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SUMMARY
This paper proposes a repetitive control type optimal gait
generation framework by executing learning control and
parameter tuning. We propose a learning optimal control
method of Hamiltonian systems unifying iterative learning
control (ILC) and iterative feedback tuning (IFT). It allows
one to simultaneously obtain an optimal feedforward input
and tuning parameter for a plant system, which minimizes
a given cost function. In the proposed method, a virtual
constraint by a potential energy prevents a biped robot
from falling. The strength of the constraint is automatically
mitigated by the IFT part of the proposed method, according
to the progress of trajectory learning by the ILC part.

KEYWORDS: Gait generation; Biped robots; Repetitive
control; Iterative learning control; Hamiltonian systems.

1. Introduction
Recently, control of walking robots has become an active
research area. As the technology for walking robots evolves,
an optimization problem of gaits with respect to energy
consumption becomes increasingly important. However, it
is difficult to design a priori the optimal walking trajectory.
Most of walking pattern generation and control methods have
been based on the zero moment point (ZMP) criterion.1–4

This method can generate a stable walking pattern of a
walking robot with multiple degrees of freedom (DoF), which
means that the robot does not fall, and its implementation
is relatively easy. However, the trajectory based on the
ZMP is designed heuristically in many cases and energy
efficiency has not been considered sufficiently. Passive
dynamic walker5–8 also attracts attention. This robot has a
certain simple structure and it walks down on a gentle slope
with no actuation but gravity. Walking control methods based
on it have been proposed by many researchers, see e.g. refs.
[9–11]. Although the generated gaits are energy efficient,
these methods are only applicable to certain specially
structured robots so far. Besides, walking control methods
using virtual constraints based on the output zeroing control
are proposed in refs. [12, 13]. Since appropriately chosen
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holonomic constraints reduce the order of the system, these
methods are applicable to the robots with multiple DoF,
under actuation and so on. However, there is no systematic
way to choose constraints achieving a target motion, and
such constraints often consume a large amount of control
energy. Gait generation methods based on central pattern
generator14 or statistical learning15–17 are also studied. The
first method14 considers a humanoid robot and constructs a
good controller for it, where a leg trajectory is first generated
by a network of oscillators and then each joint trajectory is
calculated via inverse kinematics. However, the number of
necessary oscillators and how to couple them are heuristic.
The second method15 optimizes a nominal trajectory via
differential dynamic programming (DDP), which is a second-
order local trajectory optimization method. Although the
authors empirically show that the generated gait overcomes
certain disturbances by combining DDP and a minimax
criterion, a nominal trajectory is required and the state and
the cost function are discretized. Since the first two methods
are model-based learning, the plant models are necessary.
On the contrary, the latter two methods are model free and
both are based on the policy gradient reinforcement learning.
The third method16 considers a simple 3D biped robot and
generates an optimal control policy which makes the robot
robust against small slope changing. However, it requires
information of a nominal periodic trajectory and it cannot
work with high dimensional problems due to the so-called
curse of dimensionality. The last method17 generalizes the
path integral stochastic optimal control approach.18 Although
this approach generally requires the plant model, this method
provides a special control structure for the rigid-body dynam-
ics such that a desired trajectory is parameterized as a policy
and the control policy is optimized. However, this method
requires the knowledge of the desired trajectory dynamics
and it is only applicable to the special control structure.

On the contrary, we have considered that physical
properties and learning control are useful tools to tackle
this challenging problem. So far, in refs. [19–21], we have
proposed an optimal gait generation method by modifying
iterative learning control (ILC) based on a symmetric
property called variational symmetry of Hamiltonian
systems.22 Since this technique is a motivation of the
proposed method in this paper, whose details are mentioned
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718 Gait generation of Hamiltonian systems

in the next paragraph, we first elaborate on it. Hamiltonian
systems23, 24 have been introduced to represent physical
systems and they explicitly possess good properties for
the control design such as passivity, symmetry and so on.
We consider biped robots as Hamiltonian systems, rather
than as just nonlinear systems, and take advantage of their
physical properties. ILC based on variational symmetry of
Hamiltonian systems22 allows one to solve a class of optimal
control problems by iteration of laboratory experiments.
Thanks to the symmetric property, it does not require the
precise knowledge of the plant model and it can directly
deal with infinite-dimensional optimal control problems
without any finite-dimensional approximation. This is a big
difference with the conventional ILC, e.g. ref. [25], in that
the conventional ILC is only applicable to trajectory tracking
control problems. However, although the ILC method in ref.
[22] works well for some control problems, there are mainly
two difficulties to apply it to the optimal gait generation
problem. The first one is that this method deals with a
functional of the input and the output as a cost function,
but it cannot take the time derivative of the output into
account. Since this signal represents the generalized velocity
of mechanical systems, its behavior severely affects the
walking motion. The other difficulty is that it cannot take
discontinuous state transitions into account. Such transitions
involved in general walking motions also have to be
considered. In order to solve these problems for the optimal
gait generation, we have modified the above ILC method in
refs. [19–21]. First, we proposed an extension by employing
a pseudo-adjoint of the time derivative operator. This method
enables one to deal with a functional of the time derivative of
the output as a cost function. Second, we considered a state
transition mapping of the collision to be a general nonlinear
function with respect to the state just before touchdown, and
proposed an estimation method of the mapping by the least
squares with stored experimental data.

Since our previous method in refs. [19–21] is classified
as ILC framework, it requires that we repeat laboratory
experiments under the same initial condition as well as
many conventional results, e.g. refs. [22, 25]. However,
this initialization procedure is sometimes strict, because
it is difficult to realize the desired initial velocity of the
mechanical systems including walking robots. To solve
the problem, this paper proposes a new repetitive control
type optimal gait generation framework by executing ILC
and a parameter tuning. Here, we refer to iterative feedback
tuning (IFT) based on variational symmetry in ref. [26] as the
parameter tuning method of Hamiltonian systems. We newly
propose a learning optimal control method of Hamiltonian
systems by unifying ILC and IFT. While ILC22, 25 is to find an
optimal feedforward input minimizing a given cost function,
IFT26–28 is to find optimal parameters of a given feedback
controller. A conventional repetitive control method29 is
also a kind of a learning method for a trajectory tracking
control problem with time periodic reference trajectories.
Since an iteration procedure of the proposed framework is
automatically executed and eventually an optimal periodic
gait is expected to be generated, it is classified as repetitive
control rather than ILC. The idea of the proposed method
is as follows. First, we add a constraint by adding a virtual

potential energy to prevent the robot from falling. Second,
we execute the modified learning procedure in refs. [19–21]
mentioned in the previous paragraph. The virtual potential
energy is designed so that the motion of the robot is restricted
to a symmetric trajectory. It saves one resetting the initial
conditions. Third, by regarding the potential gain for the
constraint as a tuning parameter, we execute parameter tuning
to mitigate the strength of the virtual constraint automatically
according to the progress of learning control. Consequently,
it is expected to generate an optimal gait without constraint
eventually. In this method, ILC and IFT of Hamiltonian
systems are utilized simultaneously. However, since both
methods influence each other, they regularly cannot be used
simultaneously. In order to take interference of both methods
into account, we introduce an extended system which again
has variational symmetry. The extended system instead of
the original plant system enables one to apply ILC and
IFT simultaneously. The proposed learning optimal control
allows one to simultaneously obtain an optimal feedforward
input and tuning parameter for a plant system, which
minimizes a cost function. We summarize the advantages of
the proposed method compared with the other (particularly
learning) methods:

� it can generate an optimal trajectory as a solution to an
infinite-dimensional optimal control problem without any
discretization of the state space nor the time horizon nor
parameterization of the policy;

� since it can directly provide the gradient of the cost
function, we do not have to search the whole space;

� it does not require time-consuming calculations, such as
large-scale inverse matrices and calculations of dynamics,
nor an enormous amount of memory; and

� it does not require the plant model nor any information of
nominal/desired trajectory.

This paper grew out of our previous reports.30, 31 In ref.
[30], the interference of ILC and IFT was not handled well,
and advanced considerations are added to ref. [31]. The
remainder of the paper is organized as follows. In Section
2, ILC and IFT methods based on variational symmetry of
Hamiltonian systems22, 26 are referred to. In Section 3, we
introduce a compass-like biped robot with torso as a plant
system. In Section 4, we equip a constraint via a virtual
potential energy and propose a unified learning optimal
control method of ILC and IFT. Then, we summarize the
proposed optimal gait generation method. In Section 5,
some numerical simulations demonstrate the effectiveness
of the proposed method. In Sections 6 and 7, discussion and
conclusions are given.

2. Variational Symmetry of Hamiltonian Systems and
Its Application to ILC and IFT
This section considers a Hamiltonian system and its
symmetric property called variational symmetry.22 This
property relates the variational system of the Hamiltonian
system and its adjoint one. Then, utilizing this property
the ILC22 and IFT26 methods are briefly referred to. These
methods play important roles in the proposed framework.
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2.1. Hamiltonian systems and variational symmetry
We consider a Hamiltonian system with dissipation23, 24

�x
t0 : U → Y : u �→ y as

⎧⎪⎪⎨
⎪⎪⎩

ẋ = (J (x) − R(x))
∂H (x, u)�

∂x
, x(t0) = xt0,

y = −∂H (x, u)�

∂u
.

(1)

This system is one of the representations of the physical
systems and it includes not only the conventional
Hamiltonian systems but also passive electro-mechanical
systems, mechanical systems with nonholonomic constraints
and so on. Here, x(t) ∈ X, u ∈ U and y ∈ Y with Hilbert
spaces X, U and Y describe the state, the input and
the output, respectively. Typically, X = R

n and U, Y =
Lm

2 [t0, t1] on a finite time interval [t0, t1]. The structure
matrix J (x) ∈ R

n×n and the dissipation matrix R(x) ∈ R
n×n

are skew symmetric and symmetric positive semi-definite,
respectively. The variational system δ�x

t0 is the Fréchet
derivative of the system �xt0 . The definition of the Fréchet
derivative is as follows.

Definition 1. Consider an operator f : �̃ → � with
Banach spaces � and �, and an open subset �̃ ⊂ �. f

is said to be Fréchet differentiable at x ∈ �̃ if there exists an
operator δf : �̃ × � → � such that δf (x)(ξ ) is linear in ξ

and the following holds: For any ξ ∈ � such that x + ξ ∈ �̃,

f (x + ξ ) = f (x) + δf (x)(ξ ) + o(‖ξ‖�), (2)

where

lim
‖ξ‖�→0

o(‖ξ‖�)

‖ξ‖�

= 0.

Under these circumstances, δf (x)(·) is called the Fréchet
derivative of f at x.

The calculation of the Fréchet derivative is also utilized for
derivation of the learning iteration law, e.g. Eqs. (11), (29)
and (41). Here, let us refer to the following lemma. It relates
the variational system to its adjoint one, which appears in
solving optimal control problems.

Lemma 1 (ref. [22]). Consider the Hamiltonian system
�x

t0 in (1). Suppose that J and R are constant and that there
exists a nonsingular matrix T ∈ R

n×n satisfying

J = −T J T −1, R = T R T −1, (3)

∂2H (x, u)

∂(x, u)2
=

(
T Onn

Onn In

)
∂2H (x, u)

∂(x, u)2

(
T −1 Onn

Onn In

)
. (4)

Here, Ii and Oij represent i × i identity matrix and i ×
j zero matrix, respectively. Then the variational system
of �x

t0 is described by another linear Hamiltonian system

yv = (δ�x
t0 (u))(uv):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = (J − R)
∂H (x, u)�

∂x
, x(t0) = xt0,

ẋv = (J − R)
∂Hv(x, u, xv, uv)�

∂xv

,

yv = −∂Hv(x, u, xv, uv)�

∂uv

,

(5)

with the initial state xv(t0) = 0. Here the controlled
Hamiltonian Hv(x, u, xv, uv) is given by

Hv(x, u, xv, uv) = 1

2

(
xv

uv

)�
∂2H (x, u)

∂(x, u)2

(
xv

uv

)
.

Furthermore, a state-space realization of the adjoint system
with zero terminal state, denoted by ya = (δ�x

t0 (u))∗(ua),
coincides with a time-reversal version of that of the
variational system with zero initial state (5). This property is
called variational symmetry of Hamiltonian systems.

Remark 1. In ref. [22], the variational system with
nonzero initial state and its adjoint are also considered.

Regarding variational symmetry, the following theorem is
useful.

Theorem 1 (ref. [26]). Consider the Hamiltonian system
(1) and suppose that conditions of Lemma 1 are satisfied.
Suppose moreover that, for two inputs v, w ∈ U , the
corresponding state trajectories φ(t), ψ(t) ∈ X, t ∈ [t0, t1]
satisfy

R

⎛
⎜⎝∂2H (x, u)

∂(x, u)2

∣∣∣∣∣∣∣x = φ
u = v

⎞
⎟⎠ = ∂2H (x, u)

∂(x, u)2

∣∣∣∣∣∣∣ x = ψ
u = w

, (6)

where R represents the time reversal operator on [t0, t1]
defined by

R(u)(t) = u(t1 − t + t0), ∀t ∈ [t0, t1]. (7)

Then, variational symmetry leads to the following
relationship:

(δ�φ(t0)(v))∗ = R(δ�ψ(t0)(w))R. (8)

The above operator maps from Lm
2 [t0, t1] to Lm

2 [t0, t1].

Remark 2. A state trajectory under which the
configuration coordinate q and the phase coordinate q̇ satisfy

q(t) = q(t1 − t + t0),

q̇(t) = −q̇(t1 − t + t0), ∀t ∈ [t0, t1], (9)

represents a time-symmetric motion with respect to the
middle point of time t = (t0 + t1)/2. We call the trajectory
satisfying the condition (9) symmetric trajectory. Suppose a
state trajectory φ corresponding to an input v is symmetric
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trajectory. Then, the condition (6) in Theorem 1 is satisfied
with ψ = φ and w = v, and therefore the following simpler
relationship than Eq. (8) holds:

(δ�φ(t0)(v))∗ = R(δ�φ(t0)(v))R. (10)

From the relations (8) and (10), we convert the adjoint
system to the corresponding variational one, and calculate
it by a difference approximation. Then, the input–output
mapping of the adjoint system can be obtained by only using
the input–output data of the original system, see Eqs. (13)
and (31). This is a key technique of our learning framework
based on variational symmetry.

2.2. ILC and IFT based on variational symmetry
We review some results of ILC in ref. [22] and IFT in ref.
[26]. They have a common feature that they take advantage of
variational symmetry of Hamiltonian systems. The objective
of ILC is to find an optimal feedforward input which
minimizes a given cost function, while that of IFT is to find
optimal parameters of a given feedback controller.

First, let us refer to ILC. Consider the system �x
t0 : U →

Y in (1) and a cost function 
̂(u, y) : U × Y → R. By utiliz-
ing the relation y = �x

t0 (u), the cost function can be written
by 
(u) : U → R := 
̂(u, �x

t0 (u)). Let us calculate the
Fréchet derivative (Definition 1) of the cost function in order
to obtain the gradient with respect to the input u as follows:

δ
(u)(δu) = 〈∇u
̂(u, y), δu〉U + 〈∇y
̂(u, y), δy〉Y
= 〈∇u
̂(u, y) + (δ�x

t0 (u))∗(∇y
̂(u, y))︸ ︷︷ ︸
=: ∇
(u)

, δu〉U .

(11)

The well-known Riesz representation theorem and the
linearity of the Fréchet derivative guarantee that there exist
functions ∇u
̂(u, y) and ∇y
̂(u, y) as above. Since ∇
(u)
in Eq. (11) represents the gradient of the cost function with
respect to u, the steepest descent method implies that one can
reduce the cost function down at least to a local minimum by
the following iteration law with a positive definite matrix K(i):

u(i+1) = u(i) − K(i)∇
(u(i)). (12)

Here, the subscript (i) denotes the ith iteration in a
laboratory experiment. However, calculation of the gradient
∇
(u) generally requires the precise knowledge of the
plant system �xt0 , because it contains the output signal of
the adjoint system (δ�x

t0 (u))∗ corresponding to the input
signal ∇y
̂(u, y). If the assumption in Theorem 1 holds,
the following approximation is obtained from Eq. (8) with
a sufficiently small constant ε > 0:

(δ�x
t0 (u))∗(∇y
̂(u, y))

= R(δ�ψ(t0)(w))(R(∇y
̂(u, y))),

≈ �ψ(t0)(w + εR(∇y
̂(u, y))) − �ψ(t0)(w)

ε
. (13)

The approximation (13) enables one to execute the iteration
procedure with Eq. (12) by only using the input–output data
of the plant system �xt0 .

Second, let us refer to IFT. Here, we consider a feedback
system of a Hamiltonian system with a generalized canonical
transformation32 so that the feedback system is also described
by another Hamiltonian system in the form of (1). Therefore,
the system parameters of the closed-loop system Hc, Jc

and Rc generally depend on the parameters of the feedback
controller to be adjusted. For simplicity, in this paper, it is
supposed that only the Hamiltonian function Hc depends on
the tuning parameter ρ ∈ R

s . The case where Jc and Rc also
depend on ρ is considered in ref. [26]. Consider a feedback
system of the form (1) with a Hamiltonian Hc(x, u, ρ). In
the IFT method proposed in ref. [26], the tuning parameter is
considered to be a virtual input for the Hamiltonian system,
and a corresponding output is induced so that the input–
output map has variational symmetry. Let us introduce the
following zeroth-order hold operator h, which maps the
parameter ρ ∈ R

s to uρ ∈ Ls
2[t0, t1] in order to define a

virtual input:

h : R
s → Ls

2[t0, t1] : uρ(t) := (h(ρ))(t) ≡ ρ, ∀t ∈ [t0, t1].

(14)

For the virtual input uρ , let us consider the following input–
output map yρ = �

x
t0 ,u

ρ (uρ):

⎧⎪⎪⎨
⎪⎪⎩

ẋ = (J − R)
∂Hc(x, u, uρ)�

∂x
, x(t0) = xt0,

yρ = −∂Hc(x, u, uρ)�

∂uρ

,

(15)

Since this map �
xt0 ,u
ρ is a Hamiltonian system of the form

(1), Lemma 1 and Theorem 1 imply that it has variational
symmetry with some conditions. Here the following property
with respect to h defined in Eq. (14) is exhibited, which is
utilized in the IFT algorithm.

Lemma 2 (ref. [26]). h∗ is characterized by the following
equation for any ξ ∈ Ls

2[t0, t1]:

h∗(ξ ) =
∫ t1

t0
ξ (t)dt. (16)

By utilizing the input–output map (15) and Eq. (16), an
iteration algorithm for IFT can be derived in the manner
similar to the case of ILC. Roughly speaking, consider the
system (15) and a cost function 
̂ρ(uρ, yρ) : Ls

2 × Ls
2 → R.

By replacing u, y, �x
t0 and 
̂ in Eq. (11) with uρ , yρ , �

xt0 ,u
ρ

and 
̂ρ , we have δ
ρ(uρ)(δuρ) = 〈∇
ρ(uρ), δuρ〉. From the
linearity of the Fréchet derivative and the operator h, that is,

δh(ρ)dρ = h(ρ + dρ) − h(ρ) + o(‖dρ‖)

= h(dρ) + o(‖dρ‖)
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Table I. Parameters and variables.

Notation Meaning Unit

mT Torso mass kg
mL Leg mass kg
a Length from mL to the ground m
b Length from the hip to mL m
l = a + b Total leg length m
c Length from the hip to mT m
g Gravity acceleration m/s2

q1 Stance leg angle with respect to vertical rad
q2 Swing leg angle with respect to vertical rad
q3 Torso angle with respect to vertical rad
v1 Ankle torque Nm
v2 Torque relatively applied from torso to swing leg Nm
v3 Torque relatively applied from torso to stance leg Nm

X

Y

m

mT

g

b

O

ma

l
c

v1

v2

v3

L

L

q1q2

q3

Fig. 1. Model of the compass gait biped with a torso.

and from Definition 1, we have

δuρ = δh(ρ)dρ = h(dρ). (17)

Then, δ
ρ(uρ)(δuρ) reduces to

〈∇
ρ(uρ), δuρ〉 = 〈h∗(∇
ρ(uρ)), dρ〉. (18)

Since h∗(∇
ρ(uρ)) in Eq. (18) represents the gradient of
the cost function with respect to the tuning parameter ρ,
the iteration law for IFT is given by with a positive definite
matrix Kρ(i) (for calculation of h∗, see Eq. (16)):

ρ(i+1) = ρ(i) − Kρ(i)

∫ t1

t0
∇
ρ(uρ(i)(t))dt. (19)

3. Description of the plant
Let us consider a full-actuated planar compass-like biped
robot with a torso depicted in Fig. 1. The legs without
knees and the torso are rigid bars, and they are connected
by a frictionless hinge at the hip. A 1-period of walking
describes the period between the take-off of one foot from
the ground and its subsequent landing. Table I shows physical
parameters and variables. In this paper, we define the input
u as

u = (u1, u2, u3)� := (v1 − v3, −v2, v2 + v3)� (20)

Table II. Some notations.

Notation Meaning

q := (q1, q2, q3)� Angles of legs and a torso
q̇ := (q̇1, q̇2, q̇3)� Angular velocities of legs and a torso
p := (p1, p2, p3)� Generalized momentum
x := (q�, p�)� State
Q := (q�, q̇�)� Angles and their velocities
(qt0 , pt0 ) := (q(t0), p(t0)) Initial state
(qt1 , pt1 ) := (q(t1), p(t1)) Terminal state
(·)−/+ Just before/after a discontinuous

transition
Note that x− ≡ xt1 .

in order to simplify the input–output relation in the
Hamiltonian form mentioned later. Furthermore, we assume
the following on this robot.

Assumption 1. There exists a foot link whose thickness
and mass can be ignored, and the ankle torque v1 can be
occurred relative to it.

Assumption 2. The foot of the swing leg does not bounce
back nor slip on the ground at the collision (inelastic
impulsive impact is assumed).

Assumption 3. Transfer of support between the stance
and the swing legs is instantaneous.

Assumption 4. The foot-scuffing during the single
support phase can be ignored.

We use a number of notations with respect to the state.
Table II summarizes them.

A typical mechanical system can be described by a
Hamiltonian system in (1) with the state x = (q�, p�)� ∈
R

2m as

(
q̇

ṗ

)
=

((
Omm Im

−Im Omm

)
−

(
Omm Omm

Omm RD

))⎛
⎝ ∂H (q,p,u)�

∂q

∂H (q,p,u)�
∂p

⎞
⎠ ,

y = −∂H (q, p, u)�

∂u
= q, (21)
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with the Hamiltonian

H (q, p, u) = 1

2
p�M(q)−1p + U (q) − u�q. (22)

Here, a positive definite matrix M(q) ∈ R
m×m denotes

the inertia matrix. The generalized momentum p ∈ R
m is

given by p := M(q)q̇. A positive semi-definite matrix RD ∈
R

m×m denotes the friction coefficients, and a scalar function
U (q) ∈ R denotes the potential energy of the system. The
dynamics of the robot depicted in Fig. 1 is described as a
typical mechanical system in (21) with m = 3, the friction
coefficients RD = O33 and the following inertia matrix and
the potential energy:

M(q)

=

⎛
⎜⎝

mT l2 + mLl2 + mLa2 −mLbl cos(q1 − q2) mT cl cos(q1 − q3)

−mLbl cos(q1 − q2) mLb2 0

mT cl cos(q1 − q3) 0 mT c2

⎞
⎟⎠,

U (q)

= {mL((a+l) cos q1−b cos q2)+mT (l cos q1+c cos q3)}g.

The output y corresponding to the input u defined in
Eq. (20) is given by y = q. At the end of a walking period, a
collision between a leg and the ground causes a discontinuous
change in angular velocities. Assumptions 2 and 3 imply that
there exists no double support phase. Since the support and
swing legs change each other instantly, we have

q+ =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠q− =: Cq−, (23)

where q− and q+ denote the angles just before and just after
the collision, respectively (see Table 3). Following the law of
conservation of the angular momentum, a transition mapping
can be written as q̇+ = ̄(q−)q̇−. The detail of the mapping
̄(q−) is omitted here. See e.g. ref. [12].

Before the ILC method mentioned above is applied, feed-
back controllers are typically employed to the control system
in order to render the system asymptotically stable. However,
the feedback system is not generally a Hamiltonian system of
the form (1) any more with an arbitrary feedback controller.
In ref. [32], a generalized canonical transformation, which is
a pair of feedback and coordinate transformations preserving
the Hamiltonian structure in (1), is proposed. It is known that
in the case of a typical mechanical system in (21), a simple
PD feedback preserves the structure of the Hamiltonian
system.22, 32 Let us consider a PD controller

u = −KP q − KDq̇ + ū, (24)

where ū is a new input for ILC and KP , KD ∈ R
m×m are

symmetric positive definite matrices.

Remark 3 (ref. [22]). Consider the feedback system of the
form (21) by a PD controller (24). If the inertia matrix M(q)
of the system does not depend on the configuration coordinate
q, then the conditions (3) and (4) in Lemma 1 are satisfied
with the following nonsingular block diagonal matrix

T = diag{Im, −Im}. Otherwise, however, if PD gains KP

and KD in (24) are chosen large enough, the conditions (3)
and (4) are satisfied approximately with the same matrix T .

In what follows, we consider the feedback system by a PD
controller (24) with sufficiently large gains KP and KD so
that the conditions in Lemma 1 are satisfied approximately,
and derive the iteration law for the input ū in Eq. (24).

4. Main results
This section proposes a repetitive control type optimal
gait generation framework. In Section 4.1, we introduce
a constraint by adding a virtual potential energy in order
to prevent the robot from falling and to continue learning
procedures. Then, the concept of the proposed framework
is outlined. In Section 4.2, we propose a learning optimal
control method of Hamiltonian systems by unifying ILC and
IFT mentioned in Section 2.2. Since both the ILC and IFT
methods influence each other, they regularly cannot be used
simultaneously. The proposed method takes the interference
of both methods into account. In Section 4.3, we define a
cost function and exhibit a proposed algorithm.

4.1. Constraints by virtual potential energies
In the literature,12, 13 walking control methods using virtual
constraints based on the output zeroing control are proposed.
In ref. [13], particularly, they can achieve stable symmetric
walking gaits by using another property of Hamiltonian
systems other than those used in this paper. They set the
output function y = q1 + q2 to zero by the output zeroing
control and keep the leg angles bounded by a leg exchange
scheme.13 As a consequence, they guarantee that the robot
does not fall and obtain symmetric walking gaits satisfying
q1 + q2 = 0.

On the contrary, we use a similar idea of the virtual
constraint to prevent the robot from falling, but do not use the
output zeroing control. There are two reasons: one is that the
output zeroing control requires the precise knowledge of the
plant system and the other is that such constraints consume
a large amount of control energy. We add a virtual potential
energy Pc such as Eq. (25) to produce a similar effect to13

Pc := kc

2
(q1 + q2)2. (25)

Here, the gain parameter kc represents the constraint strength.
We let kc sufficiently large at the beginning of the learning
steps so that the trajectory of the robot is restricted to a
symmetric one, i.e. q1 + q2 = 0 holds. Due to ref. [13], it is
expected that the robot does not fall. The advantages of this
method instead of the output zeroing control are as follows.
First, it does not require the model parameters of the plant
system, since the potential energy (25) can be generated by
a simple feedback controller

u = −KP q − KDq̇ + ū − kcAcq, Ac :=
⎛
⎝1 1 0

1 1 0
0 0 0

⎞
⎠.

(26)
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Fig. 2. Closed-loop system of the local PD feedback and the virtual
potential one.

The feedback system is depicted in Fig. 2. Second, after
adding the potential energy, the plant system preserves the
Hamiltonian structure and the constraint parameter kc is
explicitly contained in a new Hamiltonian. The controller
(26) converts the dynamics of the robot into another
Hamiltonian system of the form (21) with a new Hamiltonian
H̄ , a new structure matrix J̄ and a new dissipation matrix R̄

as

H̄ (q, p, ū, kc)

= 1

2
p�M(q)−1p + U (q) + 1

2
q�(KP + kcAc)q − ū�q,

J̄ =
(

O33 I3

−I3 O33

)
, R̄ =

(
O33 O33

O33 KD

)
. (27)

By regarding kc as a tuning parameter, we execute IFT
mentioned in Section 2.2 to adjust the constraint strength,
and we generate a walking trajectory by applying ILC
simultaneously. The concept of the proposed framework is
summarized as follows.

Step 1: Add a virtual potential energy to restrict the motion
of the robot to a symmetric trajectory. Then, let the
constraint parameter kc sufficiently large to expect that
the robot does not fall.

Step 2: By utilizing a unified learning optimal control
method proposed in the next subsection, ILC generates
an optimal walking gait and, simultaneously, IFT
mitigates the constraint parameter automatically
according to the progress of learning control.

Step 3: Repeat step 2 every one cycle of walking.

As a result, it is expected that an optimal gait without
the constraint or with sufficiently small one is generated
eventually. The feature of the proposed framework is that
the robot keeps on walking and improves the walking gait,
because the robot does not fall due to step 1. From this
aspect, our method is classified as repetitive control29 rather
than ILC.22, 25 It also differs from the conventional methods
using virtual constraints in that it automatically optimizes the
strength of the constraints.

4.2. Unified learning method of ILC and IFT
Here, we propose a learning optimal control method of
Hamiltonian systems by unifying ILC22 and IFT26 by
introducing an extended system which again has variational
symmetry. This method enables one to execute ILC and IFT
simultaneously, and plays an important role in our proposed
framework mentioned in the previous subsection.

Let us define the extended input ue by ue := (ū�, u�
ρ )� ∈

Ue = U × Uρ , the extended output ye by ye := (y�, y�
ρ )� ∈

Ye = Y × Yρ , where Uρ, Yρ = Ls
2[t0, t1] and Hamiltonian

He by He(x, ue) := Hc(x, ū, uρ). Then we have the following
extended system ye = �

x
t0

e (ue):

⎧⎪⎪⎨
⎪⎪⎩

ẋ = (J − R)
∂He(x, ue)

∂x

�
, x(t0) = xt0,

ye = −∂He(x, ue)

∂ue

�
.

(28)

Since the extended system (28) has the form of (1), it can
be easily proved that this system has variational symmetry
with certain conditions. Then, we consider a cost function

̂e(ue, ye) : Ue × Ye → R. The Fréchet derivative of the cost
function can be calculated as

δ
̂e(ue, ye)(δue, δye)

= 〈∇ue

̂e(ue, ye), δue〉Ue

+ 〈∇ye

̂e(ue, ye), δye〉Ye

= 〈∇ue

̂e + (δ�

x
t0

e (ue))∗(∇ye

̂e), δue〉Ue

, (29)

where ∇ue

̂e(ue, ye) and ∇ye


̂e(ue, ye) represent the partial
gradients of the cost function with respect to ue and
ye, respectively. It follows from the definition of ue and
Eq. (17)

δue =
(

δū

δuρ

)
=

(
δū

h(dρ)

)
. (30)

From Eq. (30), Eq. (29) reduces to

δ
̂e(ue, ye)(δue, δye)

=
〈(

id 0
0 h∗

)(
∇ue


̂e + (δ�
x

t0
e (ue))∗(∇ye


̂e)
)
,

(
δū

dρ

)〉
U×Rs

=
〈( ∇ū
̂e

h∗(∇uρ

̂e)

)
+

(
id 0
0 h∗

)

R
(
δ�

ψ
t0

e (we)
)
R(∇ye


̂e),

(
δū

dρ

)〉
U×Rs

≈
〈( ∇ū
̂e

h∗(∇uρ

̂e)

)
+

(
R 0
0 h∗

)

×
(

�
ψ

t0
e (we + εeR(∇ye


̂e)) − �
ψ

t0
e (we)

εe

)
,

(
δū

dρ

)〉
U×Rs

,

(31)

where ψt0 and we := (w�, h(ρ)�)� should be chosen such
that the condition (6) in Theorem 1 holds. In the last
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approximation, the relation h∗R = h∗R∗ = (Rh)∗ = h∗ is
utilized (note that it follows from Eq. (7) that R∗ = R).
Consequently, the optimal learning control law unifying ILC
and IFT is given by

⎧⎨
⎩

xt0(3i+1) = ψt0(i),

ū(3i+1) = w(i),

ρ(3i+1) = ρ(3i),⎧⎨
⎩

xt0(3i+2) = ψt0(i),

ū(3i+2) = w(i) + εe(i)R(∇y
̂e(3i)),
uρ(3i+2) = h(ρ(3i)) + εe(i)R(∇yρ


̂e(3i)),
(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt0(3i+3) = xt0(3i),

ū(3i+3) = ū(3i) − K(i)

(
∇ū
̂e(3i) + 1

εe(i)
R(y(3i+2) − y(3i+1))

)
,

ρ(3i+3) = ρ(3i) − Kρ(i)

(∫ t1

t0
∇uρ


̂e(3i)

+ 1

εe(i)
(yρ(3i+2) − yρ(3i+1))dt

)
,

provided that the initial control input ū(0) ≡ 0 or an
appropriate initial input, the initial parameter ρ(0) and the
initial condition xt0(0) are appropriately chosen, respectively.
Here, εe(·) denotes a sufficiently small positive constant
and an appropriate positive definite matrices K(·) and Kρ(·)
represent gains, respectively. Here, the condition ψe,t0(i) and
w(i) are chosen such that it satisfies the condition (6) in
Theorem 1 with the trajectory governed by the pair of xt0(3i)
and ū(3i) with ρ(3i). A concrete algorithm exhibiting how to
select ψe,t0(i) and w(i) is given for mechanical systems in refs.
[21, 26].

We supplement the derivation of the control law (32).
The triple iteration laws imply that this learning procedure
needs three experiments to execute a single update in
(12). First, the (3i+1)th iteration generates a trajectory ψ

corresponding to φ = x(3i) such that the condition (6) in
Theorem 1 holds. Second, in the (3i+2)th iteration, we
calculate the output �

ψt0
e (we + εeR(∇ye


̂e)) in Eq. (31)
(note that in this case ψ corresponds to x(3i+1)). It follows
from we = (w�, h(ρ)�)� and ∇ye


̂e = (∇y
̂
�
e , ∇yρ


̂�
e )�

that

we + εeR(∇ye

̂e) =

(
w + εeR(∇y
̂e)

h(ρ) + εeR(∇yρ

̂e)

)
. (33)

Note that ū(3i+2) and uρ(3i+2) follows from Eq. (33). Then
the input and the output signals of δ�

xt0
e (ue)∗(∇ye


̂e) can be
calculated from the last approximation in Eq. (31). With this
information, the gradient of the cost function with respect
to the input ∇
e(ue) with 
e(ue) := 
̂e(ue, �e(ue))(see also
Eq. (11)) is obtained. Finally, the input for the (3i+3)th
iteration is given by Eq. (12) with these signals. That
is, the (3i+3)th iteration law comes from the following

calculation:(
δū(3i+3)

dρ(3i+3)

)
:=

(
ū(3i+3) − ū(3i)

ρ(3i+3) − ρ(3i)

)

= −
(

K(i) 0
0 Kρ(i)

)
∇
e(ue(3i))

≈ −
(

K(i) 0
0 Kρ(i)

){( ∇ū
̂e(3i)

h∗(∇uρ

̂e(3i))

)

+ 1

εe

(
R 0
0 h∗

)(
y(3i+2) − y(3i+1)

yρ(3i+2) − yρ(3i+1)

)}
.

Remark 4. If the learning procedure is executed
around a symmetric trajectory and a trajectory in each
experiment approximately satisfies the condition (9), then
one can utilize the following procedure instead of that
in (32):

⎧⎨
⎩

xt0(2i+1) = xt0(2i),

ū(2i+1) = ū(2i) + εe(i)R(∇y
̂e(2i)),
uρ(2i+1) = h(ρ(2i)) + εe(i)R(∇yρ


̂e(2i)),

(34)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt0(2i+2) = xt0(2i),

ū(2i+2) = ū(2i) − K(i)

(
∇ū
̂e(2i) + 1

εe(i)
R(y(2i+1) − y(2i))

)
,

ρ(2i+2) = ρ(2i) − Kρ(i)

(∫ t1

t0
∇uρ


̂e(2i)

+ 1

εe(i)
(yρ(2i+1) − yρ(2i))dt

)
.

Around a symmetric trajectory, the condition (9) is satisfied
with ψ = φ and w = v due to Remark 2. Here, φ represents
the state x and v represents the learning input ū. So,
the procedure corresponding to the (3i+1)th iteration in
(32) is not necessary. The learning law (34) follows from
that the (2i+1)th and the (2i+2)th procedures correspond
to the (3i+2)th and the (3i+3)th procedures in (32),
respectively.

Remark 5. Although the proposed algorithm requires
time-varying feedback gains during the learning procedure in
generating perturbation signals (see uρ(3i+2) in the iteration
procedure (32) or uρ(2i+1) in another procedure (34) in
order to approximate output signals of the variational
system by utilizing Eq. (31), eventually, a generated
optimal feedback gain is constant. Unless time-varying
feedback gains are available, we substitute a feedforward
input with the previous output signal. For example, the
following procedure is substituted for the original one
in (32):

⎧⎨
⎩

xt0(3i+2) = ψt0(i),

ū(3i+2) = w(i) + εe(i)
(
R(∇y
̂e(3i)) + R(∇yρ


̂e(3i))y(3i)
)

ρ(3i+2) = ρ(3i).

,
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Fig. 3. Illustration of the restraint condition of the cost function.

4.3. Optimal gait generation algorithm
Let us consider the following cost function:


̂(y, ẏ, ū, yρ, uρ)

:= 1

2

∫ t1

t0
(y(τ )−CR(y)(τ ))�ν1(τ )�y(y(τ )−CR(y)(τ ))dτ

+1

2

∫ t1

t0
Fv(ẏ(τ ) − vref)

�ν2(τ )�ẏFv(ẏ(τ ) − vref)dτ

+1

2

∫ t1

t0
ū(τ )��ūū(τ )dτ + γyρ

2

∫ t1

t0
y2

ρ(τ )dτ

+γuρ

2

∫ t1

t0
u2

ρ(τ )dτ, (35)

where appropriate positive definite matrices �y, �ẏ, �ū ∈
R

3×3 represent weight matrices and appropriate positive
constants γyρ

and γuρ
represent weighting coefficients,

respectively. The first term of the cost function (35) is
also equipped in refs. [19, 30], which is a necessary
condition for a periodic trajectory such that q1(t0) ≡
q2(t1) and q2(t0) ≡ q1(t1). Figure 3 illustrates the
condition. Let us note that although another necessary
condition with respect to q̇ can be utilized as in ref. [19],
where initial angular velocities are equivalent to velocities
just after touchdown. However, it is not equipped here for
simplicity of the iteration law. In the second term, vref ∈ R

3

represents a constant reference angular velocity, ν1(t) ∈ R

and ν2(t) ∈ R denote filter functions defined respectively
by

ν1(t) :=
⎧⎨
⎩

1
2

(
1 − cos

(
t0+�t−t

�t
π
))

(t0 ≤ t ≤ t0 + �t),

0 (t0 + �t < t ≤ t1),

(36)

t
t1t0

ν

1

t0 Δt+
0

1

t
t1t0

ν

1

0

2

t1 t0

2

Δt Δt

Fig. 4. Filter functions ν1 and ν2.

ν2(t) :=

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
(
t0 ≤ t < t1−t0

2 − �t̄
)
,

1
2

(
1 − cos

(
− t1−t0

2 +�t̄+t

�t̄
π

))(
t1−t0

2 − �t̄ ≤ t < t1−t0

2

)
,

1
2

(
1 − cos

(
t1−t0

2 +�t̄−t

�t̄
π

)) (
t1−t0

2 ≤ t < t1−t0

2 + �t̄
)
,

0
(

t1−t0

2 + �t̄ ≤ t ≤ t1
)
,

(37)

where design parameters �t and �t̄ denote positive
constants. Figure 4 illustrates ν1(t) and ν2(t). For any ζ ∈ R

r ,
a penalty function Fv : R

r → R
r is defined as

[Fv(ζ )]i =
{

kFv
(ζ i)2 if ζ i < 0,

0 otherwise,
(i = 1, 2, . . . , r),

(38)

where an appropriate positive constant kFv
represents strength

of the penalty. In what follows, the dimension r of the
penalty function shall accordingly change with that of the
argument (in the case of Eq. (35), r = 3). The second term
encourages the robot to achieve an appropriate constant
velocity in the middle of walking. As a consequence, it
is aimed at specifying the walking direction (forward or
backward) and a rough walking speed, and preventing the
robot from stopping during the learning. The third and fourth
terms are to minimize the control input and the feedback
input generating virtual potential energy, respectively.
The last term is to mitigate the strength of the virtual
constraint.

In order to utilize variational symmetry of the extended
system for (27), let us rewrite the cost function (35)
as


̂(y, ẏ, ū, yρ, uρ)

≡ 1

2

∫ t1

t0
(ye(τ )−CeR(ye)(τ ))��ye

(τ )

×(ye(τ )−CeR(ye)(τ ))dτ

+1

2

∫ t1

t0
Fv(ẏe(τ ) − ve,ref)

��ẏe
(τ )Fv(ẏe(τ ) − ve,ref)dτ

+1

2

∫ t1

t0
ue(τ )��ue

ue(τ )dτ =: 
̂e(ye, ẏe, ue), (39)
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where

Ce := diag{C, 0} ∈ R
4×4, ve,ref := (vref, 0)� ∈ R

4,

�ye
(t) := diag{ν1(t)�y, γyρ

}, �ẏe (t) := diag{ν2(t)�ẏ, 0},
�ue

:= diag{�ū, γuρ
} ∈ R

3×3 (40)

and, in this case, the dimension of Fv is r = 4.
Since the virtual constraint introduced in Section 4.1

restricts the motion of the robot to a symmetric trajectory, it
is supposed that the learning procedure is executed around a
symmetric trajectory. Now let us derive the concrete updating
law based on the optimal learning control procedure (34) in
Remark 4.

Let us calculate the Fréchet derivative of the cost function
(39) as follows:

δ
̂e(ye, ẏe, ue)(δye, δẏe, δue)

= 〈�ye
(ye − CeR(ye), δye − CeR(δye)〉Ye

+ 〈�ẏe
Fv(ẏe − ve,ref), δFv(ẏe − ve,ref)Dt (δye)〉Ye

+ 〈�ue
ue, δue〉Ue

= 〈(id − RCe)�ye
(id − CeR)(ye)

−Dt

(
(δFv(ẏe − ve,ref))

∗�ẏe

× Fv(ẏe − ve,ref)
)
, δye〉Ye

+ 〈�ue
ue, δue〉Ue

=: 〈∇ye

̂e, δye〉Ye

+ 〈∇ue

̂e, δue〉Ue

=
〈(∇y
̂e

∇yρ

̂e

)
,

(
δy

δyρ

)〉
Ye

+
〈(∇ū
̂e

∇uρ

̂e

)
,

(
δū

δuρ

)〉
Ue

. (41)

Here, Dt denotes the time derivative operator. Since the cost
function (39) is a functional of the time derivative of the
output ẏe, the previously proposed technique with a pseudo-
adjoint of Dt in ref. [19] is utilized in the calculation. Briefly
put, D∗

t = −Dt holds under certain conditions. See refs. [19,
21] for the details. From Eq. (38), (δFv(ẏe − ve,ref))∗ can be
calculated as

[(δFv(ẏe − ve,ref))
∗]ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (i �= j ){
2kFv

(
ẏi

e − vi
e,ref

)
if ẏi

e − vi
e,ref < 0

0 otherwise
(i = j )

,

(i, j = 1, 2, 3, 4). (42)

Then, the partial gradients ∇y
̂e, ∇yρ

̂e, ∇ū
̂e and ∇uρ


̂e are
calculated from Eq. (41) as

(∇y
̂e

∇yρ

̂e

)

=
(

id − RC 0
0 id

)(
ν1�y O21

O12 γyρ

)(
id − CR 0

0 id

)

×
(

y

yρ

)
− Dt

((
(δFv(ẏ − vref))∗ 0

0 (δFv(ẏρ − 0))∗

)

×
(

ν2�ẏ O21

O12 0

)(
Fv(ẏ − vref)
Fv(ẏρ − 0)

))

= ((id−RC)ν1�y(id − CR)(y)−Dt ((δFv(ẏ − vref))
∗ν2

×�ẏFv(ẏ − vref)), γyρ
yρ)� (43)

and (∇ū
̂e

∇uρ

̂e

)
=

(
�ūū

γuρ
uρ

)
. (44)

From the iteration law (34) and Eqs. (43) and (44), let us
summarize the proposed learning algorithm.

Step 0: Set appropriate positive definite matrices �y, �ẏ

and �ū as weight matrices, positive constants γyρ
and

γuρ
as weight coefficients and positive constants �t ,

�t̄ and kFv
as design parameters for the filter functions

ν1 in (36) and ν2 in (37) and the penalty function Fv in
(38). Set the initial control input ū(0) appropriately (or
set ū(0) ≡ 0) and a constant reference angular velocity
vref and let the constraint parameter kc(0) sufficiently
large. Let the robot start walking under an appropriate
initial condition xt0 . Set i = 0. Then, go to step 1.

Step 2i + 1: During the (2i+1)th walking cycle, one utilizes
the following controller:

u = −KP q − KDq̇ − uρ(2i+1)Acq + ū(2i+1). (45)

Here, the time-varying feedback gain for the virtual
constraint uρ(2i+1) and the feedforward control input
ū(2i+1) are given by

{
ū(2i+1) = ū(2i) + εe(i)R(∇y
̂e(2i)),

uρ(2i+1) = uρ(2i) + εe(i)R(∇yρ

̂e(2i)),

(46)

where εe(i) denotes a sufficiently small positive
constant and

∇y
̂e(2i) = (id − RC)ν1�y(id − CR)(y(2i))

−Dt ((δFv(ẏ(2i)−vref))
∗ν2�ẏFv(ẏ(2i)−vref)),

∇yρ

̂e(2i) = γyρ

yρ(2i).

For (δFv)∗, see Eq. (42). Then go to step 2i+2.
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Step 2i + 2: During the (2i+2)th walking cycle, one utilizes
the following controller:

u = −KP q − KDq̇ − kc(2i+2)Acq + ū(2i+2). (47)

Here the feedback gain kc(2i+2) which represents the
strength of the virtual constraint and the feedforward
control input ū(2i+2) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(2i+2) = ū(2i) − K(i)

×
(

�ūū(2i) + 1

εe(i)
R(y(2i+1) − y(2i))

)
,

kc(2i+2) = kc(2i) − Kρ(i)
(
γuρ

kc(2i)(t1 − t0)

+ 1

εe(i)

∫ t1

t0
yρ(2i+1) − yρ(2i)dt

)
,

(48)

where appropriate positive definite matrix K(i) and
positive constant Kρ(i) represent learning and tuning
gains, respectively. Set i = i + 1 and go to step 2i + 1.

Here are all assumptions in the proposed framework and
how those are satisfied.

1. Conditions (3) and (4) in Lemma 1
If the inertia matrix M(q) of the robot does not depend
on the configuration coordinate q, then both conditions
are satisfied with the nonsingular block diagonal matrix
T = diag{Im, −Im}. Otherwise, however, if PD gains KP

and KD in the PD controller (26) are chosen large enough,
both conditions are satisfied approximately with the same
matrix T . For the proof, see ref [22].

2. Difference approximation of the variational system in (13)
(see also (31))
In order to let the approximation hold, we can make the
input variation arbitrarily small by choosing a sufficiently
small constant εe > 0.

3. Restriction to a symmetric walking trajectory
In the beginning of learning, we make the constraint
parameter kc(0) sufficiently large.

5. Numerical examples
We apply the proposed algorithm in the previous section to
the compass gait biped with a torso depicted in Fig. 1 in order
to generate an optimal periodic gait. Here, we show the results
of two kinds of simulations. The physical parameters of the
robot in Table I are chosen as mT = 5.0, mL = 1.2 (kg) and
a = b = 0.20, c = 0.12 (m), which are the same as those of
the robot named Skipper II in ref. [13]. For the controller,
the following feedback gains are utilized KP = diag(4, 4, 6)
and KD = diag(2, 2, 4). In all simulations, we assign a
reference velocity only to q̇1, since the angular velocity
of the ankle joint of the support leg q̇1 relates to leaning
forward of the body and mainly affects the walking velocity.
This is the reason why we do not assign the reference
velocity to the center of mass (CoM) of the robot, that
its calculation requires the precise knowledge of the robot
model, e.g. the inertia matrix. We utilize the following design
parameters with respect to weighting functions for the cost
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Fig. 5. Histories of the cost function 
̂e along walking steps.
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Fig. 6. Histories of the constraint parameter kc along walking steps.

function (39) as �y = diag(20, 20, 20), �ẏ = diag(10, 0, 0),
γyρ

= 1 × 10−2, �ū = diag(1 × 10−4, 5 × 10−5, 5 × 10−5)
and γuρ

= 1 × 10−2, those with respect to filter functions
and penalty function as �t = 5.0 × 10−3(s), �t̄ = 0.1 (s)
and kFv

= 0.25 and those with respect to the learning
algorithm as K(·) = diag(3, 3, 3), Kρ(·) = 1 and εe(·) = 1.
In each simulation, we proceed 500 steps of the learning
procedure, which means the robot continued 1000 cycles of
walking, with the initial constraint parameter kc(0) = 30, with
the initial condition:(

q1
t0, q

2
t0, q

3
t0, q̇

1
t0, q̇

2
t0, q̇

3
t0

) = (−0.18, 0.20, 0, 1.1, 0.5, 0),

and with the initial control input:

(
ū1

(0)(t), ū
2
(0)(t), ū

3
(0)(t)

)� ≡ (0.5, −1.5, 0)�. (49)

In the first simulation, we assign a reference velocity in
(40) as vref = (0.5, 0, 0)�. Figure 5 shows the history of
the cost function (39) along the walking steps. Since the
cost function monotonically decreases along the walking
steps and then converges to a constant value, it implies
that at least a local minimum of the cost function has
been achieved smoothly. Figure 6 shows the history of
the constraint parameter kc along the walking steps. It
implies that the strength of the virtual constraint is adjusted.
Although kc does not converge to zero, it plays a role of a
stabilizing feedback controller. Figures 7 and 8 represent
the animations of the robot in the first and the last five
cycles of walking, respectively. These figures show that
at the beginning the robot walks awkwardly, and then the
robot improves the walking gait as it continues to walk.
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Fig. 7. Stick diagrams in the first five cycles of walking.
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Fig. 9. q̇1, v1
ref and ν2 of the generated gait.
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Fig. 10. Horizontal velocity of the center of mass (CoM) of the
generated gait.

Figure 9 shows q̇1 of the generated gait, its reference
v1

ref = 0.5 and the filter function ν2(t) in (37), and Fig. 10
shows the horizontal velocity of CoM of the generated gait.
In the next numerical example, we will observe that the
horizontal CoM velocity increases with the larger reference
velocity. Figure 11 exhibits the phase portraits of q – q̇.
The fact that a periodic trajectory is generated follows from
that the phase portraits in the figure form closed orbits.
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Fig. 11. Projections of the phase portrait to qi − q̇i planes (i =
1, 2, 3).
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Fig. 12. Generated learning control inputs ū.

Figure 12 shows the generated learning control input ū, and
Fig. 13 shows the control input u in Eq. (47). Finally, we
quantitatively evaluate the energy efficiency of the generated
gait. Here, we calculate the specific resistance (SR),33 which
is defined as SR = Ē/(MallgV̄ ), where Ē represents the
average input power, Mall represents the total mass and V̄

represents the average walking speed. In the case of the
compass robot with a torso, Ē is obtained by34 (for the control
input u, see Eq. (26))

Ē = 1

t1 − t0

∫ t1

t0
|u1(t)q1(t)| + |u2(t)q2(t)| + |u3(t)q3(t)|dt.

From the above definition, we have SR = 0.0480. It implies
that we can achieve almost equivalent efficiency to a human
walking according to ref. [33]. Besides, we also investigate
the dimensionless index called the cost of transport (CT),35

which is calculated by CT = E/(Mall�Xg). Here, the used

energy E is calculated by E = ∫ t1

t0 |u(t)�q(t)|dt, and �Xg

represents the travel distance. We have CT = 0.435.
In the second simulation, we assign another reference

velocity in (40) as vref = (0.8, 0, 0)�. The purpose of the
second example is to show that we can change the speed of
a generated gait by only changing the reference velocity
vref . Although we have observed that a various walking
trajectories can be generated by changing other parameters,
e.g. weight matrices of the cost function, we fix the other
parameters except for vref in order to make it clear whether
the reference velocity changes the speed of the generated
gait or not. Due to the limitation of space, we prioritize the
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Fig. 16. Stick diagrams in the first five cycles of walking.

comparison of gait speed with different reference velocities
over the other simulation results. Figure 14 shows the history
of the cost function (39) along the walking steps, and it
implies that at least a local minimum of the cost function has
been achieved smoothly as in the first simulation results.
Figure 15 shows the history of the constraint parameter
kc along the walking steps, and the strength of the virtual
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Fig. 17. Stick diagrams in the last five cycles of walking.
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Fig. 19. q̇1, v1
ref and ν2 of the generated gait.

constraint is adjusted. Figures 16 and 17 represent the
animations of the robot in the first and the last five cycles
of walking, respectively. These figures show that an optimal
gait can be eventually generated as well as the first simulation.
We also confirm that the phase portraits corresponding to the
generated gait depicted in Fig. 18 form closed orbits, which
implies that the resultant gait is periodic one. Figure 19 shows
q̇1 of the generated gait, its reference v1

ref = 0.8 and the filter
function ν2(t), and Fig. 20 shows the horizontal velocity
of CoM of the generated gait. Since the assigned reference
velocity here is bigger than that in the first simulation, the
velocity of CoM of the generated gait is faster than that in
the first one. From these simulation results, the horizontal
velocity of CoM has a relation to q̇1, and the second
term of the cost function (39) with appropriately chosen
ve,ref encourages the robot to walk forward with appropriate
velocity.
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Fig. 20. Horizontal velocity of CoM of the generated gait.

6. Discussion

6.1. Design parameters
In our framework, there are some design parameters:

� learning algorithm parameters
K(·), Kρ(·) and εe(·)

� weighting matrices and coefficients of the cost function
�y , �ẏ , �ū, γuρ

and γyρ

First of all, each of them has to be positive definite matrix or
positive number. We should choose εe(·) values small enough
so that the approximation in Eq. (31) holds. We let all εe(·) be
a constant in both simulations.

The parameters K(·) and Kρ(·) are the step parameters
in the steepest descent method. These parameters have an
effect on the convergence speed of the algorithm and have
little effect on the generated gait. They also compensate the
increase of the cost function due to the small variation of
the initial condition of each walking cycle, which will be
mentioned in Section 6.3. Although, in general, the step
parameters in the steepest descent method are decided by
the line search method, we cannot use it, because the plant
model is not available. We let all K(·) and Kρ(·) values
be constants in both simulations, respectively. However, an
appropriate convergent sequence may be effective such that
their elements are large in the beginning of learning and they
gradually become smaller.

Besides, weighting matrices and coefficients have an effect
on the generated gait. To prioritize making the configuration
coordinate q periodic, we choose the coefficients of �y larger
than the other weighting coefficients. The reason why the
coefficients of �ū are chosen much smaller than the others is
that the cost with respect to the input is evaluated relatively
much bigger than those with respect to the output and its time
derivative constraints because of the filter function ν1.

Since �ẏ has an effect on the velocity of the generated gait
and γuρ

and γyρ
have an effect on the convergence speed of

the virtual constraint, we should set them according to their
priorities. Since we prioritize comparing the velocity with
different references, we let �ẏ bigger than γuρ

and γyρ
in the

simulations. Although we do not prioritize the convergence
of kc to 0 in those cases, we observe that kc converges to 0
by letting γuρ

and γyρ
large in other simulations.

Let us note that since the proposed method is based on the
steepest descent method, achieving only a local minimum is
guaranteed. Hence, there is no guarantee that the resultant
trajectory corresponding to the local minimum is always
admissible walking pattern. Unless the resultant optimal
trajectory is admissible, the learning procedure has to be
executed again with different initial condition or design
parameters.

6.2. Computational cost
The proposed algorithm does not have time-consuming
calculations such as large-scale inverse matrices nor
calculations of dynamics. Furthermore, it does not require
enormous amount of memory. Let us see Eqs. (46) and
(48) in the proposed algorithm. First, the time-reversal
operator R(·) can be calculated by just sorting an argument
vector backward. In the (2i+1)th iteration, the calculation
of the differential operator Dt (·) can be obtained by
a numerical differentiation algorithm, and the adjoint
calculation (δFv(ẏ(2i) − vref))∗ is easily obtained by Eq. (42).
Since a single update of the proposed learning requires only
two experimental data, that is, 2ith and (2i+1)th input/output
data are required for the ith iteration. Since the other previous
data are not required, enormous amount of memory is not
necessary.

6.3. Consideration of the variation of the initial condition
Although the virtual constraint with sufficiently large
constraint parameter kc makes the trajectory symmetric,
the initial conditions for each walking step may differ
slightly. We can evaluate how the mismatch error of the
initial condition affects the cost function, and can reflect the
evaluation to choosing the step parameters K(·) and Kρ(·)
in order to compensate the increase of the cost function.
In order to deal with the variation of the initial condition,
we consider the plant system as � : X × U → X × Y :
(xt0, u) �→ (xt1, y) :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ = (J (x) − R(x))

∂H (x, u)�

∂x
, x(t0) = xt0,

y = −∂H (x, u)�

∂u
,

xt1 = x(t1),

We calculate the Fréchet derivative of the cost function
considering the effects of the variations of xt0 and xt1 as
(see Eq. (29) for comparison):

δ
̂e(ue, ye, )(δxt0, δue, δxt1, δye)

= 〈∇ue

̂e + πUe

◦ (δ�e(xt0, ue))∗(∇x
t1

̂e, ∇ye


̂e), δue〉Ue

+ 〈∇x
t0

̂e+πX ◦ (δ�e(xt0, ue))∗(∇x

t1

̂e, ∇ye


̂e), δxt0〉X
= 〈∇ue


̂e + πUe
◦ (δ�e(xt0, ue))∗(0, ∇ye


̂e), δue〉Ue

+ 〈πX ◦ (δ�e(xt0, ue))∗(0, ∇ye

̂e), δxt0〉X,

where π(·) represents the projection mapping onto (·) and
◦ denotes the composition. Since the cost function is not a
functional with respect to xt0 nor xt1 , ∇x

t0

̂e = ∇x

t1

̂e = 0.
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Then, the variation of the cost function with respect to that
of the initial condition δxt0 is given by

〈πX ◦ (δ�e(xt0, ue))∗(0, ∇ye

̂e), δxt0〉X. (50)

According to refs. [21, 26], the variational symmetry gives
the following relationship around a symmetric trajectory
(which is an extension of Eq. (10), see also Remark 1):

(δ�e(xt0, ue))∗ = S−1 ◦ δ�e(xt0, ue) ◦ S, (51)

where the operator S : X × Ue → X × Ue is defined by

S(xt0, ue) := (−(J − R)T xt0,R(ue)),

where note that T is given in Remark 3 as T = diag(I, −I).
From Eq. (51), we have

πX ◦ (δ�e(xt0, ue))∗(0, ∇ye

̂e)

= πX ◦ S−1 ◦ δ�e(xt0, ue) ◦ S(0, ∇ye

̂e)

= πX ◦ (−T −1(J − R)−1δxt1,R ◦ δ�
xt0
e (ue)(R(∇ye


̂e))

= −T −1(J − R)−1δxt1 .

From Eq. (50), the variation of the cost function with respect
to δxt0 is given by −T −1(J − R)−1δx�

t1 δxt0 . Since J and R

are given by the form of (27), and the dissipation matrix
KD in R is constant, we can evaluate an increase of the cost
function of the next j + 1th iteration due to the mismatch
error of the j th initial condition xt0,j by only information of
δxt0,j := xt0,j − xt0,j−1 and δxt1,j := xt1,j − xt1,j−1.

Therefore, we can compensate this increase of the
cost function by choosing the j + 1th learning gain
diag{K(j+1), Kρ(j+1)} so that ‖diag{K(j+1), Kρ(j+1)}‖ > (xt1,j −
xt1,j−1)�(xt0,j − xt0,j−1)‖KD‖. Then, it is guaranteed that the
cost function decreases even if the mismatch of the initial
conditions exists.

6.4. Future works
Uncertainties, for example measurement noise and
perturbations from environmental disturbances during
learning, may cause problems in practice. To solve these
problems, we consider the plant system with the above
uncertainties as a stochastic system and focus on stochastic
control theory to take into account disturbances during
experiments. In ref. [36], we have extended the deterministic
Hamiltonian systems (1) to stochastic Hamiltonian ones,
whose dynamics are described by stochastic differential
equations. Furthermore, since the variational symmetry of
a deterministic Hamiltonian system plays an important role
in our learning method, we have investigated a corresponding
symmetric property of the stochastic Hamiltonian system in
ref. [37]. Now we are tackling extension of the proposed
learning framework to stochastic Hamiltonian systems. The
relation with other stochastic optimal control methods, e.g.
refs. [17, 18], will be interesting.

Besides, application of this method to the robots with
multiple DoF is a very important issue. For now, we consider
a 12-DoF 3D biped robot and just apply the ILC part

of the proposed method to the robot, that is, we repeat
initializations and experiments. We start learning from a
pre-designed walking trajectory and try to improve the
initial trajectory in order to investigate applicability of the
proposed framework. We have already obtained some results
of trajectory optimization, and we expect that it is applicable
to the complicated robots. Experimental evaluation is also
important. We have already developed a 5-DoF planar biped
robot as a testbed and are preparing experiments.

Since the proposed method is classified as feedforward
control, an orbitally stabilizer, e.g. trajectory tracking control,
should be applied to the generated gait after learning in
order to render the gait stable. We have already proposed
a stochastic trajectory tracking control method in ref. [38],
which is applicable even in the presence of noise and would
be useful for the purpose.

Those works will be reported in future publications.

7. Conclusion
In this paper, we have proposed a repetitive control type
optimal gait generation framework by unifying learning
control and parameter tuning. The proposed learning optimal
control method of Hamiltonian systems unifying ILC and
IFT plays an important role in our framework. It allows
one to simultaneously obtain an optimal feedforward input
and a tuning parameter for a plant system, which is an
optimal solution to infinite-dimensional optimal control
problem without any finite-dimensional approximation. The
symmetric property of Hamiltonian systems allows one to
directly provide the gradient of the cost function without
the precise knowledge of the plan model. The feature of
the proposed method is that the robot keeps on walking
and improves the walking gait due to virtual constraints by
a potential energy. That is, this method does not need to
repeat experiments under the same initial condition, which is
necessary for conventional ILC frameworks. The proposed
technique also differs from some conventional methods using
virtual constraints in that it automatically mitigates the
strength of the constraints by IFT according to the progress of
learning by ILC. Finally, numerical simulations demonstrate
the effectiveness of the proposed method.
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1. M. Vukobratović and J. Stepanenko, “On the stability of

anthropomorphic systems,” Math. Biosci. 15, 1–37 (1972).
2. A. Takanishi, M. Ishida, Y. Yamazaki and I. Kato, “The

Realization of Dynamic Walking by the Biped Walking Robot
WL-10RD,” In: Proceedings of the International Conference
on Advanced Robotics (1985) pp. 459–466.

3. K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka, “The
Development of Honda Humanoid Robot,” In: Proceedings

https://doi.org/10.1017/S0263574712000756 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000756


732 Gait generation of Hamiltonian systems

of the IEEE International Conference on Robotics and
Automation (1998) pp. 1321–1326.

4. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,
K. Yokoi and H. Hirukawa, “Biped Walking Pattern Generation
by Using Preview Control of Zero-Moment Point,” In:
Proceedings of the IEEE International Conference on Robotics
and Automation (2003) pp. 1620–1626.

5. T. McGeer, “Passive dynamic walking,” Int. J. Robot. Res. 9(2),
62–82 (1990).

6. M. Garcia, A. Chatterjee, A. Ruina and M. Coleman, “The
simplest walking model: Stability, complexity, and scaling,”
ASME J. Biomech. Eng. 120, 281–288 (1998).

7. K. Osuka and K. Kirihara, “Motion Analysis and Experiments
of Passive Walking Robot QUARTET II,” In: Proceedings
of the IEEE International Conference on Robotics and
Automation (2000) pp. 3052–3056.

8. A. Sano, Y. Ikemata and H. Fujimoto, “Analysis of Dynamics
of Passive Walking from Storage Energy and Supply Rate,” In:
Proceedings of the IEEE International Conference on Robotics
and Automation (2003) pp. 2478–2483.

9. A. Goswami, B. Espiau and A. Keramane, “Limit cycles in a
passive compass gait biped and passivity-mimicking control
laws,” Auton. Robots 4(3), 273–286 (1997).

10. M. W. Spong, “Passivity Based Control of the Compass Gait
Biped,” In: Proceedings of the IFAC World Congress (1999)
pp. 19–23.

11. F. Asano, M. Yamakita, N. Kamamichi and Z. W. Luo, “A novel
gait generation for biped walking robots based on mechanical
energy constraint,” IEEE Trans. Robot. Autom. 20(3), 565–573
(2004).

12. J. W. Grizzle, G. Abba and F. Plestan, “Asymptotically stable
walking for biped robots: Analysis via systems with impulse
effects,” IEEE Trans. Autom. Control 46(1), 51–64 (2001).

13. S. Hyon and T. Emura, “Symmetric Walking Control:
Invariance and Global Stability,” In: Proceedings of the IEEE
ICRA (2005) pp. 1455–1462.

14. G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi and
G. Cheng, “Learning CPG-based biped locomotion with a
policy gradient method: Application to a humanoid robot,”
Int. J. Robot. Res. 27(2), 213–228 (2008).

15. J. Morimoto and C. Atkeson, “Robust Low Torque Biped
Walking Using Differential Dynamic Programming with a
Minimax Criterion,” In: Proceedings of the 5th International
Conference on Climbing and Walking Robots (2002) pp. 453–
459.

16. R. Tedrake, T. W. Zhang and H. S. Seung, “Stochastic Policy
Gradient Reinforcement Learning on a Simple 3D Biped,”
In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (2004) pp. 2849–2854.

17. E. Theodorou, J. Buchli and S. Schaal, “A generalized path
integral control approach to reinforcement learning,” J. Mach.
Learn. Res. 11, 3153–3197 (2010).

18. H. J. Kappen, “An Introduction to Stochastic Control Theory,
Path Integrals and Reinforcement Learning,” In: Proceedings
of the 9th Granada Seminar on Computational Physics:
Cooperative Behavior in Neural Systems (2007) pp. 149–181.

19. S. Satoh, K. Fujimoto and S. Hyon, “Biped Gait Generation
via Iterative Learning Control Including Discrete State
Transitions,” In: Proceedings of the 17th IFAC World Congress
(2008), pp. 1729–1734.

20. S. Satoh, K. Fujimoto and S. Hyon, “A gait generation
framework via learning optimal control considering
discontinuous state transitions,” [in Japanese] J. Robot. Soc.
Japan 29(2), 90–100 (2011).

21. S. Satoh, “Control of Deterministic and Stochastic Hamiltonian
Systems Application to Optimal Gait Generation for
Walking Robots,” Ph.D. dissertation (Nagoya University,
Aichi, Japan, 2010), available at: http://home.hiroshima-
u.ac.jp/satoh/index.html.

22. K. Fujimoto and T. Sugie, “Iterative learning control of
Hamiltonian systems: I/O based optimal control approach,”
IEEE Trans. Autom. Control 48(10), 1756–1761 (2003).

23. P. E. Crouch and A. J. van der Schaft, Variational and
Hamiltonian Control Systems. Lecture Notes on Control and
Information Science, vol. 101 (Springer, Berlin, 1987).

24. B. Maschke and A. J. van der Schaft, “Port-Controlled
Hamiltonian Systems: Modelling Origins and System
Theoretic Properties,” In: Proceedings of the 2nd IFAC
Symposium on Nonlinear Control Systems (1992) pp. 282–
288.

25. S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering
operation of robotics,” J. Robot. Syst. 1(2), 123–140 (1984).

26. K. Fujimoto and I. Koyama, “Iterative Feedback Tuning for
Hamiltonian Systems,” In: Proceedings of the 17th IFAC World
Congress (2008) pp. 15,678–15,683.

27. F. D. Bruyne, B. D. O. Anderson, M. Gevers and N. Linard,
“Iterative Controller Optimization for Nonlinear Systems,” In:
Proceedings of the 36th IEEE Conference on Decision and
Control, vol. 4 (1997), pp. 3749–3754.

28. H. Hjalmarsson, “Iterative feedback tuning – An overview,”
Int. J. Adapt. Control. Signal Process. 16, 373–395 (2002).

29. S. Hara, Y. Yamamoto, T. Omata and M. Nakano, “Repetitive
control system: A new type servo system for periodic
exogenous signals,” IEEE Trans. Autom. Control 33(7) 659–
668 (1988).

30. S. Satoh, K. Fujimoto and S. Hyon, “A Framework for Optimal
Gait Generation via Learning Optimal Control Using Virtual
Constraint,” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (2008) pp. 3426–
3432.

31. S. Satoh, K. Fujimoto and S. Hyon, “Periodic Gait Generation
via Repetitive Optimal Control of Hamiltonian Systems,” In:
Proceedings of the 18th IFAC World Congress (2011) pp. 6912–
6917.

32. K. Fujimoto and T. Sugie, “Canonical transformation and
stabilization of generalized Hamiltonian systems,” Syst.
Control Lett. 42(3), 217–227 (2001).

33. P. Gregorio, M. Ahmadi and M. Buehler, “Design, control,
and energetics of an electrically actuated legged robot,” IEEE
Trans. Syst. Man Cybern. 27(4), 626–634 (1997).

34. F. Asano, Z. W. Luo and M. Yamakita, “Biped gait generation
and control based on a unified property of passive dynamic
walking,” IEEE Trans. Robot. 21(4), 754–762 (2005).

35. S. Collins, A. Ruina, R. Tedrake and M. Wisse, “Efficient
bipedal robots based on passive-dynamic walkers,” Science,
307(5712), 1082–1085 (2005).

36. S. Satoh and K. Fujimoto, “On Passivity Based Control of
Stochastic Port-Hamiltonian Systems,” In: Proceedings of
the 47th IEEE Conference on Decision and Control (2008)
pp. 4951–4956.

37. S. Satoh and K. Fujimoto, “A Symmetric Structure of
Variational and Adjoint Systems of Stochastic Hamiltonian
Systems,” In: Proceedings of the 49th IEEE Conference on
Decision and Control (2010) pp. 1423–1428.

38. S. Satoh and K. Fujimoto, “Observer Based Stochastic
Trajectory Tracking Control of Mechanical Systems,”
In: Proceedings of the ICROS–SICE International Joint
Conference (2009) pp. 1244–1248.

https://doi.org/10.1017/S0263574712000756 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000756

