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In this paper, a novel method is proposed to generate the matching sequence of an ICCP
algorithm for aircraft geomagnetic-aided navigation based on the M coding principle. The length
of the matching sequence and the selection of the matching points directly affects the perfor-
mance of the Iterated Closest Contour Point (ICCP) algorithm. This study proposes an adaptive
geomagnetic matching method, �M-ICCP, to solve the problem of selecting suitable matching
lengths, and matching points, when a vehicle is moving in a highly dynamic environment. First,
the �M coding principle is adopted to select the matching points based on the information of
the magnetic field, the resolution of the magnetic map, and the accuracy of the magnetic sen-
sor. Then, the problem of selecting parameters for the �M-ICCP algorithm is turned into an
optimisation problem, which can be solved by a Binary Particle Swarm Optimisation (BPSO)
algorithm. Finally, the algorithm is verified through simulation experiments. The proposed
algorithm can provide a basis to determine the matching length of the �M-ICCP algorithm and
adaptively adjust the algorithm’s parameters according to different trajectories. The algorithm is
applicable even in the areas where the fluctuations of Earth’s magnetic field are not significant.
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1. INTRODUCTION. Geomagnetic navigation is based on geographic information.
Compared with other navigation modes such as satellite (Gounley et al., 2012; Jiménez
et al., 2016) and terrain navigation (Baird et al., 1990; Anderson, 2000; Anonsen and
Hallingstad, 2006), geomagnetic navigation is passive, radiation-free and displays good
stealth performance. It also can provide navigation information in all weather and all ter-
rain conditions (Teixeira and Pascoal, 2008; Zhou et al., 2010). Moreover, the location
errors of geomagnetic navigation do not accumulate over time. Therefore, geomagnetic
navigation is an ideal supplement to an Inertial Navigation System (INS).

A geomagnetic matching algorithm is the core of the geomagnetic navigation system
and its quality affects the location accuracy and efficiency. The main idea is to match the
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geomagnetic sequence accumulated within a period with the geomagnetic map previously
stored in the navigation computer. The essence of the algorithm is to determine the trans-
formation relation between the INS’s indicated trajectory and vehicle’s real trajectory
(Nyatega and Li, 2015). Generally, geomagnetic matching algorithms include a Contour
Matching (CM) algorithm (Teixeira, 2007; Teixeira et al., 2015) and an Iterated Closest
Contour Point (ICCP) algorithm (Song, 2015; Wang et al., 2015). In the CM algorithm,
it is assumed that the INS contains only the position error and a pure translation model
is established to estimate the transformation relation. In the ICCP algorithm, based on
the considerations of the velocity error and course error of the INS, an affine model is
established to evaluate the transformation relation. Considering the complicated relations
between the measured trajectory and the real trajectory, the affine model can provide more
precise estimation results.

The efficiency in finding the closest points decides the instantaneity of the ICCP
algorithm and this is related to the search space, search strategy, and the length of the match-
ing sequence. Search time will be multiplied if the matching length increases (Bergström
and Edlund, 2016). To improve the performance of an ICCP algorithm, scholars have tried
to optimise the search space and search strategy. For example, an ICCP algorithm always
has to traverse the entire magnetic field to find the contour lines closest to the magnetic
measurements. Liu et al. (2014) and Komiya et al. (2015) respectively reduced the search
scope of the algorithm by setting a sliding window and optimising the search space. In
addition, some intelligent search strategies, such as an Ant Colony Optimisation (ACO)
algorithm (Wang et al., 2014) and Genetic Algorithm (GA) (Shahbazi et al., 2015), are
introduced to improve the performance of the algorithm. However, all the improvements
are based on the condition that the Geomagnetic Matching Sequence (GMS) is confirmed
and focussed on obtaining an efficient transformation between the matching sequence and
the closest-point sequence. The matching sequence is sampled from the INS’s indicated
trajectory according to a fixed time interval and in most cases, the sampling interval is
directly given without any interpretation or description.

However, an unsuitable sampling interval will increase the matching error, or even lead
to match failure. The geomagnetic field is weak and the variation of the magnetic field is not
significant. It is shown that the variation range of the total intensity of Earth’s main mag-
netic field at a height of 1,000 km above the ground is only 0.02∼0.03 nT/m (Liang, 2010).
Considering the magnetic variation and the vehicle’s own magnetic field, the measure-
ments of the magnetic sensor are prone to confusion. Even in the magnetic anomaly field
with more obvious local variations, the measurement problem cannot be ignored. Although
geomagnetic compensation (Papoyan et al., 2016; Teixeira, 2012) and magnetometer cali-
bration (Schönau et al., 2017; Nemec et al., 2017) technologies can effectively reduce the
interference of the environment magnetic field, the residuals after compensation and the
magnetic sensor’s measurement noise may still cause confusion and match failure. Besides,
if the sampling interval is too small, the magnetic changes of all matching points are small.
If the magnetic sensor cannot distinguish these small changes, the matching algorithm still
cannot work. Therefore, the proper sampling interval to generate the matching sequence
for the ICCP algorithm is a prerequisite for a valid match.

Matching length is an important parameter to be confirmed before generating the match-
ing sequence. Matching results suggest that the longer the matching sequence, the higher
the matching accuracy. However, when the matching sequence reaches a certain value, the
improvement in the matching accuracy is limited and the computation time of the algorithm
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increases rapidly. Some scholars suggested designing the matching length with the refer-
ence of the displacement corresponding to the autocorrelation coefficient of 1/e (e = 2.718)
(Hinrichs, 1976). However, this reference has little application value in practice. In fact,
many factors affect the matching length and it is difficult to theoretically analyse the influ-
ences of these factors. To deal with the contradictions between matching precision and
real-time performance, a point-by-point iteration matching algorithm (Mora et al., 2016)
and iterative evaluation matching algorithm (Huang et al., 2012) are proposed. Their main
idea is to judge whether the matching results meet the given criteria when the match-
ing length increases. If the criteria are met, the matching length stops increasing and the
results are obtained. Based on these works, the problem of designing the matching length
for a geomagnetic matching algorithm can be transformed into an optimisation problem.
The judgment criteria are reasonably converted into the analytical forms and taken as the
objective function, and then by selecting a suitable optimisation algorithm, the optimal
parameters of the matching method can be obtained in a statistical sense.

In this paper, a novel method is proposed to generate the matching sequence of an ICCP
algorithm for aircraft geomagnetic-aided navigation based on the �M coding principle. The
Binary Particle Swarm Optimisation (BPSO) algorithm is used to optimise the parameters.
The proposed �M-ICCP algorithm can adaptively adjust its parameters according to the
magnetic information for the trajectory. To further enhance the real-time performance, the
matching strategy of the algorithm is also improved.

2. ADAPTIVE �M-ICCP GEOMAGNETIC MATCHING ALGORITHM
2.1. Basic theory of the adaptive algorithm. The magnetic measurements on a vehi-

cle’s path can be regarded as a signal that contains different frequency components.
To ensure that the magnetic values of the matching sequence fully retain the magnetic
information on the path, the sampling frequency should meet the sampling theorem:

fs ≥ 2fmax (1)

where fs is the sampling frequency. If the magnetic signal on the path is analysed by Fast
Fourier Transform (FFT), then fmax can be determined according to its energy spectrum. In
this paper, the sum of the energies before fs is no less than 96% of the total energy on the
path.

High-resolution geomagnetic maps can be obtained in two ways: field measurements
(Shockley and Raquet, 2015) and model interpolation (Xiao et al., 2017; Wang et al., 2016).
Usually, the magnetic map is stored as grid data in the computer. Considering the accuracy
of the magnetic map, the distance between two adjacent matching points should be no less
than one magnetic grid:

ng =
v × Ts

d
≥ 1 (2)

where Ts is the sampling period, Ts = 1/fs, d is the grid spacing of the magnetic map, v is
the vehicle’s speed and ng represents the magnetic grids that the vehicle passes during a
sampling period.

To avoid the confusion mentioned above, the magnetic changes in the matching
sequence should be controlled. In this paper, only the point whose magnetic variation
with the former matching point is no less than the specified threshold will be added to
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the matching sequence:
MVPi − MVPi−1 ≥ δ (3)

where MVPi is the magnetic value at point Pi in the matching sequence and δ is the
quantisation step in �M coding.

The main idea of the adaptive �M-ICCP algorithm is described as follows. In planning
the vehicle’s path, several calibration points are selected to correct the INS’s accumulated
error. Here, the calibration point is determined based on the error characteristics of the INS,
the movement time of the vehicle, the accuracy of the matching algorithm and so on. When
the constraints of the sampling theorem (Equation (1)) and the magnetic map (Equation (2))
are met, the magnetic measurements on the path are encoded according to the �M principle,
and the points whose magnetic changes meet Equation (3) are selected as the matching
points of the �M-ICCP algorithm. In the algorithm, the matching length and quantisation
step at each calibration point are optimised by a suitable optimisation algorithm. In this
way, the parameters of the algorithm can be adjusted according to different calibration
points and paths.

2.2. Generation of GMS with �M coding principle. �M coding is easily imple-
mented in hardware and has been maturely applied in communications. According to the
�M coding principle, a binary code is used to encode the signal. In this paper, the GMS
is generated in two steps. First, the measured magnetic signal before the calibration point
is encoded and then the matching sequence is determined. The measured magnetic signal
along the vehicle’s path is denoted as MV(t), and the quantised signal of MV(t) is denoted
MV′(k), then:

MV′(k) = MV′(k − 1) + sign[MV(kTs) − MV′(k − 1)] × δ (4)

In Equation (4), when x > 0, sign(x) = 1, when x < 0, sign(x) = −1, and δ is the quantisa-
tion step of the �M coding.

The encoded sequence MVC can be expressed as:

MVC(k) =

{
1, MV(kTs) − MV′((k − 1)Ts) > 0
0, MV(kTs) − MV′((k − 1)Ts) < 0

(5)

Figure 1 shows a schematic diagram of generating the GMS with the �M coding principle.
As is shown, MV(t) is encoded as “010111111000” according to the �M coding prin-

ciple. When two codes “1” or “0” continuously appear in MVC (Equation (6) is met), the
magnetic changes at the two sampling points are beyond the pre-set quantisation step δ.
Then the INS’s indicated position at the current sampling point is taken as an element of
the matching sequence. For example, point Pi (i = 1, 2, . . . , 7) in Figure 1 is one of the
selected seven matching points. In this way, when the length of the GMS conforms, the
�M-ICCP algorithm can be used for geomagnetic matching.

MVC(k) ⊕ MVC(k − 1) = 0, k = 2, 3, · · · , n − 1 (6)

where n is the length of MVC and “⊕” is the XOR operator.
An equal sampling interval is always applied in the traditional ICCP algorithm to gener-

ate the GMS. The algorithm based on �M coding is essentially a variable interval sampling
method. In the magnetic field with obvious magnetic fluctuations, if the change of the
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Figure 1. Schematic diagram of generating the GMS with the �M coding principle.

magnetic field among adjacent matching points generated with an equal sampling interval
is bigger than the quantisation step δ, the matching sequences obtained with the tradi-
tional ICCP and �M-ICCP algorithm are exactly the same. In this case, the former can be
regarded as a special case of the latter. In the areas where the magnetic fluctuations are rel-
atively flat, the sampling interval of the �M-ICCP algorithm is a multiple of the traditional
ICCP algorithm.

3. PARAMETER DESIGN FOR �M-ICCP GEOMAGNETIC MATCHING
ALGORITHM

3.1. Influences of matching length on the algorithm. Supposing m1 and m2 are two
magnetic sequences which are sampled with an equal interval, denote �m as:

�m = m1 − m2 (7)

According to Nygren and Jansson’s (2004) theory, if the absolute value of �m, namely,
|�m|, varies within a very small range εm, then the two geomagnetic sequences are similar,
and the probability of a false match will increase.

If m1 and m2 satisfy the Gaussian distribution, then the joint probability density function
of �m can be expressed as:

f (�m) =
1√

(2π )N det(C)
e− 1

2 �mC−1�m (8)

where N is the length of the matching sequence and C is the covariance matrix of �m.
The simplest way to calculate the probability that the two sequences are close to each

other is to de-correlate �m by a mode decomposition of C as:

C = U�UT (9)

where U is the eigenvector matrix and � is the eigenvalue matrix.
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We substitute �m with Uy to compute an upper bound of the probability P(|�m| ≤ εm):

P(|�m| ≤ εm) ≤ P(|�m| ≤ ε) =
∫ ε

−ε

· · ·
∫ ε

−ε

�N
i=1

e− y2
i

2λi√
2πλi

dy1 · · · dyN = �N
i=1

∫ ε

−ε

e− y2
i

2λi√
2πλi

dyi

(10)
where y = m1 + n, n is the measurement noise of the magnetic sensor and ε is a constant
within εm. As the covariance matrix C is positive definite, so λi > 0, then:

∫ ε

−ε

e− y2
i

2λi√
2πλi

dyi < 1 (11)

It can be seen from Equations (10) and (11) that the probability of a false match
decreases as the matching length increases. As the increase in matching length is equivalent
to the increase in the matching distance in the equal interval sampling, to be more precise,
the probability of a false match decreases as the matching distance increases. Since any
non-Gaussian distribution can be approximated by a number of Gaussian functions, this
conclusion still holds in the case that m1 and m2 follow the non-Gaussian distribution.

However, apart from the magnetic information, the matching distance is also influenced
by other factors, such as sampling frequency, vehicle movement, and INS performance.
Therefore, it is difficult to establish a precise model to calculate a reasonable matching
distance. Although in the ICCP algorithm it is assumed that the magnetic sensor has no
measurement error, in order to avoid confusion among magnetic measurements in prac-
tice, in the selection of δ, both the changes of magnetic field and the noise level after
geomagnetic compensation should be considered.

According to the above analysis, the complicated step for establishing a model of
matching length and the quantisation step are avoided. Instead, matching length and
the quantisation step are jointly optimised to obtain the optimal solutions under certain
conditions. In this way, the application requirements are met.

3.2. Parameter optimisation based on BPSO algorithm. The BPSO algorithm is a
discrete intelligence optimisation algorithm with a simple principle and fast convergence.
An estimation method of matching length L and quantisation step δ is proposed based on
the BPSO algorithm as follows:

Step 1. Several calibration points are selected on a planning path to correct the INS’s
accumulated error and the set of calibration points is denoted as Pc.

Step 2. For one calibration point Pci, the search scope of δi and Li is set. According to the
�M coding principle, when the magnetic fluctuation of the path is obvious, the quantisation
step δ should be bigger; when they have less fluctuation, δ should be smaller. The variation
analysis of the geomagnetic anomaly field model of NGDC-720 indicates that when the
search scope of δ is between 1 nT and 15 nT, the practical requirements can be met. On
the other hand, only when the matching length is greater than or equal to three (Besl and
Mckay, 2002), can the ICCP algorithm can be operated. Therefore, the minimum value of
the matching length is three. The maximum of Li is the length of the matching sequence
generated with the maximal δi in its range on the trajectory before Pci. Both δi and Li are
integers.

Step 3. δi and Li are encoded with binary code. Supposing δi ∈ [1 nT, 7 nT] and Li ∈
[3, 30], then a three-digit numeric code is needed to encode δi and a five-digit numeric code
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Figure 2. Diagram of normalised functions.

for Li. Thus, the search range can be expressed as [00011001, 11110111], in which the first
five codes represent Li and the last three codes represent δi.

Step 4. The swarms of the BPSO algorithm are randomly initialised and then the �M-
ICCP algorithm is used to locate the vehicle with different δi and Li. For each combination
of δi and Li, the “fitness” of each particle is calculated according to Equation (12) and the
particle’s position with the smallest fitness is stored in variable gbest.

f = η1f1(Erij ) + η2f2(tij ) (12)

where Eri,j is the matching error at point Pci with the matching parameters of swarm
j , reflecting the matching accuracy, tij is the average time required for one iteration in
the algorithm, reflecting the time cost, f1(Eri,j ) and f2(tij ) are respectively the normalised
functions of Eri,j and tij and η1 and η2 are adjustable factors for adjusting the weights of
matching accuracy and time cost. The smaller the fitness, the better performance of the
algorithm.

A linear mapping function fm(x) is defined. As shown in Figure 2, x can be normalised
to the range [0, 1]; x1 and x2 are endpoints of the normalised interval and given based on
the practical background.

Then f1(Eri,j ) and f2(tij ), which respectively normalise Eri,j and tij within [0, 1], can be
expressed as:

f1(Erij ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (Erij < Er1)
1

Er2 − Er1
(Erij − Er1) (Er1 ≤ Erij < Er2)

1 (Erij ≥ Er2)

(13)

f2(tij ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (tij < t1)
1

t2 − t1
(tij − t1) (t1 ≤ tij < t2)

1 (tij ≥ t2)

(14)

where Er1, Er2, t1, and t2 are set according to the map’s resolution and the accuracy and
real-time performance required in the navigation system. In this paper, Er1 is the distance
which is equal to a grid of the geomagnetic map, Er2 corresponds to the distance between
two geomagnetic grids and t1 and t2 are respectively 0.5 s and 2 s.

Step 5. Velocities and positions of the swarms are updated with Equations (15) and (16).
In the BPSO algorithm, the position Xjd of swarm j only takes 0 or 1, but the velocity Vjd,
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which represents the probability that Xjd is 0 or 1, is not constrained.

Vjd(k + 1) = ωVjd(k) + c1r1(Pjd(k) − Xjd(k)) + c2r2(Pgd(k) − Xjd(k)) (15)

Xjd(k + 1) =

{
1 ρjd(k + 1) ≤ sigmoid(Vjd(k + 1))
0 ρjd(k + 1) > sigmoid(Vjd(k + 1))

(16)

where ω is the inertial weight, c1 and c2 are non-negative acceleration factors, r1 and r2 are
random numbers within [0, 1], particle size j = 1, 2, . . . m, the dimension d = 1, 2, . . . , n
and ρjd(k + 1) is a random value within (0, 1). The function sigmoid is defined as follows:

sigmoid(x) =
1

1 + exp(−x)
(17)

Step 6. All particles are evaluated according to their fitness. The fitness of the particles
in the current iteration is compared with the individual optimum value pbest and the global
optimum value gbest, and they are updated with new pbest and gbest with a smaller fitness.

Step 7. If the termination condition is met, stop the �M-ICCP algorithm and output
gbest. Otherwise, return to Step 5, update the particles’ velocities and positions and start the
next iteration.

Step 8. Decode gbest obtained in Step 7, and store the optimal matching length Li and
quantisation step δi at Pci, which allows the smallest fitness in Equation (12).

The above method has the following three characteristics. First, the matching accu-
racy and time cost are directly used to construct the objective function in order to ensure
the performance of the algorithm. Second, the efficiency of the algorithm is improved by
generating a matching sequence with the geomagnetic information before the calibration
point rather than accumulating a matching sequence from the calibration point. Third, the
matching parameters of each calibration point can be calculated and stored offline in the
path planning process and then directly called in the task execution phase. In this way,
the algorithm’s efficiency is further enhanced.

4. SIMULATION EXPERIMENTS. The geomagnetic anomaly field model NGDC-
720 (Maus, 2010) is applied to verify the proposed algorithm. First, two different local
magnetic field areas are randomly selected from the model and the spans of their latitudes
and longitudes are 2◦ (about 200 km). Then the Kriging interpolation method is used to
establish the detailed magnetic maps, as shown in Figures 3 and 4. After interpolation, the
resolution of the magnetic map is about 250 m. In Table 1, several statistical features of the
two areas are provided. It is observed that the magnetic field in Area 1 changes more obvi-
ously than that in Area 2. Supposing that the vehicle is in the uniform rectilinear motion
and its altitude does not change in the geomagnetic matching process, several paths are
randomly generated in each area to verify the �M-ICCP algorithm. The magnetic changes
in three different paths are shown in Figures 3 and 4. The marker “©” indicates the starting
point and “∗” indicates the selected calibration point.

Taking Path 1 in Areas 1 and 2 as examples, first, the method in Section 3.2 is used
to evaluate the optimal matching length L and quantisation step δ offline at the calibration
point of each path. As the magnetic field in Area 1 varies significantly, the search ranges of
L and δ can be expanded appropriately to ensure the matching accuracy. In Area 2, since the
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Figure 3. Magnetic field in Area 1.

Figure 4. Magnetic field in Area 2.

Table 1. Statistical features of the two magnetic areas.

Areas Range /◦ Maximum/nT Minimum/nT Mean/nT Standard deviation/nT

Area 1 [54·8, 56·8]N; [45·0, 47·0]E 434·0 −438·5 61·8 180·0
Area 2 [33·8, 35·8]N; [15·0, 17·0]E 71·0 −71·4 −9·9 31·8

magnetic fluctuation is small, the search ranges can be narrowed to avoid a long matching
distance. Therefore, the search ranges of δ and L of Path 1 in Area 1 are set in the ranges of
[1 nT, 15 nT] and [3, 31]. Similarly, δ and L of Path 1 in Area 2 are searched in the ranges
of [1 nT, 8 nT] and [3, 10]. The swarm’s population in the BPSO algorithm is 30, and the
iterative time is 100. Fitness of Path 1 in Areas 1 and 2 are shown in Figures 5 and 6.

As the matching precision and time cost differ when δ and L vary, the corresponding
fitness is different. It is observed that although time consumption of the algorithm is less
under the smaller δ and L, the matching precision cannot be guaranteed and the fitness is
bigger. When δ and L are increased to a certain extent, the fitness is the smallest. In this
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Figure 5. Fitness under different δ and L in Area 1.

Figure 6. Fitness under different δ and L in Area 2.

case, the time cost is reduced and the accuracy is guaranteed. For Path 1 in Area 1, when
δ = 15 and L = 22, where the flag is located, the fitness achieves a minimum value of 1.41.
This means that the better matching results can be obtained when the optimised parameters
are used to generate the GMS. For Path 1 in Area 2, when δ = 7 and L = 7, the fitness is the
smallest and reaches 0.

The performances of the adaptive �M-ICCP and the traditional ICCP algorithm are
experimentally compared. The experiments are described as follows. Firstly, the GMS of
the traditional ICCP algorithm is generated with equal sampling interval and the matching
length is the same as with the �M-ICCP algorithm. Secondly, the GMS of the traditional
ICCP algorithm is sampled with an equal interval and the matching distance is equal to the
�M-ICCP algorithm. To improve the efficiency, according to the statistical characteristics
of the INS’s errors, the search areas of the �M-ICCP and ICCP algorithm are both set
within ±3σ , where σ is the INS’s drift generated since the former update.

Path 1 in Area 1 and Area 2 are selected for analysis. It is assumed that the vehicle
is in uniform rectilinear motion at the speed of 35 m/s. As the effects of different error
sources on the ICCP algorithm can be attributed to the effects of position error, the position
error is considered in the experiments. When the vehicle arrives at the calibration point, we
suppose the accumulated error is 790 m. The experiments were performed according to the
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(a) (b)

Figure 7. Matching results of Path 1 in Area 1. (a) Matching errors of different algorithms.(b) Magnetic values
of different matching sequences.

comparative schemes above and L and δ of the �M-ICCP algorithm were designed using
the BPSO algorithm. The equal sampling interval of the traditional ICCP algorithm is 24
s, which satisfies Equations (1) and (2). The matching error of the algorithm is calculated
according to Equation (18):

ERMSE =

√√√√ 1
L

L∑
i=1

(MPi − Pi)2 (18)

where L is the matching length, MP is the matching result and P is the ideal position.
In the geomagnetic matching process, the number of iterations is 300. When the

matching error between two adjacent iterations is less than 1 m, the matching algorithm
terminates. Figures 7 and 8 show the matching errors and the magnetic values of each
matching point in Areas 1 and 2.

In Figure 7(a), all matching algorithms can reduce the INS’s accumulated error. How-
ever, when the matching length is the same, the matching error of the ICCP algorithm is
665.30 m, which is more than two grids in the magnetic map; the matching error of the
�M-ICCP algorithm is 267.97 m. As shown in Figure 7(b), when the matching lengths of
the two algorithms are the same, the �M-ICCP algorithm can utilise more magnetic infor-
mation, thus ensuring the algorithm’s matching accuracy. When matching distances are the
same, since the �M-ICCP algorithm controls the magnetic changes of the GMS, fewer
points are used in the matching process. Therefore, the algorithm’s efficiency is improved.

Similarly, in Figure 8(a), when the matching lengths are the same, the matching error of
the traditional ICCP algorithm is 784.53 m, which cannot be used to correct the INS’s
accumulated error. As mentioned above, the overall magnetic fluctuation in Area 2 is
less obvious. When the sampling interval is too small, magnetic values of the match-
ing points are very close, thus the available magnetic information is limited. To improve
the accuracy of the algorithm, the matching distance needs to be increased to enrich the
magnetic information. In Figure 8(a), the traditional ICCP and M-ICCP algorithm with a
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(a) (b)

Figure 8. Matching results of Path 1 in Area 2. (a) Matching errors of different algorithms. (b) Magnetic values
of different matching sequences.

Table 2. Comparison of different algorithms with the same matching length.

L ERMSE/m t/s

Areas Trajectories ICCP �M-ICCP ICCP �M-ICCP ICCP �M-ICCP

Area 1 Path 1 22 22 665·30 267·97 1·64 1·87
Path 2 19 19 713·19 257·26 1·68 1·62
Path 3 6 6 351·40 333·66 0·26 0·27

Area 2 Path 1 7 7 784·53 159·92 0·41 0·50
Path 2 3 3 293·19 224·32 0·16 0·19
Path 3 3 3 120·93 103·88 0·17 0·17

longer matching distance achieves the better matching results. Their matching errors are
respectively 161.65 m and 159.92 m.

To sum up, the proposed adaptive �M-ICCP algorithm can select the optimal param-
eters according to different paths and magnetic areas, thus providing a guideline for
generating the GMS.

To fully verify the algorithm, more paths are randomly generated in Areas 1 and 2 for
geomagnetic matching. It is assumed that the simulation conditions and the INS’s accu-
mulated error do not change. Tables 2 and 3 show the matching results of the selected
paths.

In Table 2, the matching sequences of the traditional ICCP algorithm and �M-ICCP
algorithm have the same length, but their matching distances are different. It is obvious that
the matching errors in all paths of the �M-ICCP algorithm are smaller than those of the
traditional ICCP algorithm. Furthermore, matching results of the �M-ICCP on Path 1 and
Path 2 in Area 1 and Path 1 in Area 2 are much better than those of the traditional ICCP
algorithm. It can also be observed that the time consumption of the two algorithms is similar
when their matching lengths are the same. Comparing the traditional ICCP algorithms in

https://doi.org/10.1017/S0373463317000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000844


NO. 3 AN ADAPTIVE �M-ICCP GEOMAGNETIC MATCHING ALGORITHM 661

Table 3. Comparison of different algorithms with the same matching distance.

L ERMSE/m t/s

Areas Trajectories ICCP �M-ICCP ICCP �M-ICCP ICCP �M-ICCP

Area 1 Path 1 123 22 621·12 267·97 27·21 1·87
Path 2 69 19 367·89 257·26 10·31 1·62
Path 3 22 6 333·60 333·66 1·05 0·27

Area 2 Path 1 83 7 161·65 159·92 15·17 0·50
Path 2 32 3 246·90 224·32 3·04 0·19
Path 3 7 3 103·91 103·88 0·41 0·17

Tables 2 and 3, the matching lengths in Table 3 are longer and corresponding matching
results are improved, but the matching time increases.

In Table 3, the matching distances of the traditional ICCP algorithm and the �M-
ICCP algorithm are the same, but the matching lengths are different. Clearly, the matching
performances of �M-ICCP algorithm are better than the traditional one, and the time con-
sumption of the former is much shorter than the latter. On Path 1 in Area 1 and Path 1
and Path 2 in Area 2, the time consumption decreases significantly. Experiments also indi-
cate that the �M-ICCP algorithm can generally achieve the best results and the matching
sequence is not too long.

Based on all the results in Figures 7 and 8 and Tables 2 and 3, the following conclusions
can be drawn. First, matching length mainly affects the search time of the ICCP algorithm.
With the same matching length, the time cost of the traditional ICCP algorithm is equivalent
to that of the �M-ICCP algorithm. The longer the sequence, the greater the time cost.
Second, the matching distance mainly influences the algorithm’s accuracy. To some extent,
increasing matching distance can enrich the information of the matching sequence and
improve the matching accuracy. Third, the proposed �M-ICCP algorithm can adaptively
adjust the parameters to generate the GMS according to the magnetic information, thus
guaranteeing the matching accuracy and reducing the time consumption to the greatest
extent. It should be noted that since the most accurate matching algorithm can only limit
the matching accuracy within one grid of the reference map, the precision of the algorithm
can be further improved by increasing the resolution of geomagnetic maps.

5. CONCLUSIONS. An adaptive �M-ICCP geomagnetic matching algorithm is pre-
sented based on the �M coding principle, which is used to generate the GMS for
geomagnetic navigation. By selecting suitable objective functions, the problem of design-
ing matching length and quantisation step for the �M-ICCP algorithm is turned into an
optimisation problem. The proposed algorithm can adjust its parameters according to the
magnetic information on the path and the requirements of the navigation system in diverse
application backgrounds. Simulation experiments proved the validity of the algorithm.
Even in a magnetic field with less obvious fluctuations, the algorithm can also obtain valid
matching results. With the continuous improvements in geomagnetic modelling and map-
ping, the accuracy of the �M-ICCP algorithm will be further improved. In addition, the
proposed algorithm can also be combined with other modified strategies such as construct-
ing a slide window to limit its search scope to further increase the performance of the
algorithm.

https://doi.org/10.1017/S0373463317000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000844


662 JING XIAO AND OTHERS VOL. 71

REFERENCES

Anderson, C.J. (2000). Navigation system for an autonomous underwater vehicle. Master Thesis of Royal Institute
of Technology, Sweden.

Anonsen, K.B. and Hallingstad, O. (2006). Terrain Aided Underwater Navigation Using Point Mass and Particle
Filters. IEEE Position, Location, & Navigation Symposium, California, USA.

Baird, C.A., Snyder, F.B. and Beierle, M. (1990). Terrain-aided altitude computations on the AFTI/F-16. IEEE
Position Location and Navigation Symposium, Nevada, USA.

Bergström, P. and Edlund, O. (2016). Robust registration of surfaces using a refined iterative closest point
algorithm with a trust region approach. Numerical Algorithms, 74(3), 1–25.

Besl, P.J. and Mckay, H.D. (2002). A method for registration of 3-d shapes. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 14(2), 239–256.

Gounley, R., White, R. and Gai, E. (2012). Autonomous satellite navigation by stellar refraction. Journal of
Guidance Control & Dynamics, 7(2), 129–134.

Hinrichs, P.R. (1976). Advanced terrain correlation techniques. IEEE Position, Location and Navigation
Symposium, Texas, USA.

Huang, B., Sun, Y., Wang, L., Liu, J. and Gao, X. (2012). Iterative evaluation matching algorithm for geomagnetic
navigation. Journal of Nanjing University of Aeronautics & Astronautics, 44(4), 565–569. (in Chinese)

Jiménez, F., Monzón, S. and Naranjo, J.E. (2016). Definition of an enhanced map-matching algorithm for urban
environments with poor GNSS signal quality. Sensors, 16(2), 193.

Komiya, K., Miyashita, S. and Maruoka, Y. (2015). Control of Autonomous Mobile Robot Using Map Matching
with Optimized Search Range. Electrical Engineering in Japan, 190(4), 66–75.

Liang, Y. (2010) Research on technologies of INS/ Geomagnetic Matching Integrated Navigation System. Ph.D
Thesis of Harbin Engineering University. (in Chinese)

Liu, M., Wang, B. and Deng, Z. (2014). Improved ICCP algorithm and its application in gravity matching aided
inertial navigation system. Chinese Control Conference, Nanjing, China.

Maus, S. (2010). An ellipsoidal harmonic representation of earth’s lithospheric magnetic field to degree and order
720. Geochemistry Geophysics Geosystems, 11, Q06015.

Mora, H., Mora-Pascual, J.M., García-García, A., and Martínez-González, P. (2016). Computational analysis of
distance operators for the iterative closest point algorithm. Plos One, 11(10), e0164694.

Nemec, D., Janota, A., Hruboš, M. and Šimák, V. (2017). Intelligent real-time MEMS sensor fusion and
calibration. IEEE Sensors Journal, 16(19), 7150–7160.

Nyatega, C.O. and Li, S.X. (2015). Study on geomagnetic-matching technology based on ICP algorithm.
International Journal of Science & Research, 4(4), 3258–3261.

Nygren, I. and Jansson, M. (2004). Terrain Navigation for Underwater Vehicles Using the Correlator Method.
IEEE Journal of Oceanic Engineering, 29(3), 906–915.

Papoyan, A., Shmavonyan, S., Khanbekyan, A., Khanbekyan, K., Marinelli, C. and Mariotti, E. (2016). Magnetic-
field-compensation optical vector magnetometer. Applied Optics, 55(4), 892–895.

Schönau, T., Zakosarenko, V., Schmelz, M., Stolz, R. and Anders, S. (2017). Absolute calibration of a three-axis
squid-cascade vector magnetometer. Measurement Science & Technology, 28(1), 015107.

Shahbazi, M., Sohn, G., Théau, J. and Ménard, P. (2015). Robust sparse matching and motion estimation
using genetic algorithms. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-3/W2(3), 197–204.

Shockley, J.A. and Raquet, J.F. (2015). Navigation of ground vehicles using magnetic field variations. Navigation,
61(4), 237–252.

Song, Z.G. (2015). The improved ICCP algorithm based on Procrustes analysis for geomagnetic matching
navigation. International Conference on Design, Manufacturing and Mechatronics, Wuhan, China.

Teixeira, F.C. (2007). Terrain-Aided Navigation and Geophysical Navigation of Autonomous Underwater
Vehicles. Ph.D Thesis of Instituto Superior Técnico.

Teixeira, F.C. (2012). AUV Terrain-Aided Doppler Navigation using Complementary Filtering. Manoeuvring and
Control of Marine Craft, 45, 313–318.

Teixeira, F.C. and Pascoal, A.M. (2008). Geophysical navigation of autonomous underwater vehicles using geo-
magnetic information. The 2nd IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles,
Killaloe, Ireland.

Teixeira, F.C., Quintas, J. and Pascoal, A. (2015). AUV Terrain-Aided Navigation using a Doppler Velocity
Logger. IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, 48, 137–142.

https://doi.org/10.1017/S0373463317000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000844


NO. 3 AN ADAPTIVE �M-ICCP GEOMAGNETIC MATCHING ALGORITHM 663

Wang, L., Yu, L., Qiao, N. and Sun, D. (2016). Analysis and simulation of geomagnetic map suitability based on
vague set. Journal of Navigation, 69(5), 1114–1124.

Wang, S., Lu, Z. and Zhang, J. (2015). Evaluation of ICCP algorithm for geomagnetic navigation based on
hardware-in-the-loop simulation. Journal of Beijing University of Aeronautics & Astronautics, 41(2), 187–192.

Wang, Y.G., Jia, L., Shan, B., and Yan, T. (2014). Adaptive SA-ACO geomagnetic matching navigation algorithm.
Journal of Chinese Inertial Technology, 22(1), 89–93.

Xiao, J., Duan, X.S., Qi, X.H, and Wang, J.C. (2017). Direction navigability analysis for geomagnetic navigation
based on parallel convolutional neural networks. Journal of Chinese Inertial Technology, 25(3), 146–152. (in
Chinese)

Zhou, J., Liu, Y. and Ge, Z. (2010). Geomagnetic matching algorithm based on probabilistic neural network.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1(G1), 1–7.

https://doi.org/10.1017/S0373463317000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000844

