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The development of a non-periodic air/SF6 gaseous interface subjected to a planar
shock wave is investigated experimentally and theoretically to evaluate the effects
of the non-periodic portions of the interface on the Richtmyer–Meshkov instability.
Experimentally, five kinds of discontinuous chevron-shaped interfaces with or without
non-periodic portions are created by the extended soap film technique. The post-shock
flows and the interface morphologies are captured by schlieren photography combined
with a high-speed video camera. A periodic chevron-shaped interface, which is
multi-modal (81 % fundamental mode and 19 % high-order modes), is first considered
to evaluate the impulsive linear model and several typical nonlinear models. Then, the
non-periodic chevron-shaped interfaces are investigated and the results show that the
existence of non-periodic portions significantly changes the balanced position of the
initial interface, and subsequently disables the nonlinear model which is applicable
to the periodic chevron-shaped interface. A modified nonlinear model is proposed to
consider the effects of the non-periodic portions. It turns out that the new model can
predict the growth of the shocked non-periodic interface well. Finally, a method is
established using spectrum analysis on the initial shape of the interface to separate
its bubble structure and spike structure such that the new model can apply to any
random perturbed interface. These findings can facilitate the understanding of the
evolution of non-periodic interfaces which are more common in reality.

Key words: compressible flows, shock waves

1. Introduction

Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs
when a shock wave accelerates an initially perturbed interface separating different
fluids. RM instability is considered as a central factor in understanding the
hydrodynamic processes involved in inertial confinement fusion (ICF) (Lindl et al.
2014), the supersonic combustion ramjet (Yang, Kubota & Zukoski 1994; Yang,
Chang & Bao 2015) and supernova explosions (Arnett et al. 1989; Hammer, Janka &
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Müller 2010; Shimoda et al. 2015). Due to the misalignment of the pressure gradient
caused by the shock wave with the density gradient across the material interface,
baroclinic vorticity will deposit on the interface and result in the growth of the
perturbations. The growth of the shocked interface generally experiences a linear, a
nonlinear and a turbulent mixing stage successively. In the ICF application (Lindl
et al. 2014), the RM instability decreases the ignition efficiency and even leads to
the failure of the ignition. To understand this instability, extensive studies on the
interaction of a shock wave with a perturbed interface have been performed, and
several comprehensive reviews have been presented (Zabusky 1999; Brouillette 2002;
Ranjan, Oakley & Bonazza 2011; Luo et al. 2014; Zhai et al. 2018).

In the previous work on the RM instability, most of the effort has been made on
the evolution of a periodic single-mode or a quasi-single-mode interface. However,
perturbations in reality, such as on the ICF target, are essentially random and
non-periodic. In other words, unperturbed segments and perturbed segments coexist
on the target surface. Therefore, it is interesting to investigate the effects of
unperturbed portions on the evolution of the perturbed portions of a non-periodic
and amplitude-varied interface. There are very few investigations on the evolution of
a non-periodic gas interface impacted by a shock wave. Note that cylindrical and
spherical bubbles, which have been extensively investigated in RM instability studies
(Jacobs 1992; Ranjan et al. 2011; Ding et al. 2017), are non-periodic. However,
they have two interfaces, and are not our concern. Shock-tube experiments on RM
instability growth using an enlarged double-bump perturbation were performed by
Holder et al. (2003), in which the vertical interfaces were added to both sides
and the middle of the double-bump perturbation. The results indicated that the
evolution of the perturbed interface was influenced by the vertical portions, which
indication, unfortunately, was not discussed. In the work of Jourdan & Houas (2005),
the vertical interface and the bubble (spike) structure were arranged alternately
on the initial interface. It was found that the vertical portions have some effects
on the bubble (spike) evolution, which have not been discussed by the authors.
Vandenboomgaerde et al. (2014) investigated the differences between the evolutions of
a periodic single-mode interface and a non-periodic single-mode interface superposed
with small wavelength perturbations. Two vertical segments were also added to
both sides of two spike configurations to reduce the boundary wall effects. They
found that the vertical segments significantly influence the movements of the spikes
directly connecting to them. However, these effects were also ignored. In our previous
work (Luo et al. 2016; Zhai et al. 2016), a chevron-shaped interface with vertical
portions on both sides was created using a soap film technique. It was observed
that the non-periodic feature causes different behaviours of the wave pattern and
interface morphology. However, the effect of vertical portions on the evolution of the
chevron-shaped interface was not clear and needs further investigation.

In this work, the effects of non-periodic portions on the evolution of a perturbed
interface will be examined experimentally and theoretically in a shocked non-periodic
interface. Specifically, five kinds of interfaces, including a periodic chevron-shaped
interface, a chevron-shaped interface with vertical portions on both sides, an inverse-
chevron-shaped interface with vertical portions on both sides, a double chevron-shaped
interface with vertical portions on both sides and a double inverse-chevron-shaped
interface with vertical portions on both sides are considered. The vertical segments
connected to the interface generate the non-periodic feature of the interface, and,
therefore, it is called the non-periodic portion of the interface. The reason for using
a chevron-shaped interface mainly lies in its ease of formation using the soap film
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FIGURE 1. (Colour online) Schematics of creating a chevron-shaped interface (a) and the
test section of the shock tube with the schlieren system (b).

technique in our laboratory. We also note that the chevron-shaped interface can be
regarded as a basic building block to form a complex interface which essentially
is non-periodic and multi-modal in real circumstances. Besides, the previous work
showed that an inclined interface can be treated as a single-mode perturbation with
a large wavelength which determines the large scale measures such as mixing widths
(McFarland et al. 2015; Mohaghar et al. 2017). It is then expected that the present
work can shed light on the effect of the non-periodic portions on the evolution of a
shocked interface.

2. Experimental method
The soap film technique, which has already been verified in terms of its feasibility

and reliability in our previous work (Luo et al. 2016; Zhai et al. 2016), is adopted
to create the chevron-shaped interfaces. As shown in figure 1(a), two acrylic plates
(3 mm in thickness) with a depth of 20 mm are firstly manufactured, and thin pins
(0.14 mm in diameter) are nailed at the inflection points. Before creating interfaces,
the framework edges are wetted by a soap solution made of 78 % distilled water, 2 %
sodium oleate and 20 % glycerine (numbers denote per cent by mass). Afterwards,
a rectangular frame with the soap film on its surface is pulled along the interface
framework, and a chevron-shaped interface can be created. Subsequently, the device
is inserted into the test section and fitted tightly with optical windows on the top
and bottom sides of the test section. To generate an air/SF6 interface, air at the right
side of the interface is removed and replaced by SF6 prior to the experiment. For
this purpose, SF6 is injected into the test section through an ‘Inflow’ hole, and air
is gradually exhausted through an ‘Outflow’ hole, as shown in figure 1(b). During
this process, an appropriate inflating ratio is required to protect the formed interface.
A gas concentration detector is placed at the ‘Outflow’ hole to monitor the purity of
SF6 at right side of the interface. In the experiment, when the concentration of oxygen
is lower than 0.5 % by volume fraction, it is considered that air at the right side of
the interface has been replaced by SF6 completely. Then the experiment is conducted
within 20 s to reduce the contamination of SF6 by air. During this period, both air
and SF6 will penetrate through the interface and are contaminated. By measuring the
velocities of incident and transmitted shock waves from the schlieren pictures, the gas
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Case h0 (mm) λ (mm) MF1 (%) MF2 (%) A A+ vs (m s−1) vt (m s−1) 1v (m s−1)

PCS-1 3.53 40.0 93.9 93.6 0.59 0.61 401.0 197.0 67.0
PCS-2 3.53 40.0 55.0 90.3 0.44 0.47 330.0 202.0 69.2
PCS-3 8.00 60.0 83.8 96.8 0.60 0.62 376.8 182.7 67.6
CS-1 3.53 40.0 84.0 95.9 0.59 0.62 387.0 190.8 70.0
CS-2 7.28 40.0 87.2 97.1 0.61 0.64 394.2 188.0 68.0
ICS-1 3.53 40.0 64.1 91.2 0.48 0.51 344.0 198.4 65.0
ICS-2 3.53 40.0 90.4 90.2 0.54 0.57 393.9 206.0 67.0
DCS-1 3.53 40.0 97.0 95.0 0.61 0.63 409.0 190.8 68.0
DCS-2 3.53 40.0 76.5 90.6 0.51 0.54 371.1 204.0 69.5
DICS-1 3.53 40.0 93.1 92.7 0.58 0.61 400.0 200.0 70.5
DICS-2 3.53 40.0 92.7 87.1 0.52 0.55 394.4 213.0 74.0

TABLE 1. Experimental initial parameters for all cases. h0 is the initial mixing width, and
λ is the wavelength of perturbed portion. MF1 (MF2) means the mass fraction of air (SF6)
at the left (right) side of the interface; A= (ρ2 − ρ1)/(ρ2 + ρ1) is the pre-shock Atwood
number with ρ1 and ρ2 being the densities of the gases on the left and right sides of the
interface, respectively; A+ is post-shock Atwood number; vs is the velocity of the incident
shock; vt is the velocity of the transmitted shock; and 1v is the velocity of the post-shock
flow.

components at both sides of the interface can be determined based on one-dimensional
gas dynamics theory, as indicated in table 1. MF1 (MF2) denotes the mass fraction
of air (SF6) at the left (right) side of the interface; A= (ρ2− ρ1)/(ρ2+ ρ1) is the pre-
shock Atwood number with ρ1 and ρ2 being the densities of the gases at the left and
right sides of the interface, respectively; A+ is the post-shock Atwood number; vs is
the velocity of the incident shock; vt is the velocity of the transmitted shock; and 1v
is the velocity of the post-shock flow. Before the experiments, the effect of boundary
layer thickness is estimated. Because the shock Mach number is low, after the incident
shock impact, the flow field behind the transmitted shock can be regarded as laminar
and incompressible. As a result, the boundary layer displacement thickness (δ∗) can be
approximately calculated by the expression δ∗ = 1.72

√
xµ/ρ1v where x (= 100 mm

measured from experiment) is the maximum distance that the interface moves when
image recording ends, and µ is the viscosity coefficient of the gas. To simplify the
calculation, the gas parameters of pure air as ambient gas and pure SF6 as test gas
at a temperature of 293 K are adopted. µ is 1.83 × 10−5 Pa s (1.60 × 10−5 Pa s)
for air (SF6) and ρ is 1.204 kg m−3 (6.143 kg m−3) for air (SF6). According to the
expression, δ∗ is calculated as approximately equal to 0.25 mm for ambient gas and
0.1 mm for test gas based on 1v = 70 m s−1 when the experiment ends, which
values are much smaller than the inner height of the acrylic plates (20 mm). Therefore,
the effect of the boundary layer on interface evolution is limited and can be neglected.

The experiments are performed in a horizontal shock tube which consists of
a 1.7 m long driver section, 2.0 m long driven section and a 0.6 m long test
section with a cross-sectional area of 120 mm × 20 mm. In this work, five kinds
of chevron-shaped interfaces, as sketched in figure 2(a–e), are considered. For each
case, several experiments are performed, by changing the Atwood number or initial
amplitude–wavelength ratio, in order to investigate the effects of the initial conditions
on the interface development. The variation of Atwood number in this work is
achieved by adjusting the mixing ratio of air and SF6, rather than using different
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FIGURE 2. (Colour online) Schematics of initial interface configurations. For convenience,
we call these five kinds of interfaces the periodic chevron-shaped interface (PCS), chevron-
shaped interface with vertical portions on both sides (CS), inverse-chevron-shaped interface
with vertical portions on both sides (ICS), double chevron-shaped interface with vertical
portions on both sides (DCS) and the double inverse-chevron-shaped interface with vertical
portions on both sides (DICS), respectively.

gases. The initial parameters for all cases are given in table 1. For all cases, the
initial perturbed amplitude (a0) is defined as half of the initial mixing width (h0),
and the wavelength of the perturbed interface and the length of the vertical portion
are λ and L, respectively. The initial amplitude–wavelength ratio a0/λ is smaller
than 0.1 for all cases, satisfying the small perturbation hypothesis. After the shock
impact, the post-shock flow field is illuminated by a DC regulated light source
(CEL-HXF300, the maximum power output is 249 W) and captured by schlieren
photography combined with a high-speed video camera (FASTCAM SA5, Photron
Limited). The frame rate of the camera is 50 000 f.p.s. (corresponding to a time
interval of 20 µs), and the exposure time is 1 µs for all cases. The pixel resolution
is approximately 0.3 mm pixel−1. The incident shock Mach number is 1.20 ± 0.01
from all the measurements, which indicates that the shock tube facility has a very
good repeatability. The room temperature T0 is approximately 293 K and the initial
pressure p0 is 101 325 Pa.

3. Results and discussion
3.1. Periodic chevron-shaped interface

Figure 3 shows the shock propagation and the interface deformation before and
after a periodic chevron-shaped interface (PCS-1) is accelerated by a planar shock
wave. The initial time is defined as the moment the incident shock wave (IS) passes
through the interface centre. When the IS impacts the interface, a transmitted shock
wave (TS) and a reflected shock wave (RS) with a chevron shape are generated. The
interface acquires energy from the shock wave and begins to move. As time elapses,
the perturbation amplitudes on the TS and RS gradually decrease while the amplitude
on the compressed interface grows because of the baroclinic vorticity induction. The
mixing width of the interface increases, accompanied by the appearance of bubble
and spike structures. From the schlieren pictures, one can find that the pins used to
restrain the interface only affect the spike and bubble heads a little, and have limited
effects on the whole interface morphologies, especially on the interface amplitude
(Vandenboomgaerde et al. 2018) and circulation deposited (Wang, Si & Luo 2013).

For a pure chevron-shaped interface (corresponding to one period in the periodic
chevron-shaped interface), the previous work (Mikaelian 2005; Luo et al. 2016)
showed that the interface can be expressed in the form of a Fourier expansion as

y(x)= a0[−0.811 cos(kx)− 0.090 cos(3kx)− 0.032 cos(5kx)− · · ·], (3.1)
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FIGURE 3. (Colour online) Schlieren pictures of the periodic chevron-shaped interface
(PCS-1) accelerated by a planar shock wave. Numbers denote the time in µs, and similarly
hereinafter.
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where y and x represent coordinates of the interface, and k= 2π/λ is the wavenumber.
The components and their superposition are given in figure 4. The results indicate
that a pure chevron-shaped interface contains ∼81 % fundamental mode and ∼19 %
high-order harmonics. From previous work (Luo et al. 2016), one can conclude that
the fundamental mode almost determines the mixing width of the interface.

We first consider the linear stage. For an interface with a small amplitude,
Richtmyer (1960) firstly analysed the linear growth rate of a single-mode perturbation
provided that the flow field is incompressible, and proposed an impulsive model,

v0 =
da
dt
= k1vA+a+0 , (3.2)
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in which a+0 = (1 − 1v/vs)a0 is the post-shock amplitude. The impulsive model
has been widely verified to predict the linear growth rate of interfaces with small
amplitudes. In this work, the linear growth rates of the amplitude in the experiments
for the three periodic chevron-shaped interfaces (PCS-1, PCS-2 and PCS-3) are
measured to be 9.97± 1.06, 7.89± 0.8 and 15.4± 1.28 m s−1, respectively, and the
corresponding theoretical values predicted by the impulsive model are 9.89, 7.16 and
14.54 m s−1, respectively. The good agreement between the theoretical predictions
and the experimental results shows that the fundamental mode indeed determines the
interface evolution in the linear stage.

In the nonlinear phase, there are several models available to predict the width
growth of a single-mode interface. It is interesting to evaluate these models using the
periodic chevron-shaped interface which is essentially a multi-modal one. Mikaelian
(1998, 2003) constructed a simple nonlinear model (Mik model) to bridge the gap
between the linear stage and the late-time nonlinear stage. As the dimensionless
amplitude, a+0 k, reaches 1/3, the formula smoothly shifts to a logarithmic growth.
Dimonte & Ramaprabhu (2010) proposed a nonlinear model (DR model) to deal
with the applications where A+ and ka0 are large. Some coefficients and the initial
velocity were fitted to match numerical simulations and some experiments. Zhang &
Guo (2016) recently also proposed a nonlinear model (ZG model), considering the
universal curve of the spike and bubble structures at finite density ratios. Combining
the asymptotic solution of the compressible flow equations (Zhang & Sohn 1996)
with a potential flow model (Alon et al. 1995), Sadot et al. (1998) proposed a
nonlinear model (Sad model) to predict the growth rate of the bubble or spike based
on buoyancy–drag considerations and the initial linear growth rate v0,

dab/s

dt
=

(1+ τ)v0

1+ (1± A+)τ + Eb/sτ 2
, (3.3)

where τ = kv0t. In the denominator, +A+ and −A+ are adopted when predicting the
growth of bubble and spike, respectively. Eb/s is 3(1±A+)/2(1+A+) when A+> 0.5,
and (1±A+)/(1+A+) when A+→ 0. This model agrees with the vortex model when
A+ → 0 (dab/dt→ 1/(kt)) (Jacobs & Krivets 2005) and Layzer’s asymptotic result
(Layzer 1955; Hecht, Alon & Shvarts 1994) when A+→ 1 (dab/dt→ 3/(2kt)) at late
times provided that some coefficients are adjusted to fit the growth rates obtained in
some experiments and numerical simulations.

Comparisons of the dimensionless mixing width (h), the dimensionless spike width
(as) and the bubble width (ab) of the periodic chevron-shaped interface of four
nonlinear models are shown in figure 5. In experiments, the interface boundaries
are measured by the central position of the material layers, and the error bars result
from the thickness of the material layer in the schlieren images. To measure the
amplitudes of the spike and the bubble, it is considered that the balanced position,
which is the centre of the periodic chevron-shaped interface, as presented in figure 4
before shock impact, moves with a velocity of 1v after shock impact, and then the
position differences between the balanced position and the tips of the bubble and
spike are treated as the amplitudes of the bubble and spike, respectively. For the
mixing width h, one can observe that the Sad model well predicts the experimental
results, and the DR model slightly underestimates the experimental growth after
approximately a dimensionless time of 0.7, while both the Mik model and the
ZG model underestimate the experimental growth. For the spike width as, these
four nonlinear models give similar predictions for the mixing width. However, all
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FIGURE 5. (Colour online) Comparisons of dimensionless mixing width h (a), ab and as
(b) of the periodic chevron-shaped interfaces between experimental results and theoretical
predictions.

the models give a reasonable prediction of the bubble evolution. Therefore, the
failure of the models in predicting the mixing width is mainly ascribed to the poor
estimation of the spike evolution because the spike is more unstable than the bubble
(Mikaelian 2008; Vandenboomgaerde et al. 2014; Zhang & Guo 2016). The periodic
chevron-shaped interface differs from the single-mode interface mainly in two ways:
it has tips and it is a multi-modal interface. In general, the tips and the multi-modal
feature of an interface facilitate perturbation growth, because all the higher-order
harmonic modes have the same sign as the fundamental mode, and therefore promote
the growth rate of the interface. As a result, we claim that the tips and multi-modal
feature of the chevron-shaped interface favour the Sad model, which may partially
consider the high-order harmonic modes and gives the highest growth rate among
these nonlinear models (Jacobs & Krivets 2005).

In the previous work (McFarland et al. 2011), a periodic chevron-shaped interface
was thoroughly investigated numerically. For comparison with our experimental work,
the case of Air M15A60 in that work is adopted here because in this case the initial
conditions, such as the shock Mach number and vertex angle, are similar to the
present work. Based on the scaling laws in the work of McFarland et al. (2011),
the present results are re-obtained, and the predictions from some models are also
presented, as shown in figure 6 in which t∗ is the time required for the shock wave
to traverse the inclined interface amplitude h. One can find that the Sad model fails
to predict the growth of the interface in the previous work, which is similar to the
conclusion obtained by McFarland et al. (2011). Note that the small perturbation
hypothesis in the Air M15A60 case in that work was not satisfied because the
amplitude–wavelength ratio was larger than 0.1. However, the linear velocity v0
obtained by the impulsive model was adopted to normalize the time, and, therefore,
the Sad model was not applicable. According to our previous work (Luo et al.
2016), for a high initial amplitude, a reduction factor (R = 0.75) is adopted here to
re-calculate the linear velocity v0. For the new linear velocity, the dimensionless time
is re-calculated, and the interface growth is also given for comparison, as indicated
in figure 6. One can find that the Sad model can also provide a good prediction
for the interface growth, especially from early to intermediate stages. Because the
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FIGURE 6. (Colour online) Comparisons of dimensionless mixing width h of the periodic
chevron-shaped interface between the present experimental results and the previous
numerical result (McFarland, Greenough & Ranjan 2011).

comparisons verify the applicability of the Sad model for predicting the evolution of
the periodic chevron-shaped interface, we will choose the Sad model to predict the
non-periodic interface evolution in the following discussion.

3.2. Non-periodic chevron-shaped interfaces
Evolutions of a chevron-shaped interface (CS-1) and an inverse-chevron-shaped
interface (ICS-1) are shown in figures 7 and 8, respectively. Note that both interfaces
have vertical portions on both sides. In the chevron-shaped interface, generally, the
shape of the deformed interface is similar to the spike component in the periodic
chevron-shaped interface. However, influenced by the vertical portions on both sides,
the bubble component is stretched and becomes flat, which is different from the bubble
evolution in the periodic chevron-shaped interface. In the inverse-chevron-shaped
interface, the shape of the deformed interface is similar to the bubble component in
the periodic chevron-shaped interface as a whole. Because of the existence of vertical
portions, vortex pairs occur at the tips of the spike component, and as the interface
moves forward, the vortex pairs evolve toward each other.

Time variations of the dimensionless mixing width h in experiments, as defined
in figures 7 and 8 for the chevron-shaped and inverse chevron-shaped interfaces, are
shown in figures 9(a) and 9(b), respectively. The predictions of h by the Sad model are
also given in the figures. It is observed that the Sad model slightly underestimates the
mixing width in the chevron-shaped interface, but it overestimates the mixing width
in the inverse chevron-shaped interface. It can be seen by comparing with the periodic
chevron-shaped interface that the evolution of the perturbed interface is influenced by
the vertical portions on both sides.

To determine the effects of the non-periodic portions on the evolution of the
chevron-shaped part, the whole initial interface, including vertical portions (i.e. the
new wavelength λ′ is 120 mm, which is a combination of λ with double the length
of vertical portions, and the new wavenumber k′ = 2π/λ′) is expressed in the form
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FIGURE 7. (Colour online) Schlieren pictures of the chevron-shaped interface (CS-1)
impacted by a planar shock wave.
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FIGURE 8. (Colour online) Schlieren pictures of the inverse-chevron-shaped interface
(ICS-1) impacted by a planar shock wave.

of a Fourier expansion,

y(x)= a0[−0.604 cos(k′x)+ 0.454 cos(2k′x)− 0.270 cos(3k′x)+ 0.115 cos(4k′x)− · · ·].
(3.4)

For the chevron-shaped and inverse-chevron-shaped interfaces, the form of y(x) is
the same but the signs of each item are opposite because of the opposite phase. As
we can see, the even-order items exist in the initial interface, which differs from
the single-mode interface where the second-order term only occurs as the interface
evolves (Mikaelian 1994). The second-order term provides a constant acceleration
for the bubble and the spike, which move in the opposite directions, and, therefore,
is the lowest order for asymmetry of the bubble and spike evolutions (Velikovich,
Herrmann & Abarzhi 2014). For a single-mode interface or a periodic chevron-shaped

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

92
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.923


Effects of non-periodic portions of interface on RM instability 319

4

3

2

1

0 0.5 1.0 1.5 2.0 2.5

k√0t

k(
h 

-
 h

+ 0)
4

3

2

1

0 0.5 1.0 1.5 2.0

Exp (CS-1)
Exp (CS-2)
Sad
MSad

2.5

k√0t

(a) (b)

FIGURE 9. (Colour online) Comparisons of dimensionless mixing width h of the
chevron-shaped interface (a) and the inverse-chevron-shaped interface (b) between
experimental results and predictions.
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FIGURE 10. (Colour online) The superimposed interface by five lowest orders of
harmonics for the chevron-shaped interface.

interface, the balanced position of the initial interface is the centre of the spike and
the bubble. For a chevron-shaped interface with vertical portions, the initial even-order
terms change the balanced position between the spike and the bubble, as shown in
figure 10. Influenced by the vertical portions, the new balanced position (y = 0) is
not the centre of the chevron-shaped interface any more, but is much closer to the
non-periodic (vertical) portions. Therefore, the proportion of the spike component
is larger than that of the bubble component in the chevron-shaped interface, and
vice versa in the inverse-chevron-shaped interface. Through substituting xk′ = π
and xk′ = 2πL/(2L + λ) into (3.4), one can find that the proportions of the initial
width of the spike (a0s) and the bubble (a0b) are respectively 0.82 and 0.18 in the
chevron-shaped interface, i.e. a0s/h0 = 0.82 and a0b/h0 = 0.18. As the length of the
vertical portions (L) varies compared with the wavelength of the chevron-shaped
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FIGURE 11. Variations of the initial proportions of the spike and bubble compared with
the ratio of the vertical portion length with wavelength of perturbed interface for the
chevron-shaped interface.

interface (λ), the balanced position, i.e. a0s/a0b, will change accordingly. The
relationship of a0s/a0b with L/λ in the chevron-shaped interface is given in figure 11.
When L is 0, i.e. the initial chevron-shaped interface is periodic, a0s and a0b are the
same. As the value of L/λ increases, the spike component dominates the interfacial
evolution in the chevron-shaped interface while the bubble component dominates the
interfacial evolution in the inverse-chevron-shaped interface. When λ is infinitesimal
compared to L, the chevron-shaped interface can be regarded as a pure spike structure
and the inverse-chevron-shaped interface as a pure bubble structure. Through linear
fitting, the relationship of a0s/a0b with L/λ can be represented as

a0s

a0b
= 3.53

L
λ
+ 1. (3.5)

From this equation, one can easily calculate the initial proportions of the spike and
the bubble compared with the initial mixing width of the perturbation on the interface,
and then the amplitude growth rates of the spike and the bubble can be theoretically
analysed.

According to (3.5), the Sad model can be modified to predict the growth rates of
spike (as) and bubble (ab) for the chevron-shaped interface and inverse-chevron-shaped
interface. After substituting a0b/0s/h0 by the symbol φ for simplicity, the modified Sad
model (MSad) is written as

dab/s

dt
=

(1+ 2τφ)2v0φ

1+ (1± A+)2τφ + Eb/s(2τφ)2
. (3.6)

Equation (3.6) has the same form as (3.3) if φ= 0.5 for a periodic initial interface.
Time variations of the dimensionless as and ab for the chevron-shaped and inverse-
chevron-shaped interfaces are shown in figures 12(a) and 12(b), respectively, from the
experiments together with the predictions from the Sad and MSad models. For the
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FIGURE 12. (Colour online) Comparisons of dimensionless widths as and ab of
the chevron-shaped interface (a) and the inverse-chevron-shaped interface (b) between
experimental results and predictions.
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FIGURE 13. (Colour online) Schlieren pictures of the interface impacted by a planar shock
wave in the double chevron-shaped interface (DCS-1).

chevron-shaped interface, the Sad model underestimates the width growth of as and
overestimates the width growth of ab because a0s is larger than a0b. Instead, for the
inverse-chevron-shaped interface, the Sad model overestimates the width growth of
as and underestimates the width growth of ab because a0s is smaller than a0b. By
considering the initial proportions of spike and bubble, the MSad model can give
reasonable predictions of as and ab for both the chevron-shaped and inverse-chevron-
shaped interfaces. Consequently, the predictions of the mixing width (h) from the
MSad model also agree well with experimental results in both the chevron-shaped and
inverse-chevron-shaped interfaces, as illustrated in figure 9(a,b).

Figure 13 shows the evolution of the double chevron-shaped interface (DCS-1)
accelerated by a planar shock wave. The evolution of the bubble at the central axis in
the double chevron-shaped interface is similar to that in the periodic chevron-shaped
interface. Note that the central bubble moves with a different velocity from the
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FIGURE 14. (Colour online) Comparisons of dimensionless mixing width h (a), ab and as
(b) of the interface in the double chevron-shaped interface (DCS-1) between experimental
results and predictions.

side bubble connected by non-periodic portions. The two spikes skew toward
each other as the interface moves forward, which is not observed in the periodic
chevron-shaped interface and chevron-shaped interface. This phenomenon is ascribed
to the competition between bubbles with different wavelengths, which was observed
before (Sadot et al. 1998). The interface mixing widths regarding the central and
side bubbles, as indicated by h1 and h2 respectively in figure 13, are shown in
figure 14(a). It is indicated that the Sad model works well for the former while
the MSad model works well for the latter. These results once again verify that
the evolution of a chevron-shaped interface will be influenced by the non-periodic
portions on both sides. Further, comparisons of as and ab between the experimental
results and predictions are shown in figure 14(b). Because the central bubble is not
directly connected to the non-periodic portions, the evolution of the central bubble
will be predicted well by the Sad model. However, the side bubble evolution is
affected by the non-periodic portion, and the Sad model becomes invalid. According
to the Fourier expansion, we find a0s/h0 = 0.735 and a0b/h0 = 0.265, and the MSad
model can effectively predict the side bubble growth using these relations. For the
spikes, because the tips are not directly connected to the non-periodic portions, the
spike width will not be affected by the non-periodic portions at the early stage, and
the Sad model can work well, as indicated in figure 14(b) before dimensionless time
of 1.5 (955 µs). After that, the non-periodic portions will still exert their effects
on the connected interface, resulting in the different velocities of the interfaces at
both sides of the tip. As a result, the prediction of the Sad model deviates from the
experimental result at late stages.

As shown in figure 15, the evolution of the spike at the central axis in the double
inverse-chevron-shaped interface (DICS-1) is similar to that in both of the periodic
chevron-shaped interface and the chevron-shaped interface. It can be found that the
central spike moves with a different velocity from the side spike connected by the
non-periodic portions. The two side spikes obviously roll up, which is similar to the
inverse-chevron-shaped interface. The interface mixing widths regarding the central
and side spikes, as indicated by h1 and h2 respectively in figure 15, are shown in
figure 16(a). It is indicated that the Sad model works well for the former while the
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FIGURE 15. (Colour online) Schlieren pictures of the double inverse-chevron-shaped
interface (DICS-1) impacted by a planar shock wave.
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FIGURE 16. (Colour online) Comparisons of dimensionless mixing width h (a), ab and
as (b) of the double inverse-chevron-shaped interface between experimental results and
predictions.

MSad model works well for the latter, which is consistent with the observations in the
double chevron-shaped interface. Comparisons of as and ab between the experimental
results and predictions are shown in figure 16(b). Because the central spike is not
directly connected to the non-periodic portions, the evolution of the central spike is
well predicted by the Sad model. However, the Sad model becomes invalid for the
side spike evolution which is affected by the non-periodic portions. The MSad model
can effectively predict the side spike growth using the relations a0b/h0 = 0.735 and
a0s/h0= 0.265 obtained from the Fourier expansion. For the bubbles, as illustrated in
figure 14(b), the Sad model works well because the tips are not directly connected
to the non-periodic portions and the bubble width will not be affected by the non-
periodic portions.
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From the analysis above, we can conclude that the Sad model can predict the
evolution of the bubble or spike well when it separates from the non-periodic portions,
and the MSad model can correctly describe the growth behaviours of the bubble or
spike when it is connected by the non-periodic portions because the MSad model
considers the shift of the balanced position caused by the non-periodic portions. The
variation of the balanced position changes the proportions of the spike and bubble,
i.e. the initial amplitudes of the spike and bubble, and then the growth rate of
perturbation amplitude, while the growth tendency will not be affected. Note that in
the Sad model, the amplitude growth rate in the nonlinear phase is in proportion to
the initial linear velocity v0 which is directly proportional to the initial amplitude.
Using the initial proportions of the spike and bubble, the dimensionless growths for
all cases are re-calculated. For example, for the chevron-shaped interface, because
a0s/h0= 0.82 and a0h/h0= 0.18, compared with the periodic chevron-shaped interface,
the growth of the spike in the chevron-shaped interface will be multiplied by a factor
of 0.82/0.5 = 1.64 while the growth of the bubble in the chevron-shaped interface
will be multiplied by a factor of 0.18/0.5= 0.36. The new dimensionless growths of
the spike and the bubble for all cases are shown in figure 17, and all curves collapse
well. Note that only side bubbles and side spikes in the double chevron-shaped
interface and double inverse-chevron-shaped interface are considered in figure 17.
Therefore, the Sad model can give fairly good predictions for the evolution of bubble
and spike if the initial proportions of the spike and bubble are considered.

4. Conclusions
In this work, evolutions of chevron-shaped air/SF6 gaseous interfaces accelerated by

planar shock waves are investigated, focusing on the effects of the vertical portions
on the evolution of the non-periodic interface. In the experiments, five kinds of
discontinuous chevron-shaped interfaces, i.e. a periodic chevron-shaped interface and
four kinds of non-periodic chevron-shaped interfaces with vertical portions on both
sides, are created using the soap film technique, and the post-shock flows are captured
by schlieren photography combined with a high-speed video camera.
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The evolution of a periodic chevron-shaped interface is first considered to evaluate
several typical nonlinear models for the mixing width growth and the amplitudes of
the spike and bubble. Study of the evolution of the shocked chevron-shaped interface
is important to understand the behaviour of a very complex interface subjected to a
shock because the chevron-shaped interface is a typical complex interface. Specifically,
the chevron-shaped interface differs from the single-mode interface mainly in two
ways, i.e. it has tips and it is a multi-modal interface. It is found that the model
proposed by Sadot et al. (1998) can give reasonable predictions for both the spike
and the bubble, while other models only predict the bubble growth well but fail to
predict the spike growth because the bubble is more stable than the spike. We claim
that the tips and multi-modal feature of the periodic chevron-shaped interface facilitate
the growth rate, because all the higher-order harmonic modes have the same sign as
the fundamental mode, and, therefore, promote the growth rate of interface, which
favours the Sad model (Sadot et al. 1998).

The evolutions of four kinds of non-periodic chevron-shaped interface with vertical
portions on both sides are then investigated. The results show that the nonlinear
model, which is applicable to the periodic chevron-shaped interface, becomes invalid
for its non-periodic counterpart. For a chevron-shaped interface with vertical portions
on both sides, the Fourier expansion of the interface profile shows that the existence
of the non-periodic portions results in the occurrence of even-order items on the initial
interface, and the balanced position, which is the centre of the interface for periodic
interfaces, will vary as the length of the vertical portions changes compared with
the wavelength of the perturbed interface. The variations of the balanced position
can be regarded as variations of the initial proportions of the spike and bubble.
By considering the initial proportions of the spike and bubble, the Sad model is
modified such that it can predict the width growth for the non-periodic interface
well. Therefore, the behaviour of a shocked non-periodic interface can be correctly
predicted by including the contribution from the spike (bubble) portion.

In conclusion, the non-periodic interface normally contains both the bubble and
spike structures and the ratio of bubble structure to spike structure has a significant
effect on the RM instability. The influence of the vertical portions on the non-periodic
interface evolution can be ascribed to the change of the balanced position of the
interface such that existing nonlinear model for periodic interface can be applied to
a non-periodic one by taking this change into account. This can be realized by using
spectrum analysis on the initial shape of the interface such that its bubble structure and
spike structure can be separated. However, this should be further verified by studying
other non-periodic interfaces with different shapes, such as a non-periodic single-mode
interface, which will be performed in the near future.
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