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In dense networks, the tremendous computational complexity and communication overhead of
cooperative localisation are the two main bottlenecks that limit practical application. In this
study, we introduce a bootstrap percolation scheme into Gaussian message passing-based coop-
erative localisation for precise positioning, aimed at reducing the system overhead. Considering
the uncertainty information and geometric distribution of neighbours, an approximate collinear
detection criterion is proposed to detect the possible flip ambiguities in cooperative localisa-
tion. According to the detection result and our connection constraint, agents are divided into
three categories and are approximated by different distribution families. A message passing rule
is designed to control the propagation direction from high precision to low precision, thereby
mitigating potential error propagation. Additionally, a layer-by-layer positioning mechanism is
established where the agents are located gradually. Analytical and simulation results indicate
that when the ranging standard deviation is 0·2 m, 89·3% of the agent nodes can be located
within 0·4 m using the proposed algorithm. Compared with the Hybrid Sum-Product Algorithm
over A Wireless Network (H-SPAWN), this ratio is increased by 8·4% and the computational
complexity is reduced by 72%.
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1. INTRODUCTION. Location awareness has become a fundamental service in Wire-
less Sensor Networks (WSNs), including military surveillance, smart city, precision
agriculture and the Internet of Things (Abouzar et al., 2016; Wang et al., 2015; Rantakokko
et al., 2011). However, precise positioning is still a great challenge in indoor, tunnel and
other harsh environments due to the lack of Global Navigation Satellite System (GNSS)
signals (Fan et al., 2017). In challenging environments, Ultra-Wide Bandwidth (UWB)-
based localisation technology has attracted great interest due to its precise ranging, simple
implementation for multiple-access communications and high reliability (Wymeersch et al.,
2009). UWB technology uses Time-Of-Arrival (TOA)-based ranging techniques with a
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fine delay resolution due to its wideband characteristics. Typically, the UWB-based rang-
ing accuracy can reach 0·2 m in a line-of-sight environment, which provides a foundation
for high-precision positioning in wireless networks (Caceres et al., 2011; Dardari et al.,
2009).

Cooperative localisation is a promising way to improve both the coverage and accu-
racy of a positioning system by exploiting peer-to-peer communication and ranging
(Li et al., 2015b). In a Bayesian cooperative localisation algorithm, the agent node is treated
as a random variable and its full statistical information is exchanged and updated between
neighbours (Ihler et al., 2005). As a novel cooperative localisation method, a message pass-
ing algorithm maps the Bayesian inference problem to the probabilistic graphical model
and employs a spatiotemporal message schedule to estimate the agent’s marginal distribu-
tion by message propagation, computation and updating (Lv et al., 2016; Wymeersch et al.,
2009).

In particular, a Sum-Product Algorithm over A Wireless Network (SPAWN) is a sample-
based distributed message passing algorithm which exchanges full statistical information
between neighbours, resulting in significant system overhead (Wymeersch et al., 2009).
Based on the SPAWN, the H-SPAWN (Hybrid SPAWN) algorithm (Caceres et al., 2011;
Li et al., 2015a), as a typical parametric message passing method, exploits the Gaussian
distribution to approximate the irregular messages and only a few Gaussian parameters
need to be exchanged between agents. Gaussian parametric message approximation is also
employed in Variational Message Passing (VMP) to reduce system overhead by exploiting
second-order Taylor expansions (Cui et al., 2017). Sigma-Point Belief Propagation (SPBP)
extends the sigma point filter to general factor structures and reformulates the messages
in higher-dimensional spaces, just broadcasting a mean vector and a covariance matrix
between neighbours (Meyer et al., 2014; Georges et al., 2016). SPBP is suitable for nonlin-
ear systems, but not for dense networks, because the dimension and the number of sigma
points depend on the number of neighbours (Meyer et al., 2014). H-SPAWN, VMP and
SPBP are all devoted to alleviating the system overhead of single trial message passing and
computation. However, in each iteration of these methods, all the agent nodes need to esti-
mate their position based on all messages from neighbours, even though the contributions
of some messages from neighbours may be neglected.

In dense networks, the excessive number of neighbours leads to a huge computation
burden, but also may bring an adverse effect on accuracy (Jing et al., 2016; Das and
Wymeersch, 2012; Velde et al., 2015). In order to further reduce the system overhead in
dense networks, some neighbour node selection schemes, also known as information cen-
soring, have been proposed to attempt to refine the most informative neighbour subset for
positioning, rather than all neighbour messages in the above-mentioned methods. Inspired
by Global Navigation Satellite Systems (GNSS), Das and Wymeersch (2012) proposed the
Modified Bayesian Fisher Information Matrix (MBFIM), which combines Geometric Dilu-
tion Of Precision (GDOP) with the target’s prior information as the metric to remove the
unreliable neighbour information and applies this node selection scheme to SPAWN. In
contrast with Das and Wymeersch (2012), the factor of a neighbour’s uncertainty is con-
sidered by Velde et al. (2015) in the Greedy Censoring Scheme (GCS), which proposes
a Bayesian Cramer-Rao Lower Bound (BCRLB) censoring metric to predict the average
position accuracy and this scheme is applied to SPBP.

In addition, the bootstrap percolation scheme has brought a new perspective to coopera-
tive localisation due to its hierarchical gradual positioning (Lv et al., 2016; Vaze and Gupta,
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2012; Cai et al., 2014). The bootstrap percolation is introduced to iterative localisation to
solve the problem of the minimum number of anchor nodes under the condition that the
whole network is localised (Vaze and Gupta, 2012). In order to control the error propagation
in non-Bayesian cooperative localisation, a low-complexity linear least squares estimator
is designed in Cai et al. (2014) by using the bootstrap percolation with soft constraints.
In combining the bootstrap percolation with Non-parametric Belief Propagation (NBP)
Lv et al. (2016) proposed a space-time hierarchical-graph-based cooperative localisation
algorithm to reduce system overhead and control error propagation.

However, the direct use of a bootstrap percolation scheme without judgement may bring
a catastrophic problem to cooperative localisation. In cooperative localisation, positioning
error is related to the ranging error, the geometric configuration of reference nodes and
their uncertainties. A line will be formed when the reference nodes are approximately
collinear. In this case, target position estimation may be reflected on the other side of
the line, thereby causing an unbearable positioning error. This phenomenon is called “flip
ambiguity” (Kannan et al., 2010; Han et al., 2015; Wang et al., 2013). What is more, the
flip positioning result may propagate to the subsequent agent nodes, which may cause an
“avalanche” error propagation in the subsequent iterations, resulting in a failure to locate a
large portion of the agents.

In this paper, we focus on introducing the bootstrap percolation scheme into message-
passing-based cooperative localisation in dense WSNs. In order to eliminate the potential
flip ambiguities, an approximate collinear detection criterion considering the geometric
configuration and uncertainties of the neighbours is proposed, and then the quality of the
neighbour reference nodes is evaluated. Combining the detection results with the connec-
tion constraints, the agent nodes are divided into three categories, which are respectively
approximated by the ring distribution, the Gaussian mixture distribution1 and the Gaus-
sian distribution. Then, a layer-by-layer message propagation and updating mechanism
is designed to control the information propagation and mitigate the potential error prop-
agation. Additionally, the Gaussian parametric message passing method is proposed to
reduce the communication overhead and facilitate efficient message computation. Finally,
the system overhead and performance are evaluated.

2. SYSTEM MODEL. In WSNs, a small number of sensors with known positions are
referred to as anchors, while the others which need to be located by employing the ranging
information between their own neighbours are referred to as agents. Figure 1 shows a typ-
ical application of cooperative localisation in a road environment. In Figure 1, each agent
cannot independently estimate its position based on the ranging information associated with
the anchor nodes. In cooperative localisation, the agent can determine its own position by
exploiting peer to peer ranging and communication between neighbours. Therefore, com-
pared with non-cooperative localisation, cooperative localisation can significantly improve
the accuracy and coverage of the positioning.

We consider a two-dimensional WSN consisting of N anchor nodes and M agent nodes,
which can be denoted by sets ℕ and , respectively. We assume that all the nodes are UWB
sensors because of their peer-to-peer communication and relative distance measurement
capabilities. The position of the anchors is known exactly, and the agents are randomly

1 Note that the Gaussian mixture distribution refers to the Gaussian mixture distribution with two components
in this work.
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Figure 1. Diagram of cooperative localisation in a road environment.

scattered in the cooperative localisation area. Let xi = [xi yi]T be the position of node i.
The agent set M is divided into two subsets: the agents which have been located belong
to set C and the others still with unknown positions make up the set A. In cooperative
localisation, the located agents in set C have relatively small uncertainties, which can be
used to assist the agents in set A. The reference node set is defined as S = N ∪ C. The
reference nodes broadcast their own position information, while the agents belonging to
set A remain silent. Each node can range and communicate with neighbours within the
maximum sense distance R. We define notation Si as the reference node set received by
agent i. For each node j ∈ Si, the measurement distance from node j to node i is perturbed
by measurement noise as:

zj →i =
∥∥xj − xi

∥∥ + vj →i (1)

where ‖·‖ is the Euclidean norm and vj →1 ∼ N
(

0, σ 2
j →1

)
is the additive white Gaussian

measurement noise in the line of sight.
We define the notation Zi =

{
zj →i|∀j ∈ Si

}
as the range measurements set for node i.

The belief of agent node i, which serves as an approximation of the marginal a posteriori
distribution p (xi|Zi), is proportional to its prior distribution p (xi) and to the product of the
received messages corresponding to its reference nodes. Then the belief is given as:

b(xi) ∝ p(xi)
∏
j ∈i

mfi,j →i(xi) (2)

where belief b(xi) is an a posteriori distribution estimation of node i. mfi,j →i(xi) is the
message from node j to node i, which consists of three parts: the likelihood function
p
(
zj →i|xi, xj

)
associated with the ranging measurement between node i and j , the prior
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distribution of node j , and the messages merging into node j . According to the message
updating rule, mfi,j →i (xi) is calculated by:

mfi,j →i (xi) ∝
∫

p
(
zj →i|xi, xj

)
p
(
xj
) ∏

u∈Sj

mfj ,u→j
(
xj
)

dxj

∝
∫

p
(
zj →i|xi, xj

)
b
(
xj
)

dxj

(3)

3. PROPOSED MESSAGE PASSING ALGORITHM. In this section, we present the
proposed message passing-based cooperative localisation algorithm. It is well known that
the target should be connected to at least three non-collinear reference nodes to obtain
a two-dimensional position estimation. Based on this consensus, the idea of bootstrap
percolation subject to connection and geometric constraints is exploited to classify the
agent nodes. The connection constraint guarantees the number of reference nodes, and
the geometric constraint ensures that the reference nodes are not approximately collinear.
Considering the measurement errors, the approximate collinear reference nodes may lead
to a flip ambiguity of the target position estimation. In order to eliminate the potential flip
ambiguities, we propose an approximate collinear detection criterion to satisfy the geo-
metric constraint. Then, a layer-by-layer positioning mechanism is established associated
with the classification result. Finally, the Gaussian message passing localisation algorithm
is employed to locate the agents gradually, based on the proposed bootstrap percolation
scheme.

3.1. Message representation method. In distributed cooperative localisation, “mes-
sage” refers to the node’s position estimation and its uncertainty. In this work, the Gaussian
distribution is used to approximate the message of the reference node, and only five real
numbers (two are the mean vector and the other three are from the covariance matrix) need
to be broadcast for message passing.

Without loss of generality, for reference node j ∈ Si, we assume that b
(
xj
)

=
N (

µj , �j
)
, where µj is the mean and �j is the covariance matrix. The distance measure-

ment from node j to node i is zj →i, but the information regarding the direction is unknown.
Hence, the distribution of node i can be described as a ring distribution with a centre of xj
and a radius of r, which can be further expressed as:

xi = xj + r × [cos θ sin θ ]T (4)

where xj ∼ N (
µj , �j

)
, r ∼ N

(
zj →i, σ 2

j →i

)
, and θ ∼ U(0, 2π ]. It should be noted that if

node j is an anchor node, then �j = 0.
As shown in Figure 2, we assume x̂i is the estimation of the node i, and θ̂ =

angle
(
x̂i − µj

)
is the direction between node i and node j . In order to obtain the vari-

ance σ 2
j ,θ̂

associated with the marginal distribution of b
(
xj
)

along θ̂ , the coordinate system

is rotated anticlockwise by angle θ̂ . Then the covariance matrix of xj in the new coordinate
system is given as:

�j ,θ̂ = H T
θ̂
�j Hθ̂ (5)
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Figure 2. Variance estimation of Gaussian marginal distribution.

where:

Hθ̂ =

⎡
⎣cos

(
θ̂
)

− sin
(
θ̂
)

sin
(
θ̂
)

cos
(
θ̂
)
⎤
⎦ (6)

Hence, the σ 2
j ,θ̂

associated with the (1,1)-th element of �j ,θ̂ is shown as:

σ 2
j ,θ̂

=
[
cos

(
θ̂
)

, sin
(
θ̂
)]

�j

[
cos

(
θ̂
)

, sin
(
θ̂
)]T

(7)

The marginal distribution of xj along any direction is still a Gaussian distribution, thus, we
can rewrite Equation (4) as:

xi = µj + rθ × [cos θ sin θ ]T (8)

where rθ ∼ N
(

zj →i, σ 2
j →i,θ

)
and σ 2

j →i,θ = σ 2
j →i + σ 2

j ,θ .
Hence, the joint a posteriori distribution of xi is related to the number of received

neighbour nodes |Si|, which can further be considered as the overlapping areas of |Si|
rings. When |Si| = 2, the intersection area of the two rings is the estimation of the target’s
position. This is a bimodal distribution and we employ a Gaussian mixture distribution to
approximate it. For |Si| ≥ 3, a steady unimodal distribution is obtained when the number of
non-collinear reference nodes is no less than three and we approximate it with a Gaussian
distribution.

Without loss of generality, the equation set of observation between the target and its
neighbour reference nodes can be formulated as follows:⎧⎪⎨

⎪⎩
(x1 − xi)

2 + (y1 − yi)
2 = z2

1→i
...

(xn − xi)
2 + (yn − yi)

2 = z2
n→i

(9)

where n = |Si|. We define notation x̂a
i and x̂b

i as the solutions of Equation (9) when |Si| = 2,
and the notation x̂i for |Si| ≥ 3. Then the approximate distribution can be shown as follows:

p (xi|Zi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
(

xi; xj , zj →i, σ 2
j →i

)
, |Si| = 1

1
2

CJ
(
xi; x̂a

i , σ 2
i I
)

+
1
2

CJ

(
xi; x̂b

i , σ 2
i I
)

, |Si| = 2

CJ
(
xi; x̂i, σ 2

i I
)

, |Si| ≥ 3

(10)
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where the notations C and CJ refer to the ring and Gaussian distributions, respectively. In
the ring distribution, parameter xj is the centre of the ring and zj →i is the radius with a
variance σ 2

j →i. In the Gaussian distribution, parameter x̂i is the mean, σ 2
i I is the variance

matrix, and I is the identity matrix. For simplicity, let σ 2
i = max

{
σ 2

j →i,θ |∀j ∈ Si

}
.

According to the above analysis, it can be seen that the distribution of the target belongs
to the different families in terms of the number of the received reference nodes |Si|.
Therefore, for agent i, the message can be represented by randomly generating k samples
{xi (n), wi(n)}k

n=1 according to Equation (10). As an example, Figure 3 shows the generated
samples associated with different distribution families.

3.2. Approximate collinear detection criterion. There should be at least three refer-
ence nodes for a target node to achieve a two-dimensional position estimation, but this is a
necessary condition rather than a sufficient condition. Together with the existence of rang-
ing errors, an approximate collinear geometric configuration may cause a flip ambiguity for
the target. An illustration of flip ambiguity is shown in Figure 4, where the reference nodes
A, B and C are approximately collinear. Hence, the position of target O may be incorrectly
estimated at O′, where O and O′ are symmetrical about line AB. This flip ambiguity may
propagate to the subsequent target nodes and lead to a fatal impact on the overall network.

In order to avoid the flip ambiguity, we propose an approximate collinear detection cri-
terion to judge the geometric configuration of the reference nodes. As shown in Figure 5,
we assume that the reference node set of target node i is Si = {A, B, C, D, E, F}. Without
considering the covariance of the reference nodes, the distance between any two reference
nodes is calculated and the line with the maximum distance (for example, AB) is regarded
as the boundary. Then the remaining reference nodes are divided into two subsets, which
are Si1 = {C, D} and Si2 = {E, F}, respectively. We suppose that the reference nodes C and
E have the maximum vertical distance to line AB in each’s own subset, and their verti-
cal distances are di1 and di2, respectively. The reference node set {A, B, C, E} contains the
main geometric characteristic of the Si. Therefore, we just need to perform the approximate
collinear detection on {A, B, C, E}, rather than Si.

For the target node, its received message from the reference node is approximated by
N (µ, �). Here we take the reference node A in Figure 5 to further illustrate our detection
criteria. We define notation r as the Mahalanobis distance (De Maesschalck et al., 2000) of
a point x = [x, y]T to the reference node A, which is given as:

r2 = (x − µ)T �−1 (x − µ) (11)

It is well known that the locus of the point x is an ellipse when r is fixed. It is assumed that
the probability of a generated sample from the Gaussian distribution of the reference node
A falling into the ellipse with a certain Mahalanobis distance r is p , then the relationship
between r and p is deduced as follows:

r =
√

−2 ln(1 − p) (12)

We define notation ςA as the semi-major axis of the ellipse with a certain r, and notations
λ1 and λ2 as the two eigenvalues of the covariance matrix � associated with reference node
A. If λ1 > λ2, we have:

ςA = r
√

λ1 (13)

The detailed derivation is presented in (Bensimhoun, 2009).
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Figure 3. Examples of generated samples from different distribution families for agent nodes. (a) |Si| = 1, the ring distribution; (b) |Si| = 2, the Gaussian mixture
distribution; (c) |Si| ≥ 3, Gaussian distribution.
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Figure 4. An illustration of flip ambiguity.

Figure 5. The geometric configuration of the reference node set for a target. The uncertainty ellipses represent
the confidence interval of probability p .

As shown in Figure 5, for reference node A, d⊥A, the maximum vertical distance of a
point X on the ellipse to the line AB, is satisfied as:

d⊥A ≤ dAX ≤ ςA (14)

where dAX is the distance from point X to the ellipse centre. It is obtained that d⊥B ≤ ςB
for reference node B in the same way. Then it can be shown that:

d⊥m = max {d⊥A, d⊥B} ≤ max {ςA, ςB} = ςm (15)

Without loss of generality, it is assumed that di1 ≥ di2 as shown in Figure 5, and a threshold
ε̄ > 0 is predefined. Then, the approximate collinear detection criterion is shown as:{

di1 + di2 − ςC − ςE − 2ςm > ε̄ s.t. di2 ≥ ςm + ςE
di1 − ςC − ςm > ε̄ s.t. di2 < ςm + ςE

(16)

Hence, it is considered that the reference nodes are not approximately collinear when their
geometric configuration satisfies the constraint of Equation (16), otherwise, it may lead to
flip ambiguity in the network.
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3.3. Bootstrap percolation scheme. In this subsection, the bootstrap percolation
scheme is introduced into message passing-based cooperative localisation to control the
information propagation between neighbours. We define notation ℍ1 as the set of agent
nodes which are located in the l-th iteration. Then, the set of located agent nodes given by
the previous l iterations is achieved as:

ℂl = ∪
m

H
m, m = 1, 2, · · · , l − 1 (17)

Therefore, in the l-th iteration, the set of reference nodes is l = ℕ ∪ ℂl, and the set of
the remaining agents with unknown position is l = l\ℂl. Here, we define the piecewise
function Tf (·) which is associated with the number of reference nodes of the target i as:

Tf (|i|) =

⎧⎪⎨
⎪⎩

1, |i| = 1,
2, |i| = 2,
3, |i| ≥ 3,

(18)

Then, A
l is divided into three subsets, which are denoted as:

A
l
t =
{
i|i ∈ A

l, Tf
(∣∣Sl

i

∣∣) = t
}

(19)

where t = 1, 2, 3. As analysed in Section 3.1, the distribution of the target i is a ring when
i ∈ A

l
1, and it is a Gaussian mixture distribution in the case of i ∈ A

l
2. However, for i ∈ A

l
3,

according to the approximate collinear detection result of Si, it may have two different types
of distribution: the Gaussian mixture distribution and the Gaussian distribution. Therefore,
for each target i ∈ A

l
3, we assume i ∈ A

l
3+ if it satisfies Equation (16), otherwise, we assume

i ∈ A
l
3−. Combining the approximate collinear detection result with the function Tf (·), we

re-divide A
l as:

B
l
c =

⎧⎪⎨
⎪⎩

A
l
1, c = 1,

A
l
2U A

l
3−, c = 2,

A
l
3+, c = 3,

(20)

where c is the confidence threshold and c = 1, 2, 3.
It can be seen from Equation (20) that the agent nodes belonging to B

l
3 have the highest

confidence and can be located without flip ambiguities. Thus, H
l = B

l
3 when B

l
3 �= ∅, while

the agent nodes belonging to B
l
1 and B

l
2 just update their distribution. As the iteration

proceeds, B
l
2 will replace B

l
3 to be located when B

l
3 = ∅, and H

l = B
l
2 is achieved. To this

end, all the agent nodes will be located in this layer-by-layer manner. According to this
scheme, the subset with the highest confidence has the priority to be located, thus, H

l can
be described as:

H
l =
{
i|i ∈ B

l
c, c = max{1, 2, 3}} , s.t. B

l
c �= ∅ (21)
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The detailed bootstrap percolation scheme is summarised in Algorithm 1.

Algorithm 1 Bootstrap percolation scheme.

1. Initialisation: The sets of located agent nodes, the reference nodes and the agent
nodes with unknown position are C

1 = ∅, R
1 = N and A

1 = M, respectively.
2. for iteration l = 1 to L.
3. Divide A

l into three subsets A
l
1, A

l
2 and A

l
3 using Equation (19).

4. For each node i ∈ A
l
3, execute approximate collinear detection using

Equation (16) and divide A
l
3 into A

l
3− and A

l
3+ in terms of the detection result.

5. Re-divide the A
l using Equation (20).

6. Obtain the agent node set H
l which are located in the l-th iteration using

Equation (21).
7. For each node i ∈ H

l, estimate its position with Algorithm 2.
8. Update the sets with C

l+1 = C
l ∪ H

l, R
l+1 = R

l ∪ H
l, and A

l+1 = A
l \ H

l,
respectively.

9. end for

3.4. Message computation and updating. As mentioned above, the reference node
set includes two types of nodes: the anchor nodes with exact position and the located agent
nodes with a certain uncertainty. According to the message computation rule shown in
Equation (3), the message from anchor a to target i is simplified as:

Mfi,a→i(xi) ∝ p (za→i|xi, xa) ∝ 1√
2πσ 2

a→i

exp

{
− (za→i − ‖xa − xi‖)2

2σ 2
a→i

}
(22)

where xa is the position of anchor a.
For the agent node j ∈ Si, the message from node j to target i is expressed as:

mfi,j →i(xi) ∝
∫

exp

{
−
(
zj →i − ‖xj − xi‖

)2

2σ 2
j →i

}
N (

µj , �j
)

dxj (23)

It is not possible to compute the Two-Dimensional (2D) integrations in Equation (23)
directly because of the nonlinearity of the ranging likelihood function. The nonlinear
equation

∥∥xj − xi
∥∥ is linearized by using a first-order Taylor expansion around the position

estimations of node i and j , which is shown as:

∥∥xj − xi
∥∥ =

∥∥x̂j →i
∥∥− x̂j →i∥∥x̂j →i

∥∥ (xj − μj
)

+
x̂j →i∥∥x̂j →i

∥∥ (xi − x̂i
)

=
∥∥x̂j →i

∥∥− x̂j →i∥∥x̂j →i
∥∥ [(xj − xi

)
+ x̂j →i

] (24)

where x̂j →i = x̂i − µj . Substituting Equation (24) into Equation (23), Equation (25) may
be derived:

mfi,j →i (xi) ∝ exp

⎡
⎣−1

2

(
x̂j →i − zj →i

x̂j →i∥∥x̂j →i
∥∥
)T

�−1
j +z

(
x̂j →i − zj →i

x̂j →i∥∥x̂j →i
∥∥
)⎤⎦ (25)
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where �j +z = �j + σ 2
j →iI.

According to the message update rule, the weights of the samples for target i can be
updated as follows:

wl
i(n) = wl

i(n)
∏
j ∈Si

mfi,j →i
(
xl

i(n)
)

(26)

Normalising the samples so that
∑k

n=1 wl
i(n) = 1, we then estimate the mean and covariance

of target i as follows:

µi =
k∑

n=1

wi(n)xi(n) (27)

�i =
∑k

n=1 wi(n)
(
xi(n) − µi

) (
xi(n) − µi

)T

1 −∑k
n=1(wi(n))2

(28)

In the subsequent iterations, the agent node i is treated as a reference node to broadcast its
Gaussian parameters

(
µi, �i

)
to its neighbours.

Based on the analysis above, the proposed cooperative localisation with bootstrap
percolation scheme is described in Algorithm 2.

4. SYSTEM OVERHEAD. In this study, the communication overhead is reduced
by: (1) adopting a Gaussian parametric message passing rule and (2) censoring and
blocking the agents with unknown position from broadcasting their messages. Thus, the
communication overhead of the entire network of the proposed algorithm is 5

∣∣Cl
∣∣ per iter-

ation, while that of H-SPAWN (Caceres et al., 2011) and GCS (Velde et al., 2015) is 5M ,
where

∣∣Cl
∣∣ ≤ M . For smaller l, this variation is larger. For SPAWN (Wymeersch et al.,

2009), it is 3kM , where k is the number of weighted samples.
Computational complexity is related to the number of samples and the number of mes-

sages involved in positioning. The complexity is proportional to the number of samples
for the proposed algorithm and H-SPAWN, while for SPAWN, it relies on the square of
the number of samples. It should be noted that since the proposed algorithm makes full
use of the reference nodes to roughly estimate the target’s distribution, the number of used
weighted samples in the proposed algorithm (for example, 200) is much smaller than for
SPAWN and H-SPAWN (for example, 2,000). GCS exploits an SPBP algorithm to estimate
the target position, and its complexity is cubic in the number of sigma points and, also, in
the number of selected neighbour nodes K (Meyer et al., 2014).

The average number of neighbours involved in positioning is exploited to evaluate the
influence of the proposed bootstrap percolation scheme on the complexity. We consider
a a × a cooperative localisation area with N anchors and M agents. Assuming that the
maximum sense distance between nodes is R, for each target node in SPAWN and H-
SPAWN, the average number of links connected to neighbours is:

M SPA =
N + M

a2 × πR2 = π (N + M )

(
R
a

)2

(29)
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Algorithm 2 Proposed cooperative localisation algorithm with bootstrap percola-
tion scheme.

1. Initialisation: Set the boundary of the area-of-interest and the prior information of
the nodes (for example, Dirac delta function for anchors and random distribution
for agents)

2. For each agent node i, generate k samples
{
xl

i(n), wl
i(n)

}k
n=1 according to

Equation (10).
3. for iteration l = 1 to L
4. for each located agent i ∈ C

l

5. Compute the message from anchor node using Equation (22).
6. Compute the message from agent node using Equation (25).
7. Update the weights using Equation (26).
8. Estimate the Gaussian parameters

(
µl

i, �
l
i

)
using Equations (27) and (28).

9. Broadcast
(
µl

i, �
l
i

)
to the neighbours; randomly generate k samples{

xl+1
i (n), wl+1

i (n)
}k

n=1 according to N (
µl

i, �
l
i

)
and set

wl+1
i (n) = exp

[
1
2
(
xl+1

i − µl
i

)T (
�l

i

)−1 (xl+1
i − µl

i

) ]
.

10. end for
11. for each agent i ∈ A

l

12. if receive new message then
13. if i ∈ H

l then
14. Estimate its position using step 5∼9.
15. else
16. Update its distribution and generate k samples.
17. end if
18. else
19. Waiting the new message.
20. end if
21. end for
22. Update the sets in bootstrap percolation scheme.
23. end for

GCS uses a fixed number of neighbour nodes K . While for the proposed algorithm, the
agents with unknown position remain silent, thus, the average number is:

M PRO =
N +

∣∣Cl
∣∣

a2 × πR2 = π
(
N +

∣∣Cl
∣∣) (R

a

)2

(30)

In addition, it should be noted that all the M agents need to be computed in SPAWN,
H-SPAWN and GCS, but for the proposed algorithm, only the agents belonging to set
C

l ∪ H
l need to be computed. The detailed communication overhead and computational

complexity of the three algorithms are summarised in Table 1.

https://doi.org/10.1017/S0373463319000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000171


1288 YANGYANG LIU AND OTHERS VOL. 72

Table 1. System overhead comparison.

Algorithm Communication Complexity Typical K

Proposed 5
∣∣Ci
∣∣ O

((∣∣Cl
∣∣ +
∣∣Hl
∣∣)M PROk

)
100∼500

SPAWN 3kM O
(
MM SPAk2) 1,000∼10,000

H-SPAWN 5M O
(
MM SPAk

)
1,000∼10,000

GCS 5M O
(
MK3k3) 15∼75

(a) (b)

Figure 6. The performance of the approximate collinearity detection criterion, where σ = 0·5 m and ε̄ varies
from 0·2 m to 2 m. (a) Missed alarm. (b) False alarm.

5. SIMULATION RESULTS AND DISCUSSIONS.
5.1. Evaluation of the approximate collinear detection criterion. In this subsection,

the performance of the approximate collinear detection criterion (Equation (16)) is eval-
uated by numerical simulations. First of all, it is essential to determinate whether the
estimated position is a flip ambiguity or not. In Kannan et al. (2010), any position error
larger than R/5 is treated as a substantial flip ambiguity. This metric is not appropriate
when the ranging noise changes. In Han et al. (2015), a flip ambiguity is defined as where
the target position result and its actual position are not at the same side of the reference
nodes. However, this definition is too loose for a sample-based message passing coop-
erative localisation algorithm. In our definition, it is not a flip ambiguity if the position
result meets the following conditions at the same time: (1) the position result and its actual
position are at the same side of the reference nodes and (2) the position result must fall
within the 95% confidence interval of its prediction distribution obtained by Equation (10).
Otherwise, we assume it is a flip ambiguity.

Figure 6 illustrates the ratios of missed alarm and false alarm of the proposed approx-
imate collinear detection criterion with respect to the predefined threshold ε̄. In each
simulation, 10,000 detections were randomly generated. The ranging noise was σ = 0·5 m
and the predefined threshold ε̄ varied from 0·2 m to 2 m. Figure 6(a) shows the ratio of
missed alarm to all the flip occurrences. It can be seen from Figure 6(a) that this ratio
always maintains a very low probability with different ε̄, even in the case of ε̄ = 0·2 m;
the highest ratio is only 0·65%. Figure 6(b) shows the ratio of false alarms to all the non-
colinear estimations. It can be observed that as increases, the ratio of false alarms also
increases and it is up to 35·1% when ε̄ = 2 m.
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(a) (b)

Figure 7. The performance of the approximate collinearity detection criterion, where ε̄ = σ/2σ/3σ and σ

varies from 0·2 m to 2 m. (a) Missed alarm. (b) False alarm.

The influence of the ranging noise and threshold on the detection performance is shown
in Figure 7. The threshold is set to ε̄ = σ/2σ/3σ , and the ranging noise varies from 0·2 m
to 2 m. As is clearly shown in Figure 7, both the ratios of missed alarms and false alarms
increase with the increase of σ . When σ is fixed, as ε̄ increases, the ratio of missed alarms
reduces, but the ratio of false alarms increases. Specifically, taking σ = 2 m as an example,
when the values of ε̄ are σ , 2σ and 3σ , the ratios of missed alarms are 1·2%, 0·85% and
0·59%, showing a downtrend, while the ratios of false alarms present an uptrend; they are
45·5%, 52·4% and 59·4%, respectively. The extremely low missed alarms ratio reflects the
excellent reliability of the detection scheme. In the case of a large σ , the high false alarms
ratio may bring a negative impact on the localizability of the entire network.

5.2. Small-scale experiment. To validate the proposed algorithm, a small wireless
network with eight nodes was built in the outdoor open area of our university. The UWB
node is shown in Figure 8, which consisted of a DWM1000 radio sensor and a 32-bit ARM
Cortex-M3 processor as the control unit. The DWM1000 is an IEEE802.15.4-2011 UWB
compliant wireless transceiver module based on DecaWave’s DW1000 IC, which supports
high-density data transmission within a radius of 20 m. As shown in Figure 8, the anchor
node and the static agent node were fixed on the tripod, and the mobile agent node was
fixed on the pedestrian’s helmet.

The experimental deployment contained three anchor nodes (Anchors 1, 2, 3), three
static agent nodes (Agents 1, 2, 3) and two mobile agent nodes (Agents 4, 5) moving along
the trajectories (black line) are shown in Figure 9. In our experiment, the coordinates of the
anchors were known exactly, and the agents had no useful information about their location.
Throughout the experiment, the connectivity of the five agent nodes are shown in Table 2.
It can be seen that the agent node is connected to at most two anchor nodes, and sometimes
even three of them are connected to only one anchor, which indicates that none of the agent
nodes can estimate its position using the non-cooperative localisation method.

In one of our experiments, the positioning results of the agent nodes are also shown
in Figure 9. It can be seen that the position estimates of the three static agent nodes are
all close to their true values. In particular, the position estimation of static agent node 1
has the smallest dispersion and the highest accuracy because it can be connected to two
anchor nodes and its neighbours have a good geometric distribution. The two blue dotted
lines are the estimated trajectories of the mobile agent nodes. It is shown that the estimated
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Figure 8. Outdoor positioning environment.

Figure 9. The deployment of the wireless network and the positioning results.

Table 2. Connectivity of the agent nodes in Figure 9.

Agent index Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

To Anchors (Max) 2 2 1 2 2
To Anchors (Min) 2 2 1 1 1
Total (Max) 6 6 5 6 6
Total (Min) 5 5 4 5 4
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Figure 10. The Cumulative Distribution Function (CDF) of the positioning results of the five agent nodes.

trajectories are consistent with the given paths, indicating that the mobile agents can also
achieve accurate position estimation.

The coordinates of the three static agent nodes can be accurately measured manually.
Hence, the position error of the static agent at time slot t is defined as

∥∥∥x̂(t)
i − x

∥∥∥. For the

mobile agent node, the projection of each estimated position x̂(t)
i on the given path is first

calculated and denoted as x̂(t)
i,proj and then its positioning error is defined as

∥∥∥x̂(t)
i − x̂(t)

i,proj

∥∥∥.
The CDF of the positioning error corresponding to the five agents is shown in Figure 10.
In Figure 10, SPAWN and H-SPAWN are employed as baselines for comparison. As is
shown, the performance of the proposed algorithm is very close to that of SPAWN, while it
is obviously better than that of H-SPAWN. It can be seen that the ratio of positioning errors
less than 0·4 m is 84·85% in the proposed algorithm, which is only 1·71% lower than that
achieved by SPAWN but is 7·76% higher than that of H-SPAWN. Note that in this small-
scale network, the communication overhead and the complexity of the proposed algorithm
is slightly lower than that of H-SPAWN and significantly lower than that of SPAWN. Thus,
the results show that our algorithm archives high accuracy with low system overhead in
practical applications.

5.3. Large-scale scenario. We considered a 100 × 100 m2 cooperative localisation
area with N anchors and M agents. The maximum sense distance between nodes was R =
20 m and the ranging measurement noise was assumed to be an additive white Gaussian
noise with zero mean and a standard deviation of σ . The iteration number was assigned as
L = 10.

A single trial performance of the proposed algorithm is shown in Figures 11 and 12.
The simulation configurations were N = 13, M = 100, σ = 0·5 m and ε̄ = σ . The overall
performance of the proposed algorithm is illustrated in Figure 11, where ‘	’ and ‘·’ denote
the actual position of anchor nodes and agent nodes, respectively. The circles illustrate
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Figure 11. The overall performance of the single trial localisation.

the sense area of the anchor nodes, and the line connects an agent’s estimated position
and its true position. To reflect the proposed bootstrap percolation scheme intuitively, four
notations are used to represent the position results which are located in different iterations.
Represented by the red ‘∗’, the agents, which are connected to no less than three anchors,
can be located in the first iteration with a high accuracy. The blue ‘◦’ represent the agents
which are located in the second iteration with the assistance of the red ‘∗’. The green ‘�’
is the position estimation of the agents located in the third iteration. The remaining agents
are located in the subsequent iterations gradually and are presented by purple ‘�’. As is
shown in Figure 11, the agents which are located in the preceding iterations always act as
reference nodes to assist the remaining agents in the subsequent iterations. In this way, all
the agent nodes will be located layer-by-layer.

A different view is offered in Figure 12, showing the evolution of the positioning error
of 100 agents versus the iteration index in the single trial localisation. According to our
bootstrap percolation scheme, in each iteration, only the agents satisfying our conditions
can be located. As can be seen from Figure 12, as the number of iterations increases, the
number of agents that can be located increases in a layer-by-layer manner. In particular, it
is observed that in the first iteration, only 11 agents (that is, red ‘∗’ agents in Figure 11) can
be located and their positioning errors are all less than 1 m. With the assistance of the red
‘∗’ agents, another 38 agents (that is, blue ‘◦’ agents in Figure 11) are located in the second
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Figure 12. The contour plot of the positioning error of 100 agents versus the iteration index.

iteration. Therefore, in the second iteration, a total of 49 nodes can be located, 46 of which
have an accuracy of 1·5 m. This number increased to 67 in the third iteration. Finally, all
agents but one, which only has two neighbours, can be located to within 1·4 m by the tenth
iteration.

Considering the randomness of both the agents’ deployments and ranging errors, the
following results are obtained by averaging 100 Monte Carlo simulations.

With varying ranging noises and detection thresholds, the CDFs and RMSE of the pro-
posed algorithm are shown in Figure 13. Simulation configurations are N = 13, M = 100,
σ = 0·2 m/0·5 m/1·0 m and ε̄ = σ/2σ/3σ . As expected, it can be seen from Figure 13(a)
that the influence of the different detection threshold ε̄ on the overall positioning perfor-
mance is almost negligible. The reason is that the ratio of missed alarms remains steady
at a very low level with different ε̄. Ranging noise determines the positioning accuracy of
the proposed algorithm. As is shown, the fraction of positioning errors below 1 m is 98·4%
when σ = 0·2 m, which is higher than that (95·2%) obtained when σ = 0·5 m, as compared
to only 71·4% with σ = 1 m. From Figure 13(b), we can see that the influence of ε̄ on the
proposed algorithm is reflected in the iteration process of the positioning. In particular, in
the third to fifth iterations, the value of the RMSE increases with the increase of ε̄ when
σ is constant. This is because the ratio of the false alarms increases with ε̄, resulting in a
decrease of the number of localised nodes. In the sixth iteration, it has B

6
3 = ∅ in most sim-

ulations. According to our bootstrap percolation scheme, the set of agent nodes which are
located in the sixth iteration becomes H

6 = B
6
2, reducing the gap of RMSE rapidly. Thus,

we can say that our bootstrap percolation scheme is a good supplement to the approximate
collinear detection, which can effectively solve the localizability problem caused by the
false alarms.

Figure 14 shows the CDF of different algorithms for two networks. Network 1 includes
13 anchors and 100 agents. Network 2 has 13 anchors and 50 agents. The ranging noise is
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(a) (b)

Figure 13. The positioning performance of the proposed algorithm. (a) The CDFs versus the positioning
errors; (b) The Root Mean Square Error (RMSE) versus the iteration index.

Figure 14. CDF comparison for Network 1 and Network 2.

set to σ = 0·25 m. In Network 1, on average, the target node is connected to 12·57 neigh-
bour agents, while this number is reduced to 6·28 for Network 2. The performance of
Network 1 is better than that of Network 2. It is observed that SPAWN achieves the high-
est accuracy, which is at the expense of a tremendous system overhead. Both the proposed
algorithm and H-SPAWN adopt a Gaussian parametric message passing rule, but the perfor-
mance of the proposed algorithm is superior to H-SPAWN. The reason is that the bootstrap
percolation scheme proposed in this work not only makes full use of all beneficial informa-
tion, but also efficiently mitigates the error propagation in the entire network. In Network
1, the average Central Processing Unit (CPU) running time required per iteration of the
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proposed algorithm, H-SPAWN, GCS and SPAWN is 1·62 s, 5·79 s, 93·57 s and 218·52 s,
respectively. Therefore, the results show that compared with H-SPAWN, our algorithm
achieves a higher accuracy at roughly a quarter of its execution time.

6. CONCLUSION. In this work, a bootstrap percolation scheme is introduced into a
Gaussian parametric message passing-based cooperative localisation algorithm to reduce
the system overhead and mitigate the potential error propagation in dense WSNs. In partic-
ular, a layer-by-layer message propagation and updating mechanism is designed to locate
agents gradually. In each iteration, only the subset with the highest confidence can be
located and the others just update their distribution. To solve the potential flip ambiguity
problem, we introduce a simple and efficient criterion to identify the approximate collinear
geometric configuration of the reference node set. This criterion exploits Mahalanobis
distance to evaluate the influence of neighbours’ uncertainties on the flip ambiguity. Sim-
ulation results demonstrate that this criterion obtains an extremely low missed alarm ratio
and our adaptive bootstrap percolation scheme can effectively solve the localizability prob-
lem caused by the false alarms ratio. The analysis and simulation results also show that the
proposed algorithm reduces the system overhead while keeping the high accuracy of the
networks. In our future work, a mixed message passing rule may be exploited to remove
the ambiguity of the Gaussian mixture distribution, and the proposed algorithm may be
extended to Non-Line Of Sight (NLOS) conditions for a wide range of applications.
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