmoth et al. (2007) (Version 5 Methods Protocol), the distribution of births for
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each cohort is key to understand its contribution to the exposure-to-risk. It is therefore
assumed that births are uniformly distributed to obtain an average contribution of an
individual from any cohort of 1/2. Then, at first order, the exposure-to-risk writes

1
2

(N(x, t)+N(x+ 1, t)) .

2. In practice, deaths occur so that there is a need for accounting of two adjustments: first,
individuals who died in the upper triangle are missed by the population estimate N(x+
1, t), so one needs to add their contribution to the exposure-to-risk. Second, individuals
who died in the lower triangle are associated with a contribution 1/3, so it is required to
subtract the time from death until the end of the period. The assumption is then made
that deaths are uniformly spread in each triangle, and a straightforward computation
(see again Wilmoth et al. (2007)) shows that such positive or negative contribution is
equal to 1/3, then the final formula for the exposure-to-risk writes:

Ê(x, t)= 1
2

(N(x, t)+N(x+ 1, t))+ 1
3

(DU (x, t)−DL(x, t)) . (14)

APPENDIX B. VERSION 6 ESTIMATES

The release of the new Version 6 in February 2018 has introduced twomajor methodological
changes: the calculation of mortality rates at age zero (more precisely, mean age at death),
as well as the exposure adjustment which is of interest in this paper. The following is dis-
cussed in the new Version 6Methods Protocol:Until now, we used the classic approach which
assumes that births are uniformly distributed throughout the calendar year. In the event of a
sharp discontinuity in the monthly distribution of births within a calendar year, this assump-
tion results in the incorrect estimation of population exposures and induces false cohort effects
on mortality surfaces when these surfaces are based on Lexis squares. It is worth mention-
ing that the corrected cohorts are those for which monthly birth counts are available; the
development of a correction method in the absence of fertility data appears as an interesting
working direction which is left for further research.

In the following, we detail the calculations leading to the estimate given in Equation
(13) for the exposure-to-risk EL(x, t) in the lower triangle (x, t); the steps are similar for the
upper triangle formula. This reasoning is, again, performed in two steps:

1. In a first step, it is assumed that no death occurs in the lower triangle and moreover that
the density of individuals with exact age x in year t is identical to the birthday density. In
other words, it is assumed that the birthdays distribution is similar at any age within the
cohort, here neglecting the heterogeneity in the death rate paths of individuals within the
same cohort, which likely leads to nonzero cumulative mortality differentials as defined
in Equation (8). Under these two assumptions, the representative individual has exact age
x at time mt−x, the average time of birth in cohort t− x, then is under exposure a time
1−mt−x in the lower triangle, leading to the first-order estimate of the exposure-to-risk:

N(x, t)(1−mt−x).

2. The second step to account for death occurrence in the lower triangle starts first with
the characterization of the death distribution, denoted by γx,t(a, s) for (a, s) ∈TL(x, t).
Under the assumption that the birthdays distribution remains the same at any age and
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moreover that deaths are uniformly distributed, the following formula is obtained under
the constraint that

∫
TL(x,t)

γx,t = 1:

γx,t(a, s)= ft−x(s− a)
1−mt−x

,

where ft−x is the birthdays distribution density; we also introduce the cumulative distri-
bution function Ft−x for the next calculation, such that ft−x = F ′t−x. Finally, it remains to
compute the lost exposure, that is, for all death occurrences, the time from death to the
exit from the lower triangle. For a death occurrence at (x+ a, t+ s) in the lower triangle,
the time to exit is 1− s, leading to the following calculation for the lost exposure:∫ 1

0

∫ s

0
γx,t(a, s)(1− s)dads

= 1
1−mt−x

∫ 1

0
(1− s)

∫ s

0
ft−x(s− a)dads

= 1
1−mt−x

∫ 1

0
(1− s)Ft−x(s)ds,

where we note that
∫ 1
0 Ft−x(s)ds= 1−mt−x and, by integration by parts,∫ 1

0
sFt−x(s)ds= 1

2

{
1−

∫ 1

0
s2ft−x(s)ds

}
= 1

2

{
1−

(
σ 2
t−x +m2

t−x
)}

.

By rearranging the two terms, one obtains∫ 1

0

∫ s

0
γx,t(a, s)(1− s)dads= 1−mt−x

2
+ σ 2

t−x
2(1−mt−x)

.

Finally, the total exposure-to-risk can be approximated as follows as a result from steps
1 and 2, and using Equation (6):

ÊL(x, t)=N(x, t)(1−mt−x)−DL(x, t)

(
1−mt−x

2
+ σ 2

t−x
2(1−mt−x)

)

=P(x, t+ 1)(1−mt−x)+DL(x, t)

(
1−mt−x

2
− σ 2

t−x
2(1−mt−x)

)
.
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