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Abstract

We consider the fractional critical problem Asu = K(x)u*29/=29 y > 0 in Q,u =0 on 4Q, where
A, s €(0,1), is the fractional Laplace operator and K is a given function on a bounded domain Q of
R*,n >2. This is based on A. Bahri’s theory of critical points at infinity in Bahri [Critical Points at
Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182 (Longman
Scientific & Technical, Harlow, 1989)]. We prove Bahri’s estimates in the fractional setting and we
provide existence theorems for the problem when X is close to 1.
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1. Introduction

Let Q be a bounded domain of R*,n > 2, with smooth boundary Q. Let K : Q>R
be a given function. We look for solutions of the fractional partial differential equation

(PDE)
Asu — Ku(n+2s)/(n—2s)’
u>0 inQ, (1-1)
u=0 ondQ.

Here A;, s € (0, 1), denotes the fractional Laplace operator defined by using the

spectrum of the Laplace operator (—A) in Q with zero Dirichlet boundary condition.
In recent years extensive studies have been devoted to PDEs involving the fractional

Laplacian A due to its broad applications in many branches of sciences; see [14] and

the references therein.
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160 A. Alghanemi and H. Chtioui [2]

After the seminal work of Caffarelli and Silvester [16] who developed a local
interpretation of the problem in one more dimensions (see also [5, 18, 20] for
similar extensions), many authors studied nonlinear problems involving the fractional
Laplacian. For Riemannian manifolds without boundary, we refer the reader to [6—
8, 11-13, 23]. For manifolds with boundary, only very few papers address problem
(1-1). In [15, 18], the authors established existence results for the subcritical problems
in the particular case s = % In [19], Tan proved that (1-1) has no solution if K = 1 and
Q is a star-shaped domain. Later in [9], Abdelhedi, Chtioui and Hajaiej proved that
(1-1) has a solution if K = 1 and Q admits a nontrivial group of homology.

Our aim in this paper is to provide some conditions on K and on the domain Q to
prove existence results for (1-1).

(A) Assume that (0K/dv)(x) < 0, for all x € Q.
Here v is the unit outward normal vector on dQ.

(nd) Assume that K is a C2-positive function on Q, having only nondegenerate critical
points Yy, . . ., y¢ with

AK(@y)#0,Vi=0,...,£ ifn>2+2s,

and

n—2s n—2s ¢
H@y;, yi) —
c1H (i, yi) Kon)

where ¢; = [, (dz/(1 + [Z)"2972), ¢y = (1/n) [, 12P((12* = D/(1 + [2)™!) dz,
and H(.,.) is the regular part of the Green function associated to A;. Let

K+ ={yeQ,s.t,VK(y) =0and ~AK() > 0} ifn>2+2s,

AK(y;) #0, Vi=0,...,0 ifn=2+2s,

C]H(y,y)— K—(}])AK(}’)>0

2 2
K+ = {yeQ,s.t. VK(y) = 0 and == n-S o }
ifn=2+2s,

and
Kt={yeQst. VK(y) =0} ifn<2+2s.

For any critical point y of K, we denote by ind(K, y) the Morse index of K aty. The
following theorem is the first main result of this paper.

TueEOREM 1.1. Let K be a given function on a contractible bounded domain of R",n > 2,
satisfying conditions (A) and (nd). If there exists an integer ko such that

(@) n-ind(K,y) # ko, forall y € K*,

(b) :
Z (_1)n—1nd(K,y) _ 1 ;ﬁ 0’

yeK*,n—ind(K,y)<ko—1

then (1-1) admits at least one solution provided that K is close to 1.
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Observe that for any integer ko > max{n — ind(K, y), y € K*}, condition (a) of
Theorem 1.1 is trivially satisfied. For applications, we think that the following version
is helpful:

THeEOREM 1.2. Let Q be a contractible bounded domain of R",n > 2, and let K be a
function satisfying conditions (A) and (nd). If

Z (_l)n—ind(K,y) _ 1 7& 0’
yeK+
then (1-1) admits at least one solution provided that K is close to 1.

The argument we use is able to extend the result of Theorem 1.2 to any bounded
domain of R”, n > 2.

Tueorem 1.3. Let Q be a bounded domain of R",n > 2. Under conditions (A) and (nd),
if

D=1 E (@) # 0,

yeK+
then (1-1) admits at least one solution provided that K is close to 1. Here y(€2) denotes
the Euler—Poincaré characteristic of Q.

Our method is based on Bahri’s theory of critical points at infinity. For this theory,
we refer to [1]. We will prove Bahri’s estimates in the fractional framework and we
use it to prove our existence results.

2. Estimates at infinity

2.1. Variational framework. Following [16, 18], we state the local equation
associated to (1-1) on the half cylinder C = Q X [0, o0). The celebrated fractional
harmonic extension result of Caffarelli and Silvester [16] on R” and Cabré and Tan [ 18]
on bounded domains (see also [5, 20, 22]) says that any u € H(€2); for the fractional
Sobolev space on €, the problem

div(#'">Vv) =0 inC,
v=0 on 9;C := 0Q x [0, c0),
Vv=1u on Q x {0},

admits a unique solution denoted by s — h(u) in the Sobolev space H, (C) defined by
the closure of _
Co(C) :={veC™(C),s.t. v=00n9.C},

with respect to the norm
v = f 72|V dx dt.
c

It follows that A; is expressed as follows:

u € Hy(Q) = As(u) = 0y (s — h(u))/axoy»
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where N denotes the unit outward normal vector to C on Q X {0} and

a(s — h(u))
ot

ay(s — h(u))(x,0) = —c; ,li%lt (x,0).

Here ¢, := I'(5)/2'">T'(1 — 5). In this way, problem (1-1) is equivalent to the local

problem
div(s'=2Vv) =0 in C,
v>0 in C,
y=0 on 9;C, 2-1)

9, (v) = K(xpm+29/=29 - on Q x {0}

Therefore, u is a solution of (1-1) if and only if s — A(u) is a solution of (2-1).
Following [9], we state the Euler—Lagrange functional associated to (2-1). Let

H = {v e Hj, (C),s.t div(r'"Vy) = 0in C}.

For any v, w € H, we denote
(v, w) = c;l f Oyv(x, 0)w(x, 0) dx
Qx{0}

and
W = ¢! f v(x, 0)v(x, 0) dx = f 72|V dx dt.
Qx{0} c

Up to a multiplicative constant, v is a solution of (2-1) in H if and only if v is a critical

point of
v?

- , vex',
(, KCov(, 0y2n/n=20 g2

J(v)

where X* ={ve H,v>0,| = c}l/z}. Observe that the exponent 2n/(n —2s)
corresponds to the critical exponent of the Sobolev trace embedding H — LI(Q).
Since the critical Sobolev embedding is not compact, J fails to satisfy the Palais—
Smale condition. The following proposition characterizes all sequences failing the
Palais—Smale condition. Let A > 0 and a € Q. We set

2 (n=25)/2
O (x) = /30( )

_ , xeR".
1+ 22|x —al?

Here 3 is a fixed positive constant chosen so that 'S(a’ 2 =8 = h(0,y) satisfies
{div(zl-%v}im) =0 inR,

O3B = B on B (0}

Let P, be the unique solution in H of
div(/"™»Vy)=0  inC,
y=0 on 0;C,

v =002 on Q x {0},
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ProrosiTion 2.1 [10, 17]. Assume that J has no critical point in *. For any sequence
(ui)r in T along which J is bounded and its gradient goes to zero, there exist
p eN*, (g)r = 0 in Ry and a subsequence (uy,), of (ur)r such that uy, € V(p, &),
forall r e N. Here

Vip,e) := {u € X7, s.t. there exist ay, . . ., a, € Q, there exist 4y,...,4, > g

p —_—
u— Z CYiP(S(a,-,/l,-)
i=1

& K (a) T @) ") 1| < e, foralli=1,...,p
1

and ay,...,a, >0,s.t. (g, id(a;, 89))8‘1,

and g;j = <eg, foralli+ j}.

L4 \20)/2
(/l_j + A +ﬂ,'/l/'|(l,‘ —Cljl )

The parametrization of V(p, €) is as follows.

Prorosition 2.2 [10]. For any u € V(p, &), the minimization problem

p —_—
= Z @iP,1)
i=1

has a unique solution (up to permutation). Hence any u € V(p, €) can be written as

min{ ,aiEQ,/li>O,al~>O,Vi:1,...,p}

p
u= Z cyiP(S(a[.,,b) + v,
i=1

where |v| < g satisfies the condition

OP(q,1) OPS,a,
@) OT0wd) ;_ ’p}_

Vo) : =0 Pgav i)
Vo) : (v, @) fowe{ @l g0 oa;

The next proposition deals with the expansion of J in V(p, €). Its proof proceeds
exactly as the one in [9, Proposition 1].
For any x,y € Q and ¢ > 0, we denote

_ 1 _
G 1), =——-H st)s V)
0= ey ey

where H is the regular part of G. It satisfies

div(t'>VH(.,y)) = 0 inC,
~ 1
H((x,1),y) = ————— ond,C,
_ l(x =y, DI
8% H(.,y) =0 on Q x {0}.
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Following [9, Lemma 3.4], we have the three estimates

- ~ H(.,a) 1
Pown = dan = o (=292 * 0( A+2924(q, 9Qyn+2-2s )’ 2-2)
an(a,,D 652“,,1) n—2s H(,a) 1
4 o A o1 T 1-29)/2 + ( A429/24(q, HQ)yr+2-25 )’ (2-3)
= = OH a
laPé(M) _ 185((1,/1) e I{g(a ) + 0( 1 )
A da A Oa 0 QAn=2972 AA*29/2d(a, HQy+2-2s |

We set _
H(x,y) = H((x,0),y),Yx,y € Q.

Prorosition 2.3. Let p > 1 and € > 0 but small enough. For any u = Zf:l cy,»Pg(ai,,li) +
v € V(p, &), we have the expansion

SZs/n Zle al_Z { 2Wn—1
(Zi] Cinn/(VL—Zs)I((ai))(n—Zs)/n

P
1 H(a;, a;) AK(a;) )
X —
[Z K(a;)n2972 (Cl T €2 K2

J(u) =

i=1

c H(a;,aj) A\ 1
; ; (K(ai)K(aj))(n2‘9)/4(%@)(”M - i)~ S0 + =5 AL

p

1 51,
* O(Z Ld(@. o)y ; &ij * Z; 2 )}

=1 i
where

) f’_ a? p . 4s5/(n-2s)
0.V = WP - 2222 21 o f K(x)(z ains(a,v,A,)) vids,
n-2s Zf:l a,izn/("_ZS)K(ai) 1) P

f( ) 2 f ( ) Z g (n+25)/(n—2s) 4
V) = - Kx( ;P ai,i) vdx.
S ZipZI a?n/(n—Zs)K(ai) o i (@, ;)

c1= fo, @2/ + ZP)292), ¢ = (1) [, 2P (2P = D/A + D) dz, S = [, (dz/
(1 + |2*)") and w,_; is the volume of the unit sphere S".

Cororrary 2.4. If ||IK — llle@ is small enough, then for any u = Zf.;l ain(aM[.) +ve
V(p, &), we have
Jw) = (pS)Y*" +0(1) ase— 0.

Let ap > 0 such that $>/" + @ < (25)?*/" and let
Js25imrqy = U € Z%, J() < S + ap).

We point out that our next construction, to prove our existence theorems, lies in
Js2sn,q,. Therefore, our next analysis at infinity will be performed only in the set
V(,e).
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2.2. Expansion in V(1,&). In this subsection we provide the expansions of the
gradient of J at @A(0Pd 4, 4, /0A) and a(1/A)(OPS . 4,/ 0a), respectively.

ProrosiTion 2.5. Assume that K satisfies condition (nd). For any u = a/Pg(a, »EV(,e),
we have the expansion

-2s H
- ! 3 scl /l(nci,z?) ifn<2+2s,
0P6, ’ n—2s ¢, AK(a) )
AN\ 2+ 2s,
<6J(u), = > 202 (1) RN ifn>2+2s
n—2s ¢ AK(a) n-2s H(a,a) .
- =2+2
n K@ 2 7 s Un=2Eas,

+0(ﬁ + W)

ProoOF oF ProposiTION 2.5. Letu = a/Pg(a, 2 € V(1, g). Following [9], we have

OPS(a — OPb
<6J(u),a//l a; )>=2J(u)[a2<P6W),/1 a;“ >>
_ oPs,
_aZn/(n—ZS)J(u)n/(n—Zs)fK(x)Pé((:;)ZS)/(n2.3“)/1 (a,d) dx]
Q 7 8/1
LEMmMA 2.6.
_ OPSun\ n-2s H(a,a) 1
120 o )
< T oa 2 T QG 60y
Proor.
_ P8
Poi ), A -
(i)
25 /ns) - OPS (@)
— 6(n+23)/(n 23)/1 (a, d
fg @ o1
— 36, ~ IPS, 96,
_ f 6((;1-/11—)25)/(11—23) PRalCOr f 6((:;)25)/("_25)( 2% (u,l)) dx.
q @ 01 o @ 01 01

Using (2-3) and an expansion of the first order of H(.,a) around a, we get

f '8'(n+25)/(n—2s)( 19Pown _ /135@,/1)) dx
Q

(a,) ol oA
1 n—2s T (n+25)/(n-2s)
= T [— > coH(a,a) fRn 6(a,/l) dx
+o( f = a3 dx)
R" ’

1 =(n+2s)/(n-2s) 1
i O(AZSd(a, aQ)2572 fR O dx)] i O(F)'
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Using the fact that

Q

@ oA Ad(a, 0Q)"
~ _ 1 dz
6(n+2$)/(n 2s) dx =
jl;" (a,) A(n=25)/2 - (1+ |Z|2)(n+2s)/2

and

— ) : 1
_ (n+25)/(n—2s) _
f . lx —ald, dx = 0( An—25)/2+1 )’

Lemma 2.6 follows.

Lemma 2.7.

a[Zn/(n—ZS)J(u)n/(n—Zs‘)fK(X)P~(n+25)/(n_25)/]'8P6(a,/l) dx
Q

@) aa
) I n-2s ¢ AK(a) 1
=2 2<P6u A : >— 2 ( )
C\T@- g 0 Ko 2 TN\, a0y
Proor. Let 7 > 0 be small enough.
APS,
Z @ gy

y o (n+25)/(n—2s)
L K(x)P5"% =

Vs - OPS @ 1
= K(x)PSm29=20 ) — 40 dx + 0(—)
fB(aJ?) @ 2z

= K(a) PoII7290)
Bla.n)

ﬂ}’l

P8 e

0

_ , PS5
+ f VK (a)(x — a)P5 2029 ) @) g,
B(a,n)

1
+ = f D?*K(a)(x - a,
2 I

_ AP, 1
+ o(f |x —al*Ps (n+25)/(n-25) y 77 7@ dx) + O(—)
B(a.n)

(a.1)

(a.1)

@) X
— APs,
x— a)P(s((a’f;f”/ <"‘2S)/1—6 jl“) dx

04 A"

o s - OPO _ APS, 1
I = f Po A dx=2<P5(a,A),/l (“’A’>+o(

04

https://doi.org/10.1017/5144678871900048X Published online by Cambridge University Press

(Ad(a,0Q))—2s

)


https://doi.org/10.1017/S144678871900048X

9] Perturbation theorems 167

Indeed,

~ g OPS
11 Z:f (5((:';)25)/(" 25)/1 (a,d) dx
Bay) ol

n+2s ~4s/(n-25), 5= = oP g(a )
+ 0 Po -9 A —d
PR p fz; o (Poan = Sap)d—p—dx

> o ~ ~4s/(n—2s
+ O(f |P6(a,/l) - 6("7/1)|26(a?//l§n ) dx)
Q

_ f 5 (+29)/(n-25) A@P S(a,0) dx + n+2s f G4s/(n=25) Pg(m) /135(&/1) dx
Q Q

@) o1 n—2s Jo @ oA
n+2s ~ _ (ﬁ(a )

_ 6(n+2s)/(n 2s)/l A 4
n—2s [L @ 04 *

_ _ dPS, 36,
4s5/(n-2s) (a,1) (a,1)
+ fg; 6((1,/1) (Pé(a,/l) = (5((1,/1))(/1 ol -A ol )dx]

3 <~ <45/ (n—-2s
+ 0(f |P5(a,,{) — 6(‘17/1)|26(af//l§n ) dx
Q

— _ ana 2
= o [ Fe29/m-29 , 9 0@D 5 (—)
fg (@) o1 e (Ad(a, 0Q))"—2s

)+ a7

Hence Claim 1 follows.

Claim 2.

_ e 0P 1
L= VK(@)(x — a)Ps 291029, — 0D g (—)
? fm,n) (@0 = P a1 T\ @ oy

Indeed, using the estimates (2-2), (2-3) and (3-1) below, we have

~ 90
L= f VK(@)(x = )= dx
Bla.) ’ o1

] —~ 2 o _2 o
+ 0( x — alg "2 =29 dx).
/l(n—ZS)/Zd(a, aQ)n—Zs jl;(a,n) | | (a,d)

By a symmetry argument, we have

~ 35
f VK(a)(x = @) A—22 dx = 0.
Ban) : 04
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Moreover,

2 2
f lx — alo > dx
B(a,m)

/l(n+2s)/2
- - d
]l;(a,ﬂ) el (1 + A2%|x — a|?)(n+29/2 *
log A
O(L) if s =
FYE

1 f K A=2972
=—— —————dz =
402912 J g 1o (1 + [z2)#+29/2 1
/l2s/l(n—2s)/2

>

l\)l»—‘l\)l'—*

) if s #

Hence Claim 2 follows.

Claim 3.

OPs,
I = f D*K(a)(x — a,x — )P 29129 ) — 2 ¢
Bla.n) 04

n—2sc AK(a) ( 1 )
2R 2/

Indeed, using the estimates (2-2), (2-3) and (3-1) below, we have

30
I = f D*K(a)(x —a,x — a)é((”;)2 9/n=29) ) @D gy
Bla.n) 01

1 2= (n+25)/(n=2s)
+0(/l(n—2s)/2d(a’ 0025 L(a )Ix al*6, 1 dx )

Observe that

04

_n- 2s 2K (a) - lx—al
(x —a)i(x — a)/(1+/12| |2)n+1

85,
f D’K(a)(x - a, x — )52/ " 29— g
B(a,n)

Atdx.

157 (9x,(9xj B(a.n)

Using the fact that for any i # j we have

1 - 2|x—al?
(x—a)(x-a); Adx =0,
\]I;(a 1) ](1 + /12| |2)n+1

a change of variables z = A(x — a) yields

46, »
f D*K(a)(x —a,x — a)&fx)zs)/(" 29D gy
Blan) 94

n-2s AK(a) — |z 1
=T L e e o)

Hence Claim 3 holds. Now using the fact that af‘”/ =29 J ()" 29K (a) = 1 + o(1),
Lemma 2.7 is valid. O
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Proposition 2.5 now follows from the estimates of Lemmas 2.6 and 2.7. O

ProrosiTiON 2.8. For any u = a/Pg(a, 1 € V(1, &), we have the expansion

0H(a,a)
<aJ(u) ot al;i“> = _202T () (q VK@ 1 4 o(1)) - ¢ —2a_ )

K(a)/l An+1-2s

1 1
~of )+l )
/12 0 (/ld(a, aQ))n+l—25
where ¢ = [, 12l((12 = D/(1 + 2Py dz.
Proor oF ProrosiTiON 2.8. Let u = a/Pg(a 1 € V(1,¢&). Then

(a A)
(9

1(9P6(a/1)>
A 0

, 10P5
_2n/(n-2s) n/(n—2s) < (n+25)/(n-25) = (a,1)
a J(u) f K (x)Pé(a D 1 %a dx].

Arguing as in Lemmas 2.6 and 2.7, we have the following two estimates.

<6J( ) aq >= 2J(u)[ <P5<M>’

LeEmMMA 2.9.
0H(a,a)

< 3 1 6P(5(g /1)> da__ 1 )
(a,A)> 1 oa l/ln+l—2s o (/ld(a, aQ))n+]—2S :

Lemma 2.10.

) 7 N E)Pg( A)
aZn/(n 2S)J(u)n/(n 25) f K(x)P(S((Z;)zs)/(n 25)/_16—; dx

~ 10Psun\ ., VK@) 1 1
= 202(P5, 0. - .
@ < 0@t 34 >+ CSKamn 0(42) M 0((/1d(a, ag))n+1—2s)

The proof of Proposition 2.8 follows from Lemmas 2.9 and 2.10. O

2.3. On the v-part contribution. Let u = a/Pg(a, 1 € V(1,e). By an expansion of K
around a, the quadratic form Q defined in Proposition 2.3 is close to

2 n+2s y o 4s/(n—2s) 2
[v| — f P(S(a B dx.

Therefore it is positive definite; see [1]. Consequently, there exists an invertible
positive operator such that Q(v,v) = (Bv,v) and the expansion of J in V(1, ¢) given
by Proposition 2.3 becomes
§2s [ 2Wp1 ( H(a,a) AK(a) )
1+ Cq —C
(K(a))(n—2s)/2 K(a)K(a)(n—Zs)/Z An—2s K(a)/p

+ ﬁ((Bv, by — Sa? f(v))] + 0(

J(u) =

1 1
d@.aoy = T M )
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Observe that J behaves on the v-variable as a function close to
Y(v) := (Bv,vy - Sa? f(v),

which is a coercive function. It follows that y and therefore v — J (an(a, 2 +v) admit
a unique minimum denoted by ¥ = ¥(«, a, 1). The estimate of |7| is as follows.

Prorosition 2.11. For any u = ong(u, 1 € V(1, &), we have

1 .
Qaymor 208
) IVK(a) 1 log(Ad)*3 |
IVISM( ) +ﬁ)+M W ifn=6s,
1 .
W lfi’l < 6s.

Here d = d(a, 0Q).
Proor. Since ¥ minimizes ¢, we derive that
W'(B)=Bv—-Saf =0.
Using the fact that B is invertible, we get
7l < SallB~ fll < cllfIl

For any v in the subspace E .1 = {v € H,v € (Vy)}, we have

2 2
K(x)Ps "2y dx

2
ﬂw=§;mﬁﬁaﬁf

2
- S aZn/(n—Zs)K(a)

X ( f K ()C)Pg((:;)2 =29, dx + f K (x)Pg((:;)zs)/ (n=29),, dx)
B(ad) ’ Q\B(a.d) '

B 2
- S a,Zn/(rst)K(a)

Using the Holder inequality with p = 2n/(n + 2s) and g = 2n/(n — 2s), we have

2 ) (n+2s5)/2n (n-25)/2n
o] < c(f p(g(an//lgn s)) (f |v|2n/(n—2s))
Q\B(a.d) o
2 /(n=2s) =45/ (n-25), 5= ~ (n+2s)/2n
n/(n—-2s $/(n—2s
f Own 0( f S 2V PS ) = 6(a) dx))
OQ\B(a.d) O\Blad)

~2 /( 25 (n+2s5)/2n ~4s/(n-25)
n/(n— s/(n—2s
a,d (a,)
Q\B(a d) Q\B(a,d)

1
(/ld)(n+2\)/2 ((/ld)(mzs)/z ))

(11 + Iz).

I/\

/\
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In order to compute /1, we expand K around a. We have

I = f K(a)P:SV((:;)Z.Y)/(Vl—ZS)V dx + f VK(a)(x — a)P—V((:‘;fS)/(Vl—ZS)V dx
B(a,d) ’ B(a,d) ’

+ O(f |x — aIng((arj)zs)/(n_zs)|V| dx) =K+ K> + K.
Ba.d)
Using the fact that v satisfies (Vj), we have

T(n+25)/(n-2 T4s/(n=29) p =
|K1|Sc( f SN 2INy] die + f S S)IPé(aJ)—é(a,A)llvldx)
B(a,d) B(a,d)

1 . . ~8ns/(P—4%) (n+2s5)/2n
< C|V|(W—+zs)/z + 1Poa) = 5<a,a>llm<sz>( fB o S dx) )

Observe that by (2-2) we have [|P8(.1) — 6a.pllz=@ < ¢/(Ad)""29/2 and
1

W if n > 6s,
R n+25)/2n 2/3
(B s R - R
W if n < 6s.
Thus .
O(W) it n > 6,
Kl = o (%) ifn =65,
O(W)%) if n < 6s.
In the same way we have
IVK(a)|

1
1Kol = 'V'O(T) and |Ks| = |v|0(ﬁ).

This completes the proof of Proposition 2.11. O

3. Concentration phenomenon in V(1, &)

In this section we construct a decreasing pseudo-gradient for the functional J in
V(1, ) and use it to characterize the critical points at infinity of the problem of only
one mass.

Tueorem 3.1. Assume that K satisfies conditions (A) and (nd). Then there exists a
pseudo-gradient W of J such that for any u = aPé, ) € V(1, €), we have:

() (DJw), W)y < —c(IVK(a)|/A + 1/2% + 1/(Ad)"*1729);
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(i)  (0J(u + V), W(u) + (0v/0(a, a, 1))(W(u))) < —c(|VK(a)|/A+ 1/2% + 1/(Ad)"*172),
where c is a fixed positive constant independent of u and &.

(iii) Furthermore, the distance d(t) = d(a(t), 0Q) increases if it is small enough.

(iv) Moreover, W is a bounded vector field and the only region where the components
A(t) are not bounded along the flow lines of W are those where the concentration
points a(t) converge along the flow lines of W to a critical point in K.

Proor. Q being a regular bounded domain, there exists a small positive constant dy
such that for any a € Q with d(a, 0Q) < dy, there exists a unique a € 0 satisfying
d(a,dQ) = |la — a||. Furthermore, under assumption (A) we have (0K/dv,)(a) < —c.
Here v, denotes the unit outward normal vector at a of the boundary of Q, :={x €
Q,d(x,0Q) < d(a,0Q)}. Let

u= a/Pg(M) eV(l,e).
The construction of the required vector field W(u) will be decomposed in two steps.

Step 1. Assume that d(a, 0Q) < dy. In this case we claim that

1 oH 2(n—2s)
H .~ and ~— =
@™ Qaaay s M 3, Qdaamy

as g is small.

(3-1
Indeed, let @’ = 2a — a (a’ is the symmetric point of @ with respect to 9Q2). By choosing
dy small, a’ ¢ Q. For any x,y € Q and ¢ > 0, we set
1

((x,1),y) = H(x,1),y) — Goa. o>

Since a’ ¢ Q, ¢ satisfies

div(t'=>Ve(.,y)) =0 in C,
1
((-x$ [)7 ) = - on aQ’
L O T T R TE P [TeX
0ye(,y) =0 on Q x {0}.

Using the maximum principle, and the fact that on 0Q we have

1 1
lla = ylI"=2s la’ = yll=2

for dy small,

1
- O(d(a, aQ)n—Zs)
we get

1
lp((a,0), @)l = O(W)-

The first estimate of (3-1) follows. In the same way we prove the second estimate of

(3-1). We set
a= —%. (3-2)
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We move a along the differential equation (3-2). u satisfies

. 1 6P g(a,/l)
iw=Wy(u) where Wi(u) = -a-——=v,.
A Oa
The expansion of Proposition 2.8 yields
Ji OH(a,a
(I u), Wi (w)) = 2a2J(u)(C3 7@ e . ) + 0(i) ; 0( ! )
’ K(a)/l Ant1-2s A2 (/ld(a, aQ))n—Zerl :
Using assumption (A) and estimate (3-1), we get
1 1
(@), Wiw)) < _C(Z " d, aQ))n—2s+1)
S L ! )
- A A2 (Ad(a, 0Q))y=2s+1 )

Condition (i) of Theorem 3.1 is then satisfied. Observe that in this region W; has no
action on the variable A and moves the concentration point ¢ inward of Q.

Step 2. Assume that d(a, 0Q) > dy/2. In this case we move the concentration point «,
producing the equation

.1 VK(a)

T AIVK @)/
if a is far from the critical points of K. If a is near a critical point of K, we move A,
resulting in the equation

A =sign( y,)A,

where
1 ifn<2+2s,
ion(r.) sign(—AK(a)) ifn>2+2s,
sign( y,) =
-2 -2s AK
sign(n sclH(a, a) — n SC2 K(E;)) ifn=2+2s.

Since K satisfies condition (nd), there exist fixed positive constants 1y and pg such that
for any a € Q,

[VK(a)| <2no = Jye K st.ae B(y,pp) and sign(y,) = sign(x,).

Define
p:R—>R
1t <
> &
2
0 iflz =L,
f>24
where y := min(1l,n — 2s). Observe that if n > 3, the y = 1 We set
OPS4 1 0P80 VK(a)

Wa(u) = p(A"|VK(a)))a sign( x,)A

ot (- g VK@D)a~—- IVK(a)|’

We claim that W, satisfies (i) of Theorem 3.1. Indeed, using the expansion of
Propositions 2.5 and 2.8, we have
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(0J (u), Wa(u))
=202 J(w)p("|VK(@)]) sign(x,)
n—-2s H(a,a)

Bl e ver ifn<2+2s
X 1 —n2s Kc(za) Alj;a) ifn>2+2s

n —nZs Kc(il) AI;") U —22SC] P;(Ciza) ifn=2+2s
+ gowwK(a)D(o(% + W))

- 202 J(w)(1 - g0 VK @) 'Zlg)aj' + 0(%) + O(N%))

Observe that

VK@ _ o L)

210
A|VK(a)| < el IVK(a)| <2ny and ;) T

g
Therefore,

(0 (), Wa(u))

1
<- c[gp(/lylVK(a)I)(ﬁ +

1
7K@
/ln—Zs A

- aarsrion ("5 of L of )}

Observe now that if A7|VK(a)| > no/&”, we have

1 IVK(a)| 1 IVK(a)|

— =0 and = .

wo7) ™ o)
Indeed, if y = 1, then 1/2""17% = O(1/4?) = o(|VK(a)|/A) as € small. If y =n — 2s,
then 1/4% = O(1/A*'7%%) = 0(|VK(a)|/ 1) as & small. Therefore,

IVK(a)] 1 1 )

A A2 + An+1-2s
The pseudo-gradient W, satisfies (i) of Theorem 3.1. By construction A(¢) increases if
and only if the concentration point a(¢) is near a critical point y in K.

The required vector field W of Theorem 3.1 is defined by a convex combination
of W, and W,. It satisfies (i), (iii) and (iv) of Theorem 3.1. Inequality (ii) follows
from (i) and the estimate of |V| given in Proposition 2.11. This completes the proof of
Theorem 3.1. O

(@I ), Wa(u)) < —c(

CoroLLARY 3.2. Under conditions (A) and (nd), the critical points at infinity of J in
V(l,¢)are

1 —
(y)OO : P(S(y,oo),y € 7(+.

= K(y)(n—Zs)/n
The Morse index of (y) equals n — ind(K, y).
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Proor. The characterization of the critical points at infinity of J in V(I1, &) follows
from Theorem 3.1. Concerning the Morse index of a critical point at infinity, the
claim follows from the expansion of J(@Pd, 1 + 7) when a approaches y with y € K.
Arguing as [4, Lemma 4.2], we can find a change of variables

(a, ) — (@, )

such that

_ 1
J(G’P(S(a’,l) + V) = W(l + ﬁ)’

where =2 if n>2 +2sand f =n — 2s if n <2 + 2s. Therefore, the Morse index of

J at (y)« corresponds to the Morse index of 1/K(a) at y. This finishes the proof of
Corollary 3.2. O

4. Proof of the existence theorems

4.1. Proof of Theorems 1.1 and 1.2. Let oy > 0 such that S/ + ¢ < (25)%/".
Using Corollary 2.4, there exists 6o > 0 such that if ||K — 1||,~a) < 6o, then the values
of J at all critical points at infinity in V(1, &) are below S2*/" + a/4 and the values of
J at the remaining critical points at infinity are above S2*/" + ay.

For any critical point at infinity (y)e,y € K*, we denote by W °(y). the unstable
manifold at infinity of (y)., with respect to the gradient vector field (—9J). According
to [2, pages 356-357] and [10, Lemma 10], W;°(y)« is identified by W,(y), where
Wi(y) is the classical stable manifold of the (true) critical point y with respect to (—0K).
Therefore, dim W’ (y)oo = n — ind(K, y). Let us set

mp= ) WOk
yeK+,n—ind(K,y)<ko—1

M;> defines a stratified set of top dimension less than ko — 1. Moreover,

My C Js2imiag/a = {M eXt Ju) <SP+ %}.

We introduce the following proposition.

ProrosiTioN 4.1. If J has no critical point in ¥, then the set MZ: is contractible in
JSZx/n+a0/4.

Proor or ProprosiTiON 4.1. Let
Juaf?

ext.
( f u2n/(n—23))(”_25)/n’ “
Q

Ji(uw) =

By [21] we know that
S/ = inf J, (u).
uet

Using the fact that
J(u) = J1(w)(1 + O(|IK = 1| =),
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we derive, for [|K — 1|, small enough,

Jsz.x/n+ao/4 C Jl S/ 4qr )2 C Jsz.r/n+3ao/4.

Using the fact that J has no critical point in £* and no critical value at infinity between
S/ + /4 and S + 3ap /4, we get

JS 25/n 4300 /4 = JSzx/n+nO/4 and therefore J132x/n+a,0/2 ~ JS 2s/n 4[4+ (4-1)

Here ~ denotes retraction by deformation. The following lemma shows that Jj g2sm4,/2
and Q are topologically the same.

Lemma 4.2. For ag > 0 small enough, Jyg2:m.4, 2 is homotopy equivalent to Q.
Prookr. For any 4 > 0 we define
f/1 Q— 3t
P’(;:(a,/l)
|P6(a.)

at—

Since lim o J1(PF5(a, b/ |PF5(L,’ ) = $2/", uniformly with respect to a € Q, then for
Ao large enough, fy, maps Q into Jyg2smq/2-

In order to construct a continuous map r : Jygasma, 0 —> Q satisfying r o fy, ~ idq,
we first state the following claim:

Jisasmiqyn C V(1,€)  for ap small enough. 4-2)

Indeed, if not, there exists a sequence (wy); in X* such that limj_ e Ji(Wy) =
§25/m and wy ¢ V(1,¢), for all k. Since (wy) is a minimizing sequence, it satisfies
limy_, 100 0J1(wg) = 0. Using these facts and the result of Proposition 2.1, we derive
that (wy ) converges in X* and therefore the infimum of J; on X* is attained. This is a
contradiction with the result of [21], where it is proved that the infimum of J; is never
achieved in the bounded domain cases. Hence (4-2) is valid.

Now, from the result of Proposition 2.2, we know that for any u € V(1, ¢), the
minimization problem

min{|u — P8l > 0,a € Q, 1> 0}
has a unique solution (@(u), a(u), A(«)) up to permutation. Let

a:V(l,e) — Q
u+— a(u)
and let r = @ o1 where 1 : Jig2uniq,2 < V(1,&) is the natural injection. Clearly we
have r o f3, = idg. The result of Lemma 4.2 follows. |

Using Lemma 4.2 and (4-1), the result of Proposition 4.1 follows, since by
assumption of Theorems 1.1 and 1.2, Q is a contractible domain. O
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Without loss of generality, we may assume that ky — 1 = dim M,‘;;. Let C (M;g) be a
contraction of dimension ko of M” in Jy2i/n4,/4. We are arguing by contradiction and
supposition that J has no critical points in *. Using the deformation lemma of [3]
and a dimension argument, we have

copy= ) ok
yeK+,n—ind(K,y)<ko

Therefore by assumption (a) of Theorem 1.1, we obtain
C(M) = M.
Thus, by applying an Euler—Poincaré characteristic argument, we get

1= Z (- l)n—ind(K,y).

yeX+ n—ind(K.y)<ko—1

This contradicts assumption (b) of Theorem 1.1. The proof of Theorems 1.1 and 1.2
follows.

4.2. Proof of Theorem 1.3. Assume that J has no critical points in £*. Using (4-1),

we have
X(Ts2sinta0/4) = X(J1525m 400 /2)-
Since
Tsrineaps = | WO,
yeK+
we get

X(Jlszs/n+an/2) = Z (_l)nfind(l(,y).
yeK*

The result of Lemma 4.2 completes the proof of Theorem 1.3.
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