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Abstract

Configuration of large-scale applications in an engineering context requires a modeling environment that allows the design
engineer to draft the configuration problem in a natural way and efficient methods that can process the modeled setting and
scale with the number of components. Existing configuration methods in artificial intelligence typically perform quite well
in certain subareas but are hard to use for general-purpose modeling without mathematical or logics background (the so-
called knowledge acquisition bottleneck) and/or have scalability issues. As a remedy to this important issue both in theory
and in practical applications, we use a standard modeling environment like the Unified Modeling Language that has been
proposed by the configuration community as a suitable object-oriented formalism for configuration problems. We provide a
translation of key concepts of class diagrams to inequalities and identify relevant configuration aspects and show how they
are treated as an integer linear program. Solving an integer linear program can be done efficiently, and integer linear pro-
gramming scales well to large configurations consisting of several thousands components and interactions. We conduct an
empirical study in the context of package management for operating systems and for the Linux kernel configuration. We
evaluate our methodology by a benchmark and obtain convincing results in support for using integer linear programming
for configuration applications of realistic size and complexity.

Keywords: Configuration; Integer Linear Programming; Linux Kernel Configuration; Package Management; Unified
Modeling Language

1. INTRODUCTION

The design and configuration of software and hardware systems
has a long tradition as a key discipline in computer science and
artificial intelligence (AI). A configuration (task) is “character-
ized through a set of components, a description of their proper-
ties, namely attributes and possible attribute values, connection
points (ports), and constraints on legal configurations” (Felfer-
nig et al., 2000, p. 450). The Alliance for Telecommunications
Industry Solutions (2000) defines configuration as the arrange-
ment of functional units according to their nature, number, and
chief characteristics where functional units may encompass any
form of component (e.g., integrated circuits, software programs,
or building parts in a car). A configuration task means the pro-
cess of setting up admissible arrangements under certain criteria
of optimality (e.g., minimal number of components or prefer-
ences when connecting components).

Important criteria for the solution of a configuration task
are the computation of the components to be included in

the solution, the type of information on each of these compo-
nents, the way the components are connected, and the values
for the attributes of each component (Mailharro, 1998).

Existing methods and results in AI tackle a broad spectrum
of applications. However, especially in an engineering con-
text we are faced with unique challenges. The complexity
and size of real-world systems is steadily increasing (e.g.,
the number of transistors in recent multicore processors or
the number of product configurations in the automotive sec-
tor). As a consequence, there is a big demand for efficient
techniques in configuration that scale well with large systems
consisting of tens of thousands of components and even more
interactions among them.

Tool support for assisting the engineer in designing such
large systems is fundamental as manual handling and inspec-
tion becomes inherently complex. Moreover, the engineer has
to deal with a diverse set of configuration tasks: checking the
consistency of component systems, reasoning over system
properties, finding minimal models, repairing inconsistent
configurations due to modifications in the original design,
or finding a viable layout for components under physical con-
straints. Numerous additional constraints like subclassing or
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equational constraints on links between components might
occur depending on the modeled scenario.

Proper handling of such tasks requires rigorous techniques,
known as formal methods in computer science. Unfortu-
nately, a main drawback of powerful formal methods is the
so-called knowledge acquisition bottleneck because the de-
sign engineer must have a substantial mathematical back-
ground for understanding and applying a formal methodol-
ogy correctly. Another drawback of such machinery is their
high computational complexity (Stumptner, 1998; Falkner
et al., 2011) on larger use cases.

Consequently, lightweight formal methods have been pro-
posed (Jackson & Wing, 1996) to ease the implementation of
formal techniques in real-world systems, to tackle the knowl-
edge acquisition bottleneck, and to allow reasoning in a
(semi)automatic way. Lightweight formal methods are char-
acterized by “partiality and focused application” (Jackson
& Wing, 1996). That means full formalization of complete
systems with all properties is not tractable owing to the ex-
pressiveness of employed formalisms and their inherent com-
plexity. Instead, we should focus on relevant properties and
employ efficient methods to check them. In the end, the suc-
cess of formal methods (lightweight or not) will also depend
on whether the engineer is comfortable with using them in his
design environment.

The Unified Modeling Language (UML; Object Manage-
ment Group, 2011) is one of the most prominent modeling
frameworks, and it has also been increasingly used for the de-
sign of component systems for configuration (Felfernig et al.,
2000, 2002, 2003; Falkner et al., 2010). A range of techniques
for formal reasoning on UML diagrams exists; however, basi-
cally all of them are computationally quite expensive because
they use expressive formalisms (like first-order logic) for cap-
turing the intended semantics of UML. This is especially rele-
vant when dealing with numerical constraints that are very
common in configuration (e.g., relating the number of compo-
nents that are allowed to interact with each other).

Following the spirit of lightweight formal methods and
combining them with widely used modeling frameworks
like UML, we therefore recently proposed to use integer lin-
ear programming (ILP) by translating the most basic con-
structs (classes, associations, and multiplicities) of UML
class diagrams to Diophantine inequalities (Feinerer, 2007;
Feinerer & Salzer, 2007), that is, inequalities over variables
with integer domain. Although addressing important basic
aspects, several open issues have been identified that are
highly relevant in real-world configuration applications (Falk-
ner et al., 2010) but are not yet fully dealt with, including
subclassing, partial configurations, and immediate feedback.

Thus, our primary objectives are lightweight formal
methods for solving a configuration task supporting the full
range of language elements necessary for modeling real-
world applications, which are highly efficient and which
scale well with large systems in the hardware and software do-
mains. To achieve these goals, the main contributions of this
paper are a unified theory using ILP principles that allows us

to model real-world configuration scenarios and constraints
and an experiment consisting of two large-scale applications
with benchmarks to show the applicability of our approach.
We see our approach as a further step toward exploring tract-
able cases in configuration (in contrast to the NP-hardness of
configuration in general) and providing intuitive interfaces
toward achieving this goal.

Solving an ILP corresponds to checking the consistency of
a configuration (i.e., can the system of inequalities be solved
at all) and to finding optimized models (because we will mini-
mize a corresponding objective function). Partial configura-
tions can be used as initial solutions in an ILP (the number
of existing components corresponds to the variable values
in the ILP), and immediate feedback is possible because the
variables in the solution of the ILP correspond to components
in a configuration. Note that we ignore attributes of compo-
nents in our approach. Connecting the components computed
by the ILP is not covered in this paper; however, an algorithm
based on uniform distribution of links by Feinerer (2007) can
be used for generating a topology (i.e., how components are
linked) from an ILP solution.

Because the generation of an ILP is automatic for the main
constructs of a given UML class diagram, we are able to pro-
vide an intuitive interface. UML class diagrams can be easily
created and maintained with any standard compliant diagram
editor. Customized plug-ins and tools can directly display in-
consistencies detected by our underlying ILP methods. This
gives us a visual representation that is easy to use and interpret
for a broad range of users owing to UML standard compli-
ance. Nonetheless, we have an exact syntax and semantics
for formal reasoning under the hood by restricting the allowed
language elements to a well-defined subset of UML class dia-
grams.

The two applications presented in this paper are configura-
tion tasks in the context of package management for the De-
bian GNU/Linux operating system and for the Linux kernel.
Both applications were chosen because their sources are pub-
licly available, which allows for better reproducible research
(compared to many examples that are limited in distribution
because they come from an industrial setting with restrictive
permissions); are large scale with thousands of components;
and are of interest to a broad audience (e.g., package manage-
ment is a core task in every Debian GNU/Linux installation
worldwide).

The remainder of this paper is structured as follows. Section
2 demonstrates how central concepts necessary for configura-
tion can be modeled with UML class diagrams or similar mod-
eling frameworks. Section 3 shows how to translate such dia-
grams to an integer linear program and how to encode
concept hierarchies, multiple links, and conflicts as linear con-
straints. This forms a unified theory that can be solved with any
ILP solver. Section 4 describes both application settings and
how they are modeled in our framework, and Section 5 shows
a benchmark experiment and evaluates our ILP approach for
both applications. Section 6 puts our work in context with re-
lated work, and Section 7 presents our conclusions.
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2. MODELING SYSTEMS FOR CONFIGURATION

Before configuring technical systems, an engineer needs to
have an exact specification of its underlying structure. The
main work consists of specifying functional units and compo-
nents and their interrelationships. Numerous additional con-
straints can be added once the fundamental interactions are
clear. Modeling entities and their relationships has a long his-
tory in computer science, with entity relationship (Chen, 1976)
diagrams and UML (Object Management Group, 2011) dia-
grams as the most commonly used formalisms nowadays. Be-
cause of their widespread use over the last decades and the
availability of a multitude of (both commercial and open
source) modeling tools, most engineers are familiar with
such frameworks. Using such a formalism is therefore a natural
and conservative starting point when modeling systems of in-
terest as the basis for configuration (Felfernig et al., 2000).

2.1. General case

Consider the example depicted in Figure 1. It models two
components, C and D. Each component C must have between
between m1 and m2 partners of type D, and each component D
must have between n1 and n2 partners of type C in turn. In
UML terminology, C and D are classes, the relationship be-
tween them is denoted as an association, and the numerical
intervals constraining the association are called multiplicities
or cardinalities.

Such a diagram already captures our intuition about the de-
sired semantics. However, there are several hidden intrica-
cies.

2.2. Lower bound constraints

Without additional constraints, any formal reasoner will re-
frain from instantiating any objects at all when searching
for minimal models. This is because UML diagrams do not
implicitly enforce the existence of individual objects. This
can be easily fixed with a constraint stating there needs to
be at least one C object, for example, expressed in the Object
Constraint Language (OCL; Object Management Group,
2012):

context C inv: C.allInstances()�.size() . 0:

2.3. Multiple links

Next, it makes a difference whether we allow multiple links
between the same objects or not. In some cases it is desirable,
like multiple redundant network cables between two

switches, whereas often it is not and an indication of a design
error. UML allows us to change this behavior via the multipli-
city attribute “(non)unique.” The default is unique, which for-
bids (or ignores) multiple links between the same objects, and
we stay with this convention when not otherwise explicitly
stated.

When mixing unique and nonunique on the same associa-
tion, there are subtleties with the semantics of a valid instance
of the UML class diagram. Consider Figure 1 and assume that
n1 ¼ 1, n2 ¼ 2, m1 ¼ 3, and m2 ¼ 4 and that the end of the
association near D is marked as nonunique. Then Figure 2
shows a valid instance with only two D objects (note that
m1 ¼ 3). This is because c1 has three different links to objects
of class D and is not necessarily connected with three differ-
ent objects, corresponding to the nonunique attribute. Conse-
quently, we recommend avoiding mixed associations unless
the designer is aware of the underlying semantics of such con-
structs. Instead, associations with symmetric attributes (i.e.,
either unique or nonunique on all association ends) can be
used to model a broad class of constructs.

Besides the basics of managing functional units and their
relationships, several additional features are necessary to al-
low an engineer to model realistic systems for configuration,
like handling mutually exclusive components or conflict
handling.

2.4. Subclassing

Subclassing relates similar components in a hierarchy, typ-
ically with a single superclass and multiple inherited sub-
classes. When modeling component systems, subclassing is
primarily used to express disjunction in either the normal
(logical or) or the exclusive (logical xor) form.

Consider Figure 3, which depicts the situation that two
(sub)classes, C1 and C2, share a common structure and are
thus related to the common superclass C via a generalization
in UML. The idea behind this construct is that either C1 or C2

can be used when somebody asks for a component of type C.

Fig. 3. Generalization with superclass C and two subclasses, C1 and C2.

Fig. 2. A valid instance of Figure 1 for n1 ¼ 1, n2 ¼ 2, m1 ¼ 3, m2 ¼ 4, when
the end of the association near D is marked as nonunique.

Fig. 1. Two classes, C and D, a binary association between them, and multi-
plicities restricting the number of allowed links.
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If it is allowed that both C1 and C2 are instantiated at the same
time, we can use the diagram as is. Otherwise, the additional
UML constraint fxorg needs to be added (in the form of a
dashed line between the associations connecting C1 with C
and C2 with C ).

2.5. Conflicts

Similarly to the constraint that only one out of multiple compo-
nents can be chosen, some may be incompatible with others.
For example, in an automotive scenario, we may not be allowed
to mix tires of different types for safety reasons, or installing
two different software libraries providing an overlapping set
of files may destroy a working operating system setup.

A possible way to encode such a constraint is depicted in
Figure 4. The key feature is the 0..0 multiplicity that states
that each C object must have 0 links to objects of class D.
This directly corresponds to incompatibility. Alternatively,
separate constraints outside of the UML diagram may be
used to avoid a blow up in the diagram if many incompatible
cases are relevant to an application. For example, the OCL
constraint

context C inv: C.allInstances()�.size() . 0

implies D.allInstances()�.size() ¼ 0

states that once there is at least one object of type C, then no
object of type D is allowed to be instantiated.

3. ILP

In the previous section, we identified central concepts in con-
figuration and how they can be modeled in an entity relation-
ship inspired framework like UML. Now we will translate all
constructs to linear inequalities forming a unified ILP theory.
The semantics induced by the translation is compliant with
the UML specification if not explicitly stated otherwise.

Our idea is based on some initial work by Lenzerini and
Nobili (1990) and extensions by Feinerer and Salzer (2007)
that translate a binary association to two linear inequalities
adhering to the multiplicity constraints.

3.1. General case

A binary association as exemplified in Figure 1 is mapped to

m1 � jCj � n2 � jDj,
n1 � jDj � m2 � jCj,

where jCj and jDj denote the number of C and D objects, re-

spectively. The main observation for correctness of the above
translation is that the number of links, l, between the two
classes, C and D, is bounded by

m1 � jCj � l � m2 � jCj,
n1 � jDj � l � n2 � jDj:

Combining these two inequalities results in the above transla-
tion.

3.2. Lower bound constraints

Enforcing that individual classes get instantiated at all en-
forces us to use lower bound constraints. For example, for
Figure 1, a valid solution is jCj ¼ 0 and jDj ¼ 0 because
all constraints are satisfied (which is easily verified by insert-
ing jCj ¼ jDj ¼ 0 in the inequalities from the previous para-
graph). However, normally this is not the desired semantics.
Instead, we want to enforce that there is a least one component
of type C that maps to the following simple ILP constraint

jCj � 1:

3.3. Multiple links

Inequalities from the general case hold in the presence of the
nonunique UML attribute because their correctness relies on
an argumentation of involved links. To ensure uniqueness
among objects, we need additional constraints stating that
links must end with mutually different partner objects. In Fig-
ure 1 the association has no explicit attribute markers and thus
defaults to unique on both association ends. We obtain

jCj . 0! jDj � m1,

jDj . 0! jCj � n1:

This ensures that if at least one C or D object gets instantiated,
there are enough different (i.e., m1 and n1) D and C objects
available for linking. Note that there is an implication in-
volved in these formula that at first glance is not compatible
with standard ILP. However, in our case, we can easily re-
medy this by solving our ILP and checking the preconditions
afterward. Because all preconditions are of the form jXj . 0,
this can be instantly checked from the ILP solution, and a new
(augmented by the right-hand sides of above formulas) ILP is
started with the old solution as its initial starting value. Be-
cause the inequalities presented so far form a solution space
that can be monotonically processed by increasing variable
values, this trick works without backtracking. As a result,
the compound running time of the old and new ILP linearly
corresponds to an ILP where it is known in advance whether
the preconditions fire or not.

The inequalities presented so far can be efficiently solved
by mapping them to a directed weighted graph. The variables
form its nodes, and each inequality relating two variables in-
duces an edge with a weight proportional to the coefficients of

Fig. 4. A binary association modeling a conflict between the two classes, C
and D, via a 0..0 multiplicity.
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the variables. Over such a weighted directed graph a variant
of the Floyd-Warshall (Floyd, 1962) algorithm can be used
to compute all shortest paths in the polynomial time of
O(V3), where V stands for the total number of variables of
all inequalities. These paths can be used for obtaining rational
solutions that in turn can easily be translated into a (not nec-
essarily minimal) integer solution. Note that this is not in con-
trast to the general NP-hardness of ILP. The reason is that we
have no constraints of the form m�jCj þ n�jDj � k (with m,
n, and k as positive integers) yet in our formulation. Note that
the same strategy of building a graph also works for n-ary as-
sociations as long as all n ends of the association have the
same uniqueness attribute.

Alternatively, any standard ILP solver can be used to ob-
tain the minimal integer solution directly.

3.4. Subclassing

When modeling a generalization as depicted in Figure 3, we
first have to decide on the semantics when there is a connec-
tion from C to another class, D. One interpretation is that C is
a placeholder and D is connected to either C1 or C2. This
means that C does not get instantiated at all (and as such
jCj ¼ 0). Alternatively, D can connect to C, and C is con-
nected to either C1 or C2. Without loss of generality, we stick
with the latter convention because we prefer to model associa-
tions explicitly (e.g., between D and C1 with a separate asso-
ciation if there is a direct correspondence between them with-
out using the generalization). The superclass C can be seen as
a virtual coordinator that might ease the actual linking of
components considerably. Superclasses can also easily be
discarded if there is no need for them in the final solution
(e.g., in the hardware domain where only subclasses are likely
to be instantiated).

We observe the property that in Figure 3 each C can have
zero or one C1 partner objects, but a single C1 (if it exists)
must have exactly a single distinct C object. The same argu-
ment holds for C with C2. The property is formalized to

0� jCj � 1� jC1j,
1� jC1j � 1� jCj,
0� jCj � 1� jC2j,
1� jC2j � 1� jCj,

which simplifies to

jCij � jCj,

for i¼ 1, 2. This directly corresponds to our intuition that we
need at least as many C coordinator objects such that there are
no “useless” C1 or C2 objects that do not take part in the gen-
eralization.

Note that the sharing of a single C object by both an object of
class C1 and an object of class C2 is allowed. This property mod-
els nondisjoint classification of individuals within a conceptual
hierarchy, like a disjunction in classical propositional logic.

Thus far we have only ensured that there are enough “coor-
dinators” of class C. This does not suffice because we have to
provide enough subclasses (either C1 or C2) that can be used
in the generalization for the superclass C. The following con-
straint models (summing up over all Ci and C objects) that we
can use C1, C2, or both together as a subclass for C:

jC1j þ jC2j � jCj:

If we restrict the setting to exclusive or (fxorg in UML termi-
nology), then either C1 or C2 must exactly match with a single
C. Consequently, we obtain

jC1j þ jC2j ¼ jCj,

stating that we need enough Ci for matching C objects but not
more. This forbids object sharing and thus models disjunction
in exclusive form.

We can easily generalize this setting to multiple subclasses
Ci with i . 2 by considering the additional objects in the
sums on the left-hand sides of the above (in)equalities.

3.5. Conflicts

If we model conflicts as outlined in Figure 4 and translate this
directly via our standard approach, we obtain

0� jCj � n2 � jDj,
n1 � jDj � 0� jCj:

The first inequality is a tautology because we only allow non-
negative multiplicities (i.e., n2 � 0) and nonnegative numbers
of classes (jDj � 0), which thus can be removed without side
effects.

The second inequality forbids any D object if n1 . 0. This
is semantically correct because when n1 ¼ 0 then there are
isolated D objects allowed that need not be related to C ob-
jects at all. For the more typical case when a D object must
a have connection to a C object (i.e., n1 . 0), then instantiat-
ing a D object would mean we also need a C object. This in
turn would violate our initial constraint that a C object must
not be linked to a D object.

A subtle modification of the desired semantics could be that
we want to allow D objects without connection to C objects, but
as soon as there exists a single C object, we forbid Ds at all. This
models a situation where we want to use parts of category C or
D throughout our whole configuration but never allow them to
occur together. Such a constraint can be expressed via

jCj . 0! jDj ¼ 0:

To avoid the implication, we might be tempted to use

jCj � jDj ¼ 0,

which enforces that once we use parts of one category no ob-
jects of the other class are allowed. Unfortunately, this is a
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nonlinear constraint that we will not use because we restrict
our theory to linear integer programming for performance
reasons.

Fortunately, we know that C is only included in a minimal
solution if absolutely necessary (as otherwise minimality is
violated). The same argument holds for D. Consequently,
we know that a solution containing both C and D is invalid
and can be instantly rejected. This observation allows us to
handle the implication efficiently, with a similar argument
as when dealing with the UML “unique” attribute for multiple
links.

4. APPLICATIONS

This section describes two applications: one in the context of
Debian package management and configuration and one in
the Linux kernel configuration.

4.1. Debian package configuration

The Debian GNU/Linux operating system (http://www.
debian.org) is one of the most prominent free and open source
distributions in the Linux ecosystem. With its more than
29,000 packages, it provides a vast amount of available soft-
ware out of the box that allows the user to set up individually
customized package collections or even new distributions like
Ubuntu (http://www.ubuntu.com). The variability (i.e., the
number of possible combinations of interacting packages) is
very high, and consequently a sophisticated packaging sys-
tem (like the Advanced Packaging Tool available at http://
packages.qa.debian.org/a/apt.html) managing all packages
and their interdependencies in an installation is necessary.

Each Debian package typically has metadata providing the
following information:

† Package: a unique name of the package.
† Version: a unique string identifying the version.
† Depends: a list of packages that must be installed for

proper functionality. Alternatives are allowed such
that, for example, only one of multiple packages must
be installed providing some core functions.

† Conflicts: a list of packages that must not be installed at
the same time.

† Description: a short (up to several lines) text description
of the package and its main functionality.

The following excerpt shows an example for the Debian
package emacs23-nox (Emacs without support for graphical
environments), listing the individual metadata entries:

Package: emacs23-nox

Version: 23.3þ1–1

Depends: emacs23-bin-common (¼ 23.3þ1–1), liba-
sound2 (. 1.0.18), libc6 (.¼ 2.3.6–6�), libdbus-1–3

(.¼ 1.1.1), libgpm2 (.¼ 1.20.4), libncurses5 (.¼
5.5–5�)

Suggests: emacs23-common-non-dfsg

Conflicts: emacs23, emacs23-gtk, emacs23-lucid

Description: The GNU Emacs editor (without X support)
GNU Emacs is the extensible self-documenting text edi-
tor. This package contains a version of Emacs compiled
without support for X.

4.1.1. ILP formulation

Given a Debian package, we extract its metadata and gen-
erate an integer linear program modeling the interrelation-
ships between packages as outlined in the metadata:

† Package is mapped to a variable in the ILP and corre-
sponds to a class in our UML representation. If and
only if the package is part of the input specification by
the user, we enforce a lower bound of 1 (assuming we
consider package C at the moment):

jCj � 1:

In addition, we disallow multiple installation of the same
package with the same version. That is, we need a Boolean
range, either the package is installed or not:

jCj � 0,

jCj � 1:

† Version is used together with the package name if the
package name alone is ambiguous. Versioned dependen-
cies (i.e., when a dependency requires certain versions of
a package) are not natively supported in our formulation.

† Depends means all package dependencies will introduce
new variables (if not already present) of the Boolean
range as modeled above. Note that we do not enforce
a lower bound because otherwise this would include
all packages irrelevant of their necessity (alternatives
may allow for only one choice out of multiple packages).

Next the dependencies are represented by 0..1—1..1 asso-
ciations in our UML class diagram, which directly corre-
spond to following ILP (assuming that C depends on D):

jCj � jDj � 0,

which follows by inserting n1 ¼ 0 and n2 ¼ m1 ¼ m2 ¼ 1 in
our general case inequalities. In cases where we deal with al-
ternatives (e.g., assuming that C depends either on D or E
whereas D and E may be both installed at the same time as
long as no explicit conflict relation is stated), we obtain

jCj � jDj � jEj � 0:

Virtual packages (i.e., packages that are logical placeholders
for packages with common functionality) could be modeled
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using subclassing with the virtual package as superclass and
the concrete packages as subclasses.

† Conflicts are expressed by the following inequality (as-
suming C conflicts with D):

jCj þ jDj � 1:

This encoding works as we operate only on the Boolean
range. No packages at all would be correct, also either C or
D, but not both together. This models exactly our desired se-
mantics in this setting.

Finally, we glue all of these inequalities together by an ob-
jective function including all classes, which gets minimized:

Minimize

jCj þ jDj þ jEj:

A main advantage of this objective function and ILP in gen-
eral is that we can easily add coefficients (weights) that model
the importance of the individual variables. For example, for
package management we could use the package size (e.g.,
rounded to MB) as a weighting coefficient, which would
mean that smaller packages get preferred over bigger ones.

For the example of the emacs23-nox package, this yields
(only one or two inequalities of each category are shown
for compact presentation):

Minimize

emacs23-noxþ emacs23-bin-commonþ libasound2þ � � �

such that

emacs23-nox� emacs23-bin-common � 0,
emacs23-nox� libasound2 � 0,
emacs23-noxþ emacs23 � 1,

emacs23-noxþ emacs23-gtk � 1,
0 � emacs23-nox � 1,

emacs23-nox � 1:

The first and second side condition models the dependencies,
the third and forth models the conflicts, the fifth states the
Boolean range, and the sixth one enforces the selected pack-
age to be installed.

4.1.2. Implementation

For our experiment, we used the testing release of the De-
bian GNU/Linux operating system using its main (http://ftp.
debian.org/debian/ testing main) and security (http://security.
debian.org/ testing/updates main) repositories in June 2011.

We implemented the previously presented approach for De-
bian package management in two ways. We use a graphical user
interface (GUI) tool called CLEWS (Niederbrucker & Sisel,
2011) capable of manipulating UML diagrams. It was devel-
oped as a prototype implementing our lightweight formal
methods approach using ILP. We recently extended its function-
ality by using its application programming interface (API) in the
context of software product configuration (Feinerer, 2011).

Based on this initial work, we now consider Debian GNU/Li-
nux package configuration and subsequently Linux kernel con-
figuration as shown in this paper.

CLEWS is a pure Java program and provides a Java API.
However, to extract the Debian GNU/Linux package informa-
tion, we used a Cþþ library of the APT package management
tool shipped with Debian. To match both ends, we used the Java
Native Interface where we call Java routines for creating classes
and associations in the underlying UML diagrams managed by
CLEWS. The advantage of using CLEWS is that it allows us to
graphically investigate the modeled scenario and rearrange as-
sociations and classes and enables a direct translation to an ILP.

Our second implementation avoids the intermediate step of
an additional tool like CLEWS and directly translates the
package dependency information into an ILP. Again we ex-
tract the Debian package metadata via the APT Cþþ library.
Now we use the Mixed ILP solver lp_solve (http://lpsolve.
sourceforge.net) and its C API to directly create an ILP.

4.2. Linux kernel configuration

The configuration of a Linux kernel is mainly done by choos-
ing whether certain drivers are directly included in the kernel,
are loaded when necessary as modules, or are excluded. This
somehow resembles a tristate logic (yes, module, no) inherent
to Linux kernel configuration. The whole set of dependencies
(i.e., which drivers or modules depend on others, which con-
flict with others, etc.) is written down in a set of so-called
Kconfig files. Several hundred of them exist, typically with
a single one in each subdirectory of the kernel source code.
Normally each subdirectory contains a specific driver or sys-
tem architecture, and basically all Kconfig files could be
merged to a single large one containing the whole metadata
representing constraints of the kernel configuration.

In its full form, Kconfig files are quite complex because
they allow different syntax for the same semantics. For exam-
ple, dependencies might be included because of encapsulat-
ing menu entries or may be rewritten with conditional if state-
ments. Conceptually, all these constructs can be broken down
to a basic set of primitive operations as follows:

† Config: This defines a configuration option.
† Tristate/string: This defines the type of the configura-

tion option. We are mainly interested in Boolean and/
or tristate conditions.

† Depends: This is a set of dependent configuration op-
tions. It is noteworthy that dependencies can be com-
bined with expressions like conjunction (&&), disjunc-
tion (k), or even negation (!). That is, conflicts can be
implicitly encoded in the dependencies section.

† Selects: These are reverse dependencies. That is, the de-
pendency is in the opposite direction and enforces the
existence of a configuration option that is selected.

Besides these constructs, there are input prompts that are
mainly useful for graphical configuration tools to decide which
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options are shown to the user, default values if the user does not
make a decision on a specific option, numerical ranges for in-
put values, help texts, comments, and whole menus that allow
hierarchies and encapsulation of config options.

The following excerpt shows an example of a Kconfig file
for the configuration option X86_VSMP from the x86 archi-
tecture (arch/x86/Kconfig) subdirectory:

config X86_VSMP

bool “ScaleMP vSMP”

select PARAVIRT_GUEST

select PARAVIRT

depends on X86_64 && PCI

depends on X86_EXTENDED_PLATFORM

—help—

Support for ScaleMP vSMP systems. Say “Y” here if this
kernel is supposed to run on these EM64T-based machines.
Only choose this option if you have one of these machines.

4.2.1. ILP formulation

We translate primitive Kconfig entries as shown before to
the following inequalities, which form the side conditions of
the generated ILP:

† Config: Each configuration option corresponds to a class
in our UML representation or a variable in the underly-
ing ILP. We enforce a minimal bound of 1 for entries
chosen by the end user (e.g., for a config option C ):

jCj � 1:

Clearly, the lower bound must not be used for automat-
ically chosen options that are not enforced by direct user
input.

† Tristate/string: To simplify our experiment, we only con-
sider Boolean options. That is, we map tristate logic to
Boolean by assigning yes and module to yes and no to
no. This corresponds to the idea that we want to build a
minimal kernel in the sense that it is complete (i.e., no dy-
namic loading of modules necessary) but it does not use
more drivers than absolutely necessary for correct opera-
tion:

0 � jCj � 1:

Tristate options could be implemented via subclassing,
with a superclass representing a state for inclusion in the
solution and two subclasses for yes and module.

† Depends: We mainly distinguish between the three
cases: conjunction, disjunction, and negation. Normal
dependencies and those formed by conjunction can be
expressed in the same way as we did with Debian pack-
ages (assuming C depends on both D and E):

jCj � jDj � 0,

jCj � jEj � 0:

For disjunction, we reuse

Cj � jDj � jEj � 0,

whereas negation maps to (assuming C conflicts with D)

jCj þ jDj � 1:

The latter works because for the Linux kernel configuration it
does not make sense to include the same driver multiple
times.

Note that, in principle, arbitrary complex expressions
(mainly due to the existence of subexpressions that may be
layered) may exist. Consequently, expressions need to be flat-
tened out first to fall into the above categories.

† Selects: Analogous to classical dependencies, we model
reverse dependencies by

jDj � jCj,

assuming that C selects D in this example. The correct-
ness is immediate again by using m1 ¼ 0 and n1 ¼ n2 ¼

m2 ¼ 1 for the general case inequalities.

4.2.2. Implementation

For our experiment we used a vanilla Linux kernel version
2.6.39-rc4 (available at http://www.kernel.org). We start out
with a Python parser for Linux Kernel config files called
Kconfiglib (http://dl.dropbox.com/u/10406197/kconfiglib.
html) version v3. Kconfiglib is capable of reading in all
Kconfig files of a source tree, extracting their information,
and bringing it in a format that can be more easily accessed
in a streamlined way via Python. This allows us to restrict
our attention to a basic set of primitive operators. Our imple-
mentation processes only the conjunctions reported by Kcon-
figlib after it has flattened out the constraints in order to uni-
formly access the Kernel configuration. We use Kconfiglib
to create an intermediate XML format that can be easily ac-
cessed via Cþþ. This way we can reuse parts of the implemen-
tation we already have and use for Debian package extraction.
Similarly, we can create a UML class diagram both by inter-
facing CLEWS (Niederbrucker & Sisel, 2011) with its Java
API via Java Native Interface and by directly creating an
ILP in the lp_solve format.

5. EVALUATION

We evaluate the performance of our approach by a benchmark
experiment that has two main objectives for investigation.
First, we have to ensure that the generated solutions are rea-
sonable. This means we have some sort of empirical evidence
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of the applicability of our theory presented so far in practical
use. Note that we do not claim our approach to be “complete”
in the sense that we are able to model all settings in both ap-
plication domains. Nonetheless, we argue that our approach
works for a broad class of the most common constraints yield-
ing reasonable solutions. Second, we are interested in the per-
formance of our generated ILPs because we argue that the
translation of configuration problems to ILPs is lightweight
and effective for real-world examples.

For the Debian package configuration use case, we check
the correctness by generating an ILP for input packages that
are a small proper subset of actually installed packages on a
real working Debian system. Consequently, the solution of
the ILP will include a lot of dependencies that should still
be a subset of the actual system, however. We compare this
solution with the list of installed packages on the real system
and check dependencies with a package management tool
like aptitude.

The multitude of generated constraints correspond to con-
junctions of dependencies and some simple dependencies se-
lecting either one or the other dependency. Both virtual pack-
ages and versioned dependencies are ignored. A possible
implementation for versioned dependencies is to create a
symbolic class for each relevant combination of package
and version number. For simple relations between versioned
packages, this works sufficiently. For complex version de-
pendencies, this approach generates an overhead in the num-
ber of necessary variables of the ILP. There is also a negative
impact on the overall usability because these superfluous
variables occur in the final solution reported back to the user.

For the Linux kernel configuration we start with a set of
manually chosen symbols that resemble some typical compo-
nents of a configuration for a x86 PC. Based on these input
symbols, an ILP is generated modeling the dependencies as
logical conjunctions. Its solution now includes a list of kernel
symbols modeling its dependencies as reported by Kconfiglib.
We checked its quality by comparing it to the results obtained
when doing a classical manual kernel configuration (with stan-
dard tools like make xconfig in the kernel source tree). We note
that our generated ILP does not fully comply with the solutions
proposed by the Linux standard tools. This is expected because
we concentrate on conjunctive dependencies and neglect other
features like string handling or variable ranges. Still, manual
comparison shows that the produced results look similar to
the solutions by standard tools and capture the main features.
That is, our solution is a reasonable starting point for configura-
tions that get manually fine-tuned later on.

To evaluate the scalability and runtime performance of our
generated ILPs, we start with a fixed number of input pack-
ages (in the Debian setting) or input kernel symbols (in the
Linux kernel setting) and measure its runtime for solution.
We use this as a base line. Note that all dependencies must
be available to our tool and potentially be processed because
we do not know in advance which will be relevant for the in-
put packages/symbols. Now we stepwise increase the number
of input packages/symbols. This means that likely a higher

amount of dependencies needs to be processed and more in-
equalities will be generated.

Figure 5 and Figure 6 depict the runtimes of lp_solve in
seconds for the generated integer linear programs. In Figure 5
we see a linear scaling behavior when increasing the number
of packages to be processed as input by the user. The runtime
is in the range of 10–20 s for amounts of packages that already
go beyond any typical installation. Figure 6 shows the situa-
tion for the processing time of the ILP for kernel configura-
tion. The total runtime is only a few seconds where we see al-
most a (sub)linear scaling behavior. We are not completely
sure why there is a decrease in runtime in the range of
2000–3000 input symbols. A possible explanation could be
that because the runtime is under 1 s, small differences in
memory allocation might cause this effect. Note that each ex-
periment was run several times to exclude unreproducible ef-
fects caused by singular events. Another explanation could be
that once a certain amount of symbols is included in the solu-
tion set, most conjunctive dependencies are automatically ful-
filled. This avoids a stepwise increase in the number of indi-
vidual symbols, resulting in rather expensive rechecking of
multiple dependency constraints.

The figures depict the mean runtimes averaged over all
runs. The runs were conducted on low-end to middle-class
PC hardware (two cores, 3 GB RAM), so the results should
be even faster on more recent or dedicated hardware.

When using a GUI tool like CLEWS, the main constrain-
ing factors are the graphical components of the Java runtime.
The actual translation of the UML diagram to inequalities is
quite fast (a few seconds); however, displaying its results
can take more time (tens of seconds). Nevertheless, for realis-
tic examples consisting of hundreds of classes and associa-
tions between them (instead of several thousands), such
GUI tools work reasonable well.

6. RELATED WORK

The representation of configuration problems in UML has
some history. Felfernig et al. (2000) use it as domain-specific
language for the construction of knowledge-based configura-
tion systems. The UML constructs are then transformed to
logical sentences in order to solve the configuration task.
Later Felfernig et al. (2002, 2003) used UML and OCL for
configuration knowledge base development and mainte-
nance. Another framework following an object-oriented para-
digm is described by Mailharro (1998). A configuration prob-
lem is considered both as a classification problem and as a
constraint satisfaction problem (CSP). Stumptner et al.
(1998) and Fleischanderl et al. (1998) extended the standard
CSP model and work also with knowledge bases written in an
object-oriented representation language. The presented pa-
pers cover relatively large fractions in the “configuration uni-
verse.” A translation to logics or CSP seems natural. How-
ever, such an expressive power comes at the price of higher
complexity such that “almost any practical applications of
configurators crucially depend on the application of search
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Fig. 6. Runtime of lp_solve for the Linux kernel configuration.

Fig. 5. Runtime of lp_solve in the Debian GNU/Linux setting.
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heuristics” (Felfernig et al., 2003, p. 44). In contrast, we iden-
tify our ILP approach, which works only with a limited set of
design constructs, as more lightweight and driven for effi-
ciency on standard configuration tasks.

Soininen et al. (1998) build a general ontology of product
configuration covering connection-, resource-, structure-, and
function-oriented approaches. Our approach can be seen in
the spirit of the resource-based paradigm where “components
. . . are modeled as abstract resources, and each technical entity
is characterized by the type and amounts of resources it sup-
plies, consumes, and uses” (Heinrich & Jüngst, 1991, p. 19).

Recently, there was a dedicated Special Issue on configura-
tion in AI EDAM (Felfernig et al., 2011) with contributions on
a variety of aspects of configuration. Several high-quality ap-
proaches have been presented that typically solve a specific
problem very well.

Mayer et al. (2011) propose a configuration method for work
processes. The key challenge is that paths and subprocesses in a
work process cannot be handled adequately with existing
methodology. As remedy, they extend constraint-based config-
uration methods to model certain aspects in UML.

Felfernig and Schubert (2011) deal with personalized diag-
noses for inconsistent user requirements. They introduce an
algorithm capable of giving detailed and informative feed-
back when inconsistent requirements are detected. This is
in analogy to our ILP approach because we can identify in-
consistent parts in UML class diagrams and give instant
and useful feedback to the user (Feinerer, 2007). Our feature
is even implemented in CLEWS (Niederbrucker & Sisel,
2011), which highlights inconsistent paths via red lines and
allows the user to modify the design.

Nevertheless, Falkner et al. (2011) observe that although
many individual approaches in AI achieve superior results in
subfields of configuration, they are often hard to use for gen-
eral-purpose modeling and reach their limits in scalability.

Consequently, lightweight approaches that scale well and are
capable of modeling real-world applications as identified by
Falkner et al. (2010) are necessary. We fill this gap by the uni-
fied ILP theory presented in this paper, significantly extending
previous work on this topic (Feinerer & Salzer, 2007).

In the context of package management, there are promising
results by Tucker et al. (2007) that deal with the install prob-
lem, minimum install problem, and uninstall problem. They
encode the install problem and the uninstall problem utilizing
SAT formulas, and the minimum install problem with SAT
and pseudo-Boolean constraints to encode integer costs.
The latter can be transformed to an ILP. Janota et al. (2012)
tackle the software package upgradability problem by using
an encoding based on weighted partial MaxSAT formulas,
which they solve with weighted partial MaxSAT solvers
and optimization pseudo-Boolean solvers. Abate et al.
(2011) present a modular package manager, which could be
used as a framework for our approach. There is also man-
coosi, a European research project in the 7th Research Frame-
work Programme of the European Commission, which deals
with managing software complexity and package management.

It should be noted that our ILP approach is not directly compa-
rable to tailored approaches as presented by Tucker et al. (2007)
and Janota et al. (2012). They are natively capable of handling
more complex input cases, like dependencies on specific ver-
sions of packages, which are not dealt with in our experiment.
Their solutions are more complete; however, their scalability
depends heavily on the complexity and structure of the encoded
dependencies.

For Linux kernel configuration, Sincero et al. (2007) pro-
pose to see the configuration problem as a software product
line utilizing methodology of this field. Zengler and Küchlin
(2010) encode the Linux kernel configuration as a SAT prob-
lem. In addition to our approach, they are capable of handling
tristate variables, complex expressions on dependencies and
selections, and menu blocks. Another difference is that they
are mainly interested in finding sets of valid configurations
and testing for satisfiability of a given configuration. For enu-
merating valid partial configurations when using SAT-solvers,
Voronov et al. (2011) propose techniques employing binary
decision diagrams. Complementary, our ILP approach has
built-in support for minimizing variable values and therefore
for finding minimal configurations.

Our approach of using UML as a design language and its
mostly automatic translation to ILP aims at a broad range of
configuration scenarios. The major focus lies in an intuitive
interface and lightweight formal methods to handle standard
configuration use cases in an efficient manner. Clearly, this
implies that specialized solutions tailored for a specific appli-
cation domain are more expressive and thus can provide bet-
ter (in terms of completeness) solutions.

7. CONCLUSION

Due to the success of AI methods in configuration, we saw a
steady increase in their usage for real-world applications for a
broad range of domains. However, the complexity and size of
the problems have been growing. One of the key challenges is
to choose a matching technology that is expressive enough to
model realistic scenarios but which can be handled effi-
ciently. Only the latter allows us to scale the applied method-
ology to realistic problems consisting of thousands of compo-
nents and even more interactions. In this paper, we proposed a
unified theory based upon ILP. We showed how to model
important concepts as identified in the literature via UML class
diagrams and corresponding constraints, and how this terminol-
ogy can be translated into an ILP. This idea is general enough to
be applied to other object-oriented formalisms. ILP is known
for its performance because certain subclasses are of polyno-
mial time complexity and there is a wide range of excellent sol-
vers available despite its NP-completeness in the general case.
Within our formulation, polynomial algorithms exist as long we
have no upper bounds for sums over two variables because this
results in indeterminism whether one or the other variable needs
to be increased, and backtracking if not successful.

Consequently, we argue that with our approach, a broad
class of configuration problems can be modeled and we
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gain reasoning support via lightweight formal methods. The
ILP formulation is especially suited for configuration prob-
lems with large conjunctive dependencies and few conflicts
and occasional subclassing. The advantage over logics and
SAT-based techniques is that minimizing an objective func-
tion is a primary objective that is central in configuration
tasks. By contrast, in logics nontrivial techniques have to
be employed for finite model reasoning and minimizing vari-
ables over integer ranges.

We evaluated our approach with two real-world large-
scale examples: Debian GNU/Linux package management
and the Linux kernel configuration. The aim of both appli-
cations was to show that our approach allows for an intuitive
modeling of the configuration task when dealing with the
core features of the respective domain. We expect our ap-
proach to work when scaled on larger problem instances.
We argue that both aims are fulfilled. However, it should
be clear that specific tools tailored for the application do-
main are typically better in terms of expressive power in or-
der to cover all aspects of the configuration task. We observe
this for both Debian package management and the Linux
kernel configuration. In the end, it boils down to finding
the right balance between needed features and the underly-
ing expressive power of the constructs. For example, when
handling tristate values via subclassing, there might be
low overhead by the construction itself but the construct
might be triggered very often; or when the application do-
main exhibits constraints mainly consisting of disjunctions
instead of conjunctions; or how subclassing and hierarchies
are implemented (for a discussion see, e.g., Maraee & Bala-
ban, 2007; or Männistö et al., 2001).

ILP and SAT seem to be well suited for a diverse field of
configuration tasks where each technique has its unique ad-
vantages. We think the next step toward more efficiency in
configuration lies in the combination of various approaches
into a hybrid framework to get the best from multiple worlds.
For example, in the context of package management, a viable
way to handle versioned dependencies is to use ILP as a
building block that is called multiple times but with different
subsets of variables. Because version conflicts are rare, this
“outsourcing” of some constraints seems promising instead
of forcing everything into a single large ILP.

As future work, we are working on identifying more com-
plex constraints in large configuration applications given by
our project partners at Siemens AG and how they can be mod-
eled efficiently. We aim for highly efficient configuration
tools with a wide range of formal methods support such
that design engineers can model their settings in a natural
way and get immediate feedback on design errors. Again a
hybrid approach appears to be the most promising way toward
achieving this goal.
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Zengler, C., & Küchlin, W. (2010). Encoding the Linux kernel configuration in
propositional logic. Proc. ECAI 2010 Workshop on Configuration Systems.

Ingo Feinerer has been an Assistant Professor at the Vienna
University of Technology since 2008. He received a PhD in
computer science from the Vienna University of Technology
and a PhD in business administration from the Vienna Uni-
versity of Economics and Business. In 2007 he was postdoc-
toral visiting scholar at the Computer Science Department of
Carnegie Mellon University. His expertise and research inter-
ests comprise efficient methods for configuration, formal
methods, text mining, and databases.

Efficient large-scale configuration via ILP 49

https://doi.org/10.1017/S0890060412000376 Published online by Cambridge University Press

http://www.omg.org
http://www.omg.org
https://doi.org/10.1017/S0890060412000376

	Efficient large-scale configuration via integer linear programming
	Abstract
	INTRODUCTION
	MODELING SYSTEMS FOR CONFIGURATION
	General case
	Lower bound constraints
	Multiple links
	Subclassing
	Conflicts

	ILP
	General case
	Lower bound constraints
	Multiple links
	Subclassing
	Conflicts

	APPLICATIONS
	Debian package configuration
	4.1.1. ILP formulation
	Implementation

	Linux kernel configuration
	ILP formulation
	Implementation


	EVALUATION
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES




