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Abstract

It is well documented that the mother plant has much more influence than the father on seed
dormancy/germination, especially of the F1 offspring, primarily by providing all material
(maternally derived tissue) to the diaspore coat(s); by maternal environmental effects and pro-
visioning of nutrient resources, mRNA transcripts, protein, the hormone abscisic acid and
nitrate to the seed during its development; and by determining progeny environment via dis-
persal and phenology. There is some evidence that the paternal influence on seed dormancy/
germination of the offspring (seeds) can be mediated through multiple paternity (including
mate number and diversity), non-nuclear (cytoplasmic) and nuclear (genotypic) inheritance
and paternal environmental effects. Our primary aim was to determine via a literature review
the influence (or not) of the paternal parent on seed germination. Altogether, 37 of 59 studies
(62.7%) indicated a positive influence of the father on seed germination, although not all of
them were statistically significant. In general, however, results of studies reported in the litera-
ture do not offer strong support for the paternal parent having a major role in seed germin-
ation (or seed size) of his F1 offspring.

Introduction

Offspring traits in plants come from the mother and father, but the mother has more influence
on these traits, especially seed dormancy/germination, than the father. Thus, the mother con-
tributes to the traits of her offspring via nuclear and cytoplasmic genetic effects; maternal
environmental (including epigenetic) effects; provisioning seeds with nutrient resources,
mRNA transcripts, protein, abscisic acid (ABA), which has a positive influence on seed devel-
opment and can inhibit viviparous germination, and nitrate, which can lower the level of ABA
in the seed and act as a signalling molecule in decreasing/overcoming seed dormancy; regulat-
ing transfer and distribution of nutrient resources from endosperm to embryo; controlling
nutrient storage in and growth of the perisperm, a maternal sporophytic (2n) tissue for embryo
growth in seeds of some angiosperms; providing two-thirds of the genetic contribution to the
triploid endosperm; and supplying 100% of materials for development of seed coat and dia-
spore structures external to the seed (Fig. 1). In short, then, the mother plant plays the
major role in determining, via diaspore dormancy and dispersal characteristics, maternal
architecture (including growth form and height) and seasonal effects (phenology), when
and where the seed germinates (Roach and Wulff, 1987; Donohue, 1999, 2009; Raz et al.,
2001; Finkelstein et al., 2002; Frey et al., 2004; Alboresi et al., 2005; Kucera et al., 2005;
Kanno et al., 2010; Matakiadis et al., 2009; Herman and Sultan, 2011; Thomson et al.,
2011; Costa et al., 2012; Jacobs and Lesmeister, 2012; Rubio de Casas et al., 2012; Tamme
et al., 2014; Vu et al., 2015; Piskurewicz et al., 2016; Yan and Chen, 2017; Augspurger
et al., 2017; Povilus et al., 2018).

Furthermore, evidence is accumulating that the store of active hydrolytic enzymes, anti-
microbial substances and nutrient elements in the dry, dead cells of the maternally derived
seed coat, pericarp and floral bracts, which can be released upon rehydration, play a role in
seed persistence in the seed bank, seed germination and seedling establishment and vigour
(Godwin et al., 2017; Raviv et al., 2017a,b). Finally, in seeds of weedy holoparasitic species
of Orobanche the perisperm is involved in reception of the simulant from the host plant
that is required for the parasite to germinate (Plakhine et al., 2012).

Influence of the father on the traits of his offspring may occur via nuclear (genotype) and
non-nuclear genetic material [i.e. mostly plastids transmitted to the progeny by pollen at a low
frequency (Corriveau and Coleman, 1988; Azhagiri and Maliga, 2007)] and paternal environ-
mental (including epigenetic) effects (Schmid and Dolt, 1994; Lacey, 1996; Galloway, 2001a,b;
Herman and Sultan, 2011) (Fig. 1). In the gynodioecious species [coexistence of male-sterile
(female) and hermaphrodite plants in the same natural interbreeding population] Silene vul-
garis and S. acaulis, parental leakage of mitochondrial DNA can result in biparental or strictly
paternal inheritance of the mitochondrial genome (Welch et al., 2006; McCauley and Olson,
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2008; Pearl et al., 2009). In most angiosperms, the contribution of
the father to the embryo of sexually produced offspring via non-
nuclear genetic material is generally minimal compared with that
of the mother. In gymnosperms, plastid inheritance is paternal in
the conifers, whereas mitochondrial inheritance is paternal in
some (taxonomic) families and maternal in others, including
the largest family Pinaceae (Mogensen, 1996).

In their highly-cited review of ‘Maternal effects in plants’,
Roach and Wulff (1987) included a very short section on paternal
effects. However, although the authors refer to several studies on
paternal cytoplasmic inheritance, other non-nuclear per se pater-
nal environmental effects on offspring performance are not men-
tioned. The primary purpose of this paper is to review the
literature on the influence of the paternal parent on germination
of F1 seeds. We also briefly discuss the influence of the pollen par-
ent on seed size and development.

Influence of paternal parent on seed germination

Multiple paternity in plants, which encompasses the number of
pollen donors and the non-random ability of the donors to sire
offspring (Snow and Spira, 1991a,b), is thought to be common
and to be caused by (1) sequential visits by several pollinators,
each carrying pollen from a different single male; (2) deposition
on the stigma of a mixed pollen load by a single pollinator; and

(3) deposition on the stigma of a mixed pollen load by several pol-
linators; and to have fitness consequences (Ellstrand, 1984;
Marshall and Ellstrand, 1985, 1986; Brown et al., 1986;
Ellstrand and Marshall, 1986; Marshall, 1988, 1990, 1991;
Marshall and Whittaker, 1989; Karron and Marshall, 1990;
Dudash and Ritland, 1991; Ibarra-Perez et al., 1996; Campbell,
1998; Bernasconi, 2003; Mitchell et al., 2005; Karron et al.,
2006; Teixeira and Bernasconi, 2007; Llaurens et al., 2008).
Using microsatellite DNA markers, Reusch (2000) also demon-
strated multiple paternity in Zostera marina, a marine angio-
sperm with hydrophilous (subaqueous) pollination.

The rank order of one, two, three and five pollen parents for
seed germination of the F1 offspring of the tropical herb Costus
allenii was three (76.6%) > two (72.9%) > one (67.0%) > five
(63.0%) and not statistically significant; standard deviations ran-
ged from 11.5 to 16.9% (Schemske and Paulter, 1984). Mean ger-
mination percentage across pollen donors was higher (but not
significantly so) for seeds of Vaccinium corymbosum flowers pol-
linated by three pollen donors than for those of flowers pollinated
by a single donor (Vander Kloet and Tosh, 1984). In a study of
single vs mixed donor crosses in Chamaecrista fasciculata, an
annual legume with physical dormancy, germination (ca 38–
47% for single-donor progeny and ca 34–37% for three-donor
progeny) did not differ significantly among selfed, near-crossed
and far-crossed seeds (not scarified, overwintered outside) from

Fig. 1. Conceptual model of the various ways in which maternal and paternal plants can contribute to the phenotype of their progeny. The maternal phenotype
portion of the diagram is modified from Roach and Wulff (1987), and paternal phenotype portion is based on information from various sources. Not shown are the
various interactions among the maternal environment (Em), maternal nuclear genotype (Gm), offspring environment (Eo) and offspring nuclear genotype (Go),
such as Gm × Em in determining maternal phenotype (Pm) and Gm × Eo, Em × Eo and Gm × Em × Eo in determining offspring phenotype (Po) (e.g. see Rossiter,
1996). DNA methyl (5′meC), DNA methylation; epig. modif., epigenetic modification; mt, mitochondrion; pl, plastid; PSGE, parent (maternal or paternal) specific
gene expression; 2m, 2x (where x = base chromosome number), contribution of maternal parent to endosperm; 1p, 1x, contribution of paternal parent to endo-
sperm. The contributions of Pm to Po via physiology and structure can be found in the Introduction.
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single-donor and three-donor pollen loads. For all crosses (single-
and three-donor pollen donors), the range of relative performance
(RP) for inbreeding depression (see Appendix) was narrow, i.e. –
0.04 to 0.09 (Sork and Schemske, 1992). In general, multiple pol-
linations did not increase germination percentage in seeds of
Vaccinium elliotii (Wenslaff and Lyrene, 2001).

Seed germination percentage of the rare endemic Cochlearia
bavarica did not increase with number of pollen donors, i.e.
one, three and nine from the same population and nine from a
neighbouring population. However, pollen recipient (maternal
parent) had a significant effect on germination percentages
(Paschke et al., 2002). In another study, C. bavarica germination
percentage did not differ statistically between seeds of one pollen
donor hand-cross pollinated plants (47.4%) and those of open-
pollinated plants (40.8%), ‘…which likely involves less similar
or even several pollen donors’ (Fischer et al., 2003). However,
assuming several pollen donors for open-pollinated plants, RP
was –0.14 (see Appendix). In which case, seeds from a single-
pollen donor outperformed those from multiple-pollen donors
(see Appendix).

The results of comparisons by Himes and Wyatt (2005) of self-
sterile and self-fertile multiple and (a) single pollen donor(s) on
seed germination percentage of Asclepias exaltata were as follows:
(1) self-sterile single donor > self-sterile multiple donors; (2) self-
sterile single donor = self-fertile single donor; (3) self-sterile single
donor = self-fertile multiple donors; (4) self-fertile single donor >
self-sterile multiple donors; and (5) self-fertile single donor = self-
fertile multiple donors. Thus, germination percentages of seeds
sired (fathered) by single donors were equal to or greater than
those of seeds sired by multiple donors. In weedy Raphanus sati-
vus, pattern of seed germination (days to emergence of each seed-
ling) differed (P < 0.0001) among maternal plants but not among
the three pollen donors; altogether 97.1% of 450 seeds planted
germinated (Marshall et al., 2007). However, pollen donor did
have a significant effect on some aspects of fitness, i.e. growth
and reproduction (Marshall et al., 2007; see also Marshall and
Whittaker, 1989; Karron and Marshall, 1990). Maternal, but not
paternal, parent had a significant effect on germination percent-
age of the wind-pollinated tree Betula pendula (Pasonen et al.,
2001).

In a study of the effect of pollen load size and donor diversity
on Mirabilis jalapa, days to seedling emergence did not differ sig-
nificantly among five pollination treatments: (1) large load/mul-
tiple donors; (2) large load/single donor; (3) small load/multiple
donors; (4) small load/single donor; and (5) single outcross pollen
grain. Neither was there a maternal effect on days to emergence
(Niesenbaum, 1999). Thus, there was no effect of donor diversity
on days to seedling emergence. Also, there was no effect of donor
diversity on seed mass. The number of donors did not have a sig-
nificant effect on proportion of seeds of Collinsia heterophylla that
germinated. However, proportion of seeds that germinated was
significantly affected by pollen recipient × paternity diversity,
showing that seeds of some maternal plants germinated better
when sired by multiple donors (Lankinen and Madjidian,
2011). Neither germination percentage of seeds of the weedy
annual mustard Raphanus raphanistrum (Snow, 1990) nor those
of the bignoniaceous woody vine Campsis radicans (Bertin,
1986) differed significantly between progeny of single- and
multiple-donor pollinations. Furthermore, neither germination
nor number or mass of seeds from fruits sired by one, three
and five pollen donors differed significantly in C. radicans
(Bertin, 1986). However, the best pollen donors of this species

gave rise to statistically more and heavier seeds than the donor
mixtures, and although percentage germination was higher for
seeds sired by the best donors (46 vs 41%) the difference was
not significant.

Seeds of Swertia perennis from open-pollinated (i.e. natural,
not supplemented by hand pollination, multiple-pollen donors
assumed) flowers germinated to 40.83%, whereas those from flow-
ers whose stigmas were saturated with hand-crossed pollen from
one donor germinated to 32.24% (P < 0.05) (Lienert and Fischer,
2004). Thus, the RP was 0.21, showing that seeds from multiple-
pollen donors outperformed those from a single-donor (see
Appendix). The authors suggested that the difference might be
due to pollen quality, i.e. lower pollen quality representing the single
donor than that of open pollen, which they suggested was ‘…most
likely from several donors’. In a pollen competition experimentwith
Dalechampia scandens, there was no evidence for paternal (or
maternal) effects on seed germination. Furthermore, paternal
effects on seed maturation time, seed mass and seedling vigour at
1 month were limited and not statistically significant (Pélabon
et al., 2016).

Emergence (germination) of all seedlings of Asclepias speciosa
from crosses by three donors in a pollen competition experiment
(84.8%) was significantly higher than that of seedlings in the sin-
gle donor experiment (74.8%) (Bookman, 1984). The author sta-
ted that, ‘Donors which are superior competitors, therefore, father
more seedlings with a higher percentage of emergence than seed-
lings fathered by all donors’. However, when other results of her
study also were considered, Bookman suggested that the differ-
ences in seedling emergence were not due to higher pollen vigour
of the competitors that fathered the seedlings with the highest
emergence percentages but to sperm quality or fertilizing ability.

In Crepis tectorum subsp. pumila, an alvar species on the Baltic
island of Öland (SE Sweden), pollen donor had a significant
(P < 0.05) effect on seed mass and width and a marginally signifi-
cant (P = 0.053) effect on seed length, and seeds that germinated
had a significantly greater mass, length and width than those that
did not germinate (Andersson, 1990). Thus, the author concluded
that genetic variance among the pollen donors was responsible for
these differences. However, Mazer and Gorchov (1996) ques-
tioned this claim. They suggested that maternal effects, extranuc-
lear genes, environmentally induced gene expression acting
differently among the pollen donors or gametophytic selection
within different pollen donors before pollen maturation could
rule out additive genetic variation as being responsible for these
differences. Recently, Marshall and Evans (2016) presented strong
evidence that the ability of pollen donor families of Raphanus
sativus to sire seeds in mixed pollinations under competition
(i.e. with other pollen donors) is heritable and can respond to
selection.

Pollen donor had a significant effect on seed germination rate
(speed) but not on germination success (%) in Iris hexagona. The
variation in germination rate of seeds of this species among pollen
donors indicated ‘… a potential for a paternal contribution to
seed quality’. Pollen donor × parental population was significant
for both germination rate and germination success (Van Zandt
and Mopper, 2004). In a study of cryptic self-fertility in
Campsis radicans by Bertin et al. (1989), days to germination of
seeds sired by (1) pollen recipient/pollen donor 12 (maternal
and paternal parent selfed) and pollen donor 1 (outcross paternal
parent), and (2) pollen recipient/pollen donor 12 and pollen
donor 3A were: self – 24.2, cross – 25.3; and self – 36.6, cross –
33.7, respectively. Self and cross seeds sired by 12/1 did not differ
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significantly in days to germination, whereas self seeds sired by
12/3A germinated in significantly fewer days than outcrossed
seeds. Bertin (1990) tested the effect of different pollen ratios of
two donors (paternal parents) on germination percentage
of seeds produced on two pollen recipients (maternal parents)
of C. radicans. For pollen recipient 8, germination percentage of
seeds from four pollen combination ratios (amount) of two pollen
donors were [(2:3A) = (2:1)] < [(1:10) = (10.3)]. For pollen recipi-
ent 10, germination percentage of seeds from two pollen combin-
ation ratios were (2:3) < (2:1). Thus, not only pollen donor
identity per se but also the ratio of the amount of pollen from dif-
ferent donors in a multiple-donor pollen load may affect seed
germination.

In nature, plants can be limited in the number of seeds pro-
duced due to low pollinator activity. Experimentally, pollen limi-
tation is shown to occur when plants that are open-pollinated plus
hand-cross pollen supplemented (Ps, treatment) produce more
seeds than those that are open-pollinated only (Po, control), i.e.
no pollen supplementation (Burd, 1994; Larson and Barrett,
2000; Ashman et al., 2004; Knight et al., 2005). Only a small per-
centage of the numerous studies on pollen limitation have mea-
sured the germination responses of seeds from treatment vs
control, and some of them showed that pollen supplementation
increased seed germination percentage. Of 30 cases (18 species)
reviewed by Baskin and Baskin (2018) that compared germination
of seeds produced by Ps and Po plants, Ps > Po in 12, Ps = Po in 11
and Ps < Po in 7. Thus, based on relative performance (see
Appendix), in 40% of the cases pollen supplementation enhanced
germination percentages/rate (speed). In these 12 cases, pollen
supplementation may have been equivalent to an increase in
number/quality of pollen donors.

For seeds of Eschscholzia californica, dormancy in interpopu-
lation crosses ‘… seems to have been maternally inherited,
although in a few cases (828-4, 873-2) the pollen parent may
have had some effect’ (Cook, 1962). In a study of the quantitative
genetics of life history and fitness components of Raphanus
raphanistrum, Mazer (1987a) found no effect of pollen parent
on seed germination date or on seed mass. Twelve of 15 paternal
genotypes of Raphanus sativus exhibited higher rates of germin-
ation (1/days to germinate) at high than at low or medium plant-
ing densities (Mazer and Schick, 1991a). In another study by these
authors on R. sativus (Mazer and Schick, 1991b), paternal geno-
type had a significant effect on germination rate in medium plant-
ing density plots, but not in low and high planting density plots.

A study of the dark germination of reciprocal hybrid 6-mo
afterripened seeds from light-requiring (R) and indifferent (I)
tobacco (Nicotiana tobacum) selections (Kasperbauer,1968)
showed that both parents contributed to light sensitivity of the
seeds, but the contribution of the seed parent was greater [or
slightly greater sensu Karssen et al. (1983)] than that of the pollen
parent, i.e. germination percentage of R [seed (maternal) par-
ent] × I [pollen (paternal) parent] in darkness was < (I × R).
Overall, (R × R) < (R × I) < (I × R) < (I × I) (uninterrupted dark-
ness) and (R × R) = (R × I) = (I × R) = (I × I) (illuminated).
Interestingly, in a much earlier study than that of Kasperbauer,
Honing (1930) reported that the light requirement for germin-
ation of tobacco seeds was influenced by both parents, with the
maternal parent predominating. The results of a diallel cross
between five sugar beet (Beta vulgaris) plants showed that geno-
type of the maternal parent controlled germination to a large
extent (Battle and Whittington, 1971). Reciprocal hybrid seeds
of lettuce (Lactuca sativa) showed paternal control over seed

dormancy. Genotype MQS was more dormant than 466, and
466 (seed parent) ×MQS (pollen parent) was more dormant
than MQS × 466 (Rideau et al., 1976). Seed dormancy in the
annual weedy mustard Sinapis arvensis had both a maternal
and an embryo component, but there was an ‘… overriding
importance of the maternal genotype in seed dormancy …’
(Garbutt and Witcombe, 1986). Reciprocal crosses of the most
dormant (Th7) and least dormant (M30) lines of Petunia hybrida
showed paternal control over seed dormancy (Girard, 1990). The
order of seed dormancy of parents and reciprocal hybrids was
Th7 > (M30 × Th7) > (Th7 ×M30) > M30 for primary dormancy
and for the ability of the seeds to enter secondary dormancy.
Thus, dormancy is predominantly under paternal control.

In a diallel cross using five parental plants (A→E) of Lupinus
texensis, maternal and paternal effects on germination percentage
were similar in A, C, D and E. For parental plant B, however,
seeds of the paternal outcross geminated to a considerably higher
percentage than those of the maternal outcross and self, which
were similar. Both maternal and paternal parents and their inter-
action significantly affected seed mass, and seeds that germinated
had significantly more mass than those that did not germinate
(Helenurm and Schaal, 1996). The paternal parent had significant
effects on germination time of the progeny in two of three sets of
reciprocal diallel crosses in the monocarpic perennial species
Aster kantoensis, whose seeds are non-dormant at maturity
(Kagawa et al., 2011).

For the grass Anthoxanthum odoratum, paternal genotype did
not have an overall effect on germination percentage, but in two
of six randomized blocks in the experimental design it did have
a significant effect on germination percentage. Also, germination
percentage differed significantly for seeds sired by different fathers
in four of the six blocks for maternal genotype D2 (Schmitt and
Antonovics, 1986). For Lychnis flos-cuculi, Biere (1991a,b) found
significant differences for germination among paternal offspring
within families of female progeny and significant variation in
time to emergence of progeny of maternal and of paternal parents
with different genotypes. Male parents had a significant influence
on seed germination in within-population crosses of Lobelia car-
dinalis (Schlichting and Devlin, 1992). Germination of seeds from
crosses between the weedy Silene vulgaris and the narrow Swedish
alvar endemic S. uniflora var. petraea was strictly determined by
the pollen parent. Thus, hybrid seeds germinated to the same per-
centage and rate as outcrossed (non-hybrid) seeds of the paternal
species rather than to a percentage and rate intermediate between
those of the parental species (Andersson et al., 2008). The authors
hypothesized ‘… that the germination behavior of Silene seeds is
affected by nonnuclear (cytoplasmic) factors inherited from the
male parent or that nuclear genes from the maternal parent are
“silenced” during germination’.

Days to emergence in seeds of Campanula americana did not
differ between high and low pollen loads, but there were signifi-
cant maternal and paternal effects on this trait. Seed mass had
no effect on days to emerge (Richardson and Stephenson,
1992). Pollen parent had a significant effect on germination per-
centage in Purshia tridentata seed progeny in response to 2 weeks
of chilling (cold stratification). Among-year variation in matur-
ation environment was not significant, indicating no paternal
environmental effect (Meyer and Pendleton, 2000). Paternal
genotype of Eucalyptus globulus had a significant effect on six
measures of proportion and rate (speed) of seed germination
(Rix et al., 2012). In red (R, Morus rubra) and white (W,
M. alba) mulberry, progeny of W mothers had the highest

4 Jerry M. Baskin and Carol C. Baskin

https://doi.org/10.1017/S0960258518000417 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258518000417


cumulative fitness (Burgess and Husband, 2004). Offspring
(seeds) of W mothers germinated to a significantly higher per-
centage than those of R and hybrid (R ×W) mothers, which
did not differ. However, the paternal parent did not have an effect
on cumulative fitness or germination, and paternal × maternal
interactions were not significant. Thus, the authors attributed
the strong influence of the mother and lack of influence of the
father on fitness to non-nuclear (maternal) effects.

Sire (paternal parent) had a significant effect on percentage
and time to germinate and on dormancy in seeds of Nemophila
menziesii (Platenkamp and Shaw, 1993). However, in a follow-up
study on this species, Byers et al. (1997) found that the paternal
effect on time to germinate (and on seed mass) was weak and
inconsistent. In both studies, the dam (maternal parent) had a
greater effect on time to germinate than the sire. In Brassica cam-
pestris, percentage germination of F1 (high pollen load HF1) was
greater than that of F1 (low pollen, LF1), but there were no second
generation effects, i.e. no difference in percentage germination of
HF1 and LF1 progeny using the same amount of pollen. However,
there was a paternal influence on plant fitness, including germin-
ation (Palmer and Zimmerman, 1994). Lassere et al. (1996) found
no effect of pollen competition on seedling emergence time in
Silene latifolia. However, paternal parents had a significant effect
on days required for seedling emergence.

In Campanula rapunculoides, strength of self-incompatibility
(weak, intermediate, strong) of neither the father nor the mother
had a significant effect on seed germination (Good-Avila and
Stephenson, 2003). Germination percentage of seeds of Silene lati-
folia was strongly influenced by the population of origin of the
female parent but not by that of the male parent (Jolivet and
Bernasconi, 2007). For S. latifolia, number of pollen donors
(one vs two) had no effect on percentage or rate (speed) of ger-
mination, whereas paternal family had a significant effect on
both measures of germination (Teixeira et al., 2009). Many studies
have shown the effects of the environment of the maternal plant
during seed formation/maturation on germination, but very little
attention has been given to paternal environmental effects, which
can be prezygotic only (Fig. 1). However, although paternal envir-
onmental effects are considered to be minimal they do occur.
Raphanus raphanistrum seeds sired by pollen of low- vs high-
nutrient stressed plants did not differ in number of days to ger-
mination (Young and Stanton, 1990). In a growth chamber
experiment on Plantago lanceolata, paternal (prezygotic) tem-
perature influenced seed germination more than maternal (prezy-
gotic or postzygotic) temperature (Lacey, 1996). However, in a
follow-up combined growth chamber-field experiment on this
species there was essentially no prezygotic paternal or maternal
temperature effect on germination, whereas postzygotic (mater-
nal) temperature strongly influenced germination (Lacey and
Herr, 2000). Seeds of male parents of Solidago altissima grown
in soil germinated faster than seeds of male parents grown in
sand (Schmid and Dolt, 1994). The authors suggested that this
positive effect on germination, as well as that on post-germination
growth, was probably due to differences in pollen quality than in
pollen quantity. In studies by Galloway (2001a,b) and Etterson
and Galloway (2002), the (prezygotic) light environment of the
pollen parent had significant effects on seed germination in the
winter annual/strict biennial Campanula americana. However,
the expression of paternal effects on germination percentage
and rate, and also on seed mass, depended on the maternal
light (high, medium, low) environment. In animals, environmen-
tally (level of competition) induced (adaptive) paternal effects

have been unequivocally demonstrated in the broadcast-spawning
marine invertebrate the solitary ascidian Styela plicata (Crean
et al., 2013).

Androdioecy refers to the coexistence of males (female-sterile,
thus produce only pollen) and hermaphrodites (produce both
pollen and ovules/seeds) in a breeding population (Pannell,
2000). We have found only three cases in which germination per-
centages of male-sired seeds (MS) were compared with those of
(outcross) hermaphrodite-sired seeds (HS). In Datisca glomerata
MS =HS (Riesberg et al., 1993), Fraxinus ornus MS =HS (Verdu
et al., 2004) and Laguncularia racemosa Ms >HS (Landry and
Rathcke, 2007). In the trioecious (population consisting of males,
females and hermaphrodites) cactus Pachycereus pringlei, germin-
ation percentage of seeds of females pollinated by males was higher
than that of seeds in the other pollination treatments, i.e. seeds of
females × males germinated to higher percentages, but not signifi-
cantly (Sosa and Fleming, 1999).

To summarize, in 37 of the 59 studies (62.7%) discussed above
on the influence of the paternal parent on seed germination, we
conclude that the father had a positive influence on germination,
whereas in the other 22 studies it did not (Table 1, see footnote to
table).

Influence of paternal parent on seed size and development

As with seed dormancy/germination, most studies on the parental
effects on seed size have shown that the paternal influence on seed
development and seed mass is small or non-existent, and when
there is a paternal effect on seed size it is usually considerably
smaller than that of the maternal parent (e.g. Antonovics and
Schmitt, 1986; Marshall and Ellstrand, 1986; Mazer et al., 1986;
Mazer, 1987b; Marshall, 1988, 1991; Nakamura and Stanton,
1989; Pittman and Levin, 1989; Fenster, 1991; Richardson and
Stephenson, 1991; Lyons, 1996; Lacey et al., 1997; Shaw and
Byers, 1998; de Jong and Scott, 2007; Holland et al., 2009;
Diggle et al., 2010; de Jong et al., 2011; Li et al., 2015; Pélabon
et al., 2016). However, although maternal genotype explained
29.3% of the variation in seed size in reciprocal crosses among
four accessions of Arabidopsis thaliana, the paternal genotype
explained ‘… a substantial proportion of the variation (10.4%)’
(House et al., 2010). A recent study by Pires et al. (2016) showed
that paternal effects on the control of seed development in
Arabidopsis thaliana exists but are buffered by the maternal gen-
ome, i.e. genomic imprinting, an epigenetic mechanism for the
parent-of-origin-specific [female or male (monoallelic)] expres-
sion of alleles that, in plants, occurs mostly in the endosperm
of the developing seed (Vinkenoog et al., 2003; Köhler et al.,
2012; Gehring, 2013; Pires, 2014; Rodrigues and Zilberman,
2015; Pires et al., 2016).

More specifically, MEDEA (MEA) is an imprinted maternally
expressed gene essential for normal seed development. Thus,
seeds of Arabidopsis thaliana that maternally inherit a
loss-of-function mea allele exhibit excessive cell proliferation
and abort when the pollen parent is accession Ler (Grossniklaus
et al., 1998; Pires et al., 2016). Pires et al. (2016) have shown
that when mea ovules are pollinated by some other accessions
of A. thaliana the paternal effect is released and the seeds develop
normally, i.e. mea seed abortion can be paternally suppressed.
They suggest thatMEA acts as a maternal buffer against the pater-
nal genome on seed development and conclude that this provides
support of the (intragenomic) parental conflict theory in angios-
perms whose seeds are sired by multiple donors.
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Table 1. Positive (+) or no positive (0) influence of the paternal parent on seed germination [percentage and/or rate (speed)] of F1 offspring (seeds) in 59 studies on
45 species of angiosperms [3 monocots (M) and 42 eudicots] in 38 genera and 27 families

Species Family Influence on seed germination* References

Anthoxanthum odoratum Poaceae (M) + Schmitt and Antonovics, 1986

Asclepias exaltata Apocynaceae 0 Himes and Wyatt, 2005

Asclepias speciosa Apocynaceae + Bookman, 1984

Aster kantoensis Asteraceae + Kagawa et al., 2011

Beta vulgaris Amaranthaceae 0 Battle and Whittington, 1971

Betula pendula Betulaceae 0 Pasonen et al., 2001

Brassica campestris Brassicaceae + Palmer and Zimmerman, 1994

Campanula americana Campanulaceae + Richardson and Stephenson, 1992

Campanula americana Campanulaceae + Galloway, 2001a

Campanula americana Campanulaceae + Galloway, 2001b

Campanula americana Campanulaceae + Etterson and Galloway, 2002

Campanula rapunculoides Campanulaceae 0 Good-Avila and Stephenson, 2003

Campsis radicans Bignoniaceae + Bertin, 1986

Campsis radicans Bignoniaceae + Bertin et al., 1989

Campsis radicans Bignoniaceae + Bertin, 1990

Chamaecrista fasciculata Fabaceae 0 Sork and Schemske, 1992

Cochlearia bavarica Brassicaceae 0 Paschke et al., 2002

Cochlearia bavarica Brassicaceae 0 Fischer et al., 2003

Collinsia heterophylla Plantaginaceae + Lankinen and Madjidian, 2011

Costus allenii Costaceae (M) 0 Schemske and Pautler, 1984

Crepis tectorum subsp. pumila Asteraceae + Andersson, 1990

Dalechampia scandens Euphorbiaceae 0 Pélabon et al., 2016

Datisca glomerata Datiscaceae 0 Riesberg et al., 1993

Eschscholzia californica Papaveraceae + Cook, 1962

Eucalyptus globulus Myrtaceae + Rix et al., 2012

Fraxinus ornus Oleaceae 0 Verdu et al., 2004

Iris hexagona Iridaceae (M) + Van Zandt and Mopper, 2004

Lactuca sativa Asteraceae + Rideau et al., 1976

Laguncularia racemosa Combretaceae + Landry and Rathcke, 2007

Lobelia cardinalis Campanulaceae + Schlichting and Devlin, 1992

Lupinus texensis Fabaceae + Helenurm and Schaal, 1996

Lychnis flos-cuculi Caryophyllaceae + Biere, 1991a

Lychnis flos-cuculi Caryophyllaceae + Biere, 1991b

Mirabilis jalapa Nyctaginaceae 0 Niesenbaum, 1999

Morus alba and M. rubra Moraceae 0 Burgess and Husband, 2004

Nemophlia menziesii Boraginaceae + Platenkamp and Shaw, 1993

Nemophlia menziesii Boraginaceae 0 Byers et al., 1997

Nicotiana tobacum Solanaceae + Honing, 1930

Nicotiana tobacum Solanaceae + Kasperbauer, 1968

Pachycereus pringlei Cactaceae + Sosa and Fleming, 1999

Petunia hybrida Solanaceae + Girard, 1990

Plantago lanceolata Plantaginaceae + Lacey, 1996

Plantago lanceolata Plantaginaceae 0 Lacey and Herr, 2000

(Continued )
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According to the parental conflict theory (Haig and Westoby,
1989, 1991; Moore and Haig, 1991) [the predominant theory of
several (theories) on genomic imprinting, for example see
Rodrigues and Zilberman, 2015], the maternal parent has equal
interest in all of her sib and half-sib progeny, and thus it would
be to her best interest to devote equal resources to all of them
(maternal family). On the other hand, for plants that receive pol-
len from more than one father, it would be in the best interest of
each of the multiple paternal parents, who do not father all sibs
and half-sibs of the maternal family, to get preferential treatment
(i.e. relatively more resources) for the progeny he sires, i.e. to have
more than an equal share of the resources devoted to his off-
spring. Thus, there is conflict between maternal and paternal
genes within offspring over how the resources from maternal tis-
sue via the endosperm are devoted to the developing embryos.
The results of a study on seeds of Arabidopsis thaliana by Scott
et al. (1998) provide support for the parental conflict theory.
Thus, seeds with a double dose of paternal genes [2x × 4x (1m :
2p endosperm) produce large endosperms and embryos, while
maternal plants with a double dose of genes [4x × 2x (2m : 1p
endosperm)] produce small endosperms and embryos.
According to Pires et al. (2016), MEA activity buffers the paternal
effects from maximizing growth ‘… suggesting that they were
likely shaped by parental conflict’. In sum, then, the study by
Pires et al. (2016) shows that paternal effects on seed development
do exist but are buffered by the maternal genome.

General conclusion

Although undoubtedly the mother has much more influence than
the father on dormancy and germination (and development and
size-mass) of offspring seeds produced, the pollen parent

sometimes can have an effect on variation in these life history
traits. However, in general, the influence of the father on these
stages of the plant life cycle is minimal compared with that of
the mother.

Author ORCIDs. Carol C. Baskin 0000-0001-7680-154X
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Appendix. Relative performance

A meaningful way to compare the effect of one-pollen donor versus multiple-
pollen donors on seed germination is to use a measure of relative
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performance (RP):

RP = (Wm −Ws)/Wmax[Wm,Ws],

whereWm is mean germination percentage of seeds (progeny) resulting from
multiple-donor pollinations, and Ws is the mean germination percentage of
seeds resulting from a single-donor pollination.

Using this equation, values will be equidistant from 0, i.e. they are bound
between –1.0 and + 1.0, whenWs > Wm (to –1) andWs≤Wm (to + 1). Thus, a
positive value indicates that seeds from multiple-donor pollinations

germinated better than those from a single-donor pollination, and the closer
the value is to 1.0 the greater the difference in performance. A negative
value indicates that seeds from a single-donor pollination germinated better
than those from multiple-donor pollinations, and the more negative the
value the greater the single-donor benefit.

Relevant to the study by Sork and Schemske (1992) discussed in the pre-
sent paper, the above equation can be used to calculate inbreeding depression
of seed germination by substituting Wo (germination of outcrossed seeds) for
Wm and letting Ws be germination of selfed seeds instead of germination of a
single-donor pollination.
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