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A recently developed symmetry-based theory is extended to derive an algebraic
model for compressible turbulent boundary layers (CTBL) – predicting mean profiles
of velocity, temperature and density – valid from incompressible to hypersonic flow
regimes, thus achieving a Mach number (Ma) invariant description. The theory leads
to a multi-layer analytic form of a stress length function which yields a closure of
the mean momentum equation. A generalized Reynolds analogy is then employed
to predict the turbulent heat transfer. The mean profiles and the friction coefficient
are compared with direct numerical simulations of CTBL for a range of Ma from 0
(e.g. incompressible) to 6.0 (e.g. hypersonic), with an accuracy notably superior to
popular current models such as Baldwin–Lomax and Spalart–Allmaras models. Further
analysis shows that the modification is due to an improved eddy viscosity function
compared to competing models. The results confirm the validity of our Ma-invariant
stress length function and suggest the path for developing turbulent boundary layer
models which incorporate the multi-layer structure.
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1. Introduction

The compressible (flat plate) turbulent boundary layer (CTBL) is a paradigm flow
of major engineering significance. It serves as a benchmark for a large variety of
technological flows, such as high-speed aircraft, combustion ramjet engines, gas
turbine blades, rocket motor nozzles, etc. (Bradshaw 1977; Smits & Dussauge 2006;
Gatski & Bonnet 2013). Its simple geometry makes CTBL ideal for fundamental
studies aiming to explain the physics of compressible turbulence. Important questions
concern the Reynolds number (Re) and Mach number (Ma) scaling of the mean
profiles of velocity and temperature, along the streamwise direction (i.e. Re effect)
and as a function of the incoming velocity (i.e. Ma effect). Two basic scaling
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laws feature in the classical approach: the celebrated log law characterizing Re
similarity (Prandtl 1925; von Karman 1930), and the Morkovin scaling characterizing
Ma effects (Morkovin 1962); the latter is formulated in the so-called van Driest
transformation (van Driest 1951). However, recent direct numerical simulations (DNS)
show that the van Driest transformed mean velocity is only approximately invariant
in the log layer (Huang, Coleman & Bradshaw 1995; Duan, Beekman & Martin
2010; Hadjadj et al. 2015; Shadloo, Hadjadj & Hussain 2015), with significant
data scatter in the near-wall region in the case of strong heat flux (Brun et al.
2008; Duan et al. 2010; Trettel & Larsson 2016). To predict CTBLs, Computational
Fluid Dynamics (CFD) applications integrate the Reynolds averaged Navier–Stokes
(RANS) equation with models involving typically many adjustable parameters lacking
sufficient physical/theoretical understanding (Huang, Bradshaw & Coakley 1994; Roy
& Blottner 2006; Spalart 2006). Existing closure models for CTBL primarily emulate
models established and calibrated for incompressible flows, and typically employ the
Morkovin hypothesis (Morkovin 1962). As reviewed in Wu et al. (2017), the van
Driest wall damping function (van Driest 1956) extending the profile from the log
region to the wall yields only a moderately accurate mean velocity profile (MVP). In
addition, the eddy-viscosity-based closure for the energy equation is inadequate (as
shown herein). Therefore, despite efforts over several decades, accurate prediction of
the mean quantities across the entire boundary layer remains unsatisfactory (Dong
& Zhou 2010; Rumsey 2010; Dong & Li 2011). This is particularly challenging in
supersonic and hypersonic regimes (Wilcox 2006; Slotnick et al. 2014), presumably
owing to the absence of an analytic understanding of the Ma-invariant structure.

The present work aims to resolve the above issues from a newly developed
symmetry-based approach to quantifying wall turbulence (She, Chen & Hussain
2017; Chen, Hussain & She 2018). The theory, called structural ensemble dynamics
(SED) (She et al. 2010, 2017), expresses the essential similarity property of wall
turbulence in terms of a multi-layer analytic form of a stress length (SL) function,
`12, quantifying turbulence eddy scales (hereafter, we refer to the derived algebraic
model as the SED-SL model). The multi-layer form is arguably universal, since it
incorporates the (dilation) symmetry constraint due to the presence of the wall, which
has successfully yielded unified description of various mean profiles in a variety of
wall flows – for both channel/pipe (internal flow) and TBL (external flow) (She et al.
2017), including both mean velocity (Chen & She 2016; Chen, Hussain & She 2016a)
and turbulence intensity profiles (Chen et al. 2016c, 2018), and also for smooth as
well as rough wall (She et al. 2012), etc. The objective of the present work is to
assert the validity of the multi-layer description of `12 over a range of Ma values,
based on our previous study (Zhang et al. 2012). As shown below, the multi-layer
structure (with universal constants such as layer thicknesses and scaling exponents)
can yield decidedly improved predictions.

Compared to existing models, three features of the present SED-SL model are
noteworthy. First, it is straightforwardly developed from the theory in She et al.
(2017), which describes the entire domain of the turbulent boundary layer with a
smooth transition from the inner to outer flow regions. This is in contrast to the
Baldwin–Lomax (BL) model for which an artificial matching location yc is needed.
Second, the present model contains only physical parameters defining the multi-layer
structure; for current CTBLs, these parameters are invariant, so as to possess a
Ma-invariant scaling. Third, a notable improvement of the prediction accuracy is
achieved for all mean profiles, including velocity and temperature. These features
validate the dilation invariance of the stress length function and also the generalized
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Reynolds analogy in CTBL. To become a mature CFD model, the analytic form
proposed in this paper needs to be tested in other benchmark flows, such as flow
with wall curvature, pressure gradient, transition etc. (for more discussion, see § 5).

The paper is organized as follows. Section 2 describes our model, computational set-
up, the DNS dataset and other models for benchmarking purposes. Section 3 describes
the results of computation, which validate our predictions for different Ma values
and Re values. Section 4 is devoted to discussion and interpretation. Section 5 is the
conclusion.

2. Theory
We describe a statistically stationary CTBL by the averaged two-dimensional

compressible Navier–Stokes equations:

∂ρu
∂x
+
∂ρv

∂y
= 0; (2.1)

∂ρ̄ũ
∂x
+
∂ρ̄ũṽ
∂y
=
∂

∂y
(τ̄12 − ρu′′v′′); (2.2)

∂ρ̄ṽ

∂x
+
∂ρ̄ṽṽ

∂y
=
∂

∂x
(τ̄12 − ρu′′v′′). (2.3)

∂

∂x
(ρ̄ẽũ+ p̃ũ)+

∂

∂y
(ρ̄ẽṽ + p̃ṽ) =

∂

∂x

(
ṽ
(
τ̄12 − ρu′′v′′

)
+Cp

µ

Pr
∂T̃
∂x
−Cpρu′′T

)

+
∂

∂y

(
ũ
(
τ̄12 − ρu′′v′′

)
+Cp

µ

Pr
∂T̃
∂y
−Cpρv′′T

)
,

(2.4)

where f̃ = ρf /ρ denotes Favre averaging (FA) (with its fluctuation denoted by f ′′ =
f − f̃ ), and overbar indicates time and space average (Reynolds averaging). In (2.1)–
(2.4), all symbols are classically defined: ρ the density, u and v the streamwise and
normal velocities, e = CvT + k with Cv the specific heat at constant volume, T the
static temperature and k the kinetic energy of the flow, µ the dynamic viscosity, Pr
the Prandtl number, Cp the specific heat at the constant pressure, p=ρRT is the static
pressure (R is the gas constant). The stress tensor is given by τ12=µ(∂u/∂y+ ∂v/∂x),
with µ the dynamic viscosity. Equations (2.2) and (2.3) are unclosed, because of the
unknown Reynolds shear stress (−ρu′′v′′) in (2.2)–(2.3) and several correlation terms
in (2.4). We will theoretically close the system via the proposed symmetry approach.
In this paper, we compare our theoretical description to a full three-dimensional DNS
of CTBL with Pr= 0.7. In the DNS, µ is assumed to obey Sutherland’s law as usual:
µ/µ∞ = (1+Ts/T∞)/(T/T∞ + Ts/T∞)(T/T∞)3/2, where TS = 110.4 (K) and subscript
∞ indicates the free-stream property.

To unify the notation, it is useful to express the Reynolds averaged (RA) variables
in (2.1)–(2.4) in terms of the FA variables. For example, the mean pressure is
expressed by p ≈ RρT̃ . On the other hand, for the RA shear stress τ̄12, it can be
rewritten approximately (Wu 2016) as

τ̄12 = µ̄

(
∂ ũ
∂y
+
∂ṽ

∂x

)
, (2.5)
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where the dynamic viscosity µ satisfies the Sutherland formula as a function of T̃ .
The energy equation will not be treated here, since we employ a generalized Reynolds
analogy (GRA) approximation (see below). Then, the only term in (2.2)–(2.3) to be
modelled is the Reynolds stress which is described by the stress length function below.

2.1. A multi-layer stress length function
In She et al. (2017), it is assumed that a stress length, `12 defined from the Reynolds
shear stress (−ρu′′v′′), possesses the dilation symmetry, so that its analytic form
can be readily obtained, specifying a physically sound multi-layer structure for
canonical wall turbulence. Taking the incompressible TBL as an example (for which
the Reynolds averaging is identical to the Favre averaging), the stress length `12 is
defined by:

− u′v′ = `2
12(∂yU)2 or `12 =

√
−u′v′/∂yU, (2.6a,b)

where U = u is the mean velocity. Note that the boundary layer approximation is
adopted so that ∂yU � ∂xV and ∂xV is omitted. Also, equation (2.6) coincides with
Prandtl’s mixing length Prandtl (1925), but we uncover its role of preserving the
dilation symmetry and its physical interpretation of length scale of eddy (at wall
distance y) responsible for the transport of momentum normal to the wall.

The stress length `12 is shown (She et al. 2017) to display the following multi-layer
structure:

`+12 = `+In
12 `

+Outer
12 /(κy+), (2.7)

where the inner (wall) function `+In is

`+In
12 = `0(y+/y+s )

+3/2
[1+ (y+/y+s )

4
]

1/8
[1+ (y+/y+b )

4
]
−1/4, (2.8)

and the outer (wake) function is

`+Outer
12 = κδ+(1− r4)/4. (2.9)

Here, superscript + denotes the viscous wall units normalization; y+ = yuτ/νw is the
distance to the wall, and r = 1 − y/δ is the distance away from the boundary layer
edge; `+= `uτ/νw with νw the kinematic viscosity at the wall; the outer flow variable
r is restricted to y 6 2δ so that |r|6 1, and `+outer is positive.

The derivation of (2.7)–(2.9) from a dilation symmetry assumption is given in
detail in She et al. (2017), which is summarized as follows. First, by assuming a
constant dilation invariant of the stress length (which corresponds to ansatz one in She
et al. (2017)), we obtain `12 ∝ y3/2 in the viscous sublayer and `12 ∝ y2 in the buffer
layer; both scaling exponents (i.e. 3/2 and 2) can be analytically derived: introduce
an eddy-dissipation length, `ν = ν

3/4
T /ε1/4 (νT = −〈u

′v′〉/∂y+U+ is eddy viscosity,
and ε is the sum of viscous dissipation and diffusion), then, `12 = `νΘ

1/4 (where
Θ ≡−〈u′v′〉∂y+U+/ε is the production–dissipation ratio). For small y+→ 0, −u′v′∝ y3

and a constant mean shear in the viscous sublayer, while `ν = ν
3/4
T /ε1/4

∝ y2 and a
constant dissipation–production ratio Θ in the buffer layer. Then, applying ansatz
three in She et al. (2017), we obtain an analytic expression connecting the viscous
sublayer and buffer layer scalings. Furthermore, for obtaining the bulk scaling with
respect to the variable r, we assume the constant dilation invariant for the derivative
of the stress length (ansatz two in She et al. (2017)), which yields a defect power
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law of ` ∝ (1 − r4)/4 (i.e. (2.10)), where the exponent 4 for the planar geometry
is derived in Chen et al. (2016a) with a variational argument which additionally
predicts an exponent 5 for the circular geometry (e.g. for pipe flow). Finally, using
the multiplicative rule for the scaling transition formula, composite expressions valid
for the inner flow (i.e. (2.8)) and the entire flow (i.e. (2.7)) are obtained.

She et al. (2017) assert that y+s = 9.7 and y+b = 41, and the former seems to
be universal while the latter exhibits moderate Re-dependence. More recently, we
theoretically obtain y+buf = 43.8 for asymptotically large Re values (not discussed here).
Furthermore, as explained in She et al. (2017), a 4 % variation of y+buf would yield
a 2 % change in mean velocity prediction in the outer region, which is rather small
compared to uncertainty in CTBL measurements. For Ma-dependence, it is useful
to recall the physical meanings of y+s and y+b . As explained in She et al. (2017),
they demarcate the scaling transitions of the stress length function between different
layers. More importantly, different scaling layers are found to correspond to different
leading-order balances of the turbulent kinetic energy budget. For example, dissipation
balances the transport effect in the viscous sublayer where production is much smaller;
in the buffer layer, production, dissipation and transport are of the same order; and
in the bulk flow, production balances dissipation while transport becomes much
smaller. When considering CTBL, note that the various energy balances in different
regions from the wall are quite similar to those in incompressible TBL over the
Ma range 2.25–6 (see Wu et al. (2017)), so that non-dimensional layer thicknesses
are similar. Thus, we are encouraged to assume that the layer thicknesses vary little
with Ma and Re. This assumption is essentially validated by the results below. Even
better agreement can be obtained by considering moderate Ma-dependence of our
parameters.

Equation (2.8) characterizes the near-wall eddy scales in three layers, each of which
displays a local power law scaling. In the sublayer (y+� y+s ), `+12∝ y+3/2; in the buffer
layer (y+s � y+ � y+b ), `+12 ∝ y+2; in the log layer (y+ � y+b ), `+12 ∝ y+ (in particular
`+12= κy+ where κ = `0y+b /9.72

≈ 0.44`0). As shown in She et al. (2017), κ ≈ 0.45, so
that `0≈ 1.02. These local scalings remain invariant for varying Ma, as shown in Wu
et al. (2017). Note that (2.8) captures the right near-wall scaling `+12 ∝ y+3/2, rather
than `+12 ∝ y+2 by the damping function (2.15) shown later. Also, as y→ 0 or r→ 1,
`+Outer

12 → κδ+(1 − r) = κy+, thus (2.8) smoothly connects the inner and outer layer,
without needing any arbitrary matching location.

2.2. An algebraic model for CTBL: SED-SL
Here, we propose to test the validity of the multi-layer formula of `12 (i.e. (2.7)–(2.9))
for CTBL, in particular to test its Ma-scaling. This is accomplished by formulating
a closure for (2.2)–(2.3) using our length function (2.7)–(2.9). Specifically, an eddy
viscosity model for CTBL is suggested to be:

− ρu′′v′′ = ρνT S̃12 = ρ`
2
12|ω|S̃12, (2.10)

where ω= ∂yũ− ∂xṽ, following the same convention as in the BL model.
For the energy equation, instead of modelling the right-hand side of (2.4) using the

eddy viscosity assumption (which yields larger errors as shown later), we choose to
calculate the mean temperature from the mean velocity using our recently developed
generalized Reynolds analogy (GRA) relation (Zhang et al. 2014). Such a relation of
CTBL (valid for an adiabatic wall condition) leads to improved accuracy of mean
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temperature profiles (for all the competing models here), and it is sufficient to test
the concept of invariance of the length function in (2.7). Note that in the GRA theory
(Zhang et al. 2014), a temperature–velocity relation is given as

T̃ = Tw + (Tr − Tw) · f
(

ũ
ũδ

)
+ (Tδ − Tr) ·

(
ũ
ũδ

)2

, (2.11)

where

f
(

ũ
ũδ

)
= (1− sPr) ·

(
ũ
ũδ

)2

+ sPr ·
(

ũ
ũδ

)
. (2.12)

In (2.11)–(2.12), the subscripts w and δ denote the wall and boundary edge δ99,
respectively; Tr is a modified recovery temperature as given by Walz (1966):
Tr = Tδ + ũ2

δ/(2Cp); s ≈ 1.16 is the Reynolds analogy factor as obtained in Duan
(2011) and Zhang et al. (2014) (we have checked that when s varies in its typical
range 1.16–1.2, both mean velocity and mean temperature are affected by less than
1 %), and Tδ is slightly higher than T∞ (just like Uδ=0.99U∞), which is approximated
as Tδ ≈ Tw + (T∞ − Tw) ∗ 0.98 (the value 0.98 is obtained in Wu (2016) to quantify
the mean temperature at the boundary layer edge); Pr is the Prandtl number. The
implementation of the GRA is rather simple. We replace the energy equation by the
GRA formula, which stands as an algebraic closure for the RANS equations – solved
iteratively until convergence.

2.3. Numerical implementation
Now, equations (2.1), (2.2)–(2.3), (2.7)–(2.9), (2.10)–(2.12) form a closed system.
In our RANS computation, a third-order MUSCL-scheme and a second-order
finite-volume method are adopted to discretize the inviscid terms and the viscous
terms, respectively; a third-order Total Variation Diminishing (TVD)-type Runge–Kutta
method is used for time stepping, with a free-stream boundary condition applied at
the upper, inlet and outlet boundaries, and a no-slip condition applied at the flat plate
wall.

The results reported below are obtained by setting the same computational domain
as DNS (see below), namely, Lx × Ly = 2.0 × 0.3 (m) for the nearly incompressible
flat plate (e.g. Ma = 0.03) as the domain 14 × 0.56 (in) used for compressible
flat plate (e.g. Ma > 1). The computational mesh is Nx × Ny = 2000 × 150 for the
former and 140 × 85 for the latter. The large streamwise extension (e.g. 2000) for
the incompressible case is for simulating high Reynolds number with Reτ up to
72 000 (compared below with the Princeton experimental data). The meshes in the
wall normal direction are exponentially stretched up to the domain H, according to a
formula yj= (ebηi − 1)H/(eb

− 1), ηj= ( j− 1)/(N− 1). In the computation, we set the
closest mesh to the wall with a wall distance y2 = (eb/(N−1)

− 1)/(eb
− 1) H = 10−8

for nearly incompressible computation and 10−4 for Ma> 1 (with stretch factors b=
15 and 6, respectively); in this way, we fully resolve the sublayer with the closest
mesh point distance y+ < 1 (see table 1).

The flow conditions are characterized by the following dimensionless parameters:
Re∞ = ρ∞U∞L/µ∞ is the free-stream Reynolds number defined by the unit length
L; and Ma = U∞/

√
γRT∞ is the free-stream Ma (γ = Cp/Cν). T∞ and Tw are the

free-stream and wall temperatures, respectively (no-slip and isothermal wall conditions
are used). These flow conditions are summarized in table 1.
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FIGURE 1. (Colour online) Comparison of DNS datasets. (a) van Driest transformed
(van Driest 1951) velocity profile at Ma= 2.25: squares by Wu et al. (2017); circles by
Gatski & Erlebacher (2002) and triangles by Pirozzoli et al. (2004). (b) Mean temperature
profiles. In the inset, the relative differences between the current simulation data with the
two previous results are displayed, showing up to 5 % and 2 % for mean velocity and
temperature, respectively.

Ma∞ Re∞(×103) T∞ Tw/T∞ Reτ y+2
0.03 89 690 300 0.99 517, 965, 25 062, 72 526 0.04
2.25 635 169.44 1.9 500, 600, 700 0.90
4.5 1 000 233.15 4.39 400, 500, 580 0.43
6.0 2 000 288.15 6.98 400, 500, 550 0.45
4.5 (cold) 1 000 233.15 2.5 700, 750, 800 0.89
4.5 (hot) 1 000 233.15 6.68 275, 300, 325 0.24

TABLE 1. Parameters defining our RANS computation of CTBL, to be compared with
DNS of Schlatter et al. (2010) (with Ma = 0) and of Wu et al. (2017) (with Ma > 1).
The two large Reτ cases at Ma= 0.03 are compared with experiments of Vallikivi et al.
(2015).

For (nearly) incompressible flow, the DNS database is from Schlatter et al. (2010),
while the experimental data are from Vallikivi, Hultmark & Smits (2015). For Ma> 1,
the DNS was accomplished by Wu et al. (2017), where the three-dimensional
compressible NS equations for a perfect gas are solved by using finite difference
method. The mesh resolutions are comparable to previous DNS and validated by
convergence tests. The high-order finite difference method used in the DNS is
developed by Li, Ma & Fu (2001), Li, Fu & Ma (2006), who approximates the
convection terms by the seventh-order Weighted Essentially Non-Oscillatory (WENO)
scheme after flux splitting and the viscous terms by the eighth-order central difference
scheme; time advancement is realized by the third-order TVD-type Runge–Kutta
algorithm. In figure 1, we compare with previous simulations by Gatski & Erlebacher
(2002) and Pirozzoli, Grasso & Gatski (2004) at the same Ma= 2.25. The agreement
indicates that Wu’s DNS data (Wu et al. 2017) are satisfactory, and can be used to
validate the model predictions. Also note that these DNS results for Ma> 1 provide
a test for moderate Re; a future validation study against high Re supersonic and
hypersonic data from experiments is highly recommended.
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2.4. Benchmark models for comparison
For comparison, we choose two well-studied models, one is the algebraic Baldwin–
Lomax (BL) model (Baldwin & Lomax 1978), and the other the one-equation Spalart–
Allmaras (SA) model (Spalart & Allmaras 1992). The BL model is known to describe
incompressible TBLs at comparable accuracy as other more widely used one-equation
or two-equation models, and is of the same nature (i.e. algebraic) as the present SED-
SL model. As shown below, the present SED-SL model performs the best for all flow
cases from Ma= 0 to Ma= 6, with remarkable simplicity and physical transparency
(i.e. all parameters with clear physical interpretation).

In the BL model, the eddy viscosity νT is modelled by two parts:

νT =

{
νTi y 6 yc
νTo y> yc,

(2.13)

where νTi and νTo represent the turbulent diffusion effect in the inner and outer region,
respectively, and yc is set by equalling νTi = νTo. Specifically, for the inner region,

νBL
Ti = `

2
|∂yũ− ∂xṽ|, (2.14)

where the length function takes a form of the van Driest damping function:

`≈ κy[1− exp(−y+/A)], (2.15)

where κ ≈ 0.41, A≈ 26. On the other hand, for the outer region, a more complicated
formulation is introduced as

νBL
To = αCcpFwakeFkleb

(
y;

ymax

Ckleb

)
, (2.16)

where Fwake = min[ymaxFmax; CwkymaxU2
dif /Fmax], Fmax = κ−1

[max(`|∂yũ − ∂xṽ|)]
with coefficients α = 0.0168, Ccp = 1.6, Cwk = 1, Ckleb = 0.3. Note that ymax
is the location where `|∂yũ − ∂xṽ| achieves its maximum value, and Udif =

(ũ2
+ ṽ2)max − (ũ2

+ ṽ2)|y=ymax . As one can see, the BL model introduces many
empirical parameters to describe the outer flow region, in sharp contrast to (2.9),
which shows the considerable simplicity of the SED-SL model.

The SA model uses a closure function fυ1 to define the eddy viscosity νT = ν̃fυ1,
where ν̃ satisfies an elaborated transport equation:

∂ν̃

∂t
+ ũj

∂ν̃

∂xj
= cb1S̃ν̃ − cω1fω

(
ν̃

d

)2

+
1
σ

∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+

cb2

σ

∂ν̃

∂xk

∂ν̃

∂xk
. (2.17)

This equation contains eight closure coefficients and two closure functions (Wilcox
2006), defined by

cb1 = 0.1355, cb2 = 0.622, cυ1 = 7.1, σ = 2/3

cω1 =
cb1

κ2
+
(1+ cb2)

σ
, cω2 = 0.3, cω3 = 2, κ = 0.41

fυ1 =
χ 3

χ 3 + c3
υ1
, fυ2 = 1−

χ

1+ χ fυ1
, fω = g

[
1+ c6

ω3

g6 + c6
ω3

]1/6

χ =
ν̃

ν
, g= r+ cω2

(
r6
− r
)
, r=

ν̃

S̃κ2d2

S̃= S+
ν̃

κ2d2
fυ2, S=

√
2ΩijΩij,


(2.18)
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FIGURE 2. (Colour online) Comparison to assess the advantage of using the GRA relation
for predicting the mean temperature. (a) Favre averaged mean temperature profiles: DNS
data (symbols) at Ma = 2.25, Reτ = 700 (Wu et al. 2017); the original BL model (blue
solid line), the BL model with GRA (blue dashed line); the original SA model (brown
solid line), the SA model with GRA (brown dotted line); the current SED-SL model
without and with GRA (dashed and solid red lines, respectively). (b) Relative errors of
our model are mostly bounded within 2 %, less than the other two models.

where Ωij = 1/2(∂ ũi/∂xj − ∂ ũj/∂xi) is the rotation tensor and d is distance from the
closest surface.

For the energy equation, the original BL and SA models adopt the same eddy
viscosity assumption (Wilcox 2006), i.e.

u′′i τij − ρe′′u′′j − pu′′j + κ∗
∂T

′′

∂xj
= κ∗T

∂T̃
∂xj
, (2.19)

where κ∗T = νTCp/Prt. This is an over-simplified hypothesis which mistakenly holds
a constant turbulent Prandtl number. As shown in figure 2, the predicted mean
temperature shows greater departure from DNS data using the formulation (2.19),
compared to that using the GRA relation. In order to remove this disadvantage, in all
the comparisons below, we take as benchmark the improved BL and SA models by
coupling their predictions of the mean velocity with the GRA relation for temperature.

The shortcomings of the original SA model for compressible boundary layers
have been documented in a number of prior studies, and some corrections have
been proposed, particularly for high Ma (see, for example, Catris & Aupoix 2000;
Deck et al. 2002). These corrections mainly use ρνT instead of νT as the working
variable and introduce various modifications to the diffusion term in the SA model.
In contrast, ours are developed straightforwardly from invariant Ma-number scaling of
the stress length function, and we are not aware of any other model that matches the
accuracy presented below for Zero Pressure Gradient (ZPG) Compressible Turbulence
Boundary Layer (CTBL).

3. Results
First, we compare the predictions for the incompressible (i.e. Ma= 0) TBL flows,

involving no temperature. Figure 3 shows the predicted mean velocities by the
SED-SL, BL and SA models, compared with DNS data at several Reτ values. All
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FIGURE 3. (Colour online) (a) Comparison of MVPs for three models at Ma=0 (Schlatter
et al. 2010). Open symbols are DNS data (squares for Reτ = 517; circles for Reτ = 965),
and filled symbols are experimental data (up-triangle for Reτ = 25 062; down-triangle for
Reτ = 72 526), covering a range of Reτ over two decades. Blue dashed line: BL model;
brown dotted line: SA model; red solid line: SED-SL model. Each profile has been
vertically shifted by 5 units for better display. (b) Relative errors for U (blue symbols
for the BL model; brown symbols for the SA model; and red symbols for the current
SED-SL model). Note that errors of the SED-SL model are bounded within 2 % for all
Re, while the BL and SA models show systematic departures with increasing Re.

three models agree with data in the near-wall region y+ 6 100. There is, however, a
noticeable difference among them in the outer flow region: the BL and SA models
over-predict the mean velocity for all Reynolds numbers by a relative error (defined
by ErU = 100× (1− UModel/UDNS)) up to 8 %, while the error is uniformly bounded
within 2 % for the SED-SL model in figure 3(b). This demonstrates that the outer
function (2.9) is superior to the previously suggested model (2.16), which involves
the product of several functions – unlikely to be universal.

More significant differences are observed for CTBLs with Ma > 0. In figures 4
(Ma = 2.25), 5 (Ma = 4.5) and 6 (Ma = 6), we show the comparisons of the Favre
averaged mean velocity (normalized with U∞) and mean temperature (normalized with
T∞) between DNS data and the three turbulence model predictions. For each Ma,
there are three different Reτ profiles (see table 1). Thus, there are in total 31 mean
profiles (including four MVPs of incompressible TBL) used for comparison, which
overwhelmingly demonstrate that the SED performs far better than any of the popular
models.

For example, as figures 4(a), 5(a) and 6(a) show, the BL model generally
underestimates the mean velocity, where our model agrees with data significantly
better. The largest relative error ErU (see figure 4b) of the BL and SA models occurs
in the buffer region (10. y+. 100), and is up to 10 %, while the new model is below
2 %. Note that these larger buffer layer errors in the BL and SA predictions are clearly
traceable to the larger departures in their assumed eddy viscosity functions in the same
flow region (see figure 11, discussed later). At both Ma= 4.5 and Ma= 6.0 cases, the
BL and SA models show a maximum of 15 % and 10 % departures, respectively. In
contrast, the SED-SL model’s errors are uniformly bounded within 2 %. The results
clearly demonstrate that the SED-SL model uncovers a Ma-independent property of
CTBL, which is the main outcome of the present study.
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FIGURE 4. (Colour online) Comparison of Favre averaged MVPs (a), Mean Temperature
Profile (MTP) (c) with DNS data (normalized by free-stream value) for three models at
Ma= 2.25 (Wu et al. 2017). Symbols are DNS data (squares: Reτ = 500; circles: Reτ =
600; triangles: Reτ = 700). Blue dashed line: the BL model; brown dotted line: SA model;
red solid line: SED-SL model. Each profile has been vertically shifted by 0.15 unit for
better display. (b) and (d) Relative errors for U and T , respectively.

Note that as Re increases, the errors of the BL model seem to decrease somewhat;
this is due to the fact that the wall damping function in the BL model is based on an
incompressible TBL at large Re values. Basically, the SA model performs better than
the BL model, but both have comparable levels of errors. These comparisons indicate
that the SED-SL model improves the BL and SA models’ predictions uniformly for
all simulated CTBLs, supporting the invariant (Ma and Re independent) multi-layer
structure of `12 (since our model parameters do not change).

Figures 4(c), 5(c) and 6(c) display the comparison of the mean temperature
predictions. At Ma= 2.25, the plots show that the BL and SA models over-predicts
the mean temperature, with the largest error varying from 2 to 5 % for increasing Re,
while the SED-SL model’s errors remain bounded within 2 %. For higher Ma = 4.5,
the contrast becomes more significant: the relative errors of the BL and SA models
reach up to 18 % and 12 %, respectively, while our model’s errors are bounded
within 5 % for all three Re values. For Ma = 6, as shown in figure 6(c,d), the BL
and SA models globally over-predicts the mean temperature everywhere, with the
relative errors reaching up to 30 % and 12 %, however the SED-SL model has errors
still bounded within 5 %. The SED-SL model’s improvement becomes increasingly
significant at higher Ma. This is likely due to the fact that the free parameters in
both BL and SA models are based on incompressible TBL data, which values may
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FIGURE 5. (Colour online) The same comparisons as in figure 4 at Ma= 4.5.

vary with Ma, hence leading to larger errors in BL and SA models as Ma increases.
In contrast, our multi-layer stress length is essentially invariant in Ma, hence works
well for higher Ma.

Some features of the relative error profiles are noteworthy. The largest relative
error for the mean velocity appears near the wall, in the viscous sublayer (as U
approaches zero, even small data uncertainty would lead to large relative error),
and this increases only slightly with Ma (but bounded within 2 %). On the other
hand, the largest relative error for the mean temperature occurs near the edge of
the boundary layer (i.e. in the outer region), which seems to increase significantly
with increasing Ma. The latter is due to the increasing lack of validity of the GRA
in the outer region where the assumption of constant turbulent Prandtl number in
GRA is compromised. Interestingly, this deviation in the temperature prediction does
not affect the prediction quality of the mean velocity, further supporting the key
conclusion of this work, namely the Ma-invariance of the stress length function.

Note that the compressible effects are primarily concentrated near the wall where
the mean temperature is much higher (due to dissipative heating by strong shear).
Away from the wall, the normalized mean temperature decreases monotonically to
unity at the free stream, indicating a vanishing compressibility effect towards the outer
flow. Careful examination shows that the SED-SL model improves upon the BL and
SA models mainly in the buffer region, due to correctly specified inner length function
in the former, and the improvement becomes more significant at higher Ma, because
the length function remains invariant with increasing Ma.

We have also tested the validity of the SED-SL model for cold and hot wall
situations, to complete a unified description for all relevant CTBL physics involving
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FIGURE 6. (Colour online) The same comparisons as in figure 4 at Ma= 6.

inward and outward heat flux from the wall. For a cold wall with an inward heat
flux, the boundary layer becomes thicker compared to the adiabatic situation (i.e.
larger Re), and it is the opposite for a hot wall (i.e. smaller Re and less developed
turbulence). The majority of the heat flux effects seem to be describable by the
SED-SL model, through the Re-effect. As shown in figures 7 and 8, the predicted
MVP and MTP from the SED-SL model remain bounded within 5 %, while those
from the BL and SA model are up to 15 % and 10 %, respectively. Note that the errors
for the SED-SL model can be further improved if the multi-layer parameters (e.g. κ
and y+b ) are slightly adjusted, taking into account small changes in the multi-layer
structure due to the inward and outward heat flux, but obviously the changes are
minor so that the current description is sufficiently good, much better than the BL
and SA model.

Finally, a comparison of the friction coefficient (Cf = 2/(U+
∞
)2) varying with the

momentum thickness Reynolds number Reθ is presented in figure 9. It is clear that
the SED-SL model gives better predictions than the BL and SA models; in particular,
there is essentially no visible difference in the predictions of incompressible and
hypersonic flows, indicating that the SED-SL model captures well the right Ma-scaling.
This is not the case for either the BL or SA model: neither of which has a uniform
performance with respect to Ma. Note that the SA model performs better than the BL
model, but its performance for the incompressible case is quite unsatisfactory. Note
also that the evaluated maximum relative errors of the three models (not shown) are:
5 % for SED-SL; 20 % for BL; 20 % for SA, respectively. Figure 9(d) shows that for
very small Reθ , there are noticeable discrepancies between the data and the model’s
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FIGURE 7. (Colour online) The same comparisons as in figure 4 for cold wall at Ma=4.5.

predictions, due to the absence of a transition model. To characterize Cf at small
Re values, Xiao & She (2016, 2017) introduced a similar dilation-invariant ansatz
in the streamwise (x) direction in the current SED-SL model and obtained accurate
agreements – to be reported elsewhere.

4. Discussion

As shown above, the SED-SL model yields much better predictions for the CTBL
at all Ma and Re values studied, compared to the popular BL and SA models. Note
that all parameters (κ , y+s and y+b ) in the SED-SL multi-layer model for the stress
length function `12 have been kept the same for all Ma values, indicating a universal
stress length function for CTBL. In particular, κ = 0.45 follows the newly determined
value proposed in She et al. (2017), supporting a single universal Kármán constant
for channel, pipe and TBL, instead of the popular value of 0.38 for TBL (however,
note the recently reported Kármán constant κ = 0.446 in the Italy Long pipe – Center
for International Cooperation in Long Pipe Experiments (CICLoPE) – by Nagib et al.
(2017)). Note also that more fine tuning of y+b would yield predictions even closer
to the data, showing possibly slight variation of the multi-layer structure at moderate
Re. The performance of SED-SL model is uniformly good for all Ma values covering
supersonic and hypersonic regimes, while the validity is established for a restricted
range of Re (due to the limited currently available DNS data) – over a factor of two
only (from Reτ = 400 to 800). More tests should be carried out at larger Re, when
available.
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FIGURE 8. (Colour online) The same comparisons as in figure 4 for hot wall at Ma= 4.5.

Now, an intriguing question is: which difference between the prior and present
model makes this significant improvement of MVP, the inner function (2.8) or the
outer function (2.9)? To answer this, let us first examine the new inner function versus
the van Driest damping function. A simple expansion can show that the parameter A
in the van Driest damping function can be interpreted as the buffer layer thickness
in our model: both (2.15) and (2.8) display a scaling transition from ` ∼ (y+)2 to
`∼ y+ (log layer), with y+� y+b for the former and y+� A for the latter. Moreover,
within the buffer layer (y+� y+b or y+� A), the van Driest damping function yields
`+ ≈ (κ/A)y+2, while the stress length function yields `+ ≈ `0(y+/y+s )

2
= (κ/y+b )y+2.

Equating the two, we obtain A = y+b , indicating that the parameter A is indeed the
buffer layer thickness y+b .

The above analysis suggests that in order for the BL model to describe correctly the
buffer layer, proper values of κ = 0.45 and A(= y+b = 41) need to be chosen. We have
tested this idea by computing the BL model with modified κ and A, and the results are
shown in figure 10. The prediction for the mean velocity in the buffer layer is indeed
significantly improved. However, a larger error compared to the SED-SL model is still
present, due to the incorrect description of the viscous sublayer in the BL model.

In figure 11, we examine the behaviour of the eddy viscosity νT , with two DNS
profiles from Ma = 2.25 and Ma = 6 at Reτ = 500. It is obvious that the piecewise
connected eddy viscosity by the BL model follows the DNS data only in the inner
region (i.e. y+ 6 50), with notable departure in the outer region (the scatter of data
towards the free stream is due to the vanishing Reynolds stress and mean shear).
In particular, the discrepancy of the BL’s eddy viscosity function at Ma = 2.25 is
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FIGURE 9. (Colour online) Comparisons of the friction coefficients as a function of Reθ
between DNS data (symbols) and predictions. (a) SED-SL; (b) BL; (c) SA; (d) Absolute
errors in counts (10−4). Data are described in table 1.
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FIGURE 10. (Colour online) Specific comparisons of Favre averaged MVP with DNS data
(symbols) at Ma= 6.0, Reτ = 500 (Wu et al. 2017), to highlight the improvement of the
buffer layer description by a modified BL model. (a) the original BL model (with κ=0.41
and A = 26 – blue dashed line), the modified BL model (with κ = 0.45 and A = 41 –
magenta dotted line) and the current SED-SL model – red solid line. (b): relative errors
in per cent: the original BL model – blue; the modified BL model – magenta; the SED-SL
model – red.

rather large, while it becomes somewhat reduced at Ma = 6, explaining its better
agreement with the mean velocity observed in figure 7, which is not typical for other
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FIGURE 11. (Colour online) Validation of the eddy viscosity function for the BL, SA and
SED-SL model by DNS data indicated in table 1, showing that the SED-SL captures the
right Ma-scaling in describing the variation of the maximum eddy viscosity, which is not
the case for the other two models.

Ma values. In conclusion, only adjusting the inner function (or parameter κ and A)
is insufficient to improve the prediction of the mean velocity. Note also that the BL
model introduces an arbitrary location yc where νT exhibits a discontinuous derivative.
In contrast, the eddy viscosity by the SED-SL model agrees closely with data for the
entire boundary layer domain, with a continuous transition from the inner to the outer
functions. Also included in figure 11 is the SA model, for which the eddy viscosity is
underestimated for both Ma= 2.25 and Ma= 6, hence leading to underestimation of
the mean velocity shown in figures 4 and 6, respectively. Thus, the improvement by
SED-SL model is attributed to the correct specification of the eddy viscosity across
the entire boundary layer.

5. Conclusion
In this paper, a symmetry-based expression of the stress length, equation (2.7),

is tested for compressible flat plate turbulent boundary layers, by formulating
an algebraic model (SED-SL) to solve the RANS equation. The model contains
only physical parameters (κ , y+s and y+b ) which are invariant for all cases, and the
predictions of the mean velocity and temperature profiles of spatially developing
CTBLs for a wide range of Ma (from 0 to 6) and a restricted range of Reτ values,
for adiabatic as well as heated and cooled walls with a total of 30 mean profiles,
are in good agreement with DNS data. Compared to the BL and SA models, the
accuracy is notably improved, especially for supersonic and hypersonic CTBLs. It
is remarkable that the SED-SL model contains much fewer parameters than the
BL and SA models, whose model parameters are of no obvious physical meaning.
The comparison clearly demonstrates the efficacy of the multi-layer formula, which
captures the right similarity property of the flow in both Re and Ma. To emphasize,
the parameters in the formula were determined by previous study of DNS data
(She et al. 2017), hence the success demonstrates not only the invariance of the
length function, but also the universality of the parameters specifying the multi-layer
structure.

The symmetry-based approach enables improvement to existing turbulence models,
such as the k− ω model (Chen, Hussain & She 2016b), but here we have proposed
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a fully theory-based algebraic model. Although the present SED-SL model is not
asserted as a sufficiently mature model for CFD applications, the present work
demonstrates the feasibility of deriving a high-accuracy model from the multi-layer
quantification of wall turbulence. This is clearly shown by comparing SED-SL with
BL and SA models for flat plate TBL. At this point, it is right to question the
versatility of (any) algebraic model for various flow conditions. The current version
of the SED-SL model performs the best for a flat plate CTBL, but a fully operational
SED-SL model for general industrial wall flows requires the specification of flow
parameters for a variety of benchmark flows, which requires major efforts and will
be an interesting topic for future study. In fact, due to the universal character of the
wall-induced symmetry constraint, the multi-layer structure is believed to be broadly
applicable for many wall flows.

Indeed, the present model can be extended in many ways. For instance, the
extension of SED-SL to strong non-equilibrium situations has been accomplished
recently to obtain accurate predictions of the streamwise variation of Cf through
TBL transitions (Xiao & She 2016). Furthermore, we have identified slight changes
in `0 and y+b for quantifying the multi-layer structure of flows over airfoils such as
NACA0012 and RAE2822 (Xiao & She 2017), yielding accurate drag prediction.
These (slight) variations of the multi-layer parameters effectively differentiates airfoil
flow from a flat plate TBL, which enhances our physical understanding and yields
effective engineering models at the same time.
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