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Abstract

FO(·)IDP3 extends first-order logic with inductive definitions, partial functions, types and

aggregates. Its model generator IDP3 first grounds the theory and then uses search to find

the models. The grounder uses Lifted Unit Propagation (LUP) to reduce the size of the

groundings of problem specifications in IDP3. LUP is in general very effective, but performs

poorly on definitions of predicates whose two-valued interpretation can be computed from

data in the input structure. To solve this problem, a preprocessing step is introduced that

converts such definitions to Prolog code and uses XSB Prolog to compute their interpretation.

The interpretation of these predicates is then added to the input structure, their definitions

are removed from the theory and further processing is done by the standard IDP3 system.

Experimental results show the effectiveness of our method.

KEYWORDS: program transformation, FO(·), logic programming, tabling, knowledge base

systems, IDP system, declarative modeling

1 Introduction

Recent proposals for declarative modeling use first-order logic as their starting point.

Examples are Enfragmo (Aavani et al. 2012) and FO(·)IDP3, the instance of the FO(·)
family that is supported by IDP3, the current version of the IDP Knowledge Base

System (De Pooter et al. 2011). FO(·)IDP3 extends First-Order (FO) logic with

inductive definitions, partial functions, types and aggregates. IDP3 supports model

generation and model expansion (Mitchell and Ternovska 2005; Wittocx et al. 2013)

as inference methods.

IDP3 supports these inference methods using the ground-and-solve approach.

First the problem is grounded into an Extended CNF (ECNF) theory. Next a

SAT-solver is used to calculate a model of the propositional theory. One of the

problems with this approach is the possible combinatorial blowup of the grounding.

A predicate p(x1, x2 . . . xn) with s as the size of the domain of its arguments has sn

possible instances. A grounding that has to represent all these possible instances is

therefore possibly very large.
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Most Answer Set Programming (ASP) systems solve this problem by using semi-

naive bottom-up evaluation (Gebser et al. 2011; Faber et al. 2012) with optimizations,

which in particular is very effective in dealing with large data sets and intentional

predicates defined in terms of these. However, the goal of FO(·) is to offer a very high

level language for complex (NP) search problems - hence FO(·) bodies in definitions

and FO(·) constraints - and to let users concentrate on the logic specifications of

problems rather than having to fine-tune the specification in order to obtain a

compact grounding. The grounder of IDP3 uses a Lifted Unit Propagation (LUP)

method to derive additional information for subformulas: bounds for certainly true,

certainly false and unknown (Wittocx et al. 2010). This grounding approach is very

good for NP search problems, but does not deal adequately with large data sets and

intentional predicates defined in terms of these.

In this paper we propose an independent (pre-processing) step that reduces the

IDP3 grounding by calculating in advance the two-valued interpretations of such

predicates. We transform their first-order definitions into Prolog rules and use a

Prolog system with tabling to compute the interpretations. We decided to use XSB

because we also plan to explore its tabling support for further improvements of the

grounder. Experimental results show the effectiveness of our method.

In Section 2 we introduce IDP3 and FO(·). In Section 3 we describe the

transformation of FO(·) definitions to Prolog rules. In Section 4 we discuss the

current integration of IDP3 with XSB and further extensions of using XSB together

with IDP3. In Section 5 we present experimental results. Section 6 contains related

work and concludes.

2 Terminology and motivation

2.1 The IDP3 system

We focus on the aspects of FO(·)IDP3 that are relevant for this paper. More details

can be found in De Pooter et al. (2011) and Blockeel et al. (2012) where one

can find several examples. An FO(·)IDP3 model consists of a number of logical

components, namely vocabularies, structures, terms, and theories. A vocabulary

declares the symbols to be used. A structure is used to specify the domain and

data; it provides a partial (possibly three-valued) interpretation of the symbols in

the vocabulary. A theory consists of FO(·)IDP3 formulas and definitions.

A definition is a set of rules of the form ∀x̄ : p(x̄) ← φ[x̄]. where φ[x̄] is an

FO(·)IDP3 formula. An FO(·)IDP3 formula differs from FO formulas in two ways.

Firstly, FO(·)IDP3 is a many-sorted logic: every variable has an associated type and

every type an associated domain. Moreover, it is order-sorted: types can be subtypes

of others. Secondly, besides the standard terms in FO, FO(·)IDP3 formulas can also

have aggregate terms: functions over a set of domain elements and associated

numeric values which map to the sum, product, cardinality, maximum or minimum

value of the set.

The model expansion of IDP3 extends a partial structure (an interpretation) into

a two-valued structure that satisfies all constraints specified by the FO(·)IDP3 model.
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Fig. 1. An FO(·)IDP3 model for NQueens with n = 4.

Formally, the task of model expansion is, given a vocabulary V , a theory T over V

and a partial structure S over V (at least interpreting all types), to find a two-valued

structureM that satisfies T and extends S , i.e.,M is a model of the theory and the

input structure S is a subset of M. As an illustration, we give the FO(·)IDP3 model

of the NQueens problem in Figure 1. The NQueens problem consists of placing n

queens on a n x n chess board in such a way that the queens cannot attack each

other.

The vocabulary V consists of a two types (diag and index), one constant (n), one

predicate (queen), and two functions (diag1 and diag2). The structure S provides

a two-valued interpretation for the constant n/0 (the size of the n x n board) and

the diag and index types that follow from this. The predicate queen (index, index)

represents where queens are placed on the board. The function diag1(index, index) :

diag maps each square on the board to its upper-left-to-lower-right diagonal. The

function diag2(index, index) : diag is defined similarly for the lower-left-to-upper-

right diagonals. The definitions for diag1 and diag2 are placed in theory T and are

given between “{” and “}”.
The theory also specifies the constraints expressing that the placed queens cannot

attack each other. The first constraint expresses that there is exactly one queen on

each column of the board: for every x of type index (∀x[index]), there is exactly one

y of type index (∃=1y[index]) for which queen(x, y) holds. The quantified variables

are typed in this constraint. This typing is optional and has been omitted in the

other constraints as IDP3 can derive types from the information in the vocabulary.

The second constraint expresses that there is exactly one queen on each row of the
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board. The third constraint expresses that for each diagonal (∀d) there are less than

two elements in the set {x y : queen(x, y)∧ diag1(x, y) = d}; the set of elements (x, y)

such that they satisfy queen(x, y)∧diag1(x, y) = d. This ensures that there is no more

than one queen on each upper-left-to-lower-right diagonal. The fourth constraint

expresses the same for the lower-left-to-upper-right diagonals.

The IDP3 system performs model expansion by first reducing the problem to

Extended CNF, using the grounder GidL (Wittocx et al. 2010), and subsequently

calling the solver MiniSAT(ID) (Eén and Sörensson 2003; Mariën et al. 2008). In

this case, model expansion results in two-valued interpretations for queen, diag1 and

diag2.

2.2 Input, open, and Input∗ predicates

Consider the set of rules in the definitions of an FO(·)IDP3 model. The defined

predicates1 are the predicates that appear in a head of a rule. The other predicates,

which appear only in the bodies, are the open predicates. An input predicate is a

predicate for which the structure S specifies the two-valued interpretation. It can be

an open or a defined predicate.

Given a rule ∀x̄ : p(x̄) ← φ[x̄]., we say that p(x̄) depends on q(x) if the predicate

q(x) appears in φ[x̄]. We compute the depends on relation for all the defined

predicates and construct the dependency graph. The leaves in this graph are open

symbols (predicates or functions).

Some defined predicates can be calculated in advance. We call these predicates

the input∗ predicates and define them to be the defined predicates that are not search

predicates. A predicate p is a search predicate if

• predicate p is an open predicate but not an input predicate

• predicate p depends on a predicate q and q is a search predicate.

We propose to evaluate these input∗ predicates before grounding and solving.

Because FO(·)IDP3 definitions have FO(·)IDP3 formulas as bodies, which are obviously

not valid Prolog bodies, transformations of these FO(·)IDP3 formulas into Prolog

bodies are needed. Our proposed method applies three standard steps on the

FO(·)IDP3 model:

1. Detection of the input∗ predicates in the theory T and the structure2 S

2. Transformation of the definitions of the input∗ predicates into Prolog rules

3. Computation of the two-valued interpretation of the input∗ predicates with XSB

using these Prolog rules

The result of our method is a structure S ′ that extends S with two-valued interpre-

tations for the input∗ predicates and a theory T ′ with all constraints from T and

all but the input∗ definitions from T . Grounding now starts from a more precise

structure and a smaller theory.

1 We consider constants and functions as a special case of predicates, unless we explicitly make a
distinction between them.

2 In this paper we assume that input∗ predicates have no given interpretation in the input structure and
are only defined in one definition.
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2.3 An example for NQueens with n = 4

In Figure 1, diag1 and diag2 are input∗ predicates2 because they do not depend

on any search predicate: n is an open input predicate given in the structure and

built-ins (+ and −) are always input predicates. The definitions of diag1 and diag2

both have three variables. Two variables range over index and one ranges over diag.

This means that the number of instances created by naive grounding is of the order

n3. For the structure in Figure 1 where n = 4, this results in 42 ∗ 7 = 112 instances

per definition, resulting in 224 instances in total.

Our method calculates the interpretation of the input∗ predicates diag1 and diag2

by executing the following XSB program:

:- table diag1/3, diag2/3.
diag1(X,Y,D) :- n(N), type_index(X), type_index(Y), D is X - Y + N, type_diag(D).
diag2(X,Y,D) :- type_index(X), type_index(Y), D is X + Y - 1, type_diag(D).

type_diag(X) :- between(1,7,X).
type_index(X) :- between(1,4,X).
n(4).

?- diag1(X,Y,D).
?- diag2(X,Y,D).

The two queries have variables as arguments. The answer diag1(ix,iy,d) means that

diag1(ix, iy) = d. The XSB program calculates two diagonals for each combination

of two indices. The number of resulting answer tuples is n2 for each diagonal (32

tuples in total for N = 4). These tuples are added as interpretation for the input∗
predicates. In this paper we generalize this method for FO(·)IDP3 definitions of the

form ∀x̄ : p(x̄)← φ[x̄].

3 Transformation

In order to use Prolog for the calculation, we need to transform the relevant part

of the FO(·)IDP3 model into Prolog, namely the definitions of the input∗ predicates

and the interpretation of the open predicates (including types). The resulting Prolog

program is correct if the interpretation that it calculates for the input∗ predicates is

exactly the same as the interpretation that IDP3 would find without XSB.

3.1 Transforming the structure

First we transform the relevant information in the structure part of the FO(·)IDP3
model. For every true tuple (t1, t2...tn) in the interpretation of an open input predicate

o, we add a fact o(t1,t2...tn). to the Prolog program. If o is a function symbol, we

use its predicate representation (see Section 3.2.1).

We also transform all types used in the definitions of the input∗ predicates. Each

type is given by a domain. We generate the corresponding type predicates. For each

type t, a new Prolog predicate type t is added to the Prolog program.

If type t has a numerical domain ranging from lower bound to upper bound (e.g.

index = {1..4}), we add type t(X) :- between(lower bound,upper bound,X).
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If type t has an enumerated domain (e.g. node = {a,b,c,d}), we add type t(dom).

for every domain element dom. Note that an enumerated domain of size n results in

n facts, whereas a numerical ranged domain results in one rule.

We need to transform these types and add the type predicates to XSB for of two

reasons:

• An interpretation needs to be well-typed. The type predicates are used for type

checking before answers are returned.

• Sometimes the values of the arguments of a predicate need to be known (for

example, negation as failure is only safe if its goal is ground). We use the type

predicates of the type of the variables as generators of their values.

3.2 Transforming the theory

3.2.1 Simplifying the FO(·) definitions

Eliminating functions We transform all functions into predicate form: f(x̄) = t is

transformed into pf(x̄, y) ∧ y = t. We also take notice of the constraint that

there exists exactly one y for every tuple x̄ such that pf(x̄, y) holds. When IDP3

converts the answer tuples to its internal representation, this constraint is checked.

Any atom p(f(x̄)) that has a function result as argument, is replaced with p(u)

and we add pf(x̄, u) to the body of the definition. Doing this we assure that the

arguments of the atoms are variables.

Eliminating equivalences Definitions with equivalences in their body are rewritten

to their implicational form.

Eliminating implications Definitions with implications in their body are rewritten to

their disjunctive form.

Pushing down negations Negations are pushed into subformulas until they are ap-

plied directly to atomic formulas.

Flattening out nested conjunctions and disjunctions Redundant parenthesis of

nested conjunctions and disjunctions are removed.

3.2.2 Predicate introduction

Next we use predicate introduction (Wittocx 2010) to simplify the bodies of the

definitions into elementary formulas. An elementary formula is a formula where all

subformulas are atomic formulas. An atomic formula is either an atom, a negated

atom or a numerical expression (i.e., an IDP3 built-in). We use the following rewrite

rule:

1. For some non-atomic subformula ψ[x̄] that occurs inside a conjunction, disjunc-

tion or quantified formula of φ[x̄], introduce a new predicate pψ of the same

arity as ψ[x̄]

2. Substitute pψ(x) for ψ[x] in φ[x̄]

3. Add the rule ∀x̄ : pψ(x̄)← ψ[x̄].
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This rewrite rule is applied until all definitions have only elementary formulas as

body. These transformations are proven to result in logically equivalent definitions.

After predicate introduction, the rules in the definitions have one of the following

four forms, where x̄ is the union of x̄1 . . . x̄n:

∀x̄ : p(x̄)← pφ1
(x̄1) ∧ pφ2

(x̄2) ∧ . . . ∧ pφn (x̄n).

∀x̄ : p(x̄)← pφ1
(x̄1) ∨ pφ2

(x̄2) ∨ . . . ∨ pφn (x̄n).

∀x̄1 : p(x̄1)← ∃x̄2 : pφ(x̄)

∀x̄1 : p(x̄1)← ∀x̄2 : pφ(x̄)

3.2.3 To-Prolog

We start with the transformation of the four kinds of rules and continue with the

atomic formulas. We table the input∗ predicates and use XSB to compute the answers

according to the well-founded semantics using the transformed code.

We use the following invariant to prove that the to-Prolog transformations are

correct: after executing a Prolog (sub)goal p phi, all its arguments are grounded and

equal to the interpretation of the corresponding logical predicate pφ. This invariant

will be proven for each transformation in this subsection.

Unsafe variables The variables of a Prolog clause that do not occur in a positive

goal in the body of the clause or that only occur as input arguments of Prolog

built-ins, are so-called unsafe variables. The call typesunsafe(U) is a shorthand for

type t1(U1), type t2(U2) ...type tn(Un), with U1 . . . Un the unsafe variables

of the clause. We add typesunsafe(U) in the body of the clause to use their type

predicates as generators.

Conjunction

∀x̄ : p(x̄)← pφ1
(x̄1) ∧ pφ2

(x̄2) ∧ . . . ∧ pφn (x̄n).

results in

p(X) :- typesunsafe(U),p phi 1(X 1), p phi 2(X 2) ...p phi n(X n).

The set U denotes the unsafe variables of the clause. To improve performance and

to avoid errors due to non-ground negative calls or built-ins for which an input

argument is non-ground, the bodies are reordered according to a simple form of

query optimization based on the following rules:

1. move negative literals as much as possible to the left (but each variable of the

negative literal must have an occurrence in a positive call to its left)

2. move built-ins as much as possible to the left (but each input variable of the

built-in must have an occurrence in a positive call to its left)

3. move positive calls to tabled predicates (input* predicates) to the left of

introduced predicates this results in less different call patterns and better

performance (Swift and Warren 2012).
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4. move the type t calls of the unsafe variables that occur only in the head to the

end of the body.
5. put open input predicates before input∗ predicates to bind variables as soon as

possible.

This reordering is also done for the other three kinds of rules.

Our invariant is satisfied because p(X) succeeds only if all the subgoals succeed,

all the variables get ground values and the p phi j(X j) goals satisfy the invariant.

Thus, all variables of p(X) are instantiated with the correct values.

Disjunction

∀x̄ : p(x̄)← pφ1
(x̄1) ∨ pφ2

(x̄2) ∨ . . . ∨ pφn (x̄n).

results in

p(X) :- typesunsafe(U 1), p phi 1(X 1).

p(X) :- typesunsafe(U 2), p phi 2(X 2).

. . .

p(X) :- typesunsafe(U n), p phi n(X n).

Our invariant is satisfied because if p(X) succeeds, one of its rules succeeds. The

p phi j(X j) goals satisfy the invariant and with the addition of the type predicates,

all returned variables are bound correctly.

Existential

∀x̄1 : p(x̄1)← ∃x̄2 : pφ(x̄)

results in

p(X 1) :- typesunsafe(U), p phi(X).

Our invariant is satisfied because p(X 1) succeeds only if p phi(X) succeeds,

p phi(X) returns the correct values, and with the addition of the type predicates,

all returned variables are bound correctly.

Universal

∀x̄1 : p(x̄1)← ∀x̄2 : pφ(x̄)

results in

p(X 1) :- type t(X 1), idp forall(type t(X 2), p phi(X)).

The X 1 variables that appear in p phi(X) will be grounded by their type t

generators before the call to idp forall. The X 2 are grounded in the first argument

of idp forall. The Prolog predicate idp forall(C1,C2) is defined such that it only

succeeds if for every succeeding call C1, call C2 also succeeds:

idp forall(C1,C2) :- call tv(tables:not exists((call(C1),

tables:not exists(C2))),true).

Two built-in predicates are used: call tv/2 is used to filter out undefined answers

and not exists/1 is used because it does negation for a call of which it is not

known whether it is a tabled or not (Swift et al. 2013). The invariant is satisfied due

to the type t generators and the semantics of idp forall/2, not exists/1 and

call tv/2.
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Atomic formulas The atomic formulas in the elementary formulas consist of two

kinds:

1. Atomic formulas p(t1, . . . tn) with p an open input, input∗, or introduced predicate.

Results in p(T1,...Tn), with Ti the variable representing ti. If this atomic

formula is negated, tnot/1 (for tabled predicates) or ‘‘\+/1’’ (for other

predicates) is used.

2. Atomic formulas consisting of numerical operations (+, ∗...) or comparisons

(<,> ...). Prolog has built-ins for each operation and comparison. We add type

checks for the output arguments of these built-ins.

In case of an input predicate, the call p(T1,T2...Tn) returns as answers all the

tuples for which p is true. This is due to our transformation of the input predicates

in the structure. In case of a negated atom, it is assured to be ground by our

typesunsafe calls and our body reordering. For a ground body, negation as failure

executes as logical negation. For the tnot goals we rely on the dynamic stratification

of XSB. Finally, the arithmetic expressions are correctly computed because of our

typesunsafe calls, our body reordering and because our type checking ensures that

the ouput arguments of Prolog built-ins have correct types.

Aggregate terms An aggregate term is a term that is the result of an aggregate

function. An aggregate function maps a set to a single element. Examples of

aggregate functions are: cardinality (how many elements are there in the set),

minimum, maximum...

Aggregate terms can still be present as arguments in the atomic numerical formulas

of above. Due to space limitations and the technical nature of this subject, we present

the the transformation of aggregate terms in the appendix.

4 Computing interpretations with XSB

4.1 About using XSB for input∗ predicates

Like other Prolog implementations, XSB provides support for both statically compiled

code and dynamically asserted code. The transformed rules are compiled and loaded

using the consult/1 command. Enumerated facts are loaded dynamically using the

load dync/1 command. We do this because for large files containing 104−107 facts,

dynamic loading is much faster than XSB’s compiler (Swift et al. 2013).

For every input∗ predicate p(x1, x2..xn) we table the answers for the query

p(X1,X2..Xn) using local scheduling (and the default variant tabling) of XSB.

For recursive predicates we rely on the tabling to detect loops.

Once the answers are computed, they are used in IDP3 to construct the interpre-

tation of the corresponding predicate (or function). The definitions of the input∗
predicates are removed from the theory. In between separate executions of this

process, XSB has to be ‘reset’: we need to empty the tables and remove the loaded

Prolog code.

For loops over negation we depend on the current XSB support. XSB supports

loops over negation in dynamically stratified programs (Swift et al. 2013).
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Fig. 2. Example of a residual program.

It is necessary to add the flag :-set_prolog_flag(unknown,fail). to our Prolog

code because it is possible to have no true tuples in the interpretation of open input

predicates in a FO(·)IDP3 model. This would result in an XSB program that has no

fact for that predicate. Standard XSB considers this a programming error. Setting

this flag means that XSB returns fail for queries to predicate symbols that have no

rules or facts.

We implemented the evaluation of the input∗ predicates as a separate step in

IDP3, because it is also useful for evaluating some class of output predicates.

4.2 Further uses of XSB

Our current implementation is limited to input∗ predicates, but we can use our

method in more cases. The transformation steps remain the same.

For monotone definitions, we can relax the requirement that the input predicates

need to be given completely in the structure. We simply use their partial inter-

pretations in our method and the computed answers can be used as their partial

interpretation. We keep the definitions in the theory. This extension can easily be

added to the implementation.

Another observation is that there are also definitions that contain open predicates

whose interpretation is decided by the search component of IDP3, non-input open

predicates. These non-input open predicates currently block the use of our method.

However, we can construct residual programs with XSB. Consider the example given

in Figure 2.

In a sense what we do is a kind of partial evaluation or program specialization.

To implement this, we need to replace the original definitions by the residual ones

which are special cases of the transformed ones. We are currently investigating this.

Another application of our method is in the context of LUP. For each FO(·)
sentence, LUP can be represented symbolically by a set of recursive rules. All of

these rules together form an FO(·) definition (Vlaeminck 2012). This definition

models the dependencies between the truth values of subformulas and allows

derivation of useful information (about the so-called bounds) by taking into account

information available in the structure. This is a different approach w.r.t. (Wittocx

et al. 2010) (which is an approximative method), but similar to Vaezipoor et al.

(2011). Preliminary experiments show that our method can be used for computing

the definitions produced by this form of LUP, but it seems important to use a good

clause ordering.
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Fig. 3. Comparison of the grounding and total execution times.

Our method can be considered as a special case of this LUP: the structure-

specific information is given by the open input predicates and the corresponding

input∗ predicates are computed. The above paragraph about monotone definitions

can also be considered a special case of LUP.

5 Experiments

In this section, we compare our method IDP3
XSB with the current

version of IDP3 and with the state-of-the-art systems CLINGO and DLV.

Figure 3 contains the results of our experiments performed on an

Intel(R) Core(TM) i5-3550 CPU @ 3.30GHz with a cutoff of 500s. Experiments

that exceeded the cutoff are marked with “-”. We run experiments with gringo version

4.0-rc2, clasp version 2.1.1 and the DLV build of Dec 17 2012. The tools needed

to run these experiments can be found on http://dtai.cs.kuleuven.be/krr/

research/experiments.

Experiments were performed for REACH (reachability with undirected edges),

PATH10 (calculate all pairs of nodes that are connected by a path consisting of 10

nodes), HP (Hamiltonian Path), NQ (NQueens) and HNQ (NQueens that computes

also which placed queens are able to hit each other if they could also move like

knights). All running times are given in seconds. We show for each system the

grounding time (first column) and the total solving time (second column), except

for DLV for which we only show the solving time. The second column in Figure 3

indicates what portion of the predicates are input∗ predicates. For example, i/j

indicates that there are a total of j predicates and i of those are input∗. The third

column lists the problem sizes and they mean the following: for graph problems

(REACH, PATH10, HP), the problem size is the number of nodes in the graph

(increasing graphs have a constant edge density) and for board problems (NQ and

HNQ), the problem size represents the board size.

https://doi.org/10.1017/S1471068413000434 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000434


702 J. Jansen et al.

For every problem except for HP, our method results in a significant decrease

in running time compared to IDP3. Experiments also show that the running time

complexity is of a lower order: larger problems benefit from larger speedups of our

method. For HP running times stay the same because in this problem no input∗
predicates are used.

Note that the solving time (N = 50: 0.79) is better than the grounding time

(N = 50: 24.80) for the HNQ problem with the IDP3
XSB system. This is caused

by the output predicates that are present. The grounding of output predicates (in

this case, the queens that can hit each other by moving as knights) can, in the

context of model expansion, be delayed until an interpretation for the remainder

of the predicates (the placement of the queens) has been found. When we perform

the grounding operation as a standalone operation with IDP3
XSB, these output

predicates cannot be delayed and are thus also grounded, since no interpretation

for the remainder of the predicates is computed. For the information in the second

column, the output predicates are considered to be input∗ predicates, since we also

use XSB to compute their interpretation.

Experiments show that IDP3
XSB results in large speedups with respect to IDP3 for

problems where input∗ predicates are used. Our results are also comparable to other

ASP systems that use the semi-naive bottom-up approach, such as CLINGO and

DLV. To get an idea of the communication overhead between IDP3 and XSB, we ran

programs with the transformed rules directly with XSB and compared it with calling

them from within IDP3
XSB. These experiments showed that the communication

between the systems causes an increase of about 30% in time spent computing the

definitions.

6 Conclusions

The grounding phase is well studied in the context of Answer Set Program-

ming (Syrjänen 1998; Gebser et al. 2007; Wittocx 2010; Faber et al. 2012). The

grounder transforms the input program into a semantically equivalent one with

no variables and tries to avoid the combinatorial explosion that arises by naively

instantiating the atoms in the program by all their instances. DLV and gringo

(CLINGO’s grounder) ground using an instantiation algorithm that is based on

the well-known semi-naive bottom-up computation. They assure groundings only

contain ground atoms that can be derived from the program. Moreover, ground

rules are simplified by removing literals known to be true. As a consequence, the

intentional predicates in safe (normal, i.e., deterministic) stratified programs are

completely evaluated.

These completely evaluated predicates can be seen as our input∗ IDP3 predicates.

IDP3 is a model generator for FO(·)IDP3 which extends first-order logic with inductive

definitions and allows the programmer to write declarative specifications for his

problems. For the programmer it becomes easier to give the specifications, but

FO(·)IDP3 requires additional intelligence during the grounding. The grounder of

IDP3 uses a form of LUP to derive extra information that can be used to reduce

the grounding. LUP is effective (Wittocx 2010), but input∗ predicates need special
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treatment. In this paper we use XSB and its tabling to compute the interpretations

of input∗ predicates whose first-order bodies are transformed into Prolog. Note that

the safeness requirement is not needed as variables in IDP3 are typed and as such

their values are known.

The paper (Faber et al. 2012) discusses a number of optimization techniques in

context of the DLV system. Some of them are relevant for our conjunctive bodies.

Their program rewriting (Faber et al. 1999) strategy pushes projections and selections

down the execution tree, while their body reordering criterion (Leone et al. 2001)

takes into account the impact on the reduction of the search space and tries to detect

inconsistencies early by preferring literals with bounded variables. We currently use

a simple body reordering method. Other optimizations such as Dynamic Magic Sets

(Alviano and Faber 2011) are related to the bottom-up strategy, while we use the

tabled top-down evaluation of XSB.

Experiments show the proposed method results in large speedups with respect

to IDP3 for problems where input∗ predicates are used. Our running times are

comparable to other ASP systems that use a semi-naive bottom-up approach, such

as CLINGO and DLV, despite the communication overhead between IDP3 and

XSB.

One feature is not yet supported by our transformation: recursive aggregates. An

aggregate is recursive if, as part of a body of a rule in a definition, its set expression

contains a recursive call.

By coupling IDP3 and XSB we can further explore the tabled evaluation to deal

with partial open predicates and the use of residual programs as a form of partial

evaluation. Moreover, the propagating definitions generated for LUP (Vaezipoor

et al. 2011; Vlaeminck 2012) can also be transformed into XSB programs. In this

way the grounder of IDP3 can further be improved.

Another interesting issue is whether, as literals in the theory get more instantiated

during the search phase, it would be interesting to evaluate these propagating

definitions for these literals. This evaluation then computes the newly propagated

information following from the choices the solver made. This form of goal-directed

evaluation will probably require a better integration between IDP3 and XSB to

reduce communication overhead and to benefit from the support for incremental

tabling of XSB.
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