
J. Fluid Mech. (2020), vol. 882, A25. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.834

882 A25-1

Data-driven decomposition of the streamwise
turbulence kinetic energy in boundary layers.

Part 1. Energy spectra

Woutijn J. Baars1,† and Ivan Marusic2

1Department of Engineering, Aarhus University, 8000 Aarhus C, Denmark
2Department of Mechanical Engineering, The University of Melbourne, VIC 3010, Australia

(Received 6 October 2018; revised 31 July 2019; accepted 13 October 2019)

In wall-bounded turbulence, a multitude of coexisting turbulence structures form the
streamwise velocity energy spectrum from the viscosity- to the inertia-dominated range
of scales. Definite scaling-trends for streamwise spectra have remained empirically
elusive, although a prominent school of thought stems from the works of Perry &
Abell (J. Fluid Mech., vol. 79, 1977, pp. 785–799) and Perry et al. (J. Fluid Mech.,
vol. 165, 1986, pp. 163–199), which were greatly inspired by the attached-eddy
hypothesis of Townsend (The Structure of Turbulent Shear Flow, Cambridge
University Press, 1976). In this paper, we re-examine the turbulence kinetic energy of
the streamwise velocity component in the context of the spectral decompositions of
Perry and co-workers. Two universal spectral filters are derived via spectral coherence
analysis of two-point velocity signals, spanning a Reynolds-number range Reτ ∼
O(103) to O(106) and form the basis for our decomposition of the logarithmic-region
turbulence into stochastically wall-detached and wall-attached portions of energy.
The latter is composed of scales larger than a streamwise/wall-normal ratio of
λx/z≈ 14. If the decomposition is accepted, a k−1

x scaling region can only appear for
Reτ & 80 000, at a wall-normal position of z+= 100. Following Perry and co-workers,
it is hypothesized that spectral contributions from turbulence structures other than
attached eddies obscure a k−1

x scaling. When accepting the idea of different spectral
contributions it is furthermore shown that a broad outer-spectral peak is present even
at low Reτ .

Key words: turbulent boundary layers, boundary layer structure

1. Introduction and context
A long-standing challenge in the study of wall turbulence has been the scalings

of energy spectra, amongst other statistical quantities. For the fluctuations of the
streamwise velocity component u, the energy spectrum is denoted as φuu(kx),
with kx being the streamwise wavenumber. The streamwise turbulence intensity
refers to the velocity variance, u2, and equates to the integrated spectral energy:
u2=

∫
φuu dkx. Thus, energy spectra inform how the turbulence intensity is distributed

† Email address for correspondence: baars@eng.au.dk
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across wavenumbers and have long been used to interpret the turbulence cascade
(e.g. Pope 2000; Jiménez 2012). For wall-bounded turbulence, the inhomogeneity
along its wall-normal direction and the anisotropy of the inertial motions, introduce
mathematical challenges that prevent derivations of spectral scaling laws for the full
spectrum. In addition, research over the past two decades has revealed large-scale
organized motions with significant spatial and temporal coherence (Robinson 1991;
Adrian 2007; Hutchins & Marusic 2007a; Smits, McKeon & Marusic 2011; Jiménez
2018). In this paper we consider φuu corresponding to zero-pressure gradient
(ZPG) turbulent boundary layers (TBLs). A central aspect is a data-driven spectral
decomposition, yielding a spectral sub-component that resonates with one that would
be induced by eddies obeying Townsend’s attached-eddy hypothesis (AEH) (Townsend
1976; Marusic & Perry 1995; Baidya et al. 2017).

In § 2 we first review the current state of knowledge on the scaling of φuu and
end with an outline of the paper. Throughout our work we use the co-ordinate
system x, y and z to denote the streamwise, spanwise and wall-normal directions
of the flow, respectively. Reynolds number Reτ ≡ δUτ/ν is the ratio of δ (the
boundary layer thickness) to the viscous length-scale ν/Uτ , where ν is the kinematic
viscosity and Uτ is the friction velocity. Here Uτ =

√
τo/ρ, with τ0 and ρ being the

wall-shear stress and the fluid’s density, respectively. When a dimension of length
is presented in outer-scaling, it is normalized with δ, while a viscous-scaling is
signified with superscript ‘+’ and comprises a scaling with ν/Uτ . A wall-scaling (or
inner-scaling when spectra are concerned) employs wall-distance z. Recall that lower
case u represents the Reynolds decomposed fluctuations, while capital U is used for
the absolute mean. We generally deal with time series, u(t), from which frequency
spectra φuu( f ) are computed ( f is the temporal frequency). For interpretative purposes
and convention, frequency spectra are converted to wavenumber spectra using a single
convection velocity Uc (generally taken as the local mean velocity U(z); wavenumber
kx = 2πf /Uc). Wavenumber spectra φuu(kx) are computed as φuu(kx) = φuu( f )(df /dk),
where the factor df /dk = Uc/(2π) converts the energy density from ‘per unit
frequency’ to ‘per unit wavenumber’. Note that premultiplying the spectrum, with f or
kx, does not affect its magnitude. That is, fφuu( f )= 2πf /Ucφuu( f )(df /dk)= kxφuu(kx).
The scale axis is either presented in terms of kx or wavelength λx = 2π/kx.
Frequency-to-wavenumber conversions are non-trivial and Taylor’s hypothesis can
introduce aliasing-type discrepancies, particularly in the near-wall region (Perry &
Li 1990; del Álamo & Jiménez 2009; de Kat & Ganapathisubramani 2015; Renard
& Deck 2015). Conclusions in this article are made with regard to the logarithmic
region, but caution in interpreting frequency spectra via length scales is noted.

2. Structure of the streamwise turbulence kinetic energy
2.1. Review of empirically observed trends for φuu energy spectra

Over the past two decades, wall-turbulence data at high Reτ have revealed new
features of φuu. Figure 1(a) presents the streamwise energy spectra as a spectrogram:
premultiplied spectra at 40 logarithmically spaced positions within the range
10.6. z+. δ+ are presented with iso-contours of k+x φ

+

uu. These spectra were obtained
from hot-wire measurements at Reτ ≈ 14 100 in Melbourne’s TBL facility (Baars
et al. 2017a).

Dominant small-scale features known as recurrent near-wall streaks (Kline et al.
1967) form the inner-spectral peak in the TBL spectrogram and obey viscous-scaling
(identified with the × marker at λ+x = 103 and z+ = 15 in figure 1a). Attached
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FIGURE 1. (a) Premultiplied energy spectrogram k+x φ
+

uu (filled iso-contours 0.2:0.2:1.8) at
Reτ ≈14 100 (Baars, Hutchins & Marusic 2017a), alongside a spectrogram of the surrogate
dissipation k3

xφuu (at each z, the dissipation spectrum is normalized by its maximum value;
iso-contours 0.2:0.2:0.8). The dashed line tracks the ridge in the dissipation (λx = 35η).
Triangle ‘N’ refers to the k−1

x region identified by Nickels et al. (2005), while ‘B’ labels
a region where Baars, Hutchins & Marusic (2017b) contemplated a self-similar behaviour.
Note: λx ≡U(z)/f . (b) Saddle-type topology formed by the inner-peak imprint and outer-
peak footprint.

eddies play an important role in the log-layer, and likely take a form consistent
with vortex packets (Head & Bandyopadhyay 1981; Kim & Adrian 1999; Adrian,
Meinhart & Tomkins 2000; del Álamo et al. 2006; Wu & Christensen 2006; Adrian
2007; Balakumar & Adrian 2007). These packets, or large-scale motions (LSM),
exhibit a forward inclined structure with u< 0 within the packet and u> 0 at either
spanwise-flanked side of the packet (Favre, Gaviglio & Dumas 1967; Blackwelder &
Kovasznay 1972; Brown & Thomas 1977; Wark & Nagib 1991; Ganapathisubramani,
Longmire & Marusic 2003; Tomkins & Adrian 2003). Larger motions, known
as superstructures or very large-scale motions (VLSM), have also been described
(Hutchins & Marusic 2007b). In terms of their spectral signature, these large-scale
organized motions appear most prominently as a broad spectral peak in the log-region,
indicated in figure 1(a) with a × marker at λx = 4δ and z+ = 3.9Re1/2

τ ≈ 464 (Mathis,
Hutchins & Marusic 2009). Hutchins & Marusic (2007a) observed the emergence of
the outer-spectral peak for Reτ & 2000 and its energetic relevance increases with Reτ .

Figure 2 aids in assessing scalings of φuu in the logarithmic region. Individual
spectra at logarithmically spaced positions in the range 100 . z+ . 0.15δ+ are
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FIGURE 2. Premultiplied energy spectra (Reτ ≈14 100) at nine logarithmically spaced wall-
normal positions in the range 100 . z+ . 0.15δ+, with the abscissae in (a) outer-scaling
and (b) wall-scaling, respectively. Note: kx ≡ 2πf /U(z).

shown in figure 2(a) with an outer-scaling on the logarithmic scale axis (and with a
wall-scaling in figure 2b). At the high wavenumber-end, spectra arguably resemble
a k−5/3

x inertial sub-range scaling (figure 2b and Saddoughi & Veeravalli (1994),
Sreenivasan (1995), Mydlarski & Warhaft (1996), Gamard & George (2000), Samie
et al. (2018)). A decrease in spectral separation between the isotropic scales and the
range over which viscosity acts, narrows the k−5/3

x region with decreasing z. In that
regard, a second spectrogram in figure 1(a) displays k3

xφuu, indicative of the surrogate
dissipation rate of energy ε ≡ 15ν

∫
k3

xφuu d log(kx) (with an applied local isotropy
hypothesis, valid only well into the logarithmic region). In the logarithmic region,
ε ∼ 1/z and the dissipation scales via kxz ∝ z3/4 (production–dissipation balance);
this scaling reflects the ridge of the dissipation spectrogram following λx ≈ 35η,
where η ≡ (ν3/ε)1/4. When spectra adhere to the k−5/3

x up to a constant wall-scaling,
e.g. kxz = O(1) (dashed line in figure 1a), the dissipation and energy spectrograms
reveal the relatively small range over which a k−5/3

x may be expected.
When concentrating on the larger scales, adjacent to the inertial sub-range, a

combination of dimensional analysis, a spectral overlap argument and an assumed
type of eddy similarity lead to a k−1

x dependence (e.g. Perry & Abell 1975; Perry,
Henbest & Chong 1986; Davidson & Krogstad 2009),

k+x φ
+

uu = A1, (2.1)

where A1 is a universal constant (Perry et al. 1986). In (λx, z)-space, the k−1
x scaling

region obeys wall-scaling and outer-scaling at the small- and large-wavelength ends
of the spectrum, respectively. By way of visual inspection, Nickels et al. (2005)
identified a k−1

x region as z+>100, λx>15.7z and λx<0.3δ at Reτ ≈14 000 (triangular
region ‘N’ in figure 1a). To date, convincing support for a k−1

x dependence has not
been shown, mainly due to the limited range over which this region plausibly exists.
Even for the highest Reτ laboratory data, the presence of a k−1

x has been inconclusive
(Morrison et al. 2002; Rosenberg et al. 2013; Vallikivi, Ganapathisubramani & Smits
2015a; Baidya et al. 2017), while theory suggests that this region should grow
with Reτ . A k−1

x scaling has been reported for atmospheric surface layer (ASL)
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data (Högström, Hunt & Smedman 2002; Calaf et al. 2013) and free shear flow
(Beresh et al. 2018), however, an important issue here is that those spectra are
typically presented in log–log format: φuu ∝ k−1

x may appear to be more convincing
(§ A.1). To emphasize the ambiguity of a k−1

x scaling, the portions of the spectra
satisfying Nickels’ criterion are highlighted in figure 2. These portions plateau at
A1≈0.92 (Nickels et al. 2005), although this plateau may be caused by a transitioning
from the imprint signature of the inner-spectral peak, to the broad outer-spectral peak.
Furthermore, it is well known that the outer-spectral peak has a distinct energy
footprint down to the wall, as a direct consequence of its strong linear coherence
with the near-wall turbulence (Baars et al. 2017b; Marusic, Baars & Hutchins 2017).
These spectral features – which could enhance φuu ∝ k−1

x while not being truly
representative of (2.1) – are most clearly observed in a spectrogram and induce a
saddle-type topology (figure 1b). Chandran et al. (2017) examined experimentally
acquired streamwise–spanwise two-dimensional spectra of u at Reτ ∼ O(104) for a
k−1

x , but have also faced challenges in identifying an unobstructed spectral view. It
is worth noting that numerical studies (e.g. Jiménez & Hoyas 2008; Lee & Moser
2015; Hwang 2015) indicate a promising k−1 structure in, for instance, spectra of the
spanwise velocity component in channel flow, even at Reτ ∼O(103).

If a k−1
x scaling region does exist in φuu, it presumably extends beyond Nickel’s

identified outer limit of λx= 0.3δ. Any large-scale turbulence features that would scale
differently than φuu∝ k−1

x are thought to obscure a k−1
x scaling at the large-scale end of

the spectrum. Those obscuring features may relate to the presence of detached eddies
(Marusic & Perry 1995; Jiménez 2012), the processes of spatial alignment (Adrian
et al. 2000) and spectral aliasing (Davidson, Nickels & Krogstad 2006; Davidson &
Krogstad 2008), all of which accumulate energy in the broad outer-spectral peak. In
fact, Baars et al. (2017b) determined that a geometrically self-similar wall-attached
structure of turbulence may be ingrained within a much larger (λx, z)-region than the
one identified by Nickels et al. (2005) – that new region is identified region ‘B’ in
figure 1(a).

2.2. The spectral view of Perry et al. for streamwise velocity spectra
Townsend (1976) hypothesized that: ‘The velocity fields of the main eddies, regarded
as persistent, organized flow patterns, extend to the wall and, in a sense, they are
attached to the wall’. For predictive purposes, Townsend further assumed a self-similar
nature of the main eddies. Townsend’s AEH thus commonly implies a hierarchy of
geometrically self-similar eddying motions that are inertially dominated (inviscid),
attached to the wall and scalable with their distance to the wall (Marusic & Monty
2019). In the log-region, Perry & Chong (1982) showed that an attached-eddy model
predicts a k−1

x in φuu, whereas various other theoretical arguments and interpretations
lead to the same result (e.g. Tchen 1953; Nikora 1999; Hunt & Carlotti 2001;
Davidson & Krogstad 2009; Katul, Porporato & Nikora 2012). Following the classical
scaling, viscosity can be neglected above a fixed, inner-scaled wall-normal location,
say z+ = O(100) (Perry & Chong (1982), Nagib, Chauhan & Monkewitz (2007),
Zagarola & Smits (1998), among others). A k−1

x in φuu at such a lower limit
of the logarithmic region was envisioned by Perry and co-workers, provided that
contributions to the spectrum that do not follow a spectral overlap scaling are absent
or do not overlap with a k−1

x range (e.g. no imprints from the inner-spectral peak, no
contributions from the scales that result in Kolmogorov scaling, and no masking by
large-scale contributions that obey a δ scaling in spectral space). It must be noted

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.834


882 A25-6 W. J. Baars and I. Marusic

here that various studies have questioned the classical scaling and have arrived at
mesolayer and mixed scaling concepts (see Long & Chen 1981; Wosnik, Castillo
& George 2000; Klewicki, Fife & Wei 2009). However, an unresolved issue in all
scaling studies for u2(z) is that unaltered profiles are considered, which thus cluster
the energy contributions from all turbulent, spectral scales (while it is agreed upon
that different parts of the turbulence spectrum scale differently). Hence, a mesolayer
scaling of z+ ∝ Re0.5

τ (the minimum wall-normal location at which viscosity acts)
may not reflect the lower limit of the inviscid, logarithmic-region component of
turbulence. And so, we here hypothesize following Perry and co-workers, that if
one considers the scaling of sub-contributions to the streamwise velocity spectra
separately, different wall-normal scalings can emerge depending upon which turbulent
scales are included. We highlight that a classical scaling for the lower limit of the
logarithmic region in the context of inviscid, self-similar and wall-attached motions of
Perry and co-workers (reviewed here in § 2.2) should not be discarded. Generally, the
relatively slow progress on the issue of spectral scalings in TBL flow is influenced
by the still limited range of scales of the energy cascade, even at moderate Reτ , thus
making it complicated to observe extended scaling ranges along both wavenumber and
wall-normal dimensions. For instance, with a smallest eddy of the order of 100ν/Uτ ,
and a discrete hierarchy of 10 geometrically self-similar scales, it was shown by
Perry & Chong (1982) that at least Reτ ∼O(105) is required for a k−1

x extending over
one order of magnitude in kx.

Perry & Abell (1977) and Perry et al. (1986) contemplated that φuu encompasses
three distinct contributions; a vision further refined later on (Marusic & Perry 1995). A
conceptual sketch of these contributions is presented in figure 3(c) and are referred to
as type A, B and C energy contributions. Central in this view is the A energy (only
this energy fraction is captured by the attached-eddy model and would dominate
the spectrum at ultra-high Reτ ). At the high wavenumber-end, the A contribution
follows wall-scaling with boundary WA, starting at kxz = G (note that one fixed and
inner-scaled location z is assumed throughout figure 3). At the low wavenumber-end,
A is bounded by OA, adhering to outer-scaling. A k−1

x region occurs where there is an
overlap of the outer-scaling and wall-scaling. Note that both boundaries WA and OA
are unknown and undefined, e.g. no physical arguments exist for formulating these,
nor is there empirical evidence yet for these boundaries. Logically, the spectrum also
includes energy from scales that are unresolved by the attached-eddy model and that
energy thus scales differently than that of A. At low wavenumbers, B energy was
envisioned to come from detached motions. Only through the availability of recent
experimental data at high Reτ (Mathis et al. 2009), it appears that this contribution
is Reynolds-number dependent and that it induces an imprint on the near-wall region.
Adrian et al. (2000) suggested that merging of self-similar LSM may be one of the
mechanisms generating VLSM and superstructures. But, in a recent line of work,
several studies – using linearized Navier–Stokes equations – have shown that long
streaky motions can be amplified at all length scales (del Álamo et al. (2006),
Hwang & Cossu (2010a,b), among others), and this is consistent with the recent
findings that the large-scale outer structures obey a self-similar character and involve
self-sustaining mechanisms (Hwang 2015; de Giovanetti, Sung & Hwang 2017).
Vassilicos et al. (2015) performed a modelling attempt of this low wavenumber-end
of the spectrum at high Reτ , by including a k−m

x range. In the current context this can
be interpreted as an attempt to model the B contribution. In addition, Srinath et al.
(2018) related this modelling effort to the wide variation of streamwise lengths of
wall-attached streamwise velocity structures. Finally, at the high wavenumber-end in
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Re† > O (103) → O (105)

FIGURE 3. Hypothetical structure of kxφuu within the logarithmic region of TBLs,
following Perry & Abell (1977) and Perry et al. (1986) and reproduced from Marusic
& Perry (1995). Sketches for finite Reτ are hypothesized in (a) and (b), while an
asymptotically high Reτ is envisioned in (c).

figure 3(c), region C comprises Kolmogorov scales and small-scale detached eddies.
This portion of the spectrum obeys k−5/3

x and is subject to the viscous roll-off beyond
an η-based scale (boundary with constant M).

Perhaps the most important feature in figure 3(c) is the complete spectral separation
of B and C components at ultra-high Reτ , which has never been observed. The
significant spectral overlap envisioned at low-Reynolds-number conditions, with a
small range of energetic length scales, is schematically shown in figure 3(a,b). In
essence, at low Reτ , the range of scales has not yet matured to a range where
complete B/C spectral-separation may occur (if at all existent). In light of the above,
this article attempts to re-appraise the spectral view of figure 3 by way of utilizing
data over a range of Reτ , in combination with a data-driven spectral decomposition
technique.

2.3. Present contribution and outline
To summarize the above, a presence of geometrically self-similar, wall-attached
motions, as hypothesized by Townsend (1976), would imply the existence of φuu∝ k−1

x
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Re† £ 13 500

Label Fixed zR

w: Near-wall
zR

+ £ 4.4

l1: log region
zR

+ £ 246

l2: log region
zR

+ £ 469
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FIGURE 4. Experimental arrangement of the two-probe synchronized hot-wire
measurements in Melbourne’s boundary facility. The TBL conditions and probe-positions
are listed in table 1.

at high enough Reτ . This attached-eddy model behaviour only governs A in the
spectral view hypothesized by Perry and co-workers. Empirical validation of a
three-component structure in the velocity spectra φuu is non-existent, and boundaries
OA and WA, as well as constants like G, N and M, are unknown (figure 3). Moreover,
a convincing φuu ∝ k−1

x scaling has remained elusive as it has not been observed in
high-fidelity data. In order to gain further insight into the structure of φuu, there is a
need to examine the possible existence of a three-component spectral structure. This
article presents a first attempt towards this, using a data-driven spectral decomposition
method. Next, in § 3, a description of the multi-point synchronized experimental data
is provided. Via linear systems theory (§ 4.1), data-driven spectral filters are derived
(§§ 4.2–4.3) and allow for the spectral decomposition of φuu (§ 5.1). It also provides
further insight into the required scale separation for the observance of φuu ∝ k−1

x
(§ 5.3). Subsequently, spectra at a range of Reτ are decomposed and interpreted
according to the spectral structure of Perry and co-workers (§ 6). In Part 2 (Baars
& Marusic 2020), the integrated energy in the φuu spectra, being the streamwise
turbulence intensity u2, is reassessed in the context of the spectral decomposition
presented in this paper.

3. Turbulent boundary layer data
3.1. Two-point measurements at Reτ ≈ 13 500

Two-point measurement data are the foundation for the spectral decomposition-
methodology used. Data were acquired in Melbourne’s boundary layer facility (Nickels
et al. 2005; Baars et al. 2016b) under nominal ZPG conditions. Pressure coefficient,
Cp, was constant to within ±0.87 % (Marusic et al. 2015), and free-stream turbulence
intensities were less than 0.05 % of the free-stream at x= 0 m (Kulandaivelu 2011).

Four datasets were acquired using a hot-wire arrangement shown in figure 4. For
each dataset, one hot-wire probe is positioned at a fixed location (reference z = zR),
while the other probe is traversed to map out a range of wall-normal positions, zM

(probes were located at the same (x, y)-position). One dataset (denoted by W) employs
a near-wall reference at z+R ≈ 4.4, while the reference probe was situated within the
logarithmic region for the other three datasets (Li, i= 1 . . . 3, with reference positions
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TABLE 1. Experimental parameters of two-point hot-wire data acquired in Melbourne’s
boundary layer facility.

aFor datasets L1−3 the reference and traversing wires were interchanged for zM < zR and
zM > zR, see text for details.

z+R ≈ 246, 469 and 1120, respectively). These four reference locations are from now
on denoted as zW and zL for datasets W and L1−3, respectively. Nominally, all
datasets correspond to the same Reynolds-number condition (Reτ ≈ 13 500). Boundary
layer parameters are summarized in table 1. The friction velocity was inferred from a
direct survey of the wall-shear stress using a floating element drag balance, situated
at the streamwise measurement location (Baars et al. 2016b), and a modified Coles
law of the wake fit was used to determine δ (Jones, Marusic & Perry 2001). For
reference, mean velocity profiles (figure 5a) were fitted to a composite profile with
log-law constants of κ = 0.384 and A = 4.17 (Chauhan, Monkewitz & Nagib 2009).
This procedure resulted in values for Uτ that deviated less than 2 % from the friction
data-based values.

For dataset W , the near-wall probe was a Dantec 55P30 type, while the traversing
hot-wire consisted of a Dantec 55P15 boundary layer probe. Wollaston wires were
used with a d = 5 µm and d = 2.5 µm core wire, for the near-wall and traversing
probes, respectively. Both wires were etched to expose the core over a length of
l/d = 200 (Ligrani & Bradshaw 1987). In viscous-scaling, the lengths of l+ ≈ 42
and l+ ≈ 22 are of an acceptable length when the spatial resolution is concerned,
since this study concentrates on the absolute energy in the logarithmic region only
(Hutchins et al. 2009; Samie et al. 2018). The traversing hot-wire was traversed to
40 logarithmically spaced positions in the range 10.7 . z+M . 1.55δ+. For datasets
L1−3, both probes consisted of Dantec 55P15 type holders with d = 2.5 µm wires
(also l/d= 200, resulting in l+≈ 21). Each probe could be moved independently in z
using two separate traverse systems: a tunnel-specific traverse with a wall-implemented
traverse situated underneath. Irrespective of zR, a mapping of 50 logarithmically spaced
positions from z+M≈10.5 up to z+M≈1.6δ+ was carried out. In practice, positions below
zR were mapped out with the probe connected to the bottom traverse (with the other
probe at zR). Subsequently, the probes switched positions, and the wall-normal range
above zR was mapped out with the top traverse (with the bottom traverse-probe at zR).
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FIGURE 5. Boundary layer profiles of the streamwise (a) mean velocity and (b) turbulence
intensity of the four two-point hot-wire datasets listed in table 1.

Since the geometry of the probe holders dictated a minimum separation distance of
1z+min=|zM− zR|≈2.2 mm, 5 points (L1), 2 points (L2) and 1 point (L3) were skipped
in the 50-point profiles.

All hot-wire probes were operated in constant temperature mode, with an overheat
ratio of 1.8, using in-house built anemometers. For each dataset, wires were sampled
simultaneously at a rate of 1T+ ≡ U2

τ/ν/fs, where fs is the sampling frequency
(acquisition rates, 1T+, were around unity or less, see Hutchins et al. (2009)). To
prevent aliasing, the signals were passed through fourth-order Butterworth filters –
with a spectral cut-off set at fs/2 – prior to analogue to digital conversion using
a 16-bit Data Translation DT9836 module. Relatively long signals were acquired
with lengths of TU∞/δ > 20 × 103, allowing for converged spectral statistics at the
largest energetic wavelengths. Both hot-wire probes were calibrated, with a correction
method for hot-wire voltage drift (Talluru et al. 2014). Boundary layer profiles of U
and u2 are plotted in figures 5(a) and 5(b), respectively. All mean velocity profiles are
compared with U+ = 1/κ ln(z+)+ A in the logarithmic region (thin blue lines), with
κ = 0.384 and A= 4.17 and show minimum effect from the intrusive reference probe.
Likewise, the agreement of the u2 profiles can be gleaned from their comparison to
u2+ = B1 − A1 ln(z/δ) in the logarithmic region (thin blue lines), with A1 = 1.26 and
B1 = 2.30 (Marusic et al. 2013); profiles L1−3 comprise a slightly lower energy in
the outer-region than the W data, which is ascribed to the minor variation in Reτ .
Since the near-wall streamwise turbulence intensity is attenuated due to the hot-wire’s
spatial resolution, corrected profiles via the method of Smits et al. (2011) are also
shown. Peak-values at z+ ≈ 15 agree with the expected behaviour following u2

max =

0.63 ln(Reτ )+ 3.80 (Lee & Moser 2015; Marusic et al. 2017; Samie et al. 2018).

3.2. Additional data for investigating Reynolds-number dependence
A number of other TBL datasets are employed for investigating Reynolds-number
trends, ranging from direct numerical simulation (DNS) up to ASL data. For all
datasets, δ, Uτ and Reτ were recomputed with the modified Coles law of the wake
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fit. The DNS data of a ZPG TBL by Sillero, Jiménez & Moser (2013) correspond
to Reτ ≈ 1992. Streamwise/wall-normal planes of data, spanning the entire TBL in z
and extending ∼11.9δ in x, are used. This streamwise extension is chosen to include
large-scale motions, while still maintaining an acceptable Reynolds number increase
from Reθ ≡ θU∞/ν ≈ 5110 to 6010, where θ is the momentum thickness (Reτ ≈ 1992
at the streamwise centre). Around this Reynolds-number condition, the spanwise
resolution of the DNS is 1y+ ≈ 3.72.

Five singe-point hot-wire datasets of u are also included throughout this work
(all acquired in Melbourne’s TBL facility). Data at Reτ ≈ 2800, 3900 and 7300 were
taken using a regular hot-wire set-up (Hutchins et al. 2009). Data at Reτ ≈ 13 000 and
19 300 are taken from Samie et al. (2018), where Princeton’s NSTAP probes were
used for making fully resolved measurements. Our highest Reynolds-number data at
Reτ ≈ 1.4× 106 encompass the u fluctuation in the ASL under near-neutrally buoyant
conditions at the surface layer turbulence and environmental science test facility
(known as SLTEST) on the great salt lakes of Utah. These data were synchronously
acquired using a wall-normal array of five sonic anemometers and one purpose-built
wall-shear stress sensor situated under the array (Heuer & Marusic 2005; Marusic &
Heuer 2007).

4. Data-driven spectral filters for an energy decomposition
To generate data-driven spectral filters from the two-point data, spectral coherence

analyses (§ 4.1) are applied to the dataset with the near-wall reference signal (§ 4.2),
as well as the datasets with the logarithmic-region reference (§ 4.3).

4.1. Methodology
4.1.1. Linear coherence spectrum: a data-driven filter

A stochastic coupling between two time series of u can be inferred from correlation
analyses. Instead of computing the correlation in physical space, as the two-point
cross-correlation coefficient ρ(τ), where τ is the relative time shift between the two
signals, a spectral approach is pursued for its relevance to energy spectra. A diagnostic
for the scale-by-scale coupling is the linear coherence spectrum (LCS) (Bendat &
Piersol 1986). For two synchronously acquired time series u(z) and u(zR), the LCS
is formulated as

γ 2
l (z, zR; λx)≡

|〈û(z; λx)û(zR; λx)〉|
2

〈|û(z; λx)|2〉〈|û(zR; λx)|2〉
=
|φ′uu(z, zR; λx)|

2

φuu(z; λx)φuu(zR; λx)
, (4.1)

where û(z; λx) is the temporal Fourier transform of u(z). Although λx is here used
as the scale-argument, the expression is evaluated in frequency space. The overbar in
(4.1) indicates the complex conjugate, 〈〉 denotes ensemble averaging and || designates
the modulus. Since γ 2

l equals the cross-spectrum magnitude squared, normalized by
the energy spectra of u(z) and u(zR), a normalized coherence is obtained: 0 6 γ 2

l 6 1.
Interpretation-wise, γ 2

l reflects the square of a scale-specific correlation coefficient
and represents the fraction of common variance shared by u(z) and u(zR), per scale.
Although only the magnitude of the complex-valued cross-spectrum, φ′uu(z, zR; λx) ∈
C, is considered in the numerator of (4.1), the LCS implicitly embodies the phase
consistency (and coexisting amplitude variations) across ensembles of u(z) and u(zR).
That is, if each ensemble used to construct the cross-spectrum contains a radically
different (non-consistent) phase shift for a certain scale, that scale is not stochastically
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FIGURE 6. (a) Premultiplied energy spectra at z+O ≈ 473 and z+W ≈ 4.4; spectra are filtered
using a 20 % bandwidth moving filter, see text for details (similar for sub-figures b,c).
(b) Linear coherence spectrum for signals u(zO) and u(zW). An unfiltered spectrum is
shown for reference. (c) Energy spectra of u(zO), decomposed into coherent and incoherent
contributions relative to u(zW), with the respective integrated turbulence intensity fractions
of u2(zO) amounting to 39 % (coherent) and 61 % (incoherent), respectively. Note: λx ≡

U(zO)/f .

correlated and γ 2
l → 0 when converged. To illustrate the LCS, one arbitrary velocity–

velocity pair of dataset W is chosen: an outer-region signal at z+O ≈ 473 with its
associated reference signal at z+W ≈ 4.4. Figure 6(a) displays the energy spectra, while
the LCS is shown in figure 6(b). All spectral quantities are plotted using a bandwidth
moving filter of 20 %, meaning that the filtered quantity at discrete wavelength λxi is
averaged over λxi± 20 %. For this example, the largest energetic scales are correlated
to a degree of approximately 0.8, while γ 2

l drops below 0.1 for λ+x . 104.

4.1.2. Spectral stochastic estimation: a data-driven decomposition
The LCS provides information on how much energy is stochastically coherent/

incoherent between z and zR. Stochastic estimation techniques are commonly applied
to turbulent flows for inferring structural properties (Adrian (1979), Adrian, Moin &
Moser (1987), Bonnet et al. (1998), Cole & Glauser (1998) among others). In the
context of the LCS, and considering u(zR) and u(z) as an input and output of a linear
time-invariant system, respectively, a spectral linear stochastic estimate (LSE) of the
output is (Bendat & Piersol 1986; Tinney et al. 2006)

ûE(z; λx)=Hl(z, zR; λx)û(zR; λx). (4.2)

The linear transfer kernel Hl is computed from an ensemble of data via

Hl(z, zR; λx)=
φ′uu(z, zR; λx)

φuu(zR; λx)
= |Hl|e jϕ

∈C, (4.3)

comprising a wavelength-dependent linear gain, |Hl|, and phase ϕ. As is evident, the
spectral LSE approach via (4.2) transforms a frequency-domain unconditional input
into an estimate of the frequency-domain conditional output through one multiplicative
step. In essence, spectral LSE is an efficient implementation of the multi-time LSE
scheme (for details: Ewing & Citriniti (1999), Tinney et al. (2006)). Note that a linear
stochastic estimate of the output time series, û(z) can simply be obtained from the
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inverse Fourier transform of (4.2) – see also Baars, Hutchins & Marusic (2016a). By
combining (4.1) and (4.3), a stochastic estimate of the output’s energy spectrum can
be expressed as

φE
uu(z; λx)= |Hl(z, zR; λx)|

2φuu(zR; λx)= γ
2
l (z, zR; λx)φuu(z; λx). (4.4)

This implies that the amount of energy at z that can be reconstructed via an LSE
procedure, from an input at zR, is equal to the measured spectrum at z, multiplied by
γ 2

l . And thus, it is said that the estimated spectrum comprises the coherent portion
of the actual spectrum (relative to a reference location from which the estimate is
performed). Consequently, the LCS can be used as a wavelength-dependent filter for
decomposing φuu(z; λx) into stochastically coherent and incoherent portions, relative to
zR, following

φuu(z; λx)= (γ
2
l )φuu(z; λx)

coherent: φE
uu

+ (1− γ 2
l )φuu(z; λx)

incoherent

. (4.5)

Figure 6(c) illustrates this decomposition with visuals of the coherent and incoherent
portions of φuu(zO; λx), comprising ∼39 % and ∼61 % of the total turbulence intensity,
u2(zO), respectively. Because the input/output in (4.2)–(4.5) is reversible, φuu(zR; λx)
can also be decomposed into coherent and incoherent portions.

It is noted that the method above is linear only. Guezennec (1989) showed that the
inclusion of quadratic terms in stochastic estimates of the velocity fields of a TBL
flow – from a velocity input – negligibly improves the estimate. Furthermore, Naguib,
Wark & Juckenhöfel (2001) did show that the inclusion of higher-order terms does
improve the estimate of the velocity field from surface pressure as input (via a time-
domain quadratic stochastic estimation scheme), but, this was linked to an inherent
nonlinearity caused by the turbulent–turbulent pressure source term. Only velocity–
velocity coupling is considered in this work, hence a linear technique is sufficient.

4.2. Coherence relative to a near-wall reference
4.2.1. Coherence spectrogram and physical interpretation

Using (4.1), coherence spectra can be computed from the W dataset for all z within
the TBL. A coherence spectrogram, formed by presenting all individual coherence
spectra as iso-contours of γ 2

l , is presented in (λx, z)-space and superposed on the k+x φ
+

uu
energy spectrogram in figure 7. A horizontal cut through the γ 2

l contour at z+O ≈ 473
results in figure 6(b). Iso-contours of γ 2

l increase in value, with increasing λx, and
follow lines of constant λx/z within the logarithmic region. Only a portion of the
energy spectrogram below non-zero contours of γ 2

l is stochastically coherent with zW .
A dashed line at the large-wavelength end indicates the lowest frequency resolved.

A physical interpretation for the γ 2
l trend is considered here with the aid of a

road map in figure 8(a–d). Here we assume the existence of a wall-attached structure
with an embedded self-similar hierarchy of scales (Baars et al. 2017b). Figure 8(a)
visualizes a wall-attached coherent feature as a hairpin vortex with a forward-leaning
inclination angle of ∼45◦ (Adrian et al. 2000). Note that the exact types of structures
do not matter in this discussion. Streamwise and wall-normal extents of such a
structure are approximately equal, implying a streamwise/wall-normal aspect ratio of
O(1). When the hairpins form packets (figure 8b), their streamwise extent grows more
than their wall-normal region of influence (and a characteristic angle reduces to ∼12◦,
e.g. Christensen & Adrian (2001)). The wall-attached structures have a characteristic
wavelength λH

x and wall-normal extent δH , so that a streamwise/wall-normal aspect
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FIGURE 7. Dataset W . Coherence spectrogram γ 2
l (z, zW; λx), relative to the near-wall

reference location z+W ≈ 4.4 (iso-contours 0.1:0.1:0.9), superposed on its associated
premultiplied energy spectrogram k+x φ

+

uu (filled iso-contours 0.2:0.2:1.8), reproduced from
figure 1. Baars et al. (2017b) contemplated a self-similar behaviour in the triangular region
(here drawn with R≈ 14).

ratio arises as A≡ λH
x /δH . The forward-leaning nature of the structures is neglected

since a consistent phase shift is irrelevant in the context of the LCS and spectra.
Townsend’s self-similarity implies that each structure hierarchy is associated with the
same A and two structures are shown in figure 8(c) of heights δH

1 and δH
i . Due to

the structures’ random repetitions in space (or time) (Woodcock & Marusic 2015), we
here assume a non-zero coherence for λx > λ

H
x : thus, γ 2

l > 0 for z<δH
i and λx >Aδ

H
i

in the case of hierarchy i (bottom of figure 8c). The magnitude of γ 2
l may vary

with λx and z, but a constant magnitude is drawn for ease with a single greyscale.
A non-uniform magnitude results in the same final structure of the reconstructed γ 2

l
spectrogram when Reτ →∞ (an infinite number of hierarchies). Here the magnitude
of the coherence intensity function is less than unity and is attributed to an inherent
three-dimensionality of wall-attached structures (only coherence in the (x, z)-plane is
considered), stochastically inconsistent motions (e.g. random meandering or flapping)
and its continuous evolution (growth, saturation, decay). These factors contribute
to the trivial cause of less-than-perfect coherence: the coexistence of detached
(wall-incoherent) energy in (λx, z)-space. This incoherent energy does add to the
total energy in the denominator of (4.1). Finally, when superposing each hierarchy of
self-similar scales to reconstruct a coherence spectrogram (figure 8d), γ 2

l increases in
the region where individual coherence intensity functions overlap, allegedly caused
by the growing ratio of attached energy, relative to detached energy (supported by
the data and here visualized by the increasing greyscale of the superposed transparent
hierarchy of rectangles from figure 8c). In a region bounded by z= l, a constant λx/z
and a constant λx, the γ 2

l iso-contours thus obey a constant λx/z via

γ 2
l =C1 ln

(
λx

z

)
+C2 =C1 ln

(
λx

z
1
R

)
, (4.6)
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FIGURE 8. (a–d) A visual road map conceptualizing a physical underpinning for a
coherence spectrogram with a near-wall reference location. Precise forms of the structures
in (a) and (b), drawn as a hairpin vortex and packets of hairpins, are of secondary
importance in the context of a hierarchical distribution of some wall-attached eddies, and
solely serves for visual purposes.

and γ 2
l is bounded: γ 2

l ∈ [0, 1]. Constant R is the aspect ratio at which the coherence
falls to zero, e.g. R= λx/z|γ 2

l →0 = exp(−C2/C1). This example with l+ ≈ 80 and z≈
0.71δ for the upper bound of the triangular region (Baars et al. 2017b), and with the
assumption that each of the 10 discrete hierarchies are subject to a doubling in size,
yields Reτ = 80× 2(10−1)/0.71≈ 58 000.

4.2.2. Universality of the data-driven filter
The γ 2

l spectra of figure 7 are re-plotted in figure 9(a), with a wall-scaling λx/z,
and highlights the region where Baars et al. (2017b) fitted (4.6), resulting in constants
C1 = 0.302 and R = 14.01. Figure 9(b) shows the spectra used for fitting, alongside
(4.6), while figure 9(c) displays the same trend line, superposed on the coherence
spectra of the DNS and ASL data (§ 3.2). Since (4.6) describes the γ 2

l growth for
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FIGURE 9. (a) Coherence spectra of dataset W with the wavelength axis predivided by z.
The thicker portions of the curves correspond to 3Re1/2

τ < z+< 0.15Reτ and 20z< λx < 6δ.
Note that the inclined plane with the solid boundary reflects (4.7) with the constants
stated in the text. (b,c) Linear coherence spectra γ 2

l (z, zW; λx) for wall-normal positions
within the range 3Re1/2

τ < z+< 0.15Reτ , for (b) dataset W and (c) the DNS and ASL data
described in § 3.2. (d) Filter following (4.8) for z+ = 841.

Reτ ∼O(103)−O(106), it can be concluded that a wall-attached, self-similar structure
is ingrained in u (and that the constants in (4.6) are universal). Note that, however,
for the ASL case, these constants depend on the temperature stratification (Krug et al.
2019). From a fit to the W data, Baars et al. (2017b) found that the large-scale limit
of (4.6) is λx = Tnδ (with Tn ≈ 10), after which γ 2

l transitions to a constant value for
all larger wavelengths. Following (4.5), (4.6) and its region of validity, a data-driven
spectral filter is formulated in (4.7) as follows:

f p
W(z; λx)=



0, λx < Rz,

min
{

C1 ln
(
λx

z
1
R

)
, 1
}
, Rz 6 λx 6 Tnδ,

min
{

C1 ln
(

Tnδ

z
1
R

)
, 1
}
, λx > Tnδ.

(4.7)

This filter is in essence a model for the linear coherence spectrum and can be
evaluated at any value of Reτ , due to its confirmed Reτ universality.

Subscript W denotes the wall-based reference on which this filter is based, whereas
superscript p refers to its piecewise nature. To obtain smooth transitions as in the data,
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Filter Constants Fitted to Equations Region

fW(z; λx) C1 = 0.3017 R= 14.01 Tn = 10 Dataset W (4.7)–(4.8) z+ > z+T
fL(z; λx) C′1 = 0.3831 R′ = 13.18 Tn = 10 Dataset L3 (4.10)–(4.11) z< zL
Diff. L versus W +27 % −6 %

TABLE 2. Constants of the two data-driven spectral filters. Nominally z+T = 80.

a logarithmic convolution of (4.7) with a log-normal distribution g(λx) is performed,

fW(z; λx)= f p
W(z; λx) ∗l g(λx). (4.8)

Here, g(λx) spans six standard deviations, corresponding to 1.2 decades in λx, shown
at the bottom right of figure 9(d) with a random amplitude. The displayed filter
resembles the result for z+ = 841. In summary, filter fW(z; λx) ∈ [0, 1] indicates the
wavelength-dependent energy fraction, for a logarithmic region-position z, that is
stochastically coherent with the near-wall region. Similarly, (1 − fW) indicates the
stochastically incoherent energy fraction. Coherent scales were characterised to appear
at scales larger than λx=Rz (constant R refers to a characteristic aspect ratio), with a
transition to a constant value at λx= Tnδ (constant Tn is the nominal transition scale).
Only at sufficient scale separation, the filter saturates (i.e. fW = 1) at a scale smaller
than λx = Tnδ; this happens at λx = Tδ (note that subscript n is now dropped). Filter
characteristics are summarized in table 2.

4.2.3. Notes about the data-driven filter
Filter (4.8) is insensitive to the exact near-wall reference location. In fact, the ASL

data employed friction velocity data (zR = 0). Laboratory data at conditions similar
to the W data, with a reference wall-shear stress sensor, yielded an indistinguishable
coherence spectrogram (Baars et al. 2017b). The DNS data allows for a variation of
zR and it has been confirmed that γ 2

l spectra at z+& 80 (relative to zR) were virtually
unaffected for 0 6 z+R . 15. This insensitivity proves that our current filter-diagnostic
for the wall-attached turbulence extracts inertial features in the logarithmic region that
leave a distinct footprint throughout the near-wall region, as well as at the wall.

Although the filter can saturate (an occurrence of perfect coherence), this state
may only be reached asymptotically in actual coherence spectra. For instance,
ASL coherence spectra in figure 9(c) do not reach unity at the largest scales
(γ 2

l ≈ 0.92 for the lowest ASL z+ ≈ 3500 spectrum, although filter fW saturates
at λx/z= R exp(1/C1)≈ 385, corresponding to λx/δ≈ 385z+/Reτ ≈ 0.96< Tnδ). Many
factors can cause the less-than-perfect coherence (as also pointed out in § 4.2.1) and
is most likely related to the inherent three-dimensional nature of the wall-attached
structures and the continuous evolution of structures in the spatially developing TBL
flow.

Figure 7 reveals an absence of coherence for λ+x .5000. From now on it is assumed
that (4.8) is applicable to a logarithmic region starting at z ∼ O(100ν/Uτ ) (see also
Agostini & Leschziner 2017), because DNS data evidences a lower limit down to
where the inner-spectral peak has a pronounced appearance in the spectrogram and
integrated energy, say z+T ≈ 80, see figure 4 in Baars et al. (2017b) and fully resolved
u2 profiles in Samie et al. (2018). Absence of any small-scale coherence in the W
data is a topic for future work, but it is suspected that it is caused by experimental
uncertainty in the spanwise alignment of the hot-wire probes at zR and z.
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FIGURE 10. Dataset L3. Coherence spectrogram γ 2
l (z, zL3; λx), relative to reference

z+L3
≈ 1120 (iso-contours 0.1:0.1:0.9), superposed on its associated premultiplied energy

spectrogram k+x φ
+

uu (filled iso-contours 0.2:0.2:1.8), reproduced from figure 1.

4.3. Coherence relative to a logarithmic-region reference
4.3.1. Coherence spectrogram and physical interpretation

Thus far the coherence trend has been discussed in the context of wall-attached
motions. This section is concerned with zR residing in the logarithmic region
(a location zL), from which a data-driven filter emerges that is dubbed the L
filter. This filter separates the wall-attached motions into those that are coherent
and incoherent with zL.

A graph similar to figure 7 is displayed in figure 10 for the L3 data (see figure 23
in § A.2 for all three datasets L1−3). To discuss the coherence in figure 10 it is
beneficial to recall the conceptually reconstructed γ 2

l contour in figure 8(d). When
only the wall-attached turbulence is responsible for any coherence throughout the
TBL, the coherence spectrogram can be sub-divided into two components (figure 11).
Ideally, for any given zL, only the wall-attached turbulence that extends beyond zL is
coherent with zL (its associated sub-component is re-shown in figure 11b). Smaller
wall-attached motions are not observed by zL and do not contribute to the coherence
relative to zL (figure 11c). Figure 10 reflects the trend of figure 11(b). Note that the
γ 2

l contour is plotted with λx ≡ U(zL)/f for z < zL, since large-scale wall-attached
structures (that are thus coherent with z > zL) comprise a convection velocity much
larger than the mean velocity at locations in close proximity to the wall. For z� zL,
say z< zL/8, the coherence spectra become non-zero for λx & RzL (the vertical line
extending down to the abscissa). For z � zL, coherence spectra tend towards the
same trend as in figure 7. When z ∼ zL, coherence spectra reveal that even scales
smaller than λx < Rz become coherent with zL. This smaller-scale coherence is not
associated with stochastically wall-attached motions, as there was no coherence in
the λx < Rz region with the near-wall reference zW (figure 7). Turbulent scales for
which γ 2

l (z, zL; λx) > γ
2
l (z, zW; λx) are thus wall-detached scales that are zL-coherent

(§ A.2). In § 5.1 it will become clear that for the purpose our work the small-scale
coherence at z ∼ zL is irrelevant, as we work with the coherence model following
figures 8 and 11.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.834


Decomposition of the streamwise TKE in boundary layers. Part 1882 A25-19

log(¬x) log(¬x) log(¬x)
¬x £ 10∂¬+

x £ 1120

z+
T £ 80

log(z) log(z) log(z)
z £ 0.71∂

1

1

10

1

zl zl zl

Hierarchies to6 10 Hierarchies to1 5(a) (b) (c)

FIGURE 11. Sub-dividing the (a) coherence spectrogram of wall-attached turbulence
(figure 8d) into a component that is (b) coherent and (c) incoherent with a logarithmic-
region reference zL.
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FIGURE 12. (a) Coherence spectra of dataset L3 with the wavelength axis predivided by
zL3 . The thicker portions of the curves correspond to 30. z+. z+R /8 and 20zL3 < λx < 5δ.
Note that the inclined plane with the solid boundary reflects (4.10) with the constants
stated in the text. (b,c) Linear coherence spectra γ 2

l (z, zL; λx) for wall-normal positions
within the range 30 . z+ . z+L/8, for (b) datasets L1−3 and (c) the DNS and ASL data.
(d) Filter following (4.11) for z+L = 1120.
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4.3.2. Universality of the data-driven filter
Since this work focuses on revealing spectral signatures associated with attached

eddies, a filter relative to zL is considered, with large enough 1z so that only the
wall-attached turbulence produces coherence. In other words, this spectral filter can
decompose the wall-attached portion of the turbulence at z < zL into a zL-coherent
and zL-incoherent component. Ideally, following figure 11(b), this filter equals f p

W
evaluated at z= zL and is invariant with z for z< zL. This can be confirmed using the
data. Coherence spectra for 30. z+. z+L/8 and datasets L1−3 show excellent collapse
in figure 12(b). Precise criteria for the minimum 1z are non-trivial and not the main
focus of this paper. Following (4.6) and § 4.2.1, fitting of

γ 2
l =C′1 ln

(
λx

zL

1
R′

)
(4.9)

to the L3 data (highlighted portions of the profiles in figure 12a, described in the
caption), yields C′1=0.3831 and R′=13.18. These constants are also seen to match the
DNS and ASL data in figure 12(b), suggesting that (4.9) is universal. Two DNS-data
based coherence spectra with z+L≈ 192 (zL/δ≈ 0.10) and two ASL-data based spectra
with z+L ≈ 42 300 (zL/δ ≈ 0.03) are plotted, all of which satisfy 30 . z+ . z+L/6. Note
that, if the data adheres to the hypothesized underpinning in figures 8 and 11, the
constants in (4.9) and (4.6) should be equal. The percentage variation of the constants
(table 2) is attributed to the inherent simplification in using one convection velocity
for all scales (wavelengths) and the – apparently different – contributions to the zW
and zL coherence from non-self-similar VLSM (further discussed in § 5.1). From § 5 it
will become clear that the present variation of these constants does not have a major
impact on the spectral energy decomposition, nor the conclusions of this work. A data-
driven spectral filter (valid for z< zL) is now given as

f p
L(zL; λx)=



0, λx < R′zL,

min
{

C′1 ln
(
λx

zL

1
R′

)
, 1
}
, R′zL 6 λx 6 Tnδ,

min
{

C′1 ln
(

Tnδ

zL

1
R′

)
, 1
}
, λx > Tnδ.

(4.10)

Similar to (4.8), a smooth filter is obtained with a logarithmic convolution,

fL(zL; λx)= f p
L(zL; λx) ∗l g(λx), (4.11)

here fL ∈ [0, 1] and fL is presented in figure 12(d).
To conclude, two data-driven, universal spectral filters have been presented: filter fW ,

for extracting the spectral energy in the TBL that is stochastically coherent with the
wall (e.g. wall-attached), and fL, which reveals the sub-fraction of the wall-attached
energy that is stochastically coherent with a position in the logarithmic region, zL.

5. Decomposing the streamwise energy spectra
5.1. Triple decomposition via data-driven filters

How the streamwise energy spectra are decomposed with the use of data-driven
filters fW and fL is outlined in figure 13. A triple decomposition is performed, so
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FIGURE 13. Diagram of the triple decomposition of the energy spectrum at z+≈ 101 (W
data). (a,b) The L and W filters overlaid on the energy spectrum. (c,d) Coherent (solid
line) and incoherent (dashed line) components of the energy spectrum, via the L and W
filters, respectively. (e) Resulting three spectral sub-components.

that a single energy spectrum is split into three sub-components, each of which are
interpreted in the context of the A, B and C components of Perry et al. (figure 3).

In figure 13(b), fW is overlaid on the energy spectrum. At the high wavenumber-end
the filter is bounded by kxz= 2π/R≈ 0.45. At low wavenumbers, the filter-amplitude
reaches 1 at scale T . Figure 13(a) is similar to figure 13(b) but presents fL with zL=
0.15δ. The filter is bounded by kxz= 2π/R′(z/zL)≈ 0.023) and transitions at scale T ′
corresponding to λx=Tnδ (and plateaus to a value less than one). Figure 13(c,d) show
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the coherent (solid line) and incoherent (dashed) components of the energy spectrum,
per (4.5). Formulations (5.1)–(5.3) define the three spectral sub-components,

φc
L ≡ φuufL, (5.1)

φi
W ≡ φuu(1− fW), (5.2)

φWL ≡ φuu( fW − fL), (5.3)

which yield the total spectrum when added: φuu = φ
c
L + φWL + φ

i
W .

A diagram leading to figure 13(e) demonstrates these definitions:

(i) At high wavenumbers, φi
W is taken as the fW -based incoherent component.

This stochastically incoherent energy cannot be estimated using an LSE
procedure with a wall-based input. Following the classification of Perry et al.,
the underlying turbulence of such a component may be thought of as the
small-scale type C eddies. However, it can also include any (stochastically)
detached (non)-self-similar motions, such as wall-incoherent VLSM.

(ii) At low wavenumbers, φc
L is taken as the energy that is coherent via fL. This

large-scale wall-attached energy is also coherent with zL= 0.15δ. Physically, this
wall-attached component may include self-similar structures reaching beyond zL
and non-self-similar structures that are coherent with zL (e.g. VLSM).

(iii) A remaining component is dubbed φWL. Its energy equals the wall-coherent
energy via fW , φc

W , minus its fraction that is coherent with zL, being φc
L (or

equivalently, all zL-incoherent energy, φi
L, minus the wall-incoherent energy, φi

W ).
On account of the above, φWL is the wall-coherent energy that resides below zL
and can include both self-similar and non-self-similar components.

After performing the aforementioned decomposition for all z we can overlay the
three resulting energy spectrograms on the total energy spectrogram in figure 14(a–c).
In addition, all spectral components within the range 100 . z+ . 0.15δ+ are plotted
with wall-scaling and outer-scaling in figure 15. For figure 14, sub-components from
the triple decomposition are only considered for z< zL. In the near-wall region, here
z+ . z+T (with nominally z+T = 80), fW is z-invariant and taken as fW(z+T ; λx). As this
work is concerned with the spectral structure in the logarithmic region, the spectral
sub-components within the near-wall region are not considered further.

Component φi
W follows the unfiltered spectra at the smallest energetic scales. It is

only at a wall-scale of approximately λx=Rz that fW becomes active. The φi
W energy

roll-off at the large-scale end (small kx in figure 15f ) is generated by the product of
the total spectrum and the ramp of (1− fW) within Rz.λx .Tnδ. Since the filter ramp
is universal in wall-scaling, and the measured spectra do not plateau in that region, the
φi
W spectra do not obey an unambiguous wall-scaling (figure 15f ). Maxima reside at
λx ≈ Rz, simply because the roll-off induced by the filter is steep enough to suppress
any spectral increase at the large-scale end. Component φWL bounds φi

W and its ramp-
up at the small-scale end shows a reasonable collapse in wall-scaling (figure 15d).
Amplitudes of its peak decay rapidly with increasing z position, due to fL taking effect
at an outer-scaling of λx ≈ R′zL (and due to the limited Reynolds number). An outer-
scaling roll-off at the large-scale end of the spectrum is governed by the universal
fL ramp, multiplied by φuu. Because the measured spectra, φuu, do not obey perfect
outer-scaling at the large wavelengths (with z variation), the φWL spectra do not either.
Finally, component φc

L does comprise a certain degree of outer-scaling collapse at its
small-scale end where fL dictates its decay (figure 15a). Before proceeding with an
in-depth discussion on the spectral components, it is instructive to first concentrate
on the limitations of the triple decomposition and the restricted scale separation at
finite Reτ .
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FIGURE 14. Dataset W with Reτ ≈ 14 100. (a–c) Premultiplied energy spectrograms of
the three spectral sub-components (for z< zL), each of them overlaid on the total energy
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components are shown with a twice-as-fine level spacing, 0.1:0.1:1.8.
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5.2. A persistent difficulty in decomposing coherent scales

In the context of the spectral view of Perry et al. (figure 3), a component that is
consistent with Townsend’s attached-eddies is bound by boundaries WA (satisfying
wall-scaling) and OA (outer-scaling). Boundary WA follows from the coherence-based
triple decomposition, as fW describes the roll-off of the wall-attached motions (§ 4.2.1)
at the small-scale end of the spectrum. In terms of energy, the boundary (at least at
this one particular Reτ considered up to this point) is ill-defined, since the spectra
do not collapse in the wavelength range of boundary WA (e.g. the roll-off of φi

W
spectra at small kxz in figure 15f ). One reason for this is the still limited scale
separation at this Reynolds number: the broad outer-spectral peak resides in the same
wavelength range as the roll-off of the φi

W spectra. In §§ 5.3 and 6 it is described
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how a sufficient scale separation at higher Reτ can result in a scaling trend that
follows figure 3 exactly.

Determining an OA boundary via the current data-driven, coherence-based
decomposition technique remains difficult. Location zL is subject to choice, and
irrespective of zL, the wall-attached (coherent) energy does supposedly include both
self-similar and non-self-similar scales at all of its energetic wavelengths, meaning
that a distinction between (i) self-similar wall-attached scales (envisioned as the A
energy), and (ii) non-self-similar wall-attached scales (categorized in B) is impossible
via the current technique. While the conceptual reconstruction of the wall-coherence
in figure 8 – with the adhering contours from the data – does imply a self-similar
range of scales (A=R≈14), the absolute energy in the wall-coherent region (λx>Rz)
does include non-self-similar contributions, simply because the outer-spectral peak in
the boundary layer spectrogram resides in that region and does not strictly adhere
to simultaneous wall-scaling and outer-scaling. Choosing a small zL does likely
result in φWL containing lesser non-self-similar energy. But, an inherent drawback
of a small zL, is the limited range of self-similar wall-attached scales in φWL
(namely scales reaching up to z < zL). Figure 16(a,b) visualizes how a different zL
re-distributes the energy between the φc

L and φWL contributions (component φi
W

is unaffected). When moving up in zL, more wall-attached energy is assigned to
φWL, per the expense of what ends up in φc

L. Since fL only fully matures when
zL < Tnδ/ exp(1/C′1)/R

′
≈ 0.056δ ( fL plateaus at 1 in figure 12d), φWL will certainly

contain the non-self-similar contributions from VLSM-type structures for z> 0.056δ.

5.3. When can we possibly observe a k−1
x scaling region?

We consider the Reynolds-number dependence of the data-driven filters, in order to
appraise the required scale separation for possibly observing a k−1

x region. Filters fW
and fL are shown in figure 17(a,b) for z+= 100 at three different Reτ values, closely
resembling the DNS and ASL data (§ 3.2), as well as the two-point laboratory data
(§ 3.1). All filter curves start at λx = 100δ. Following the triple decomposition of
§ 5.1, the shaded area at the small wavenumber-end, cornered by fL (here zL= 0.15δ),
represents the fraction of kxφuu that forms φc

L, while the shaded area bounded by
fW at the high wavenumber-end reflects φi

W . The unshaded area in-between the filter
curves equals the fraction of spectral energy that forms φWL, drawn with the black
curves. Figure 17(d) presents figure 17(a–c) in the Reτ -continuum as three planes in
( f ,Reτ , kxz)-space, and has indicated the footprint of the filters in the (Reτ , kxz)-plane.

Both filters transition to a constant value (a plateau) at wavelengths larger than
λx = Tnδ, unless their amplitude reaches 1 at smaller scales. With increasing Reτ , the
plateau amplitude of fL grows as fL starts at a fixed inner-scaling (boundary R). At
Reτ = (z+/Tn)R exp(1/C1) ≈ 3850 the filter plateau reaches unity, corresponding to
the point in figure 17(d) where the T ′ and T boundaries separate. Boundary T now
becomes fixed in inner-scaling, while T ′ remains fixed in outer-scaling, because the
onset of fL is also outer-scaled, e.g. λx = R′zL = 0.15R′δ. At the low Reτ regime,
R and R′ intersect at Rea

τ ≡ z+/(zL/δ) · (R/R′) ≈ 708, meaning that φWL becomes
non-existent (e.g. there is no wall-coherent energy at z+= 100 that is incoherent with
zL = 0.15δ, simply because these positions merge: z+L = 0.15Rea

τ ≈ 100. At higher
Reτ , specifically at Reb

τ ≡ z+/(zL/δ) exp(1/C1)R/R′ ≈ 19 500, fL only becomes active
in a scale range where fW has fully saturated. Though, because of the smooth filter
transitions this does not happen until Rec

τ ≈ 80 000. And so, for Reτ >Rec
τ (at z+= 100

and with zL = 0.15δ), a range of scales starts to appear where all energy of kxφuu
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FIGURE 16. Dataset W with Reτ ≈ 14 100. (a,b) Similar to figure 14(a,b) but only with
the 0.2 iso-contour shown for the premultiplied energy spectrograms of the spectral sub-
components φc

L and φWL (for z< zL). Different iso-contours correspond to a range of zL;
their locations z = zL are shown with the horizontal lines on the right-hand side. Note:
λx ≡U(z)/f .

would be assigned to φWL (only at Reτ ≈ 106 this region spans one decade of scales).
Moving from coherence to energy spectra, ideally, the scales defining this region do
not comprise any wall-incoherent energy, nor do they comprise energy of structures
that are coherent with z > zL. Thus, if the energy in this region is predominantly
induced by self-similar attached eddies, this is the region where a k−1

x could be present.
The current Reτ estimate at which φuu ∝ k−1

x may be observed agrees reasonably well
with the study by Chandran et al. (2017), where they predicted that an appreciable k−1

scaling region can only appear for Reτ &60 000 (from examination of two-dimensional,
streamwise-spanwise u spectra). Note that the aforementioned analysis holds for z+=
100 and that a k−1

x region is expected to shrink linearly with z, meaning that Reτ ∼
O(106) is required for a φuu ∝ k−1

x at z+ = 1000.
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FIGURE 17. (a–c) Filters fW and fL for z+ = 100 and zL = 0.15δ at three different Reτ .
The low-wavenumber boundaries of the curves on each plot correspond to λx = 100δ. (d)
Variation of the filters with Reτ , including the filters’ onsets (R and R′) and transitions
(T and T ′).

6. Reynolds-number variation of the decomposed energy spectra
6.1. Spectrograms, spectra and scaling behaviours

Reynolds-number trends of the triple-decomposed spectrograms are presented in
figure 18 from singe-point data at four Reynolds numbers, spanning Reτ ≈ 2800 to
13 000. Similarly as in figure 14, zL = 0.15δ and the triangles indicate wall-scaling
λx = Rz and outer-scaling λx = Tnδ. Spectra at z+ = 100 (interpolated from the
spectrograms) are detailed in figure 19 for all five single-point hot-wire datasets
(§ 3.2). Additionally, a spatial spectrum from the DNS data is superposed. Components
φc
L and φi

W are now discussed, after which we focus on φWL in § 6.2.
Large-scale contribution φc

L is approximately Reynolds-number independent at
z+ = 100 (figure 19a). A minor decrease of energy within the largest wavelengths,
with increasing Reτ , is an artefact of using a single convection velocity to generate
kx≡2πf /Uc, here Uc=U(z+=100). Since the φc

L component is associated with strong
coherence in z, from the wall up to at least zL, these structures make up global modes
(Bullock, Cooper & Abernathy 1978; del Álamo & Jiménez 2003) that are associated
with an outer-scaled convection velocity (del Álamo et al. 2004). Hence, when the
local mean velocity at zL = 0.15δ is employed for each Reynolds-number dataset to
construct the scale-axis in figure 19(a), the large-scale end of the spectra collapse
(see § A.3 for further details, as well as Samie (2017)). A wall-normal trend of φc

L,
together with its Reτ dependence, is apparent from figure 18(a,d,g,j). The intensity
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FIGURE 18. Each column (per Reτ quoted on top) is similar to figure 14: premultiplied
energy spectrograms of the three spectral sub-components (for z < zL, iso-contours
0.2:0.2:1.8), each of them superposed on the total energy spectrogram (filled iso-contours
0.2:0.2:1.8). Filter fL, with zL=0.15δ, is applied for z. zL; fW is applied for z+T . z+. z+L,
while fW is z-invariant for z+. z+T and equal to fW(z+T ; λx). Data are from H09, Hutchins
et al. (2009) and S18, Samie et al. (2018), see § 3.2. Note: λx ≡U(z)/f .

of this spectral component grows with Reτ as seen from the 0.2 contour spanning
a wider range of scales from left-to-right. With the current zL location, the peak of
φc
L (filled blue circles) resides at λx ≈ 10δ and is situated above the geometric centre

between a fixed inner- and outer-scaling position, e.g. z+gc ≡
√

z+T 0.15Reτ = 3.46
√

Reτ
(with z+T = 80), indicated with the blue open circles. Although the emergence and
scaling of the broad outer-spectral peak has been documented in the literature
(e.g. Hutchins & Marusic 2007a; Mathis et al. 2009; Rosenberg et al. 2013;
Vallikivi et al. 2015a), the analysis has always been approached from a total-energy
perspective (observations from the measured spectra/spectrograms, φuu). Clearly, when
decomposing the spectrograms into physically relevant components, the characteristic
scale and wall-normal location of a type-B contribution, as in figure 3, may change.
That is, the peak in φc

L does not match the peak in the spectrogram, because φWL
(and also φi

W at these still limited Reτ ) constitute an energy roll-off below the
outer-spectral peak in φuu. Future work may benefit from reappraising scaling trends
of the peak-features in the spectrogram in terms of its sub-components. Also, whether
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FIGURE 19. Premultiplied energy spectra at z+= 100 for six values of Reτ . Total energy
spectra are shown in each sub-figure with light grey. In each of the three rows, spectra
corresponding to one specific spectral sub-component are superposed. Outer-scaling and
wall-scaling are used in (a,c,e) and (b,d, f ), respectively. Data are from S13, Sillero et al.
(2013), H09, Hutchins et al. (2009) and S18, Samie et al. (2018), see § 3.2.

φc
L will saturate to a constant state at ultra-high Reτ remains an open question. Clearly,
φc
L depends on Reτ and z.
Figure 19( f ) evidences the Reynolds-number independence of φi

W . At the small-
scale end, all spectra are in close agreement (expected per the law of the wall; Samie
et al. 2018; Ganapathisubramani 2018). In particular, the two highest Reτ spectra
(Reτ ≈ 13 000 and 19 300, S18: Samie et al. (2018)) are in excellent agreement
with the DNS spectrum (Reτ ≈ 2000, S13: Sillero et al. (2013)), since those data
correspond to fully resolved measurements (§ 3.2 and detailed in Samie (2017)).
Because all spectra collapse for kxz & 10−1, the roll-offs of the experimental spectra
at the low wavenumber-end also collapse because of the Reynolds-number invariant
fW . There, the DNS spectrum has a lower amplitude than the hot-wire-based spectra.
This may partially be caused by Taylor’s approximation re-distributing the VLSM
spectral content in temporal spectra (Perry & Li 1990; del Álamo & Jiménez 2009),
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FIGURE 20. Peak value of the premultiplied spectral energy component k+x φ
+

WL at z+ =
100 as function of Reτ , corresponding to the peak values of the spectra in figure 19(c,d).
Higher Reynolds-number data from the Princeton HRTF are also included (Vallikivi et al.
2015a).

but, the DNS spectrum is likely to be inaccurate, since it is based on spatially
developing data (§ 3.2). In any case, the exact spectral distribution of VLSM energy
should be viewed with caution, as it may be more broadband in spatial spectra – see
figure 17 in Perry & Li (1990) and figure 10 in del Álamo & Jiménez (2009).

6.2. Reynolds-number trend of the φWL spectrum
With increasing Reτ , the φWL component grows, while the relative energy contribution
of the other two spectral components, to the total energy, decays (figure 19). At
z+ = 100, and at the highest Reτ in figure 19(d), the spectral roll-offs of φWL at the
large- and small-wavelength ends still overlap at λx= 0.15R′δ (recall the discussion of
figure 17), meaning that φWL has not yet matured to a k−1

x region (if at all present).
Our results are consistent with those of Chandran et al. (2017), who demonstrated
that a k−1

x is not expected for Reτ . 80 000. Nevertheless, in order to quantify the
growth of the φWL spectra in figure 19(d), their peak values are plotted in figure 20
as a function of Reτ . Seven peak values are plotted from the data of the current study,
up to Reτ ≈ 19 300. For inspecting how the growth continues beyond Reτ ≈ 19 300,
three data points are included from the Princeton high-Reynolds-number test facility
(HRTF). Streamwise velocity spectra in a nominally ZPG TBL were presented by
Vallikivi et al. (2015a) and from low-to-high Reτ , the three spectra were taken from
data at z+ = 90, 105 and 98 (close to z+ = 100 for a direct comparison to the other
data). The raw spectra of Vallikivi et al. (2015a) were filtered via the same filtering
procedure as used in generating the φWL spectra in figure 19(d), meaning that the
raw spectra were multiplied by ( fW − fL) following formulation (5.3). Subsequently,
its peak value was determined and plotted in figure 20. The same filtering procedures
ensure that, given the assumptions made in this work, the large-scale contribution
φL and small-scale portion φW are excluded so that we reveal the scaling trend of
the spectral component that obeys inner- and outer-scalings. From all data points in
figure 20 it remains inconclusive if the peak in φWL plateaus to a constant value
at ultra-high Reτ . Our current standing with the limited data – e.g. subject to the
challenges associated with the acquisition of repeatable statistics with miniature
hot-wire probes (e.g. Samie et al. 2018) – highlights the ongoing need for additional
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high-fidelity spectral data spanning several orders of magnitude in Reτ . Only those
kinds of data can provide definitive answers on whether a distinguished k−1

x region
develops (in which case the points in figure 20 would plateau to a constant). Finally,
it is worth noting that figure 20 presents the best case scenario that we have at our
disposal with the available data, namely, the case of z+ = 100. If a k−1

x region does
exist for the turbulence residing at the inertial scales, it would first be visible at a
location close to the wall, as that location comprises the largest range of energetic
spectral scales between a z-scaling and outer-scaling. Here we presume that viscous
effects only affect the inertial scales at a wall-normal range below a location fixed in
viscous-scaling (§ 5.3), which seems reasonable given that the inner-peak is confined
to approximately z+ < 80 (e.g. from observation in figure 18c, f,i,l). Following the
criterion from above that Reτ &80 000 for examining a k−1

x at z+=100, in combination
with the inner- and outer-scalings, it simply follows that Reτ ∼O(106) is required for
potentially observing a k−1

x at z+ = 1000.

7. Concluding remarks

Data-driven filters for a triple decomposition of the streamwise velocity energy
spectra were derived from two-point data via spectral coherence analyses. Our study
addresses the need for novel decomposition techniques (Marusic et al. 2017) to fully
appreciate (i) the inner-scaled, universal portion of wall-bounded turbulence, (ii) a
portion that would scale via the classical k−1

x scaling at ultra-high Reτ and which
is consistent with the concept of Townsend’s attached-eddies and (iii) turbulence
reflecting the emergence of VLSM/superstructures with Reynolds number. Typically,
spectral scalings have been researched from unaltered energy spectra alone. The
current work offers new ways of conceptualizing wall-turbulence spectra by attempting
to unravel the signature of classical Kolmogorov- and viscosity-dominated turbulence,
coexisting with Reτ -dependent contributions. Our conclusions are listed as follows:

(i) From data of u, spanning three decades in Reτ ∼O(103)−O(106), two universal
spectral filters were found. Filters fW and fL allow for the computation of
wall-detached and wall-attached energy portions. A primary characteristic of
these filters is that wavelengths smaller than λx ≈ 14z are, in a stochastic sense,
wall-detached.

(ii) Filters fW and fL defined a spectral decomposition, introduced in § 5.1. It allows
a separation of φuu into an energy fraction that is wall-detached, an energy
fraction that is wall-attached but does not involve global modes that reach
beyond a reference zL (typically the edge of the logarithmic region: zL = 0.15δ)
and an energy fraction that is both wall-attached and coherent with zL (thus
representing global-type modes and VLSM).

(iii) Per the decomposition framework, the component representing self-similar wall-
attached eddies, φWL, contains more energy with increasing Reτ . Its peak value
in the spectrum may level off (figure 20), but only high-fidelity data at z+= 100
and Reτ & 80 000 (and practically Reτ & 106, see § 5.3) can provide a definite
answer. These data are currently non-existent.

(iv) A broad spectral peak in the streamwise energy spectrogram representing
VLSM/superstructures is present even at low Reτ , when only φc

L is considered.
This peak resides at λx ≈ 10δ (§ 6.1) over the range of Reτ investigated and its
amplitude appears to be a weak function of Reynolds number: perhaps the
superstructure energy-trend with Reτ is less significant than previously thought
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FIGURE 21. Structure of kxφuu within the logarithmic region of TBLs, following Perry &
Abell (1977) and Perry et al. (1986) and reproduced from Marusic & Perry (1995) and
updated following the current findings from the triple decomposition technique based on
u fluctuations alone at Reτ up to O(104).

(Hutchins & Marusic 2007a; Vallikivi et al. 2015a; Vallikivi, Hultmark & Smits
2015b). That is, in unaltered spectra the broad spectral peak exhibits a significant
Reτ dependence, but this work suggests that this is an artefact of the growing
φWL component.

Figure 21 summarizes concrete findings of spectral sub-components forming the
streamwise energy spectra in ZPG TBL flow (following the hypothesized structure in
figure 3). In the context of our limitations of dealing with the quantity u only (and
the stochastic decomposition approach), we can conclude that φWL is constrained
at kxz< 2π/R≈ 2π/14≈ 0.45 (boundary 1). Wall-incoherent energy φi

W is bounded
by kxz = 2π/R/exp(1/C1) ≈ 2π/385 ≈ 0.016 at high Reτ (boundary 3). Finally,
component φc

L, comprising VLSM and global mode-energy, overlaps with the
two other components at Reτ up to at least O(105). Its high wavenumber-limit
can obey different scalings, which can only be addressed with future research:
high-Reynolds-number data with converged large-scale energy content are crucial,
in combination with a novel spectral decomposition that is able to unambiguously
separate wall-attached self-similar turbulence from non-self-similar contributions.
When the high wavenumber-end would be fixed in z scaling (S1 of boundary 2 would
be a constant), a potential k−1

x scaling may always remain obscured by other energy
components. Only when this boundary scales with δ (or a combination of δ and z),
S1 would constitute a Reτ dependence and ultra-high-Reτ data may start to expose a
k−1

x scaling in unaltered, measured spectra.
In Part 2 (Baars & Marusic 2020), scaling trends of the integrated energy spectra

(the turbulence intensity) are considered in both the outer- and near-wall regions of
the flow.
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Appendix A. Additional figures
A.1. Energy spectra with logarithmic ordinate

The sequence of energy spectra shown in figure 2 are re-shown in figure 22(a,b).
These spectra at nine logarithmically spaced wall-normal positions in the range 100.
z+ . 0.15δ+ at Reτ ≈ 14 100 are compared to the spectral scaling proposed by del
Álamo et al. (2004). At the large-scale end (figure 22a) the red dash-dot lines indicate
(3.3) of del Álamo et al. (2004), here taken as k+x φ

+

uu = f (z/δ) log(24δ2kxδ/(2πzδ)),
with f ≈ 6.5 × 10−4 for the highest z position-spectrum (z/δ ≈ 0.15) and f ≈ 2.0 ×
10−4 for the lowest z position (z/δ ≈ 0.0072). The two bounding trends are shown
for 0.26 < kxδ < 1.04. The large-scale motion energy in the TBL spectra appears
to be less than what is predicted from the aforementioned relation. This could be
a Reynolds-number effect, or a difference in the VLSM content between TBL and
channel flow (the formulation was found from lower Reynolds-number channel data).
At the small-scale ends of the spectra (figure 22b), relation (3.2) of del Álamo et al.
(2004) is compared to the data: k+x φ

+

uu = β log(2πα2/(kxz)) with α = 2 and β = 0.2
over a range 0.63< kxz< 6.3. The TBL spectra show a different slope (as was also
noted by Vallikivi et al. (2015a)). Empirical scalings for spectra dependent on the flow
type (channel, TBL, etc.), vary with Reτ and depend on z. Hence, scalings cannot be
extended to high-Reynolds-number data.

For reference, the sequence of spectra in figure 22(a,b) are shown in figure 22(c,d)
and figure 22(e, f ) with different ordinates. For broadband turbulence, the interpretation
of energy content in the spectra is promoted by recognizing that

u2+(z)=
∫
φ+uu(z; kx) dk+x =

∫
k+x φ

+

uu(z; kx) d ln(k+x ), (A 1)

where u2 is the variance of u. Thus, premultiplied spectra with a linear ordinate and a
logarithmic abscissae represent an area that is proportional to fluctuation energy (and
naturally enhances the energy containing range). When presented with a logarithmic
ordinate (figure 22c,d), and without premultiplication (figure 22e, f ), it may visually
enhance the appearance of a φuu ∝ k−1

x region (similarly for the k−5/3 region). For
scrutinization of the energy containing range and the examination of the k−1

x it thus
preferred to present premultiplied spectra as in figure 22(a,b).

A.2. Coherence spectrograms with respect to logarithmic-region positions
Figure 10 presents the coherence spectrogram for dataset L3 only. Here, in
figure 23(a,c,e), contours of γ 2

l (z, zL; λx) are shown for datasets L1−3. With varying
L, the general trend as discussed in § 4.3.1, remains valid. That is, for z � zL,
say z< zL/8, the coherence spectra become non-zero for λx & RzL (the vertical line
extending down to the abscissa) and this is representative of the wall-attached motions
with an extent z< zL not being coherent with reference location z< zL. For z� zL,
coherence spectra tend towards the same trend as in figure 7.
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FIGURE 22. Sequence of energy spectra from figure 2, presented with different ordinates.
(a,b) Premultiplied spectra with a linear ordinate. (c,d) Premultiplied spectra with a
logarithmic ordinate. (e, f ) Regular spectra with a linear ordinate. Panels (a,c,e) and (b,d, f )
comprise an abscissae in outer-scaling and wall-scaling, respectively. Note: λx ≡U(z)/f .

When z ∼ zL, coherence spectra in figure 23(a,c,e) reveal that even scales smaller
than λx < Rz become coherent with zL. This implies that turbulent scales for
which γ 2

l (z, zL; λx) > γ 2
l (z, zW; λx) are wall-detached scales that are zL-coherent.

Figure 23(b,d, f ) presents the γ 2
l (z, zL; λx) spectrograms with the fL filter subtracted

and thus indicate the energy portion of the spectra that is zL-coherent and zW -
incoherent. The iso-contours centred around zL are widest (spanning the largest
range in z) around λx ≈ Rz, indicating the trivial fact that the smallest scales
can only be coherent for very small separations 1z (wall-normal distance 1z is
schematically shown in figure 4). Lines of λx/1z = R are drawn in all sub-figures
of figure 23 (the black, curved lines, approaching z = zL from both below/above
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FIGURE 23. (a,c,e) Similar to figure 10 but for all three datasets L1−3. Coherence
spectrograms γ 2

l (z, zL; λx), relative to reference z+L (iso-contours 0.1:0.1:0.9), superposed
on its associated premultiplied energy spectrogram k+x φ

+

uu (filled iso-contours 0.2:0.2:1.8).
(b,d, f ) Coherence spectrograms γ 2

l (z, zL; λx) with the fL filter subtracted, representing
wall-detached turbulence that is zL-coherent. Note: λx ≡U(z)/f .

with decreasing λx). If γ 2
l iso-contours follow these lines, the aforementioned

wall-detached scales may still comprise the same self-similar aspect ratio (R ≈ 14)
as the wall-attached turbulence (imagine detached turbulence that might be the
remnants of eddies once attached earlier in their lifetimes and reflecting Townsend’s
AEH, Marusic & Monty (2019)). Generally, γ 2

l iso-contours drift towards smaller
wavelengths for z→ zL: this is expected as γ 2

l → 1 for all λx at z = zL. A further
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FIGURE 24. Similar to figure 19(a–d) but with the outer-scaling abscissae in (a,c)
employing kx ≡ 2πf /U(zL), while the abscissae in (b,d) are indifferent, employing kx ≡

2πf /U(z). Premultiplied energy spectra at z+ = 100 for six values of Reτ . Total energy
spectra are shown in each sub-figure with light grey. In each of the three rows, spectra
corresponding to one specific spectral sub-component are superposed. Data are from S13,
Sillero et al. (2013), H09, Hutchins et al. (2009) and S18, Samie et al. (2018).

detailed examination of the coherence spectra in figure 23(b,d, f ) is outside the scope
of this work.

A.3. Energy spectra at z+ = 100 with outer-scaling and wall-scaling
A Reynolds-number trend appears at the large-scale end of the spectra in figure 19(a,c).
In figure 24(a,c) the local mean velocity at zL= 0.15δ (as opposed to the local mean
velocity at z+= 100) is utilized in constructing the scale-axis. Now the large-scale end
of the spectra exhibits a better collapse. Since these large-scale motions (or global
modes, del Álamo & Jiménez (2003)) are expected to convect with a velocity that is
set by an outer scale, the collapse suggests that the energy content in these motions
may be Reynolds-number invariant, at least over the range of Reτ considered here.
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