J. Aust. Math. Soc. **111** (2021), 159–178 doi:10.1017/S144678871900048X

PERTURBATION THEOREMS FOR FRACTIONAL CRITICAL EQUATIONS ON BOUNDED DOMAINS

AZEB ALGHANEMI and HICHEM CHTIOUI®

(Received 28 February 2019; accepted 11 September 2019; first published online 9 March 2020)

Communicated by F. Cirstea

Abstract

We consider the fractional critical problem $A_s u = K(x) u^{(n+2s)/(n-2s)}$, u > 0 in Ω , u = 0 on $\partial \Omega$, where A_s , $s \in (0,1)$, is the fractional Laplace operator and K is a given function on a bounded domain Ω of \mathbb{R}^n , $n \geq 2$. This is based on A. Bahri's theory of critical points at infinity in Bahri [*Critical Points at Infinity in Some Variational Problems*, Pitman Research Notes in Mathematics Series, 182 (Longman Scientific & Technical, Harlow, 1989)]. We prove Bahri's estimates in the fractional setting and we provide existence theorems for the problem when K is close to 1.

2010 Mathematics subject classification: primary 35J60.

Keywords and phrases: fractional Laplace operator, critical equation.

1. Introduction

Let Ω be a bounded domain of \mathbb{R}^n , $n \ge 2$, with smooth boundary $\partial \Omega$. Let $K : \overline{\Omega} \to \mathbb{R}$ be a given function. We look for solutions of the fractional partial differential equation (PDE)

$$\begin{cases} A_s u = K u^{(n+2s)/(n-2s)}, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
 (1-1)

Here A_s , $s \in (0, 1)$, denotes the fractional Laplace operator defined by using the spectrum of the Laplace operator $(-\Delta)$ in Ω with zero Dirichlet boundary condition.

In recent years extensive studies have been devoted to PDEs involving the fractional Laplacian A_s due to its broad applications in many branches of sciences; see [14] and the references therein.

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under Grant No. (KEP-PhD-41-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

^{© 2020} Australian Mathematical Publishing Association Inc.

After the seminal work of Caffarelli and Silvester [16] who developed a local interpretation of the problem in one more dimensions (see also [5, 18, 20] for similar extensions), many authors studied nonlinear problems involving the fractional Laplacian. For Riemannian manifolds without boundary, we refer the reader to [6–8, 11–13, 23]. For manifolds with boundary, only very few papers address problem (1-1). In [15, 18], the authors established existence results for the subcritical problems in the particular case $s = \frac{1}{2}$. In [19], Tan proved that (1-1) has no solution if K = 1 and Ω is a star-shaped domain. Later in [9], Abdelhedi, Chtioui and Hajaiej proved that (1-1) has a solution if K = 1 and Ω admits a nontrivial group of homology.

Our aim in this paper is to provide some conditions on K and on the domain Ω to prove existence results for (1-1).

(A) Assume that $(\partial K/\partial v)(x) < 0$, for all $x \in \partial \Omega$.

Here ν is the unit outward normal vector on $\partial\Omega$.

(nd) Assume that K is a C^2 -positive function on $\overline{\Omega}$, having only nondegenerate critical points y_0, \ldots, y_ℓ with

$$\Delta K(y_i) \neq 0, \forall i = 0, \dots, \ell \text{ if } n > 2 + 2s,$$

and

$$\frac{n-2s}{2}c_1H(y_i, y_i) - \frac{n-2s}{n}\frac{c_2}{K(y_i)}\Delta K(y_i) \neq 0, \ \forall i = 0, \dots, \ell \quad \text{if } n = 2+2s,$$

where $c_1 = \int_{\mathbb{R}^n} (dz/(1+|z|^2)^{(n+2s)/2})$, $c_2 = (1/n) \int_{\mathbb{R}^n} |z|^2 ((|z|^2-1)/(1+|z|^2)^{n+1}) dz$, and H(.,.) is the regular part of the Green function associated to A_s . Let

$$\mathcal{K}^+ = \{ y \in \Omega, \text{s.t.}, \nabla K(y) = 0 \text{ and } -\Delta K(y) > 0 \} \quad \text{if } n > 2 + 2s,$$

$$\mathcal{K}^{+} = \left\{ y \in \Omega, \text{ s.t. } \nabla K(y) = 0 \text{ and } \frac{n-2s}{2} c_1 H(y, y) - \frac{n-2s}{n} \frac{c_2}{K(y)} \Delta K(y) > 0 \right\}$$
if $n = 2 + 2s$,

and

$$\mathcal{K}^+ = \{ y \in \Omega, \text{ s.t. } \nabla K(y) = 0 \} \quad \text{if } n < 2 + 2s.$$

For any critical point y of K, we denote by ind(K, y) the Morse index of K at y. The following theorem is the first main result of this paper.

THEOREM 1.1. Let K be a given function on a contractible bounded domain of \mathbb{R}^n , $n \ge 2$, satisfying conditions (A) and (nd). If there exists an integer k_0 such that

(a) $n - \operatorname{ind}(K, y) \neq k_0$, for all $y \in \mathcal{K}^+$,

(b)

$$\sum_{y \in \mathcal{K}^+, n - \text{ind}(K, y) \le k_0 - 1} (-1)^{n - \text{ind}(K, y)} - 1 \neq 0,$$

then (1-1) admits at least one solution provided that K is close to 1.

Observe that for any integer $k_0 > \max\{n - \operatorname{ind}(K, y), y \in \mathcal{K}^+\}$, condition (a) of Theorem 1.1 is trivially satisfied. For applications, we think that the following version is helpful:

THEOREM 1.2. Let Ω be a contractible bounded domain of \mathbb{R}^n , $n \geq 2$, and let K be a function satisfying conditions (A) and (nd). If

$$\sum_{y \in \mathcal{K}^+} (-1)^{n - \text{ind}(K, y)} - 1 \neq 0,$$

then (1-1) admits at least one solution provided that K is close to 1.

The argument we use is able to extend the result of Theorem 1.2 to any bounded domain of \mathbb{R}^n , $n \ge 2$.

THEOREM 1.3. Let Ω be a bounded domain of \mathbb{R}^n , $n \ge 2$. Under conditions (A) and (nd), if

$$\sum_{y \in \mathcal{K}^+} (-1)^{n - \operatorname{ind}(K, y)} - \chi(\Omega) \neq 0,$$

then (1-1) admits at least one solution provided that K is close to 1. Here $\chi(\Omega)$ denotes the Euler–Poincaré characteristic of Ω .

Our method is based on Bahri's theory of critical points at infinity. For this theory, we refer to [1]. We will prove Bahri's estimates in the fractional framework and we use it to prove our existence results.

2. Estimates at infinity

2.1. Variational framework. Following [16, 18], we state the local equation associated to (1-1) on the half cylinder $C = \Omega \times [0, \infty)$. The celebrated fractional harmonic extension result of Caffarelli and Silvester [16] on \mathbb{R}^n and Cabré and Tan [18] on bounded domains (see also [5, 20, 22]) says that any $u \in H_0^s(\Omega)$; for the fractional Sobolev space on Ω , the problem

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla v) = 0 & \text{in } C, \\ v = 0 & \text{on } \partial_L C := \partial\Omega \times [0, \infty), \\ v = u & \text{on } \Omega \times \{0\}, \end{cases}$$

admits a unique solution denoted by s - h(u) in the Sobolev space $H^s_{0L}(C)$ defined by the closure of

$$C_{0L}^{\infty}(C) := \{ v \in C^{\infty}(\overline{C}), \text{ s.t. } v = 0 \text{ on } \partial_L C \},$$

with respect to the norm

$$|v|^2 = \int_C t^{1-2s} |\nabla v|^2 dx dt.$$

It follows that A_s is expressed as follows:

$$u\in H^s_0(\Omega)\mapsto A_s(u)=\partial_N^s(s-h(u))/_{\Omega\times\{0\}},$$

where N denotes the unit outward normal vector to C on $\Omega \times \{0\}$ and

$$\partial_N^s(s-h(u))(x,0) = -c_s \lim_{t \to 0^+} t \frac{\partial (s-h(u))}{\partial t}(x,t).$$

Here $c_s := \Gamma(s)/2^{1-2s}\Gamma(1-s)$. In this way, problem (1-1) is equivalent to the local problem

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla v) = 0 & \text{in } C, \\ v > 0 & \text{in } C, \\ v = 0 & \text{on } \partial_L C, \\ \partial_N^s(v) = K(x)v^{(n+2s)/(n-2s)} & \text{on } \Omega \times \{0\}. \end{cases}$$

$$(2-1)$$

Therefore, u is a solution of (1-1) if and only if s - h(u) is a solution of (2-1). Following [9], we state the Euler–Lagrange functional associated to (2-1). Let

$$\mathcal{H} = \{ v \in H_{0I}^s(C), \text{ s.t. } \operatorname{div}(t^{1-2s} \nabla v) = 0 \text{ in } C \}.$$

For any $v, w \in \mathcal{H}$, we denote

$$\langle v, w \rangle = c_s^{-1} \int_{\Omega \times \{0\}} \partial_N^s v(x, 0) w(x, 0) dx$$

and

$$|v|^2 = c_s^{-1} \int_{\Omega \times \{0\}} \partial_N^s v(x,0) v(x,0) \, dx = \int_C t^{1-2s} |\nabla v|^2 \, dx \, dt.$$

Up to a multiplicative constant, v is a solution of (2-1) in \mathcal{H} if and only if v is a critical point of

$$J(v) = \frac{|v|^2}{\left(\int_{\Omega} K(x)v(x,0)^{2n/(n-2s)} dx\right)^{(n-2s)/n}}, \quad v \in \Sigma^+,$$

where $\Sigma^+ = \{v \in \mathcal{H}, v \geq 0, |v| = c_s^{-1/2}\}$. Observe that the exponent 2n/(n-2s) corresponds to the critical exponent of the Sobolev trace embedding $\mathcal{H} \hookrightarrow L^q(\Omega)$. Since the critical Sobolev embedding is not compact, J fails to satisfy the Palais–Smale condition. The following proposition characterizes all sequences failing the Palais–Smale condition. Let $\lambda > 0$ and $a \in \Omega$. We set

$$\delta_{(a,\lambda)}(x) = \beta_0 \left(\frac{\lambda}{1 + \lambda^2 |x - a|^2} \right)^{(n-2s)/2}, \quad x \in \mathbb{R}^n.$$

Here β_0 is a fixed positive constant chosen so that $\widetilde{\delta}_{(a,\lambda)} := s - h(\delta_{(a,\lambda)})$ satisfies

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla\widetilde{\delta}_{(a,\lambda)}) = 0 & \text{in } \mathbb{R}^{n+1}_+, \\ \partial_N^s \widetilde{\delta}_{(a,y)} = \widetilde{\delta}_{(a,y)}^{(n+2s)/(n-2s)} & \text{on } \mathbb{R}^n \times \{0\}. \end{cases}$$

Let $P\widetilde{\delta}_{(a,\lambda)}$ be the unique solution in \mathcal{H} of

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla v) = 0 & \text{in } C, \\ v = 0 & \text{on } \partial_L C, \\ \partial_N^s v = \widetilde{\delta}_{(a,y)}^{(n+2s)/(n-2s)} & \text{on } \Omega \times \{0\}. \end{cases}$$

PROPOSITION 2.1 [10, 17]. Assume that J has no critical point in Σ^+ . For any sequence $(u_k)_k$ in Σ^+ along which J is bounded and its gradient goes to zero, there exist $p \in \mathbb{N}^*$, $(\varepsilon_k)_k \to 0$ in \mathbb{R}_+ and a subsequence $(u_{k_r})_r$ of $(u_k)_k$ such that $u_{k_r} \in V(p, \varepsilon_{k_r})$, for all $r \in \mathbb{N}$. Here

$$\begin{split} V(p,\varepsilon) &:= \Big\{ u \in \Sigma^+, s.t. \ there \ exist \ a_1, \ldots, a_p \in \Omega, there \ exist \ \lambda_1, \ldots, \lambda_p > \varepsilon^{-1} \\ & and \ \alpha_1, \ldots, \alpha_p > 0, s.t. \ \left| u - \sum_{i=1}^p \alpha_i P \widetilde{\delta}_{(a_i,\lambda_i)} \right| \langle \varepsilon, \lambda_i d(a_i,\partial\Omega) \rangle \varepsilon^{-1}, \\ & |\alpha_i^{4s/(n-2s)} K(a_i) J(u)^{n/(n-2s)} - 1| < \varepsilon, \ for \ all \ i = 1, \ldots, p \\ & and \ \varepsilon_{ij} := \frac{1}{\left(\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j |a_i - a_j|^2\right)^{(n-2s)/2}} < \varepsilon, \ for \ all \ i \neq j \Big\}. \end{split}$$

The parametrization of $V(p, \varepsilon)$ is as follows.

Proposition 2.2 [10]. For any $u \in V(p, \varepsilon)$, the minimization problem

$$\min\left\{\left|u-\sum_{i=1}^{p}\alpha_{i}P\widetilde{\delta}_{(a_{i},\lambda_{i})}\right|,a_{i}\in\Omega,\lambda_{i}>0,\alpha_{i}>0,\forall i=1,\ldots,p\right\}$$

has a unique solution (up to permutation). Hence any $u \in V(p, \varepsilon)$ can be written as

$$u = \sum_{i=1}^{p} \alpha_i P \widetilde{\delta}_{(a_i, \lambda_i)} + v,$$

where $|v| < \varepsilon$ satisfies the condition

$$(V_0): \langle v, \varphi \rangle = 0 \quad \text{for } \varphi \in \left\{ P\widetilde{\delta}_{(a_i, \lambda_i)}, \frac{\partial P\widetilde{\delta}_{(a_i, \lambda_i)}}{\partial \lambda_i}, \frac{\partial P\widetilde{\delta}_{(a_i, \lambda_i)}}{\partial a_i}, i = 1, \dots, p \right\}.$$

The next proposition deals with the expansion of J in $V(p, \varepsilon)$. Its proof proceeds exactly as the one in [9, Proposition 1].

For any $x, y \in \Omega$ and $t \ge 0$, we denote

$$\widetilde{G}((x,t),y) = \frac{1}{\|(x-y,t)\|_{\mathbb{D}^{n+1}}^{n-2s}} - \widetilde{H}((x,t),y),$$

where \widetilde{H} is the regular part of \widetilde{G} . It satisfies

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla\widetilde{H}(.,y)) = 0 & \text{in } C, \\ \widetilde{H}((x,t),y) = \frac{1}{\|(x-y,t)\|_{\mathbb{R}^{n+1}}^{n-2s}} & \text{on } \partial_L C, \\ \partial_N^s \widetilde{H}(.,y) = 0 & \text{on } \Omega \times \{0\}. \end{cases}$$

Following [9, Lemma 3.4], we have the three estimates

$$P\widetilde{\delta}_{(a,\lambda)} = \widetilde{\delta}_{(a,\lambda)} - c_0 \frac{\widetilde{H}(.,a)}{\lambda^{(n-2s)/2}} + O\left(\frac{1}{\lambda^{(n+2s)/2} d(a,\partial\Omega)^{n+2-2s}}\right), \tag{2-2}$$

$$\lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} = \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} + \frac{n-2s}{2} c_0 \frac{\widetilde{H}(.,a)}{\lambda^{(n-2s)/2}} + O\left(\frac{1}{\lambda^{(n+2s)/2} d(a,\partial\Omega)^{n+2-2s}}\right), \quad (2-3)$$

$$\frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} = \frac{1}{\lambda} \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial a} - c_0 \frac{\frac{\partial \widetilde{H}(.,a)}{\partial a}}{\lambda \lambda^{(n-2s)/2}} + O\left(\frac{1}{\lambda \lambda^{(n+2s)/2} d(a,\partial\Omega)^{n+2-2s}}\right).$$

We set

$$H(x, y) = \widetilde{H}((x, 0), y), \forall x, y \in \Omega.$$

PROPOSITION 2.3. Let $p \ge 1$ and $\varepsilon > 0$ but small enough. For any $u = \sum_{i=1}^{p} \alpha_i P \widetilde{\delta}_{(a_i, \lambda_i)} + v \in V(p, \varepsilon)$, we have the expansion

$$J(u) = \frac{S^{2s/n} \sum_{i=1}^{p} \alpha_{i}^{2}}{\left(\sum_{i=1}^{p} \alpha_{i}^{2n/(n-2s)} K(a_{i})\right)^{(n-2s)/n}} \left\{ 1 + \frac{2w_{n-1}}{\sum_{i=1}^{p} K(a_{i})} \times \left[\sum_{i=1}^{p} \frac{1}{K(a_{i})^{(n-2s)/2}} \left(c_{1} \frac{H(a_{i}, a_{i})}{\lambda_{i}^{n-2s}} - c_{2} \frac{\Delta K(a_{i})}{K(a_{i})\lambda_{i}^{2}} \right) + \sum_{j \neq i} \frac{c_{1}}{(K(a_{i})K(a_{j}))^{(n-2s)/4}} \left(\frac{H(a_{i}, a_{j})}{(\lambda_{i}\lambda_{j})^{(n-2s)/2}} - \varepsilon_{ij} \right) - f(v) + \frac{1}{S \sum_{i=1}^{p} \alpha_{i}^{2}} Q(v, v) + o \left(\sum_{i=1}^{p} \frac{1}{(\lambda_{i}d(a_{i}, \partial \Omega))^{n-2s}} + \sum_{i \neq i} \varepsilon_{ij} + \sum_{i=1}^{p} \frac{1}{\lambda_{i}^{2}} + |v|^{2} \right) \right\},$$

where

$$Q(v,v) = |v|^2 - \frac{n+2s}{n-2s} \frac{\sum_{i=1}^{p} \alpha_i^2}{\sum_{i=1}^{p} \alpha_i^{2n/(n-2s)} K(a_i)} \int_{\Omega} K(x) \left(\sum_{i=1}^{p} \alpha_i P \widetilde{\delta}_{(a_i,\lambda_i)}\right)^{4s/(n-2s)} v^2 dx,$$

$$f(v) = \frac{2}{S \sum_{i=1}^{p} \alpha_i^{2n/(n-2s)} K(a_i)} \int_{\Omega} K(x) \left(\sum_{i} \alpha_i P \widetilde{\delta}_{(a_i,\lambda_i)}\right)^{(n+2s)/(n-2s)} v dx.$$

 $c_1 = \int_{\mathbb{R}^n} (dz/(1+|z|^2)^{(n+2s)/2}), \ c_2 = (1/n) \int_{\mathbb{R}^n} |z|^2 ((|z|^2-1)/(1+|z|^2)^{n+1}) \ dz, \ S = \int_{\mathbb{R}^n} (dz/(1+|z|^2)^n) \ and \ w_{n-1} \ is \ the \ volume \ of \ the \ unit \ sphere \ \mathbb{S}^{n-1}.$

Corollary 2.4. If $||K-1||_{L^{\infty}(\overline{\Omega})}$ is small enough, then for any $u = \sum_{i=1}^{p} \alpha_i P\widetilde{\delta}_{(a_i,\lambda_i)} + v \in V(p,\varepsilon)$, we have

$$J(u) = (pS)^{2s/n} + o(1)$$
 as $\varepsilon \to 0$.

Let $\alpha_0 > 0$ such that $S^{2s/n} + \alpha_0 < (2S)^{2s/n}$ and let

$$J_{S^{2s/n}+\alpha_0} = \{u \in \Sigma^+, J(u) \le S^{2s/n} + \alpha_0\}.$$

We point out that our next construction, to prove our existence theorems, lies in $J_{S^{2s/n}+\alpha_0}$. Therefore, our next analysis at infinity will be performed only in the set $V(1,\varepsilon)$.

2.2. Expansion in $V(1, \varepsilon)$ **.** In this subsection we provide the expansions of the gradient of J at $\alpha\lambda(\partial P\widetilde{\delta}_{(a_i,\lambda_i)}/\partial \lambda)$ and $\alpha(1/\lambda)(\partial P\widetilde{\delta}_{(a_i,\lambda_i)}/\partial a)$, respectively.

Proposition 2.5. Assume that K satisfies condition (nd). For any $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$, we have the expansion

$$\begin{split} \left\langle \partial J(u), \alpha \lambda \frac{\partial P \widetilde{\delta}_{a,\lambda}}{\partial \lambda} \right\rangle &= 2\alpha^2 J(u) \begin{cases} -\frac{n-2s}{2} c_1 \frac{H(a,a)}{\lambda^{n-2s}} & \text{if } n < 2+2s, \\ \frac{n-2s}{n} \frac{c_2}{K(a)} \frac{\Delta K(a)}{\lambda^2} & \text{if } n > 2+2s, \\ \frac{n-2s}{n} \frac{c_2}{K(a)} \frac{\Delta K(a)}{\lambda^2} - \frac{n-2s}{2} c_1 \frac{H(a,a)}{\lambda^{n-2s}} & \text{if } n = 2+2s, \\ +o \left(\frac{1}{\lambda^2} + \frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right). \end{split}$$

Proof of Proposition 2.5. Let $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$. Following [9], we have

$$\begin{split} \left\langle \partial J(u), \alpha \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right\rangle &= 2J(u) \bigg[\alpha^2 \bigg\langle P\widetilde{\delta}_{(a,\lambda)}, \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \bigg\rangle \\ &- \alpha^{2n/(n-2s)} J(u)^{n/(n-2s)} \int_{\Omega} K(x) P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \bigg]. \end{split}$$

LEMMA 2.6.

$$\left\langle P\widetilde{\delta}_{(a,\lambda)}, \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right\rangle = \frac{n-2s}{2} c_1 \frac{H(a,a)}{\lambda^{n-2s}} + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right).$$

Proof.

$$\begin{split} \left\langle P\widetilde{\delta}_{(a,\lambda)}, \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right\rangle \\ &= \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &= \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx + \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \left(\lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} - \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right) dx. \end{split}$$

Using (2-3) and an expansion of the first order of H(.,a) around a, we get

$$\begin{split} \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} & \left(\lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} - \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right) dx \\ &= \frac{1}{\lambda^{(n-2s)/2}} \left[-\frac{n-2s}{2} c_0 H(a,a) \int_{\mathbb{R}^n} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx \right. \\ & \left. + O \! \left(\int_{\mathbb{R}^n} |x-a| \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx \right) \right. \\ & \left. + o \! \left(\frac{1}{\lambda^{2s} d(a,\partial\Omega)^{n-2s+2}} \int_{\mathbb{R}^n} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx \right) \right] + O \! \left(\frac{1}{\lambda^n} \right). \end{split}$$

Using the fact that

$$\int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx = O\left(\frac{1}{\lambda d(a,\partial \Omega)^n}\right),$$

$$\int_{\mathbb{R}^n} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx = \frac{1}{\lambda^{(n-2s)/2}} \int_{\mathbb{R}^n} \frac{dz}{(1+|z|^2)^{(n+2s)/2}}$$

and

$$\int_{\mathbb{R}^n} |x - a| \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx = O\left(\frac{1}{\lambda^{(n-2s)/2+1}}\right),$$

Lemma 2.6 follows.

LEMMA 2.7.

$$\alpha^{2n/(n-2s)}J(u)^{n/(n-2s)}\int_{\Omega}K(x)P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)}\lambda\frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda}dx$$

$$=2\alpha^{2}\left\langle P\widetilde{\delta}_{(a,\lambda)},\lambda\frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda}\right\rangle -\alpha^{2}\frac{n-2s}{n}\frac{c_{2}}{K(a)}\frac{\Delta K(a)}{\lambda^{2}}+o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right).$$

PROOF. Let $\eta > 0$ be small enough.

$$\begin{split} &\int_{\Omega} K(x) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &= \int_{B(a,\eta)} K(x) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx + O\left(\frac{1}{\lambda^n}\right) \\ &= K(a) \int_{B(a,\eta)} P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ \int_{B(a,\eta)} \nabla K(a) (x-a) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ \frac{1}{2} \int_{B(a,\eta)} D^2 K(a) (x-a,x-a) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ o\left(\int_{B(a,\eta)} |x-a|^2 P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx\right) + O\left(\frac{1}{\lambda^n}\right). \end{split}$$

Claim 1.

$$I_1 := \int_{B(a,\eta)} P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx = 2 \left\langle P\widetilde{\delta}_{(a,\lambda)}, \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \right\rangle + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right).$$

Indeed,

$$\begin{split} I_{1} &:= \int_{B(a,\eta)} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ \frac{n+2s}{n-2s} \int_{B(a,\eta)} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} (P \widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}) \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ O \bigg(\int_{\Omega} |P \widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}|^{2} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} \, dx \bigg) \\ &= \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx + \frac{n+2s}{n-2s} \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} P \widetilde{\delta}_{(a,\lambda)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &- \frac{n+2s}{n-2s} \bigg[\int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} (P \widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}) \bigg(\lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} - \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \bigg) dx \bigg] \\ &+ O \bigg(\int_{\Omega} |P \widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}|^{2} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} \, dx \bigg) + O \bigg(\frac{1}{(\lambda d(a,\partial\Omega))^{n}} \bigg) \\ &= 2 \int_{\Omega} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx + o \bigg(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}} \bigg). \end{split}$$

Hence Claim 1 follows.

Claim 2.

$$I_2 := \int_{B(a,\eta)} \nabla K(a)(x-a) P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx = o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right).$$

Indeed, using the estimates (2-2), (2-3) and (3-1) below, we have

$$\begin{split} I_2 &= \int_{B(a,\eta)} \nabla K(a) (x-a) \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ O\bigg(\frac{1}{\lambda^{(n-2s)/2} d(a,\partial \Omega)^{n-2s}} \int_{B(a,\eta)} |x-a| \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \, dx \bigg). \end{split}$$

By a symmetry argument, we have

$$\int_{B(a,\eta)} \nabla K(a)(x-a) \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx = 0.$$

Moreover,

$$\int_{B(a,\eta)} |x - a| \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} dx$$

$$= \int_{B(a,\eta)} |x - a| \frac{\lambda^{(n+2s)/2}}{(1 + \lambda^2 |x - a|^2)^{(n+2s)/2}} dx$$

$$= \frac{1}{\lambda \lambda^{(n-2s)/2}} \int_{B(0,\lambda\eta)} \frac{|z|}{(1 + |z|^2)^{(n+2s)/2}} dz = \begin{cases} O\left(\frac{\log \lambda}{\lambda \lambda^{(n-2s)/2}}\right) & \text{if } s = \frac{1}{2}, \\ O\left(\frac{1}{12s} \frac{1}{\lambda^{(n-2s)/2}}\right) & \text{if } s \neq \frac{1}{2}. \end{cases}$$

Hence Claim 2 follows.

Claim 3.

$$I_{3} := \int_{B(a,\eta)} D^{2}K(a)(x-a,x-a)P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)}\lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx$$
$$= -\frac{n-2s}{2n}c_{2}\frac{\Delta K(a)}{\lambda^{2}} + o\left(\frac{1}{\lambda^{2}}\right).$$

Indeed, using the estimates (2-2), (2-3) and (3-1) below, we have

$$\begin{split} I_3 &= \int_{B(a,\eta)} D^2 K(a)(x-a,x-a) \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} \, dx \\ &+ O \bigg(\frac{1}{\lambda^{(n-2s)/2} d(a,\partial \Omega)^{n-2s}} \int_{B(a,\eta)} |x-a|^2 \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \, dx \bigg). \end{split}$$

Observe that

$$\int_{B(a,\eta)} D^2 K(a)(x-a,x-a) \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx$$

$$= \frac{n-2s}{2} \sum_{1 \leq i, i \leq n} \frac{\partial^2 K(a)}{\partial x_i \partial x_j} \int_{B(a,\eta)} (x-a)_i (x-a)_j \frac{1-\lambda^2 |x-a|^2}{(1+\lambda^2 |x-a|^2)^{n+1}} \lambda^n dx.$$

Using the fact that for any $i \neq j$ we have

$$\int_{B(a,\eta)} (x-a)_i (x-a)_j \frac{1-\lambda^2 |x-a|^2}{(1+\lambda^2 |x-a|^2)^{n+1}} \lambda^n \, dx = 0,$$

a change of variables $z = \lambda(x - a)$ yields

$$\int_{B(a,\eta)} D^2 K(a)(x-a,x-a) \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \lambda \frac{\partial \widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} dx$$

$$= \frac{n-2s}{2n} \frac{\Delta K(a)}{\lambda^2} \int_{\mathbb{R}^n} |z|^2 \frac{1-|z|^2}{(1+|z|^2)^{n+1}} dz + O\left(\frac{1}{\lambda^n}\right).$$

Hence Claim 3 holds. Now using the fact that $\alpha^{4s/(n-2s)}J(u)^{n/(n-2s)}K(a) = 1 + o(1)$, Lemma 2.7 is valid.

Proposition 2.5 now follows from the estimates of Lemmas 2.6 and 2.7.

Proposition 2.8. For any $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$, we have the expansion

$$\begin{split} \left\langle \partial J(u), \alpha \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{a,\lambda}}{\partial a} \right\rangle &= -2\alpha^2 J(u) \left(c_3 \frac{\nabla K(a)}{K(a)\lambda} (1+o(1)) - c_1 \frac{\frac{\partial H(a,a)}{\partial a}}{\lambda^{n+1-2s}} \right) \\ &+ O\left(\frac{1}{\lambda^2} \right) + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n+1-2s}} \right), \end{split}$$

where $c_3 = \int_{\mathbb{R}^n} |z|((|z|^2 - 1)/(1 + |z|^2)^{n+1}) dz$.

Proof of Proposition 2.8. Let $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$. Then

$$\left\langle \partial J(u), \alpha \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} \right\rangle = 2J(u) \left[\alpha^2 \left\langle P\widetilde{\delta}_{(a,\lambda)}, \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} \right\rangle - \alpha^{2n/(n-2s)} J(u)^{n/(n-2s)} \int_{\Omega} K(x) P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} dx \right].$$

Arguing as in Lemmas 2.6 and 2.7, we have the following two estimates.

LEMMA 2.9.

$$\left\langle P\widetilde{\delta}_{(a,\lambda)}, \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} \right\rangle = -c_1 \frac{\frac{\partial H(a,a)}{\partial a}}{\lambda^{n+1-2s}} + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n+1-2s}}\right).$$

LEMMA 2.10.

$$\alpha^{2n/(n-2s)}J(u)^{n/(n-2s)}\int_{\Omega}K(x)P\widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)}\frac{1}{\lambda}\frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a}dx$$

$$=2\alpha^{2}\left\langle P\widetilde{\delta}_{(a,\lambda)},\frac{1}{\lambda}\frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a}\right\rangle +\alpha^{2}c_{3}\frac{\nabla K(a)}{K(a)\lambda}+O\left(\frac{1}{\lambda^{2}}\right)+o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n+1-2s}}\right).$$

The proof of Proposition 2.8 follows from Lemmas 2.9 and 2.10.

2.3. On the *v*-part contribution. Let $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$. By an expansion of *K* around *a*, the quadratic form *Q* defined in Proposition 2.3 is close to

$$|v|^2 - \frac{n+2s}{n-2s} \int_{\Omega} P\widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} v^2 dx.$$

Therefore it is positive definite; see [1]. Consequently, there exists an invertible positive operator such that $Q(v, v) = \langle Bv, v \rangle$ and the expansion of J in $V(1, \varepsilon)$ given by Proposition 2.3 becomes

$$J(u) = \frac{S^{2s}}{(K(a))^{(n-2s)/2}} \left[1 + \frac{2w_{n-1}}{K(a)K(a)^{(n-2s)/2}} \left(c_1 \frac{H(a,a)}{\lambda^{n-2s}} - c_2 \frac{\Delta K(a)}{K(a)\lambda^2} \right) + \frac{1}{S\alpha^2} (\langle Bv, v \rangle - S\alpha^2 f(v)) \right] + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}} + \frac{1}{\lambda^2} + |v|^2 \right).$$

Observe that J behaves on the v-variable as a function close to

$$\psi(v) := \langle Bv, v \rangle - S\alpha^2 f(v),$$

which is a coercive function. It follows that ψ and therefore $v \mapsto J(\alpha P \widetilde{\delta}_{(a,\lambda)} + v)$ admit a unique minimum denoted by $\bar{v} = \bar{v}(\alpha, a, \lambda)$. The estimate of $|\bar{v}|$ is as follows.

Proposition 2.11. For any $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$, we have

$$|\bar{v}| \le M \left(\frac{|\nabla K(a)|}{\lambda} + \frac{1}{\lambda^2} \right) + M \begin{cases} \frac{1}{(\lambda d)^{(n+2s)/2}} & \text{if } n > 6s, \\ \frac{\log(\lambda d)^{2/3}}{(\lambda d)^{(n+2s)/2}} & \text{if } n = 6s, \\ \frac{1}{(\lambda d)^{n-2s}} & \text{if } n < 6s. \end{cases}$$

Here $d = d(a, \partial \Omega)$.

Proof. Since \bar{v} minimizes ψ , we derive that

$$\psi'(\bar{v}) = B\bar{v} - S\alpha f = 0.$$

Using the fact that B is invertible, we get

$$|\bar{v}| \le S \alpha ||B^{-1} f|| \le c ||f||.$$

For any v in the subspace $E_{\alpha\alpha\lambda} = \{v \in \mathcal{H}, v \in (V_0)\}$, we have

$$f(v) = \frac{2}{S \alpha^{2n/(n-2s)} K(a)} \int_{\Omega} K(x) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} v \, dx$$

$$= \frac{2}{S \alpha^{2n/(n-2s)} K(a)}$$

$$\times \left(\int_{B(a,d)} K(x) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} v \, dx + \int_{\Omega \setminus B(a,d)} K(x) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} v \, dx \right)$$

$$:= \frac{2}{S \alpha^{2n/(n-2s)} K(a)} (I_1 + I_2).$$

Using the Hölder inequality with p = 2n/(n + 2s) and q = 2n/(n - 2s), we have

$$\begin{split} |I_{2}| &\leq c \bigg(\int_{\Omega \setminus B(a,d)} P\widetilde{\delta}_{(a,\lambda)}^{2n/(n-2s)} \bigg)^{(n+2s)/2n} \bigg(\int_{\Omega} |v|^{2n/(n-2s)} \bigg)^{(n-2s)/2n} \\ &\leq c |v| \bigg(\int_{\Omega \setminus B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{2n/(n-2s)} + O \bigg(\int_{\Omega \setminus B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} |P\widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}| \, dx \bigg) \bigg)^{(n+2s)/2n} \\ &\leq c |v| \bigg(\bigg(\int_{\Omega \setminus B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{2n/(n-2s)} \bigg)^{(n+2s)/2n} + O \bigg(\int_{\Omega \setminus B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} |P\widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}| \, dx \bigg) \bigg) \\ &\leq c |v| \bigg(\frac{1}{(1d)^{(n+2s)/2}} + o \bigg(\frac{1}{(1d)^{(n+2s)/2}} \bigg) \bigg). \end{split}$$

In order to compute I_1 , we expand K around a. We have

$$\begin{split} I_{1} &= \int_{B(a,d)} K(a) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} v \, dx + \int_{B(a,d)} \nabla K(a) (x-a) P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} v \, dx \\ &+ O \bigg(\int_{B(a,d)} |x-a|^{2} P \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} |v| \, dx \bigg) := K_{1} + K_{2} + K_{3}. \end{split}$$

Using the fact that v satisfies (V_0) , we have

$$|K_{1}| \leq c \left(\int_{c_{B(a,d)}} \widetilde{\delta}_{(a,\lambda)}^{(n+2s)/(n-2s)} |v| \, dx + \int_{B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{4s/(n-2s)} |P\widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}| |v| \, dx \right)$$

$$\leq c |v| \left(\frac{1}{(\lambda d)^{(n+2s)/2}} + ||P\widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}||_{L^{\infty}(\Omega)} \left(\int_{B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{8ns/(n^{2}-4s^{2})} \, dx \right)^{(n+2s)/2n} \right).$$

Observe that by (2-2) we have $\|P\widetilde{\delta}_{(a,\lambda)} - \widetilde{\delta}_{(a,\lambda)}\|_{L^{\infty}(\Omega)} \le c/(\lambda d)^{(n-2s)/2}$ and

$$\left(\int_{B(a,d)} \widetilde{\delta}_{(a,\lambda)}^{8ns/(n^2-4s^2)} dx\right)^{(n+2s)/2n} \le c \begin{cases} \frac{1}{(\lambda d)^{2s}} & \text{if } n > 6s, \\ \frac{\log(\lambda d)^{2/3}}{(\lambda d)^{n/3}} & \text{if } n = 6s, \\ \frac{1}{(\lambda d)^{(n-2s)/2}} & \text{if } n < 6s. \end{cases}$$

Thus

$$|K_1| = |v| \begin{cases} O\left(\frac{1}{(\lambda d)^{(n+2s)/2}}\right) & \text{if } n > 6s, \\ O\left(\frac{\log(\lambda d)^{2/3}}{(\lambda d)^{2n/3}}\right) & \text{if } n = 6s, \\ O\left(\frac{1}{(\lambda d)^{n-2s}}\right) & \text{if } n < 6s. \end{cases}$$

In the same way we have

$$|K_2| = |v|O\left(\frac{|\nabla K(a)|}{\lambda}\right)$$
 and $|K_3| = |v|O\left(\frac{1}{\lambda^2}\right)$.

This completes the proof of Proposition 2.11.

3. Concentration phenomenon in $V(1, \varepsilon)$

In this section we construct a decreasing pseudo-gradient for the functional J in $V(1,\varepsilon)$ and use it to characterize the critical points at infinity of the problem of only one mass.

THEOREM 3.1. Assume that K satisfies conditions (A) and (nd). Then there exists a pseudo-gradient W of J such that for any $u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon)$, we have:

(i)
$$\langle \partial J(u), W(u) \rangle \le -c(|\nabla K(a)|/\lambda + 1/\lambda^2 + 1/(\lambda d)^{n+1-2s});$$

- (ii) $\langle \partial J(u+\bar{v}), W(u) + (\partial \bar{v}/\partial(\alpha, a, \lambda))(W(u)) \rangle \leq -c(|\nabla K(a)|/\lambda + 1/\lambda^2 + 1/(\lambda d)^{n+1-2s}),$ where c is a fixed positive constant independent of u and ε .
- (iii) Furthermore, the distance $d(t) = d(a(t), \partial \Omega)$ increases if it is small enough.
- (iv) Moreover, W is a bounded vector field and the only region where the components $\lambda(t)$ are not bounded along the flow lines of W are those where the concentration points a(t) converge along the flow lines of W to a critical point in \mathcal{K}^+ .

PROOF. Ω being a regular bounded domain, there exists a small positive constant d_0 such that for any $a \in \Omega$ with $d(a, \partial \Omega) \le d_0$, there exists a unique $\bar{a} \in \partial \Omega$ satisfying $d(a, \partial \Omega) = \|a - \bar{a}\|$. Furthermore, under assumption (A) we have $(\partial K/\partial v_a)(a) \le -c$. Here v_a denotes the unit outward normal vector at a of the boundary of $\Omega_a := \{x \in \Omega, d(x, \partial \Omega) \le d(a, \partial \Omega)\}$. Let

$$u = \alpha P \widetilde{\delta}_{(a,\lambda)} \in V(1,\varepsilon).$$

The construction of the required vector field W(u) will be decomposed in two steps.

Step 1. Assume that $d(a, \partial \Omega) \leq d_0$. In this case we claim that

$$H(a,a) \sim \frac{1}{(2d(a,\partial\Omega))^{n-2s}}$$
 and $\frac{\partial H}{\partial \nu_a}(a,a) \sim \frac{2(n-2s)}{(2d(a,\partial\Omega))^{n-2s+1}}$ as ε is small. (3-1)

Indeed, let $a' = 2\bar{a} - a$ (a' is the symmetric point of a with respect to $\partial\Omega$). By choosing d_0 small, $a' \notin \Omega$. For any $x, y \in \Omega$ and $t \ge 0$, we set

$$\varphi((x,t),y) = \widetilde{H}((x,t),y) - \frac{1}{\|(x-a',t)\|^{n-2s}}.$$

Since $a' \notin \Omega$, φ satisfies

$$\begin{cases} \operatorname{div}(t^{1-2s}\nabla\varphi(.,y)) = 0 & \text{in } C, \\ \varphi((x,t),y) = \frac{1}{\|(x-y,t)\|^{n-2s}} - \frac{1}{\|(x-a',t)\|^{n-2s}} & \text{on } \partial\Omega, \\ \partial_N^s \varphi(.,y) = 0 & \text{on } \Omega \times \{0\}. \end{cases}$$

Using the maximum principle, and the fact that on $\partial\Omega$ we have

$$\left| \frac{1}{||a-v||^{n-2s}} - \frac{1}{||a'-v||^{n-2s}} \right| = o\left(\frac{1}{d(a,\partial\Omega)^{n-2s}} \right) \quad \text{for } d_0 \text{ small,}$$

we get

$$|\varphi((a,0),a)| = o\left(\frac{1}{d(a,\partial\Omega)^{n-2s}}\right).$$

The first estimate of (3-1) follows. In the same way we prove the second estimate of (3-1). We set

$$\dot{a} = -\frac{v_a}{\lambda}.\tag{3-2}$$

We move a along the differential equation (3-2). u satisfies

$$\dot{u} = W_1(u)$$
 where $W_1(u) = -\alpha \frac{1}{\lambda} \frac{\partial P \widetilde{\delta}_{(a,\lambda)}}{\partial a} v_a$.

The expansion of Proposition 2.8 yields

$$\langle \partial J(u), W_1(u) \rangle = 2\alpha^2 J(u) \left(c_3 \frac{\frac{\partial K}{\partial v_a}(a)}{K(a)\lambda} - c_1 \frac{\frac{\partial H(a,a)}{\partial v_a}}{\lambda^{n+1-2s}} \right) + O\left(\frac{1}{\lambda^2}\right) + o\left(\frac{1}{(\lambda d(a,\partial\Omega))^{n-2s+1}}\right).$$

Using assumption (A) and estimate (3-1), we get

$$\begin{split} \langle \partial J(u), W_1(u) \rangle & \leq -c \bigg(\frac{1}{\lambda} + \frac{1}{(\lambda d(a, \partial \Omega))^{n-2s+1}} \bigg) \\ & \leq -c \bigg(\frac{|\nabla K(a)|}{\lambda} + \frac{1}{\lambda^2} + \frac{1}{(\lambda d(a, \partial \Omega))^{n-2s+1}} \bigg). \end{split}$$

Condition (i) of Theorem 3.1 is then satisfied. Observe that in this region W_1 has no action on the variable λ and moves the concentration point a inward of Ω .

Step 2. Assume that $d(a, \partial \Omega) \ge d_0/2$. In this case we move the concentration point a, producing the equation

$$\dot{a} = \frac{1}{\lambda} \frac{\nabla K(a)}{|\nabla K(a)|},$$

if a is far from the critical points of K. If a is near a critical point of K, we move λ , resulting in the equation

$$\dot{\lambda} = \text{sign}(\chi_a)\lambda,$$

where

$$\operatorname{sign}(\chi_a) = \begin{cases} 1 & \text{if } n < 2 + 2s, \\ \operatorname{sign}(-\Delta K(a)) & \text{if } n > 2 + 2s, \\ \operatorname{sign}\left(\frac{n - 2s}{2}c_1H(a, a) - \frac{n - 2s}{n}c_2\frac{\Delta K(a)}{K(a)}\right) & \text{if } n = 2 + 2s. \end{cases}$$

Since *K* satisfies condition (*nd*), there exist fixed positive constants η_0 and ρ_0 such that for any $a \in \Omega$,

$$|\nabla K(a)| \le 2\eta_0 \Rightarrow \exists y \in \mathcal{K} \text{ s.t. } a \in B(y, \rho_0) \quad \text{and} \quad \operatorname{sign}(\chi_a) = \operatorname{sign}(\chi_y).$$

Define

$$\varphi : \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \begin{cases} 1 & \text{if } |t| \le \frac{\eta_0}{\varepsilon^{\gamma}}, \\ 0 & \text{if } |t| \ge \frac{2\eta_0}{\varepsilon^{\gamma}}, \end{cases}$$

where $\gamma := \min(1, n - 2s)$. Observe that if $n \ge 3$, the $\gamma = 1$ We set

$$W_2(u) = \varphi(\lambda^{\gamma} | \nabla K(a) |) \alpha \operatorname{sign}(\chi_a) \lambda \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial \lambda} + (1 - \varphi(\lambda^{\gamma} | \nabla K(a) |)) \alpha \frac{1}{\lambda} \frac{\partial P\widetilde{\delta}_{(a,\lambda)}}{\partial a} \frac{\nabla K(a)}{| \nabla K(a) |}$$

We claim that W_2 satisfies (i) of Theorem 3.1. Indeed, using the expansion of Propositions 2.5 and 2.8, we have

$$\langle \partial J(u), W_{2}(u) \rangle$$

$$= 2\alpha^{2} J(u)\varphi(\lambda^{\gamma}|\nabla K(a)|) \operatorname{sign}(\chi_{a})$$

$$\times \begin{cases} -\frac{n-2s}{2}c_{1}\frac{H(a,a)}{\lambda^{n-2s}} & \text{if } n < 2+2s \\ \frac{n-2s}{n}\frac{c_{2}}{K(a)}\frac{\Delta K(a)}{\lambda^{2}} & \text{if } n > 2+2s \\ \frac{n-2s}{n}\frac{c_{2}}{K(a)}\frac{\Delta K(a)}{\lambda^{2}} - \frac{n-2s}{2}c_{1}\frac{H(a,a)}{\lambda^{n-2s}} & \text{if } n = 2+2s \end{cases}$$

$$+ \varphi(\lambda^{\gamma}|\nabla K(a)|) \left(o\left(\frac{1}{\lambda^{2}} + \frac{1}{(\lambda d(a,\partial\Omega))^{n-2s}}\right)\right)$$

$$-2\alpha^{2} J(u)(1-\varphi(\lambda^{\gamma}|\nabla K(a)|)) \left(c_{3}\frac{|\nabla K(a)|}{K(a)} + O\left(\frac{1}{\lambda^{2}}\right) + O\left(\frac{1}{\lambda^{n-1-2s}}\right)\right).$$

Observe that

$$\lambda^{\gamma} |\nabla K(a)| \le \frac{2\eta_0}{\varepsilon^{\gamma}} \mapsto |\nabla K(a)| \le 2\eta_0 \quad \text{and} \quad \frac{|\nabla K(a)|}{\lambda} = O\left(\frac{1}{\lambda^{\gamma+1}}\right).$$

Therefore,

$$\begin{split} \langle \partial J(u), W_2(u) \rangle \\ & \leq -c \bigg[\varphi(\lambda^{\gamma} | \nabla K(a)|) \bigg(\frac{1}{\lambda^2} + \frac{1}{\lambda^{n-2s}} + \frac{|\nabla K(a)|}{\lambda} \bigg) \\ & + (1 - \varphi(\lambda^{\gamma} | \nabla K(a)|)) \bigg(\frac{|\nabla K(a)|}{\lambda} + O\bigg(\frac{1}{\lambda^2} \bigg) + O\bigg(\frac{1}{\lambda^{n+1-2s}} \bigg) \bigg) \bigg]. \end{split}$$

Observe now that if $\lambda^{\gamma} |\nabla K(a)| \geq \eta_0 / \varepsilon^{\gamma}$, we have

$$\frac{1}{\lambda^2} = o\left(\frac{|\nabla K(a)|}{\lambda}\right) \quad \text{and} \quad \frac{1}{\lambda^{n+1-2s}} = o\left(\frac{|\nabla K(a)|}{\lambda}\right).$$

Indeed, if $\gamma = 1$, then $1/\lambda^{n+1-2s} = O(1/\lambda^2) = o(|\nabla K(a)|/\lambda)$ as ε small. If $\gamma = n-2s$, then $1/\lambda^2 = O(1/\lambda^{n+1-2s}) = o(|\nabla K(a)|/\lambda)$ as ε small. Therefore,

$$\langle \partial J(u), W_2(u) \rangle \le -c \left(\frac{|\nabla K(a)|}{\lambda} + \frac{1}{\lambda^2} + \frac{1}{\lambda^{n+1-2s}} \right).$$

The pseudo-gradient W_2 satisfies (i) of Theorem 3.1. By construction $\lambda(t)$ increases if and only if the concentration point a(t) is near a critical point y in \mathcal{K}^+ .

The required vector field W of Theorem 3.1 is defined by a convex combination of W_1 and W_2 . It satisfies (i), (iii) and (iv) of Theorem 3.1. Inequality (ii) follows from (i) and the estimate of $|\bar{v}|$ given in Proposition 2.11. This completes the proof of Theorem 3.1.

Corollary 3.2. Under conditions (A) and (nd), the critical points at infinity of J in $V(1,\varepsilon)$ are

$$(y)_{\infty} := \frac{1}{K(y)^{(n-2s)/n}} P\widetilde{\delta}_{(y,\infty)}, y \in \mathcal{K}^+.$$

The Morse index of $(y)_{\infty}$ equals n - ind(K, y).

PROOF. The characterization of the critical points at infinity of J in $V(1,\varepsilon)$ follows from Theorem 3.1. Concerning the Morse index of a critical point at infinity, the claim follows from the expansion of $J(\alpha P \widetilde{\delta}_{(a,\lambda)} + \overline{\nu})$ when a approaches y with $y \in \mathcal{K}^+$. Arguing as [4, Lemma 4.2], we can find a change of variables

$$(a, \lambda) \longmapsto (a', \lambda')$$

such that

$$J(\alpha P\widetilde{\delta}_{(a,\lambda)} + \bar{\nu}) = \frac{S}{K(a)^{(n-2s)/n}} \left(1 + \frac{1}{\lambda^{\beta}}\right),$$

where $\beta = 2$ if $n \ge 2 + 2s$ and $\beta = n - 2s$ if n < 2 + 2s. Therefore, the Morse index of J at $(y)_{\infty}$ corresponds to the Morse index of 1/K(a) at y. This finishes the proof of Corollary 3.2.

4. Proof of the existence theorems

4.1. Proof of Theorems 1.1 and 1.2. Let $\alpha_0 > 0$ such that $S^{2s/n} + \alpha_0 < (2S)^{2s/n}$. Using Corollary 2.4, there exists $\delta_0 > 0$ such that if $||K - 1||_{L^{\infty}(\bar{\Omega})} \le \delta_0$, then the values of J at all critical points at infinity in $V(1, \varepsilon)$ are below $S^{2s/n} + \alpha_0/4$ and the values of J at the remaining critical points at infinity are above $S^{2s/n} + \alpha_0$.

For any critical point at infinity $(y)_{\infty}$, $y \in \mathcal{K}^+$, we denote by $W_u^{\infty}(y)_{\infty}$ the unstable manifold at infinity of $(y)_{\infty}$ with respect to the gradient vector field $(-\partial J)$. According to [2, pages 356–357] and [10, Lemma 10], $W_u^{\infty}(y)_{\infty}$ is identified by $W_s(y)$, where $W_s(y)$ is the classical stable manifold of the (true) critical point y with respect to $(-\partial K)$. Therefore, dim $W_u^{\infty}(y)_{\infty} = n - \operatorname{ind}(K, y)$. Let us set

$$M_{k_0}^{\infty} = \bigcup_{y \in \mathcal{K}^+, n-\operatorname{ind}(K, y) \le k_0 - 1} W_u^{\infty}(y)_{\infty}.$$

 $M_{k_0}^{\infty}$ defines a stratified set of top dimension less than $k_0 - 1$. Moreover,

$$M_{k_0}^{\infty} \subset J_{S^{2s/n}+\alpha_0/4} = \left\{ u \in \Sigma^+, J(u) \leq S^{2s/n} + \frac{\alpha_0}{4} \right\}.$$

We introduce the following proposition.

Proposition 4.1. If J has no critical point in Σ^+ , then the set $M_{k_0}^{\infty}$ is contractible in $J_{S^{2s/n}+\alpha_0/4}$.

Proof of Proposition 4.1. Let

$$J_1(u) = \frac{|u|^2}{\left(\int_{\Omega} u^{2n/(n-2s)}\right)^{(n-2s)/n}}, \quad u \in \Sigma^+.$$

By [21] we know that

$$S^{2s/n} = \inf_{u \in {}^+} J_1(u).$$

Using the fact that

$$J(u) = J_1(u)(1 + O(||K - 1||_{L^{\infty}(\bar{\Omega})})),$$

we derive, for $||K-1||_{L^{\infty}(\bar{\Omega})}$ small enough,

$$J_{S^{2s/n}+\alpha_0/4} \subset J_{1S^{2s/n}+\alpha_0/2} \subset J_{S^{2s/n}+3\alpha_0/4}$$
.

Using the fact that J has no critical point in Σ^+ and no critical value at infinity between $S^{2s/n} + \alpha_0/4$ and $S^{2s/n} + 3\alpha_0/4$, we get

$$J_{S^{2s/n}+3\alpha_0/4} \simeq J_{S^{2s/n}+\alpha_0/4}$$
 and therefore $J_{1S^{2s/n}+\alpha_0/2} \simeq J_{S^{2s/n}+\alpha_0/4}$. (4-1)

Here \simeq denotes retraction by deformation. The following lemma shows that $J_{1S^{2s/n}+\alpha_0/2}$ and Ω are topologically the same.

Lemma 4.2. For $\alpha_0 > 0$ small enough, $J_{1S^{2s/n}+\alpha_0/2}$ is homotopy equivalent to Ω.

PROOF. For any $\lambda > 0$ we define

$$f_{\lambda}: \Omega \longrightarrow \Sigma^{+}$$

$$a \longmapsto \frac{P\widetilde{\delta}_{(a,\lambda)}}{|P\widetilde{\delta}_{(a,\lambda)}|}.$$

Since $\lim_{\lambda \to +\infty} J_1(P\widetilde{\delta}_{(a,\lambda)}/|P\widetilde{\delta}_{(a,\lambda)}|) = S^{2s/n}$, uniformly with respect to $a \in \Omega$, then for λ_0 large enough, f_{λ_0} maps Ω into $J_{1S^{2s/n}+\alpha_0/2}$.

In order to construct a continuous map $r: J_{1S^{2s/n}+\alpha_0/2} \longrightarrow \Omega$ satisfying $r \circ f_{\lambda_0} \sim \mathrm{id}_{\Omega}$, we first state the following claim:

$$J_{1S^{2s/n}+\alpha_0/2} \subset V(1,\varepsilon)$$
 for α_0 small enough. (4-2)

Indeed, if not, there exists a sequence $(w_k)_k$ in Σ^+ such that $\lim_{k\to+\infty} J_1(w_k) = S^{2s/n}$ and $w_k \notin V(1, \varepsilon)$, for all k. Since (w_k) is a minimizing sequence, it satisfies $\lim_{k\to+\infty} \partial J_1(w_k) = 0$. Using these facts and the result of Proposition 2.1, we derive that $(w_k)_k$ converges in Σ^+ and therefore the infimum of J_1 on Σ^+ is attained. This is a contradiction with the result of [21], where it is proved that the infimum of J_1 is never achieved in the bounded domain cases. Hence (4-2) is valid.

Now, from the result of Proposition 2.2, we know that for any $u \in V(1, \varepsilon)$, the minimization problem

$$\min\{|u - \alpha P\widetilde{\delta}_{(a,\lambda)}|, \alpha > 0, a \in \Omega, \lambda > 0\}$$

has a unique solution $(\bar{\alpha}(u), \bar{a}(u), \bar{\lambda}(u))$ up to permutation. Let

$$\bar{a}: V(1,\varepsilon) \longrightarrow \Omega$$
 $u \longmapsto \bar{a}(u)$

and let $r = \bar{a} \circ \iota$ where $\iota : J_{1S^{2s/n} + \alpha_0/2} \hookrightarrow V(1, \varepsilon)$ is the natural injection. Clearly we have $r \circ f_{\lambda_0} = \mathrm{id}_{\Omega}$. The result of Lemma 4.2 follows.

Using Lemma 4.2 and (4-1), the result of Proposition 4.1 follows, since by assumption of Theorems 1.1 and 1.2, Ω is a contractible domain.

Without loss of generality, we may assume that $k_0 - 1 = \dim M_{k_0}^{\infty}$. Let $C(M_{k_0}^{\infty})$ be a contraction of dimension k_0 of $M_{k_0}^{\infty}$ in $J_{S^{2s/n} + \alpha_0/4}$. We are arguing by contradiction and supposition that J has no critical points in Σ^+ . Using the deformation lemma of [3] and a dimension argument, we have

$$C(M_{k_0}^{\infty}) \simeq \bigcup_{\mathbf{y} \in \mathcal{K}^+, n-\operatorname{ind}(K, \mathbf{y}) < k_0} W_u^{\infty}(\mathbf{y})_{\infty}.$$

Therefore by assumption (a) of Theorem 1.1, we obtain

$$C(M_{k_0}^{\infty}) \simeq M_{k_0}^{\infty}.$$

Thus, by applying an Euler-Poincaré characteristic argument, we get

$$1 = \sum_{y \in \mathcal{K}^+, n-\operatorname{ind}(K, y) \le k_0 - 1} (-1)^{n-\operatorname{ind}(K, y)}.$$

This contradicts assumption (b) of Theorem 1.1. The proof of Theorems 1.1 and 1.2 follows.

4.2. Proof of Theorem 1.3. Assume that *J* has no critical points in Σ^+ . Using (4-1), we have

$$\chi(J_{S^{2s/n}+\alpha_0/4}) = \chi(J_{1S^{2s/n}+\alpha_0/2}).$$

Since

$$J_{S^{2s/n}+\alpha_0/4}\simeq\bigcup_{y\in\mathcal{K}^+}W_u^\infty(y)_\infty,$$

we get

$$\chi(J_{1S^{2s/n}+\alpha_0/2}) = \sum_{y \in \mathcal{K}^+} (-1)^{n-\text{ind}(K,y)}.$$

The result of Lemma 4.2 completes the proof of Theorem 1.3.

References

- A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182 (Longman Scientific & Technical, Harlow, 1989).
- [2] A. Bahri, 'An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimensions', *Duke Math. J.* **81** (1996), 323–466.
- [3] A. Bahri and P. Rabinowitz, 'Periodic orbits of hamiltonian systems of three body type', *Ann. Inst. H. Poincaré Anal. Non Linéaire* **8** (1991), 561–649.
- [4] R. Ben Mahmoud and H. Chtioui, 'Prescribing the scalar curvature problem on higher-dimensional manifolds', *Discrete Contin. Dyn. Syst.* 32(5) (2012), 1857–1879.
- [5] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, 'A concave-convex elliptic problem involving the fractional Laplacian', *Proc. R. Soc. Edinburgh Sect. A* 143 (2013), 39–71.
- [6] A. Chang and M. Gonzalez, 'Fractional Laplacian in conformal geometry', Adv. Math. 226(2) (2011), 1410–1432.
- [7] H. Chtioui and W. Abdelhedi, 'On a fractional Nirenberg problem on *n*-dimensional spheres: existence and multiplicity results', *Bull. Sci. Math.* **140**(6) (2016), 617–628.

- [8] H. Chtioui, W. Abdelhedi and H. Hajaiej, 'A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis: Part I', Anal. PDE 9(6) (2016), 1285–1315.
- [9] H. Chtioui, W. Abdelhedi and H. Hajaiej, 'The Bahri–Coron theorem for fractional Yamabe-type problems', Adv. Nonlinear Stud. 18(2) (2018), 393–407.
- [10] J. M. Coron and A. Bahri, 'On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain', *Comm. Pure Appl. Math.* 41 (1988), 255–294.
- [11] Y. Li, T. Jin and J. Xiong, 'On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions', *J. Eur. Math. Soc. (JEMS)* **16** (2014), 1111–1171.
- [12] Y. Li, T. Jin and J. Xiong, 'On a fractional Nirenberg problem, part II: Existence of solutions', Int. Math. Res. Not. IMRN (6) 2015 (2015), 1555–1589.
- [13] Y. Li, T. Jin and J. Xiong, 'The Nirenberg problem and its generalizations: a unified approach', Math. Ann. 369(1-2) (2017), 109-151.
- [14] J. Palatucci, E. Di Nezza and E. Valdinoci, 'Hitchhiker's guide to the fractional Sobolev spaces', Bull. Sci. Math. 136 (2012), 521–573.
- [15] K. Sharaf, 'An infinite number of solutions for an elliptic problem with power nonlinearity', Differential Integral Equations 30 (2017), 133–144.
- [16] L. Silvestre and L. Caffarelli, 'An extension problem related to the fractional Laplacian', Comm. Partial Differential Equations 32 (2007), 1245–1260.
- [17] M. Struwe, 'A global compactness result for elliptic boundary value problem involving limiting nonlinearities', Math. Z. 187 (1984), 511–517.
- [18] J. Tan, 'Positive solutions of nonlinear problems involving the square root of the Laplacian', Adv. Math. 224 (2010), 2052–2093.
- [19] J. Tan, 'The Brezis-Nirenberg type problem involving the square root of the Laplacian', *Calc. Var. Partial Differential Equations* **42** (2011), 21–41.
- [20] J. Tan, 'Positive solutions for non local elliptic problems', Discrete Contin. Dyn. Syst. 33 (2013), 837–859.
- [21] N. Tavoularis and A. Cotsiolis, 'Best constants for Sobolev inequalities for higher order fractional derivatives', J. Math. Anal. Appl. 295 (2004), 225–236.
- [22] J. Torrea and P. Stinga, 'Extension problem and Harnack's inequality for some fractional operators', *Comm. Partial Differential Equations* **35** (2010), 2092–2122.
- [23] Y. Zheng, Y. Chen and C. Liu, 'Existence results for the fractional Nirenberg problem', J. Funct. Anal. 270(11) (2016), 4043–4086.

AZEB ALGHANEMI, Department of Mathematics,

King Abdulaziz University, P.O. Box 80230, Jeddah, Kingdom of Saudi Arabia e-mail: aalghanemi@kau.edu.sa

HICHEM CHTIOUI, Department of Mathematics,

Sfax University, Faculty of Sciences of Sfax, 3018 Sfax, Tunisia

e-mail: Hichem.Chtioui@fss.rnu.tn