
J. Appl. Prob. 55, 1113–1130 (2018)
doi:10.1017/jpr.2018.74

© Applied Probability Trust 2018

ON RANDOM QUADRATIC FORMS: SUPPORTS
OF POTENTIAL LOCAL MAXIMA

BORIS PITTEL,∗ The Ohio State University

Abstract

The selection model in population genetics is a dynamic system on the set of the
probability distributions p = (p1, . . . , pn) of the alleles A1, . . . , An, with pi(t + 1)

proportional to pi(t) multiplied by
∑

j fi,j pj (t), and fi,j = fj,i interpreted as a fitness
of the gene pair (Ai, Aj ). It is known that p̂ is a locally stable equilibrium if and
only if p̂ is a strict local maximum of the quadratic form pT fp. Usually, there are
multiple local maxima and lim p(t) depends on p(0). To address the question of a typical
behavior of {p(t)}, John Kingman considered the case when the fi,j are independent and
[0, 1]-uniform. He proved that with high probability (w.h.p.) no local maximum may have
more than 2.49n1/2 positive components, and reduced 2.49 to 2.14 for a nonbiological
case of exponentials on [0, ∞). We show that the constant 2.14 serves a broad class of
smooth densities on [0, 1] with the increasing hazard rate. As for a lower bound, we
prove that w.h.p. for all k ≤ 2n1/3, there are many k-element subsets of [n] that pass a
partial test to be a support of a local maximum. Still, it may well be that w.h.p. the actual
supports are much smaller. In that direction, we prove that w.h.p. a support of a local
maximum, which does not contain a support of a local equilibrium, is very unlikely to
have size exceeding 2

3 log2 n and, for the uniform fitnesses, there are super-polynomially
many potential supports free of local equilibriums of size close to 1

2 log2 n.
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1. Introduction and main results

The classic selection model in population genetics is a dynamic system on the set of the
probability distributions p = (p1, . . . , pn) ∈ �n := {x ≥ 0,

∑
i∈[n] xi = 1} of the alleles

A1, . . . , An at the single locus

pi(t + 1) = pi(t)

∑
j fi,jpj (t)∑

r,s fr,spr(t)ps(t)
, i ∈ [n]. (1.1)

Here, each fr,s = fs,r ∈ [0, 1] is interpreted as the fitness, i.e. the probability that the unordered
gene pair (Ar, As) survives to an adult age. While the dynamic behavior of p(t) in this model
certainly depends on the fitness matrixf = {fr,s}, it has long been known that the average fitness
V (p(t)) := ∑

r,s fr,spr(t)ps(t) strictly increases with t unless p(t +1) = p(t). Hofbauer and
Sigmund [9] characterized this property as a consequence of Fisher’s fundamental theorem of
natural selection [6], provided a full proof following Kingman [11], and sketched the different
proofs given by Scheuer and Mandel [19] and Baum and Eagon [2].
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Using the increase of the average fitness, it was later proven by various researchers that
p(∞) = limt→∞ p(t) exists for every initial gene distribution p(0), and p := p(∞) is a fixed
point of the mapping �(·) : �n → �n defined by (1.1), with the property, for a nonempty
I ⊆ [n],

pi = 0, (i /∈ I ),
∑
j∈I

fi,jpj ≡ V (p), (i ∈ I ).

Remarkably, a fixed point p is a locally stable equilibrium if and only if p is a strict local
maximum of V (·). There is no reason to expect that a local maximum is unique; so typically
the limit p(∞) depends on p(0).

For p ∈ �n to be a local maximum of V (·), the following three conditions are both necessary
and sufficient; see [12]. If I = I (p) := {i : pi > 0} then

∑
j∈I

fi,jpj ≡ V (p), (i ∈ I ),

∑
i,j∈I

fi,j xixj ≤ 0 for all {xi}i∈I with
∑
i∈I

xi = 0,

∑
j∈I

fi,jpj ≤ V (p), (i /∈ I ).

(1.2)

The second necessary condition applied to x such that xi = 1, xj = −1, with the remaining
xk = 0, easily yields

fi,j ≥ 1
2 (fi,i + fj,j ), i, j ∈ I, i 
= j. (1.3)

To quote from [12]: ‘This condition uses internal stability alone, and takes no account of
vulnerability to mutation’.

Inequality (1.3) was earlier obtained by Lewontin et al. [17] as a corollary of a determinantal
criterion applied to the system of (|I | − 1) linear equations for pi, i ∈ I \ {i0}, implicit in

∑
j∈I

fi,jpj ≡ V (P ), (i ∈ I ),
∑
i∈I

pi = 1.

It was also asserted in [17] that fi,j < maxk(fi,k + fk,j ); the proof is valid under an additional
condition fi,j > max{fi,i , fj,j }.

A subset I meeting condition (1.3) is a candidate to be a support set of a local maximum
of pT fp. (We will use the term K-set for such sets I .) Kingman [12] posed a problem of
analyzing these potential supports in a typical case, i.e. when fi,j are independent and identically
distributed (i.i.d.) random variables with range [0, 1]. For the case when fi,j are [0, 1]-uniform,
he proved that with high probability (w.h.p.), i.e. with probability approaching 1, max |I | ≤
2.49n1/2: so ‘the largest stable polymorphism will contain at most of the order of n1/2 alleles’.
The key tool was the bound P(DI ) ≤ 1/r!, r := |I |, where DI is the event in (1.3). He found
that, for a (nonbiological) exponential distribution on [0, ∞), P(DI ) = (2/(r + 1))r � 1/r!
and the constant 2.49 was reduced to 2.14.

Haigh [7], [8] established the counterparts of some of Kingman’s results for the case of a
nonsymmetric payoff matrix. For instance, he proved that for the density e−x/

√
πx, (x > 0), of

χ2
1 distribution, w.h.p. no evolutionarily stable strategy has support of size exceeding 1.64n2/3.

Kontogiannis and Spirakis [16] used the technique from [8] to resolve the cases of uniform
distribution and of standard normal distribution left open there.
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Recently, and independently of the work cited above, Chen and Peng [3] studied, in an
operations research context of the random quadratic minimization problems, the probability of
the event which is a multiplicative version of the Kingman event DI , i.e. (1.3). Translated into
the conditions in (1.3), their results include an upper bound 2r/(r+1)! (for a general continuous
distribution) (see [14]), the exact formula 2r/(r+1)r (for an exponential distribution) (see [12]),
and a new lower bound 2r/(r − 1)r (for a double exponential distribution).

In [12], Kingman suggested that it would be interesting ‘to carry out a comparative anal-
ysis for other distributions of the fi,j ’, and conjectured, in [14], that ‘for every continuous
distribution F of f , there is a finite β(F ) = limr→∞{r! P(DI )}1/r ’. Whenever this limit
exists, max |I | ≤ 2.49β(F )1/2n1/2 w.h.p. In general, lim supr→∞{r! P(DI )}1/r ≤ 2 and
max |I | ≤ 2.49

√
2n1/2 w.h.p.

In this paper we consider a relatively broad class of the distributions F , meeting the following
conditions:

(I) F(x) has a differentiable positive density g(x), x ∈ [0, 1], such that g′(x) ≤ 0;

(II) the hazard ratio λ(x) := g(x)/(1−F(x)) is increasing with x. The nonincreasing linear
density gc(x) = (1 − cx)/(1 − 1

2c), c ∈ [0, 1] (g0(x) ≡ 1) meets these constraints, and
so does g(x) = ce−cx/(1 − e−c), the density of the negative exponential distribution
conditioned on [0, 1].

For F meeting conditions (I) and (II), we prove that

(
2

r + 1

)r

≤ P(DI ) ≤ rr

(
r
2

)r
≤

(
2

r − 1

)r

, (1.4)

ab := a(a + 1) · · · (a + b − 1). In combination with Kingman’s analysis of the exponential
distribution on [0, ∞), it follows from (1.4) that for every F meeting the constraints above, we
have max |I | ≤ 2.14n1/2 w.h.p. We see also that, for every F in question,

lim
r→∞{r! P(DI )}1/r =: β(F ) = 2

e
,

proving not only that β(F ) exists, but also that β(F ) does not depend on F in this class. This
lends a certain support to Kingman’s conjecture (see [14]) that limr→∞{r! P(DI )}1/r exists for
every continuous F .

Suppose we restrict our attention to the K-sets I such that there is no J ⊂ I , (|J | ≥ 2), which
supports a local equilibrium p = {pi}i∈J , meeting the first two conditions in (1.2). We will
call such K-sets minimal, hoping that the reader will accept our abuse of set minimality notion.
Let DI be the corresponding event. For the distributions F from the class described above, we
prove that

P(DI ) ≤ 2−r2/2
(

4e

r

)r/2

exp(�(r1/3)), r := |I |. (1.5)

The fact that this probability is much smaller than P(DI ) may be a signal that the full power of
condition (II) (xT f x ≥ 0 on the hyperplane

∑
i xi = 0) could possibly be marshaled to prove

that this condition holds with a similarly small probability exp(−�(r2)). Tellingly, having
studied large samples of the r × r fitness matrices f with [0, 1]-uniform entries, Lewontin et
al. [17] concluded that the empirical frequency of f with stable equilibrium support r decays
as e−cr2

.
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Continuing with P(DI ), suppose that, in addition, g(3)(0) exists. Then

P(DI ) = (1 + O(r−σ ))

(
2

r

)r

exp

(
g′(0)

g2(0)

)
for all σ < 1

3 , (1.6)

and if |I1| = |I2| = r , |I1 ∩ I2| = k, then

P(DI1 ∩ DI2) = O(P(r, k)), P(r, k) := r−6
(

2

r

)2(r−k−1)( 2

2r − k

)k−1

(1.7)

uniformly for r ≥ 2 and k ∈ [1, r − 1].
Let Xn,r be the total number of K-sets of [n] of cardinality r . We already know that w.h.p.

Xn,r = 0 for r > 2.14n1/2, and the left-hand side of (1.4) implies that E[Xn,r ] → ∞ for every
r ≤ (

√
2e − ε)n1/2. Note that

√
2e > 2.3 > 2.14; so for r roughly from 2.14n1/2 to 2.3n1/2,

E[Xn,r ] → ∞, while Xn,r = 0 with probability approaching 1. We use estimates (1.4), (1.6),
and (1.7) to show that

var(Xn,r )

E2[Xn,r ] = O(n−2/3), 2 ≤ r ≤ r(n) := �2n1/3�.

It follows that

P

(r(n)⋂
ρ=2

{∣∣∣∣ Xn,ρ

E[Xn,ρ] − 1

∣∣∣∣ ≤ n−1/6+ε

})
= 1 − O(n−2ε), ε < 1

6 ,

i.e. w.h.p. the counts of the K-sets of size r ranging from 2 to r(n) are uniformly asymptotic
to their expected values. In particular, setting Ln = max{ρ : Xn,ρ > 0}, we have P(Ln >

2n1/3) → 1, i.e. w.h.p. the size of the largest potential support of a local maximum is sandwiched
between 2n1/3 and 2.14n1/2.

We cannot rule out the possibility that, w.h.p., the actual supports of local maxima are
considerably smaller. In this direction, we use bound (1.5) to show that, with probability
greater that 1 − n−a (for all a > 0), there are no minimal K-sets of cardinality > ( 2

3 ) log2 n.
In other words, w.h.p. every K-set of this size, if any exists, has a subset of order exactly 2
satisfying the first two conditions in (1.2). Complementing this claim, we show that, w.h.p.,
the number of K-sets of size less than 1

2 log2 n that do not contain the size 2 supports of local
equilibriums is super-polynomially large. We emphasize that these special K-sets are just
potential supports of the local maxima. Still, the fact that they are likely to be very numerous
can be interpreted as supporting a conjecture that there exist (many) genuine local maxima with
support sizes tending to ∞ in probability.

The already cited paper [3] was preceded by Chen et al. [4]; both papers addressed the likely
behavior of an absolute minimum of a random quadratic form xT Qx for x ∈ �n. Under
the condition that the elements of Q are i.i.d. random variables with a cumulative distribution
function F concave on its support, the support size of the absolute minimum point was shown
to be bounded in probability, with its distribution tail decaying exponentially fast. In particular,
it followed that, for fi,j uniform or positive-exponential on [0, 1], the absolute maximum of
pT fp is attained at a point of �n with N , the number of positive components, satisfying
P(N ≥ k) = O(ρk), k > 0, as n → ∞.

In view of all this information, we conjecture that—for fi,j meeting conditions (I) and (II)—
the size of the largest support of a local maximum of pT fp is, w.h.p., of (poly)logarithmic order.
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If the Lewontin–Ginzburg–Tuljapurkar conjecture is confirmed, it will follow that, in fact, the
largest such support w.h.p. is of logarithmic order, at most. Proving that this estimate is sharp
would be the remaining challenge. We hope that the techniques/estimates developed in this
paper will be useful for tackling these challenging problems. In this regard, a surprising
appearance of Selberg’s integral in the proof of Lemma 2.4 may be a sign that there are other
multidimensional integrals yet to enter the stage.

2. Proofs

2.1. Estimate of P(DI )

Theorem 2.1. Suppose that F

(i) has a positive, nonincreasing, differentiable density g;

(ii) has a nondecreasing hazard ratio λ(x) = g(x)/(1 − F(x)).

Then, with ab := a(a + 1) · · · (a + b − 1), we have(
2

r + 1

)r

≤ P(DI ) ≤ rr

[(r
2

) + 1]r ≤
(

2

r − 1

)r

.

In the special case of the uniform density g(x) ≡ 1, this bound improves Kingman’s bound
P(DI ) ≤ 1/r!. It also shows that, for all F meeting conditions (i) and (ii),

lim
r→∞{r! P(DI )}1/r = 2

e
.

Proof of Theorem 2.1. As in [12], the probability of DI , conditioned on {fi,i = xi, i ∈ I }, is

∏
(i,j)

P

(
f ≥ xi + xj

2

)
=

∏
(i,j)

(
1 − F

(
xi + xj

2

))
,

where i 
= j . The function 1 − F(x) is log-concave, since

d

dx
log(1 − F(x)) = − g(x)

1 − F(x)
= −λ(x)

is decreasing with x.
Lower bound. By Jensen’s inequality,

∏
(i,j)

(
1 − F

(
xi + xj

2

))
≥

∏
(i,j)

(1 − F(xi))
1/2(1 − F(xj ))

1/2 =
r∏

i=1

(1 − F(xi))
(r−1)/2.

Consequently,

P(DI ) ≥
∫

· · ·
∫

x∈[0,1]r

r∏
i=1

(1 − F(xi))
(r−1)/2

r∏
i=1

g(xi) dxi,

and, switching to the variables yi = F(xi),

P(DI ) ≥
∫

· · ·
∫

y∈[0.1]n

r∏
i=1

(1 − yi)
(r−1)/2 dy =

(∫ 1

0
(1 − y)(r−1)/2 dy

)r

=
(

2

r + 1

)r

.
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Upper bound. Again by Jensen’s inequality, denoting s = ∑
i xi , we have

∏
(i,j)

(
1 − F

(
xi + xj

2

))
= exp

[(
r

2

) ∑
(i,j)

1(
r
2

) log

(
1 − F

(
xi + xj

2

))]

≤ exp

[(
r

2

)
log

(
1 − F

(
1

r(r − 1)

∑
(i,j)

(xi + xj )

))]

= exp

[(
r

2

)
log

(
1 − F

(
s

r

))]

=
(

1 − F

(
s

r

))(r
2)

.

Consequently,

P(DI ) ≤
∫

· · ·
∫

x∈[0,1]r

(
1 − F

(
s

r

))(r
2) ∏

i∈I

g(xi) dxi. (2.1)

Again change the variables of integration, setting yi = F(xi), so that xi = F−1(yi) and
s = ∑

i∈I F−1(yi). Now
d2

dy2 F−1(y) = − g′(x)

g(x)3 ≥ 0,

implying that F−1(y) is convex. Therefore, for each t ≤ r , we have

r−1 min

{∑
i∈I

F−1(yi) :
∑
i∈I

yi = t

}
= F−1

(
t

r

)
.

Hence,

max

{
1 − F

(
r−1

∑
i∈I

xi

)
:

∑
i∈I

yi = t

}
= 1 − min

{
F

(
r−1

∑
i∈I

F−1(yi)

)
:

∑
i∈I

yi = t

}

= 1 − F

(
r−1 min

{∑
i∈I

F−1(yi) :
∑
i∈I

yi = t

})

= 1 − F

(
F−1

(
t

r

))

= 1 − t

r
.

So (2.1) yields

P(DI ) ≤
∫

· · ·
∫

y∈[0,1]r

(
1 − t

r

)(r
2) ∏

i∈I

dyi.

Since ∫
· · ·

∫
∑

i yi≤t

∏
i∈I

dyi = t r

r! ,
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we conclude that

P(DI ) ≤
∫ r

0

(
1 − t

r

)(r
2) tr−1

(r − 1)! dt

= rr

(r − 1)!
∫ 1

0
(1 − τ)(

r
2)τ r−1 dτ

= rr

(r − 1)!
(
r
2

)! (r − 1)!
(
(
r
2

) + r)!
≤ rr

(
r
2

)r
. �

Theorem 2.2. Suppose that, in addition to conditions (i) and (ii) in Theorem 2.1, we have the
following additional condition:

(iii) g(3)(0) exists.

Then

P(DI ) = (1 + O(r−σ ))

(
2

r

)r

exp

(
g′(0)

g2(0)

)
for every σ < 1

3 .

To prove this claim, we shrink, in steps, the cube [0, 1]n to a subset C∗ in such a way that the
integral of the product of 1 − F( 1

2 (xi + xj )) over C∗ sharply approximates that over [0, 1]n,
and the product itself admits a manageable approximation on C∗.

Given C ⊂ [0, 1]n, denote

PC(DI ) =
∫

· · ·
∫

x∈C

∏
(i 
=j)

(
1 − F

(
xi + xj

2

))
dx.

Lemma 2.1. Let

C1 :=
{
x ∈ [0, 1]n :

∣∣∣∣
r∑

i=1

F(xi) − 2

∣∣∣∣ ≤ r−1/3
}
.

Then

P(DI ) − PC1(DI ) ≤
(

2

r

)r

exp

(
− r1/3

10

)
.

Proof. Let τ1,2 = 2/r ∓ r−4/3. From the proof of Theorem 2.1, it follows that

P(DI ) − PC1(DI ) ≤ rr

(r − 1)!
∫

τ∈[τ1,τ2]c
(1 − τ)(

r
2)τ r−1 dτ.

The (log-concave) integrand attains its maximum at τmax = 2/(2 + r) ∈ [τ1, τ2], and

max

{
d2

dτ 2 (log(1 − τ)(
r
2)τ r−1) : τ ∈ [τ1, τ2]

}
≤ − r3

4.1
.

Therefore, the integral is at most

(
1 − 2

2 + r

)(r
2)

(
2

2 + r

)r−1

exp

(
− r1/3

9

)
,
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so that

P(DI ) − PC1(DI ) ≤ rr

(r − 1)!
(

1 − 2

2 + r

)(r
2)

(
2

2 + r

)r−1

exp

(
− r1/3

9

)

≤
(

2

r

)r

exp

(
− r1/3

10

)
. �

Lemma 2.2. Let

C2 :=
{
x ∈ C1 : max

i

F (xi)∑
j F (xj )

≤ k
log r

r

}
, (k > 1).

Then

PC1(DI ) − PC2(DI ) ≤
(

2

r

)r

r−α for all α < k − 1.

Proof. Similarly to the proof of Lemma 2.1,

PC1(DI ) − PC2(DI ) ≤
∫

· · ·
∫

max yi/t>k(log r)/r

(
1 − t

r

)(r
2) ∏

i∈I

dyi.

Introduce L1, . . . , Lr the lengths of the consecutive subintervals of [0, 1] obtained by sampling
uniformly at random r − 1 points in [0, 1]. From [18, Lemma 1], the integral above is at most

P

(
max Li ≥ k

log r

r

) ∫ r

0

(
1 − t

r

)(r
2) tr−1

(r − 1)! dt = P

(
max Li ≥ k

log r

r

)
rr

(
r
2

)(r)
.

And, introducing U1, . . . , Ur−1 the independent [0, 1]-uniforms, the probability factor is at most

rP

(
L1 ≥ k

log r

r

)
= rP

(
min

i
Ui ≥ k

log r

r

)
= r

(
1−k

log r

r

)r−1

≤ r exp

(
−(r−1)k

log r

r

)
,

concluding the proof. �
One more reduction step defines the final

C∗ =
{
x ∈ C2 :

∣∣∣∣ r2
∑

i F 2(xi)

(
∑

j F (xj ))2 − 1

∣∣∣∣ ≤ r−σ

}
, σ < 1

3 . (2.2)

Lemma 2.3. It holds that

PC2(DI ) − PC∗(DI ) ≤
(

2

r

)r

exp

(
−1

2
r1/3−σ

)
.

Proof. Once again as in the proofs of Lemmas 2.1 and 2.2,

PC2(DI ) − PC∗(DI ) ≤
∫

· · ·
∫

|(r/2)(
∑

i y2
i /(

∑
j yj )2)−1|>r−σ

(
1 − t

r

)(r
2) ∏

i∈I

dyi

≤ P

(∣∣∣∣ r2
∑

i

L2
i − 1

∣∣∣∣ > r−σ

)
rr

(
r
2

)(r)

≤
(

2

r

)r

exp(−�(r1/3−σ ))

since the probability is at most exp(−�(r1/3−σ )); see [?, Lemma 3.2]). �
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Remark 2.1. A key to the proof of [?, Lemma 3.2] was the classic fact that (L1, . . . , Lr) and
(
∑

i Wi)
−1(W1, . . . , Wr), (Wj being i.i.d. Exponentials), are equidistributed; see [5]. While

both of the distribution tails of
∑

i Wj decay exponentially, for the right tail of
∑

j W 2
j we

could prove only the bound e−�(rδ), δ < 1
3 . The obstacle here is that E[ezW 2 ] = ∞ for every

z > 0.

Combining Lemmas 2.1–2.3 brings us to our next result.

Corollary 2.1. It holds that

P(DI ) − PC∗(DI ) ≤
(

2

r

)r

r−α for all α < k − 1.

For x ∈ C∗, we have maxi F (xi) ≤ 3k log r/r → 0, which implies that maxi xi =
O(r−1 log r) → 0. For x = O(r−1 log r), we have

F(x) = g(0)x + 1
2g(1)(0)x2 + O(x3) = g(0)x + 1

2g(1)(0)x2 + O(r−3 log3 r).

So
log(1 − F(x)) = −g(0)x − 1

2 (g′(0) + g2(0))x2 + O(r−3 log3 r),

and with a bit of algebra

log
(
1 − F

( 1
2 (xi + xj )

)) − 1
2 (log(1 − F(xi)) + log(1 − F(xj )))

= 1
8 (g′(0) + g2(0))(xi − xj )

2 + O(r−3 log3 r)

= γ (F (xi) − F(xj ))
2 + O(r−3 log3 r), γ := g′(0) + g2(0)

8g2(0)
. (2.3)

Therefore,
∏
(i,j)

log

(
1 − F

(
xi + xj

2

))

= exp

(
r − 1

2

∑
i

log(1 − F(xi))

)
exp

(
γ

∑
(i,j)

(F (xi) − F(xj ))
2 + O(r−1 log r)

)
,

where

r − 1

2

∑
i

log(1 − F(xi) = − r − 1

2

∑
i

(
F(xi) + F 2(xi)

2

)
+ O(r−1 log r),

∑
(i,j)

(F (xi) − F(xj ))
2 = r

∑
i

F 2(xi) −
(∑

i

F (xi)

)2

.

Hence, on C∗ (see (2.2)),
∏
(i,j)

log

(
1 − F

(
xi + xj

2

))

= exp

(
− r − 1

2

∑
i

F (xi) − γ

(∑
i

F (xi)

)2

+
(

− r − 1

4
+ γ r

) ∑
i

F 2(xi) + O(r−1 log r)

)
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= exp

(
− r − 1

2

∑
i

F (xi) +
(

2γ − 1

2

)(∑
i

F (xi)

)2

+ O(r−σ )

)

= exp

(
− r

2

∑
i

F (xi) + g′(0)

g2(0)
+ O(r−σ )

)
;

for the last equality we use the definition of γ in (2.3).
Switching to the variables yi = F(xi) and denoting t = ∑

i yi , we obtain

PC∗(DI ) =
∫

· · ·
∫

y∈C∗
exp

(
− r

2
t + g′(0)

g2(0)
+ O(r−σ )

)
dy,

C∗ :=
{
y ≥ 0 : |t − 2| ≤ r−1/3, max

i

yi

t
≤ k

log r

r
,

∣∣∣∣ r

2t2

∑
i

y2
i − 1

∣∣∣∣ ≤ r−σ

}
.

Note that on C∗ we have maxi y1 → 0, so that the omitted condition maxi yi ≤ 1 would have
been superfluous. From [?, Lemma 3.1],
∫

· · ·
∫

y∈C∗
e−rt/2 dy

=
∫

|t−2|≤1/r1/3

e−rt/2t r−1

(r − 1)! P

(
max Li ≤ min

(
t−1,

k log r

r

)
,

∣∣∣∣ r2
∑

i

L2
i − 1

∣∣∣∣ ≤ r−σ

)
dt

= P

(
max Li ≤ k log r

r
,

∣∣∣∣ r2
∑

i

L2
i − 1

∣∣∣∣ ≤ r−σ

) ∫

|t−2|≤1/r1/3

e−rt/2t r−1

(r − 1)! dt.

From Lemmas 2.2 and 2.3 and their proofs, we know that the probability factor is at least
1 − r−α for all α < k − 1. Furthermore, the integral is equal to

∞∫
0

e−rt/2t r−1

(r − 1)! dt −
∫

|t−2|>1/r1/3

e−rt/2t r−1

(r − 1)! dt =
(

2

r

)r

− (2/r)r

(r − 1)!
∫

|τ−r|>r2/3/2

e−τ τ r−1 dτ,

and, by Chebyshev’s inequality,

1

(r − 1)!
∫

|τ−r|>r2/3/2

e−τ τ r−1 dτ ≤ P

(
| Poisson(r − 1) − (r − 1)| >

r2/3

3

)

≤ 9(r − 1)

r4/3

≤ 9r−1/3.

So ∫

|t−2|≤1/r1/3

e−rt/2t r−1

(r − 1)! dt = (1 + O(r−1/3))

(
2

r

)r

.
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Consequently,

PC∗(DI ) = (1 + O(r−σ ))

(
2

r

)r

exp

(
g′(0)

g2(0)

)
for every σ < 1

3 .

Combining this estimate with Corollary 2.1, we complete the proof of Theorem 2.2.

2.2. Estimate of P(DI1 ∩ DI2)

Let I1, I2 ⊂ [n], |Ij | = r . If I1 ∩ I2 = ∅ then the events DI1 and DI2 are independent and
so, by Theorem 2.2,

P(DI1 ∩ DI2) = P(DI1)P(DI2) = (1 + O(r−σ ))

(
2

r

)2r

exp

(
2

g′(0)

g2(0)

)
.

Consider the |I1 ∩I2| = k ∈ [1, r −1] case. By symmetry, we can assume that I1 = {1, . . . , r},
and I2 = {r − k + 1, . . . , 2r − k}. The probability of DI1 ∩ DI2 , conditioned on the event
{Fi,i = xi : 1 ≤ i ≤ 2r − k}, is

�(x) =
∏

i,j≤r (i 
=j)

(
1 − F

(
xi + xj

2

)) ∏
r<i≤2r−k, r−k+1≤j<r

(
1 − F

(
xi + xj

2

))

×
∏

r≤i, j≤2r−k (i 
=j)

(
1 − F

(
xi + xj

2

))
.

The three products contain, respectively,
(
r
2

)
, (r − k)(k − 1), and

(
r−k+1

2

)
factors. The total

number of the factors is

N(r, k) =
(

r

2

)
+ (r − k)(k − 1) +

(
r − k + 1

2

)
.

Now
∑

1≤i, j≤r (i 
=j)

xi + xj

2
= r − 1

2

r∑
i=1

xi,
∑

r≤i, j≤2r−k (i 
=j)

xi + xj

2
= r − k

2

2r−k∑
i=r

xi,

∑
r<i≤2r−k, r−k+1≤j≤r

xi + xj

2
= k − 1

2

2r−k∑
i=r+1

xi + r − k

2

r−1∑
j=r−k+1

xj .

The total sum of the fractions 1
2 (xi + xj ) is

1
2 (r − 1)s1 + 1

2 (2r − k − 1)s2 + 1
2 (r − 1)s3,

where

s1 =
r−k∑
i=1

xi, s2 =
r∑

i=r−k+1

xi, s3 =
2r−k∑
i=r+1

xi,

and the sum of the coefficients αi by xi in the sum of those fractions is N(r, k). By the
log-concavity of 1 − F(x),

�(x) ≤
(

1 − F

(
((r − 1)/2)s1 + ((2r − k − 1)/2)s2 + ((r − 1)/2)s3

N(r, k)

))N(r,k)

.
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As in the proof of Theorem 2.1, introduce yi = F(xi), 1 ≤ i ≤ 2r − k, so that

s1 =
r−k∑
i=1

F−1(yi), s2 =
r∑

i=r−k+1

F−1(yi), s3 =
2r−k∑
i=r+1

F−1(yi).

Given t1, t2, and t3, by the convexity of F−1, we have

min

{2r−k∑
i=1

αi

N(r, k)
F−1(yi) :

r−k∑
i=1

yi = t1,

r∑
i=r−k+1

yi = t2,

2r−k∑
i=r+1

yi = t3

}

≥ F−1
(

((r − 1)/2)t1

N(r, k)
+ ((2r − k − 1)/2)t2

N(r, k)
+ ((r − k)/2)t3

N(r, k)

)
.

Consequently,

�(x) ≤ �∗(t) :=
(

1 − (r − 1)t1 + (2r − k − 1)t2 + (r − 1)t3

2N(r, k)

)N(r,k)

,

t1 :=
r−k∑
i=1

F(xi), t2 :=
r∑

i=r−k+1

F(xi), t3 :=
2r−k∑
i=r+1

F(xi).

Therefore,

P(DI1 ∩ DI2) =
∫

· · ·
∫

x∈[0,1]2r−k

�(x) dx ≤
∫

· · ·
∫

t1≤r−k, t2≤k, t3≤r−k

�∗(t) dy

=
∫∫∫

t1,t3≤r−k, t2≤k

�∗(t)
tr−k−1
1

(r − k − 1)!
tk−1
2

(k − 1)!
t r−k−1
3

(r − k − 1)! dt . (2.4)

Introduce

τ1 = r − 1

2N(r, k)
t1, τ2 = 2r − k − 1

2N(r, k)
t2, τ3 = r − 1

2N(r, k)
t3.

Since t1 ≤ r − k, t2 ≤ k, t3 ≤ r − k, and

(r − 1)(r − k)

2N(r, k)
+ (2r − k − 1)k

2N(r, k)
+ (r − 1)(r − k)

2N(r, k)
= 1,

we see that τ1 + τ2 + τ3 ≤ 1. Switching to τj , and denoting N = N(r, k), we transform
(2.4) into

P(DI1 ∩ DI2) ≤ (2N/(r − 1))r−k−1

(r − k − 1)!
(2N/(2r − k − 1))k−1

(k − 1)!
(2N/(r − 1))r−k−1

(r − k − 1)!
×

∫∫∫
τ1+τ2+τ3≤1

τ r−k−1
1 τ k−1

2 τ r−k−1
3 (1 − τ1 − τ2 − τ3)

N dτ1 dτ2 dτ3

= N ! (2N/(r − 1))2(r−k−1)(2N/(2r − k − 1))k−1

(N + 2r − k)!
≤ N−3

(
2

r − 1

)2(r−k−1)( 2

2r − k − 1

)k−1

.
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(At the penultimate line we use the multidimensional extension of the beta integral; see [1,
Theorem 1.8.6].) Since N = �(r2), we have

P(DI1 ∩ DI2) = O(P(r, k)), P(r, k) := r−6
(

2

r

)2(r−k−1)( 2

2r − k

)k−1

. (2.5)

2.3. Likely range of the maximum size of the K-set

We introduce Ln = {max |I | : (1.3) holds}. Kingman [12]–[14] proved that, for F =
uniform[0, 1], w.h.p. Ln ≤ n1/2(ε + o(1)), where ε = ξ−1/2(1 − ξ)−1/2 and ξ = 0.7968 . . .

is a positive root of 1 − ξ = e−2ξ , so ε = 2.485 . . . . The proof consists of showing that
P(DI ) ≤ 1/|I |!, and that

P(Ln ≥ r) ≤ (n)s

(r)s
P(DI ), |I | = s ≤ r.

This inequality sharpens the (first-order moment) bound P(Ln ≥ r) ≤ (
n
r

)
P(DI ), |I | = r , by

using the fact that every subset of a K-set is a K-set as well. Kingman also demonstrated that
his exact formula P(DI ) = (2/(r + 1))r for the negative exponential distribution on [0, ∞)

implied a better bound

Ln ≤ n1/2[(2e−1)1/2ε + o(1)], (2e−1)1/2ε = 2.1317 . . . .

Now, by Theorem 2.1, we have P(DI ) ≤ 1
2 e(2/r)r for a wide class of densities on [0, 1] that

includes the uniform density and the exponential density restricted to [0, 1]. Combining this
theorem and Kingman’s proof for the exponential distribution, we have our next result.

Theorem 2.3. Under conditions (i) and (ii) of Theorem 2.1, w.h.p. Ln ≤ 2.14n1/2.

Armed with bound (2.5) and the bounds in Theorem 2.1, we can prove a reasonably matching
lower bound.

Theorem 2.4. Let Xn,r denote the total number of K-sets of cardinality r . Introduce r(n) =
�2n1/3�. Then, under conditions (i)–(iii) of Theorem 2.2,

P

(r(n)⋂
ρ=2

{∣∣∣∣ Xn,ρ

E[Xn,ρ] − 1

∣∣∣∣ ≤ n−1/6+ε

})
= 1 − O(n−2ε) for all ε ∈ (

0, 1
6

)
.

Consequently, minr∈[2,r(n)] Xn,r → ∞ in probability, and so

lim
n→∞ P(Ln ≥ �2n1/3�) = 1.

Proof. This time we use the second-order moment approach. Using Theorem 2.1, for a
generic set I of cardinality r ∈ [2, r(n)] we have

E[Xn,r ] =
(

n

r

)
P(DI ) ≥ nr

r!
(

2

r + 1

)r

≥ cn2.

The total number of ordered pairs {I1, I2}, with |I1| = |I2| = r , |I1 ∩ I2| = k, is

N (r, k) =
(

n

r

)(
r

k

)(
n − r

r − k

)
.

https://doi.org/10.1017/jpr.2018.74 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.74


1126 B. PITTEL

Therefore, for a pair of generic sets I1, I2 meeting the conditions above,

E[(Xn,r )2] =
r−1∑
k=0

N (r, k)P(DI1 ∩ DI2). (2.6)

Here, P(DI1 ∩ DI2) = O(P(r, k)) with P(r, k) given in (2.5). After some elementary compu-
tation, we obtain

max
k∈[1,r−1]

N (r, k + 1)P(r, k + 1)

N (r, k)P(r, k)

≤ r2

2
max

k∈[1,r−1]
(r − k)2

(k + 1)(2r − k − 1)(n − 2r + k + 1)
exp

(
k − 1

2r − k − 1

)

= r2(r − 1)

8(n − 2r + 2)

≤ 1 − 1/r

1 − 2r/n

≤ 1 − 1

2r

(the second line maximum is attained at k = 1). Consequently,

r−1∑
k=1

N (r, k)P(r, k) ≤ 2rN (r, 1)P(r, 1)

≤ 2

(
n

r

)(
n − r

r − 1

)(
2

r

)2r

= O

(
r

n
N (r, 0)P2(DI )

)

= O

(
r

n
E

2[Xn,r ]
)

.

(For the last equality we use the lower bound for P(DI ) in Theorem 2.1.) Therefore, uniformly
for r ∈ [2, r(n)], ∑r−1

k=1 N (r, k)P(r, k)

E2[Xn,r ] = O(n−2/3). (2.7)

From (2.6), (2.7), and E[Xn,r ] ≥ c1n
2 � n2/3, we have

E[(Xn,r )2]
E2[Xn,r ] = 1 + O(n−2/3) �⇒ var(Xn,r )

E2[Xn,r ] = O(n−2/3).

By Chebyshev’s inequality,

P

(∣∣∣∣ Xn,r

E[Xn,r ] − 1

∣∣∣∣ ≤ δ

)
≥ 1 − O(δ−2n−2/3) → 1

uniformly for all δ � n−1/3 and r ∈ [2, r(n)]. Therefore,

r(n)∑
r=2

P

(∣∣∣∣ Xn,r

E[Xn,r ] − 1

∣∣∣∣ ≥ δ

)
= O(δ−2n−1/3) → 0,
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which implies that, for ε ∈ (0, 1
6 ),

P

(r(n)⋂
r=2

{∣∣∣∣ Xn,r

E[Xn,r ] − 1

∣∣∣∣ ≤ n−1/6+ε

})
= 1 − O(n−2ε). �

2.4. Estimate of P(DI )

Recall that the event DI happens if and only if I is a K-set and no J ⊂ I , with |J | ≥ 2,
supports a local equilibrium p = {pi}i∈J > 0 (with

∑
i∈J pi = 1).

Let the event DI hold, so that fu,v ≥ 1
2 (fu,u + fv,v) for all u, v ∈ I . So DJ holds for every

J ⊆ I . Suppose that, for some i 
= j in I , we have fi,j > max{fi,i , fj,j }. Set J = {i, j} and

pi := fi,j − fj,j

2fi,j − fi,i − fj,j

> 0, pj = fi,j − fi,i

2fi,j − fi,i − fj,j

> 0.

Then p = (pi, pj ) is a nontrivial local equilibrium, and this cannot happen on the event DI .
Thus,

DI ⊆
⋂

(i 
=j) : i,j∈I

{
fi,i + fj,j

2
≤ fi,j ≤ max{fi,i , fj,j }

}
.

Consequently, we obtain

P(DI | fi,i = xi, i ∈ I ) ≤
∏

(i 
=j) : i,j∈I

[
F

(
max{xi, xj }

)
− F

(
xi + xj

2

)]
. (2.8)

Introduce yi = F(xi), i.e. xi = F−1(yi) (with i ∈ I ). Then F(max{xi, xj }) = max{yi, yj },
and (since F−1(y) is convex),

F
( 1

2 (xi + xj )
) = F

( 1
2 (F−1(yi) + F−1(yj ))

) ≥ F
(
F−1( 1

2 (yi + yj )
)) = 1

2 (yi + yj ).

Therefore,

P(DI | fi,i = xi, i ∈ I ) ≤
∏

(i 
=j) : i,j∈I

|yi − yj |
2

,

implying

P(DI ) ≤ 2−r(r−1)/2
∫

· · ·
∫

y∈[0,1]r

∏
(i 
=j) : i,j∈I

|yi − yj | dy, r := |I |. (2.9)

Since the integral is below 1, we see that

P(DI ) ≤ 2−r(r−1)/2. (2.10)

Hence, we arrive at our next corollary.

Corollary 2.2. With probability greater than or equal to 1 − n−a (for all a > 0), there is no
K-set of cardinality greater than or equal to rn := �2 log2 n� that does not contain, properly,
the support of a nontrivial local equilibrium.
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Proof. By (2.10), the expected number of K-sets in question is, at most, of order
(

n

rn

)
2−r2

n/2 ≤ 1

rn! ≤ n−a for all a > 0. �

We can do better though. The integral in (2.9) is a special case of Selberg’s remarkable
integral; see [1, Section 8.1]. In particular, for α > 0, β > 0, γ ≥ 0,∫

· · ·
∫

y∈[0,1]r

∏
i∈I

{yα−1
i (1 − yi)

β−1}
∏

(i 
=j) : i,j∈I

|yi − yj |2γ dy

=
r∏

j=1

�(α + (j − 1)γ )�((β + (j − 1)γ )�(1 + jγ )

�(α + β + (r + j − 2)γ )�(1 + γ )
. (2.11)

So we have

P(DI ) ≤ 2−r(r−1)/2S(r), S(r) :=
r∏

j=1

�2(1 + (j − 1)/2)�(1 + j/2)

�(1 + (r + j)/2)�(3/2)
.

Using the Stirling formula,

�(1 + z) = √
2πz

(
z

e

)z

(1 + O(z−1)), z → ∞,

and applying the Euler summation formula to the logarithm of the resulting product, it follows
that, for some constants η1, η2,

S(r) = 2−r2
exp(η1r log r + η2r + O(log r)). (2.12)

We have proved our next lemma.

Lemma 2.4. There exist constants η∗
1 , η∗

2 such that

P(DI ) ≤ 2−3r2/2 exp(η∗
1r log r + η∗

2r + O(log r)), r := |I |.
So P(DI ) is of order 2−(3(1+o(1))/2)r2

, at most. This leads immediately to a better upper
bound for the maximum size of a K-set free of supports of local equilibriums.

Theorem 2.5. With probability greater than or equal to 1 − exp(−�(ε log2 n)), there is no
K-set of cardinality ≥ r∗

n := �( 2
3 + ε) log2 n� that does not contain the support of a nontrivial

local equilibrium.

The sharp formula (2.12) allows us to show that w.h.p. there exist many K-sets of the
logarithmic size that do not contain the size 2 supports of local equilibriums in the case when
fi,j are uniform.

Given a set I , |I | ≥ 3, let D∗
I be the event that I is a K-set meeting the above, less stringent,

requirement. For brevity, we call such I a K∗-set. Instead of inequality (2.8), here we have the
equality

P(D∗
I | fi,i = xi, i ∈ I ) =

∏
(i 
=j) : i,j∈I

[
F

(
max{xi, xj }

)
− F

(
xi + xj

2

)]
. (2.13)
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For the uniform fitnesses, the right-hand side of (2.13) is the product of the 1
2 |xi − xj |. So, by

(2.11) and (2.12),

P(D∗
I ) = 2−3ρ2/2 exp(η∗

1ρ log ρ + η∗
2ρ + O(log ρ)), ρ := |I |.

Let X∗
n,r denote the total number of the K∗-sets of cardinality r . Then the expected number of

the K∗-sets of cardinality r is E[X∗
n,r ] = (

n
r

)
P(D∗

I ) (with |I | = r). This expectation is easily
shown to be of order greater than or equal to exp(�(ε log2 n)); thus it is super-polynomially
large if r = [ 2

3 (1 − ε) log2 n], ε ∈ (0, 1). In fact, we are about to prove that X∗
n,r is likely to

be this large if r < 1
2 log2 n.

Theorem 2.6. For r = [( 1
2 − ε) log2 n] (with ε < 1

4 ), we have

P(X∗
n,r ≥ exp(�(ε log2 n))) ≥ 1 − O(n−2ε+O(log log n/(log n))).

Proof. We use the proof of Theorem 2.4 as a rough template. Given 0 ≤ k ≤ r − 1, let

I1 = I1(k) ≡ {1, . . . , r}, I2 = I2(k) = {r − k + 1, . . . , 2r − k};
so |I1| = |I2| = r and |I1 ∩ I2| = k. Then, by symmetry,

E[(X∗
n,r )2] =

r−1∑
k=0

N (r, k)P(D∗
I1(k) ∩ D∗

I2(k)), N (r, k) =
(

n

r

)(
r

k

)(
n − r

r − k

)
.

To bound P(D∗
I1(k) ∩D∗

I2(k)), observe that, denoting by (i, j) a generic, unordered pair (i 
= j),
we have

P(D∗
I1(k) ∩ D∗

I2(k) | fi,i = xi, i ∈ I1 ∪ I2)

=
∏

(i,j) : i,j∈[1,r]∪[r−k+1, 2r−k]

|xi − xj |
2

≤ 2−(r)2+(k
2)

∏
(i,j) : i,j∈[1,r−k]

|xi − xj |
∏

(i,j) : i,j∈[r−k+1,r]
|xi − xj |

×
∏

(i,j) : i,j∈[r+1, 2r−k]
|xi − xj |.

Unconditioning and using (2.13), we obtain P(D∗
I1(k) ∩ D∗

I2(k)) = P ∗(r, k)eO(log r), and

P ∗(r, k) := 2−(r)2+(k
2) · 2−2(r−k)2−k2

× exp(2η∗
1(r − k) log(r − k) + η∗

1k log k + 2η∗
2(r − k) + η∗

2k).

It follows that

N (r, k + 1)P(D∗
I1(k+1) ∩ D∗

I2(k+1))

N (r, k)P(D∗
I1(k) ∩ D∗

I2(k))
≤ 22r

n
exp(O(log r)) ≤ n−2ε+o(1) → 0,

since r ≤ ( 1
2 − ε) log2 n. Consequently,

E[(X∗
n,r )2]

N (r, 0)P2(D∗
I1(0))

≤ 1 + n−2ε+o(1).
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Since

N (r, 0) =
(

1 + O

(
r2

n

))(
n

r

)2

, E[X∗
n,r ] = P(DI∗

1
(0))

(
n

r

)
≥ exp(�(log2 n)),

the Chebyshev inequality completes the proof. �
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