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Abstract

Objective: This study compared the level of education and tests from multiple cognitive domains as proxies for
cognitive reserve. Method: The participants were educationally, ethnically, and cognitively diverse older adults enrolled
in a longitudinal aging study. We examined independent and interactive effects of education, baseline cognitive scores,
and MRI measures of cortical gray matter change on longitudinal cognitive change. Results: Baseline episodic memory
was related to cognitive decline independent of brain and demographic variables and moderated (weakened) the impact
of gray matter change. Education moderated (strengthened) the gray matter change effect. Non-memory cognitive
measures did not incrementally explain cognitive decline or moderate gray matter change effects. Conclusions: Episodic
memory showed strong construct validity as a measure of cognitive reserve. Education effects on cognitive decline were
dependent upon the rate of atrophy, indicating education effectively measures cognitive reserve only when atrophy rate
is low. Results indicate that episodic memory has clinical utility as a predictor of future cognitive decline and better
represents the neural basis of cognitive reserve than other cognitive abilities or static proxies like education.

Keywords: Aging, cognitive change, Education, Cognitive reserve, MRI, Gray matter change, Cognitive decline, Brain
atrophy

INTRODUCTION It has relevance for both understanding late life cognitive
decline and estimating risk for accelerated decline and
dementia. A developing body of literature has contributed
substantial advances in conceptualizing cognitive reserve,
but measurement of cognitive reserve has not been well
developed and this limits both scientific study and practical
application (Jones et al., 2011; Stern et al., 2018).

Proxy variables are often used to operationalize cognitive
reserve, and level of education has been the most commonly
studied proxy variable. Studies of construct validity of edu-
cation as a proxy for cognitive reserve have produced mixed
results. Supporting evidence comes from studies showing
*Correspondence and reprint requests to: Dan Mungas, Department of ~ that higher educational attainment is associated with delayed
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Cognitive decline and dementia are major public health prob-
lems in older adults, but there is considerable heterogeneity of
cognitive health outcomes in this population. Understanding
why some lose cognitive function and become demented
while others remain cognitively intact is critically important
for promoting late life cognitive health. Cognitive reserve is a
hypothetical construct used to explain why some individuals
are able to maintain normal cognitive function in the face of
late life brain changes (Jones et al., 2011; Stern, 2002, 2009).
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cognitive decline after diagnosis (Amieva et al., 2014;
Scarmeas et al., 2006; Stern, Albert, Tang, & Tsai, 1999;
Yeetal., 2013). In contrast, studies that report no association
between education and rate of cognitive change do not sup-
port the education as cognitive reserve hypothesis (Early
et al.,, 2013; Gross et al., 2015; Masel & Peek, 2009;
Mungas, Early, Glymour, Zeki Al Hazzouri, & Haan,
2018). A recent study from our group that used brain atrophy
rate as a direct measure of the brain changes underlying cog-
nitive decline and dementia helps to bridge these seemingly
disparate patterns of results (Mungas, Gavett, et al., 2018).
More education was associated with slower cognitive decline
in those who had relatively low rates of brain atrophy, but
faster cognitive decline in individuals with more rapid brain
atrophy. Thus, education was protective against early cogni-
tive decline but amplified cognitive decline in those with
more advanced brain disease.

An alternate approach operationalizes cognitive reserve as
a latent variable that captures the statistical residual in cogni-
tive test performance that is not explained by measures of
brain pathology and demographic variables that influence
cognition in the absence of brain pathology (Reed et al.,
2010, 2011; Zahodne et al., 2013). A related approach also
uses regression models in which cognitive and clinical out-
comes are regressed on purported reserve indicators, brain
variables, and reserve indicator by brain interactions.
Construct validity of the reserve indicator is supported if it
is related to the outcome independent of brain effects and
more strongly, if it modifies the brain effects on the outcome
(Stern et al., 2018). Both approaches evaluate how a reserve
indicator relates to an outcome independent of brain pathol-
ogy and moderates the brain effect, but the latent variable
approach explicitly models reserve as a latent variable
whereas the regression approach infers reserve from the inde-
pendent effects of the reserve indicator.

The Reed (2010) and Zahodne (2013) studies used latent
variable modeling to capture variance in episodic memory
that was not explained by demographic and brain variables
and then examined the construct validity of this latent varia-
ble as an indicator of reserve. Non-episodic memory domains
and episodic memory were examined as reserve indicators in
a study involving a different sample, different cognitive tests,
and neuropathology measures of brain integrity (Reed et al.,
2011). Latent variables capturing residual variance in six cog-
nitive domain summary scores that was not explained by
neuropathology and demographic characteristics were highly
correlated and well summarized by a single second-order fac-
tor. This suggests that non-memory cognitive domains might
serve as effective indicators of reserve, but Reed et al. (2011)
did not directly test the construct validity of non-episodic
memory domains as reserve indicators.

The purpose of this study was to evaluate the construct val-
idity of education and different cognitive domains as proxy
measures for cognitive reserve. Several goals guided this
study. First, we built upon Mungas, Gavett et al. (2018)
and directly compared education and domain-specific mea-
sures of cognition as potential proxies for cognitive reserve
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in a common sample. Second, we examined how these poten-
tial reserve indicators assessed at baseline relate to future
cognitive decline and modify the association between longi-
tudinal brain atrophy and cognitive decline. This is relevant
because recent work from our group has shown longitudinal
gray matter change is especially salient for explaining cogni-
tive decline and demonstrates effects that are substantially
stronger than cross-sectional brain measures (Fletcher
et al., 2018; Mungas, Gavett, et al., 2018). Most previous
studies examining moderation of brain effects have utilized
cross-sectional brain measures (Reed et al., 2010; Steffener
et al., 2014; Zahodne et al., 2013). Third, in previous latent
variable studies, measures of episodic memory were used
to operationalize reserve (McKenzie et al., 2020; Reed
etal., 2010; Zahodne et al., 2013). In this study we also exam-
ined cognitive reserve effects of non-memory cognitive
domains. We used a regression-based approach to construct
validation of these purported reserve indices. Specifically, we
evaluated (a) the extent to which these different measures pre-
dicted future cognitive decline independent of rate of concur-
rent brain atrophy and (b) whether these measures moderated
the effects of brain atrophy on cognitive decline. These results
are important for understanding how to measure cognitive
reserve most effectively. Based on our previous work, we
hypothesized that episodic memory would show cognitive
reserve effects defined as predicting future cognitive decline
independent of brain and demographic variables and moder-
ating (diminishing) the effect of brain atrophy on cognitive
decline. In contrast, we expected that education would mod-
erate, but enhance, brain atrophy effects on cognitive decline
as previously shown in this sample (Mungas, Gavett, et al.,
2018). Finally, we hypothesized that non-episodic memory
cognitive measures also would show cognitive reserve
effects.

METHOD

Participants

The participants were from the UC Davis Diversity Cohort, a
longitudinal study that includes substantial numbers of
Latino, Black, and non-Latino White (White) older adults.
This cohort is heterogenous in race/ethnicity and educational
attainment and spans a spectrum of cognitive function from
normal to dementia. Cohort composition, recruitment meth-
ods, and inclusion and exclusion criteria are described in
Hinton et al. (2010) (more detail in Supplementary
Materials); the clinical evaluation and diagnosis protocol
are described in Mungas et al. (2010) (more detail in
Supplementary Materials). All participants signed informed
consent, and all human subject involvement was overseen
by institutional review boards at University of California at
Davis, the Veterans Administration Northern California
Health Care System and San Joaquin General Hospital in
Stockton, California.

The participants were 315 persons who had received at
least two cognitive evaluations and at least two MRI brain
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scans. A rolling enrollment design led to variability in the
number of evaluations completed by each individual. There
were 150 Whites, 80 Latinos, 70 Blacks, and 15 other
races/ethnicities; 39 Latinos were tested in Spanish, and all
others were tested in English. A community screening pro-
gram designed to identify and recruit individuals with cogni-
tive functioning representative of the community-dwelling
population in a six-county catchment area in the central
Sacramento/San Joaquin valley and east San Francisco Bay
area of Northern California identified 235 individuals (83
Whites, 75 Latinos, 64 Blacks, 13 Other). The remaining
80 (67 Whites, 5 Latinos, 6 Blacks, 2 Other) were initially
seen for clinical evaluation at a university memory/dementia
clinic and referred for research.

Clinical diagnosis was not a variable of primary interest in
this study. We were specifically interested in examining how
quantitative MRI measures relate to cognitive trajectories and
how these brain effects are influenced by putative reserve
indicators. However, inclusion of diagnoses across the
impairment spectrum was by design and was intended to
maximize heterogeneity of both brain measures and cognitive
trajectories, thus enhancing ability to study cognitive reserve.
Clinical diagnosis in this context is a manifestation of brain
degeneration that results in cognitive decline and cognitive
and functional impairment, and our approach was to directly
study brain and cognition pathways that lead to the clinically
relevant differences that are summarized by diagnostic labels.

Cognitive Assessment

The cognitive outcomes in this study were measures of epi-
sodic memory, semantic memory, executive function, and
spatial ability derived from the Spanish and English
Neuropsychological Assessment Scales (SENAS). The
SENAS has undergone extensive development as a battery
of cognitive tests relevant to cognitive aging that allow for
valid comparisons across racial, ethnic, and linguistic groups
(Mungas, Reed, Crane, Haan, & Gonzalez, 2004; Mungas,
Reed, Marshall, & Gonzalez, 2000; Mungas, Widaman,
Reed, & Tomaszewski Farias, 2011; Mungas et al., 2005a,
2005b) (more detail in Supplementary Materials). These mea-
sures have been used in many studies to characterize longi-
tudinal cognitive trajectories and to identify brain,
demographic, and life history variables that influence late life
cognitive decline (Brewster et al., 2014; Carmichael et al.,
2012; Early et al., 2013; Fletcher et al., 2018; Gavett et al.,
2018; Melrose et al., 2015; Mungas et al., 2010; Mungas,
Gavett, et al., 2018).

MRI Measures
MRI volume measurements

Brain image acquisition was performed under a standard pro-
tocol at the UC Davis Imaging Research Center or at the
Veterans Administration Northern California Health
System Medical Center in Martinez, CA. MRI baseline
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measurements were derived using an in-house processing
pipeline described previously (Fletcher et al., 2014; Lee
et al,, 2010) (more detail in Supplementary Materials).
White matter hyperintensities (WMH) were computed by
an in-house method combining native Fluid-attenuated inver-
sion recovery (FLAIR) with structural MRI as described pre-
viously (DeCarli, Fletcher, Ramey, Harvey, & Jagust, 2005).

Gray matter volume change

We computed longitudinal structural brain change between
the two most widely separated MRI measurements. We used
a tensor-based morphometry (TBM) method designed to
enhance sensitivity and specificity for biological change by
incorporating estimates of likely tissue boundaries
(Fletcher, 2014; Fletcher et al., 2013). TBM generates defor-
mation fields by nonlinearly registering brain scans at differ-
ing time points and using these to generate log-Jacobian
estimates of local volume change between the scans
(Ashburner & Friston, 2000). The log-Jacobians roughly re-
present percent change and were annualized by dividing by
the number of years between scans. This processing was done
via an in-house processing pipeline that has been previously
described (Fletcher et al., 2016) (more detail in
Supplementary Materials). Gray matter volume atrophy
was computed as average volume change over frontal, pari-
etal, temporal, and occipital lobar gray matter regions of inter-
est (ROIs). Log-Jacobians from these ROIs from both
hemispheres were averaged to constitute a global cortical
gray matter change measure.

APOE genotyping

Apolipoprotein E (APOE) genotyping was carried out using
the LightCycler ApoE mutation detection kit (Roche
Diagnostics, Indianapolis, IN).

Data Analysis
Measures and data processing

SENAS measures of episodic memory, semantic memory,
executive function, and spatial ability were longitudinal cogni-
tive outcomes. Baseline values of each measure were used as
independent variables to predict future change across all cogni-
tive measures. Demographic variables (education, gender, race/
ethnicity) and baseline MRI variables (volumetric measures of
total brain, hippocampus, and WMH) that were used in a pre-
vious study of the residual reserve index (Reed et al., 2010) were
included as independent variables in addition to gray matter vol-
ume change. Cognitive and MRI variables were transformed
using the Blom inverse normal rank order transformation
(Blom, 1958) to normalize these variables and establish a
common scale (mean=0, SD=1). Additional covariates
included age at baseline evaluation, language of test administra-
tion, recruitment source, APOE status, loss to follow-up due to
death, and lost to follow-up for other reasons.
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Fig. 1. Longitudinal analytic model. [The four cognitive domain
scores are regressed on time in study in the Within level of the multi-
level model and person-specific intercept and slope random effects
from the Within model serve as primary outcomes in the Between
level of the model. A global slope factor effectively summarizes
covariance of the four slope random effects but individual intercepts
provide optimal fit. The global slope random effect is regressed on
the reserve proxy of interest (education or one of the four baseline
cognitive domain scores), brain change, the interaction of the reserve
proxy with brain change, and covariates. Intercept random effects are
also regressed on covariates and the reserve proxy but effects on
global slope are of primary interests and effects on intercepts are
not reported. All effects in the Between and Within models are simul-
taneously estimated.]

Longitudinal modeling of cognitive trajectories

The mixed effects, parallel process longitudinal analyses
were performed using Mplus version 8.2 multilevel modeling
(Muthén & Muthén, 1998). Figure 1 shows a schematic of the
basic modeling approach. The approach to modeling longi-
tudinal change in this study has been described in detail in
previous publications (Fletcher et al., 2018; Gavett et al.,
2018) and is presented in Supplementary Materials. Briefly,
in the Within part of this model, each of the four cognitive
outcomes was regressed on time (years) in study, centered
at the time of the baseline MRI scan. The initial MRI scan
occurred at the time of the initial cognitive assessment for
92% of the sample and was within a £6-month window of
the cognitive assessment. The Within model generated per-
son-specific intercept and linear slope random effects for each
outcome. These random effects then served as dependent var-
iables in the Between part of the model. The Within model
included a term to account for practice effects and a practice
effect by Spanish test administration interaction that has been
identified in previous studies with this sample (Brewster
etal., 2014; Early et al., 2013; Melrose et al., 2015). We com-
pared a series of models to determine whether intercepts and
slopes could be summarized by second-order factors (more
detail in Supplementary Materials). The best fit was obtained
with the model that had a global slope second-order factor but
individual intercept random effects.
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Global cognitive slope was the primary outcome of inter-
est and was regressed in the Between model on the demo-
graphic (including education) and MRI variables that were
used to define the residual reserve index in Reed et al.
(2010) and on the other covariates. The four cognitive inter-
cepts also were regressed on these variables in analytical
models, but the results are not shown. The baseline cognitive
score of interest (episodic memory, semantic memory, exec-
utive function, or spatial ability) and global gray matter
change were additional independent variables used to explain
global cognitive change, as were interactions of gray matter
change with education and baseline cognition. This basic
model was estimated separately for each cognitive measure.
A secondary analysis added interactions of baseline MRI
measures with gray matter change to the basic model for epi-
sodic memory to evaluate whether reserve effects of educa-
tion and cognitive variables were independent of potential
reserve effects of baseline brain variables. An additional sec-
ondary analysis added baseline clinical diagnosis as a main
effect predictor of cognitive trajectories and evaluated
whether reserve effects were present after accounting for
diagnosis.

RESULTS

Sample Characteristics

Sample characteristics are presented in Table 1, stratified by
baseline clinical diagnosis to clarify the range of clinical
expression of cognitive impairment covered in this study.
Detailed information about the diagnostic composition of
the sample is available in Supplementary Materials. About
59% were women and gender did not differ across diagnosis
groups (*[2] =5.449, p = .066). Race/ethnicity differed by
diagnosis (y*[6] = 34.859, p = .001) with Whites more likely
to have a diagnosis of mild cognitive impairment (MCI). In
total, 75% of the sample was recruited from the community.
Recruitment source differed by diagnosis (y’[2] = 26.475,
p =.001), with individuals with MCI more likely to be clinic
referrals. Average age was about 75 years and this differed
across groups (F[2,312] =6.317, p=.002) with Dementia
older than MCI who were older than Normals. Average edu-
cation was 13.4 years and differed across diagnosis groups
(F[2,312] =5.520, p=.004), with highest education in
MCI, lowest in Dementia, and Normals in between. APOE
€4 differed by diagnosis (y*[2] = 11.700, p = .003) with high-
est e4 prevalence in individuals with dementia (62%) and
lowest in those who were cognitively normal (32%).
Average follow-up time was 7.2 years and differed by base-
line diagnosis (F[2,312]=29.855, p=.001); there were
6.8 assessments on average in the overall sample and this dif-
fered by diagnosis (F[2,312] =23.415, p =.001). The num-
ber of assessments and follow-up time increased across
Dementia, MCI, and Normal diagnoses, but even in the
Dementia group, there was nearly 5 years of follow-up and
5 assessments on average. MRI follow-up time significantly
differed across groups (F[2,312]=13.799, p=.001).
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Table 1. Sample characteristics. [Results are stratified by baseline clinical diagnosis: normal cognition (N = 187), mild cognitive impairment

(MCI) (N =107), dementia (N =21)]

Dementia MCI Normal Total

Gender — Female 11 (52.4%) 55 (51.4%) 121 (64.7%) 187 (59.4%)
Age (baseline) — Mean (SD) 80.1 (¢4.2) 75.4 (£7.1) 74.5 (£7.0) 75.2 (¥7.0)
Education — Mean (SD) 11.9 (#5.3) 14.5 (¢3.9) 12.9 (¢4.6) 13.4 (¢4.5)
Recruitment source — Clinic 8 (38.1%) 44 (41.1%) 28 (15.0%) 80 (25.4%)
Recruitment source — Community 13 (61.9%) 63 (58.9%) 159 (85.0%) 235 (74.6%)
Race/ethnicity — Black 3 (14.3%) 21 (19.6%) 46 (24.6%) 70 (22.2%)
Race/ethnicity — Latino 6 (28.6%) 10 (9.3%) 64 (34.2%) 80 (25.4%)
Race/ethnicity — Other 0 (0%) 4 (3.7%) 11 (5.9%) 15 (4.8%)
Race/ethnicity — White 12 (57.1%) 72 (67.3%) 66 (35.3%) 150 (47.6%)
APOE €4 — €4 Positive 13 (61.9%) 50 (46.7%) 59 (31.6%) 122 (38.7%)
Cognition follow-up time — Mean (SD) 4.8 (¥2.3) 5.7 (£3.1) 8.4 (£3.4) 7.2 (£3.5)
Number of cognitive assessments — Mean (SD) 49 (¥2.2) 5.7 (£2.6) 7.7 (¥2.9) 6.8 (£3.0)
MRI follow-up time — Mean (SD) 3.5 (¥2.0) 3.6 (£2.4) 5.1 (£2.7) 4.5 (£2.7)
Follow-up status — Active follow-up 5 (23.8%) 36 (33.6%) 97 (51.9%) 138 (43.8%)
Follow-up status — Deceased 12 (57.1%) 46 (43.0%) 46 (24.6%) 104 (33.0%)
Follow-up status — lost to follow-up 4 (19.0%) 25 (23.4%) 44 (23.5%) 73 (23.2%)
Global gray change (standardized®) — Mean (SD) -2 (£.8) -39 2 &7 0 (£.8)
Global gray change (percent®) — Mean (SD) -9 (+.6) -9 (7 —.6 (£.5) -7 (£.6)
Episodic memory (baseline?) — Mean (SD) -9 (x5) -3 (x.6) S5 (£8) 1 (x8)
Semantic memory (baseline) — Mean (SD) -.5(9) 0 (£.7) .1(x9) 0 (£.8)
Executive function (baseline*) — Mean (SD) -5(=9) 0 &7 4 (£9) 2 (£.8)
Spatial (baseline*) — Mean (SD) -4 (£1.1) .1(29) 2 (21.0) .1 (21.0)

“Blom transformed to have M =0 and SD =1 in this sample.
Log Jacobian x 100.

Average follow-up time was longer for those who were cog-
nitively normal compared with those with MCI or dementia.
Lost to follow-up due to death or other reasons also differed
across groups (y*[4] = 18.321, p = .001). Cognitively normal
individuals were more likely to be actively followed at the
time of this study. Loss to follow-up due to death was highest
in the Dementia group, lowest in Normals, and intermediate
in MCI. Loss to follow-up for other reasons was similarly dis-
tributed across diagnosis groups.

Baseline gray matter volume and baseline cognitive test
scores all differed across diagnostic groups (ps < .001), with
a consistent pattern of Normal > MCI > Dementia. Gray mat-
ter volume change rate also differed across groups (p <.001);
gray matter volume declined more slowly in individuals who
were cognitively normal and at similar, faster rates in those
with MCI and dementia. Education level was correlated with
all baseline cognitive scores but varied in degree: education
with episodic memory = .23, semantic memory = .50, exec-
utive function = .41, and spatial = .30.

Modeling of Longitudinal Cognitive Outcomes

In an unconditional parallel process model of cognitive tra-
jectories, correlations among the four intercept random
effects ranged from .476 to .763, while in contrast, correla-
tions among slope random effects ranged from .952 to .987
(see Table 1 in Supplementary Materials for a complete
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correlation matrix of intercept and slope random effects).
Episodic memory intercept showed substantial correlation
with slopes of all four cognitive domains (ranging from
491 to .597). Executive function intercept was significant
but less correlated with slopes (ranging from .192 to .289).
The best fitting unconditional model for intercept and slope
random effects included individual intercepts and a second-
order latent variable indicated by the four slope random
effects (more detail in Supplementary Materials). Loadings
on the global slope factor were: episodic memory — 1, seman-
tic memory — .837, executive function — 1.118, and spatial —
.747. The four cognitive domains all contributed substantially
to the global cognitive slope. In subsequent analyses, individ-
ual domain intercepts and global cognitive slope were the
cognitive outcomes.

Cognitive Domain Comparisons

Table 2 shows how different cognitive baseline scores and
their interactions with gray matter change related to global
cognitive slope independent of other variables in the model.
Baseline episodic memory was related to global cognitive
slope independent of covariates, demographic variables,
and brain variables, and significantly modified the gray mat-
ter change effect. The baseline measures of the other three
cognitive domains were not related to future cognitive change
above and beyond covariates, education, and brain variables.
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Table 2. Comparison of effects of baseline cognitive measures from
different cognitive domains on global cognitive slope

Cognition by
Cognition gray matter
Cognitive domain main effect change interaction
Episodic memory .016 (.007)" —.028 (.010)™*
Semantic memory .012 (.008) 0 (.012)
Executive function .007 (.008) —.011 (.012)
Spatial ability —.003 (.006) —.009 (.010)

Note. Tabled values are unstandardized regression weights (fs) with standard
errors in parentheses. Results show estimates of cognitive variable main
effects and interactions with gray matter change and are from models that
included all demographic and brain variables and covariates. Estimates indi-
cate the effects of 1 SD differences in dependent and independent variables.
(+p <.05, ++p <.01).

Table 3. Effects of covariates, brain variables, education, and
baseline episodic memory on global cognitive slope

Independent variables s SE p

Intercept (reference) —-.080 .016 0

Male? -.004 .010 .720
Age (baseline — centered at 70) 0 .001  .961
Black® 068 .013 0

Latino® 028 015 .070
Other non-White race/ethnicity® -.001 .022 961
Spanish? .003 .018 .885
Clinic recruitment® —-.063 .016 0

APOE e4 positive? -.040 011 0

Lost to follow-up? -012 .012 348
Deceased® -.038 .013 .003
Brain volume (baseline) 0 .006 972
Hippocampus volume (baseline) .018 .006 .006
White matter hyperintensity volume —-.008 .005 .111

(baseline)

Cortical gray matter (change) .060 .011 0

Education (centered at 12 years) 0 .001 978
Education by gray matter change .004 .002 .027
Episodic memory (baseline) 016 .007 .021

Episodic memory by gray matter change —.028 .010 .003

Note. Tabled values are unstandardized regression weights (fs) with associated
standard errors (SEs) and p-levels. The Intercept estimate represents the mean
for the reference individual for group indicator variables and average values for
continuous variables. Estimates for non-reference group indicator variables re-
present average difference from the reference value for that variable. Estimates
for continuous values indicate the effect of a 1 SD difference in that variable.
“Dichotomous indicator variable.

Episodic Memory and Education Effects on
Cognitive Change

Table 3 presents detailed results for the analysis with episodic
memory as the indicator of cognitive reserve and shows how
global cognitive slope was influenced by covariates, demo-
graphic variables, baseline brain variables, gray matter
change, reserve indicators (education and episodic memory),
and reserve indicator by gray matter change interactions.
The reference for this analysis was an English-speaking,
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non-Latino White woman recruited from the community
who was 70 years of age with 12 years of education, was con-
tinuously followed, and APOE e4 negative. As in previous
studies with this cohort (Fletcher et al., 2018; Mungas,
Gavett, et al., 2018), gray matter change was strongly asso-
ciated with cognitive decline, f=.060, SE =.011, p =.001.
An individual whose gray matter declined 1 SD slower than
average would be expected to decline cognitively at a rate of
only —.02 SD/year, and in comparison, a person with average
gray matter change in this sample would decline cognitively
at arate of —.08 SD/year, and an individual whose gray matter
declined 1 SD faster than average would decline at a rate of
—.14 SD/year. Better baseline episodic memory was incre-
mentally associated with slower global cognitive decline,
but education had no main effect on rate of decline.
Interactions of both our putative measures for reserve — edu-
cation and baseline episodic memory — with gray matter
change were significant, but with opposite signs. Thus, higher
baseline episodic memory resulted in a diminished effect of
gray matter change on cognitive decline, but in contrast, more
education was associated with an enhanced effect of gray
matter change on cognitive decline.

These results are presented graphically in Figures 2 and 3.
Figure 2 shows the interaction of gray matter change and epi-
sodic memory on expected trajectories for one specific cog-
nitive outcome, executive function. Executive function was
selected as the exemplar for these figures because it had
the highest loading on the global cognitive change factor.
Effects of episodic memory and gray matter change on exec-
utive function change were calculated as the effects of these
variables on global cognitive change multiplied by the load-
ing of executive function on global cognitive change in the
primary, multivariable model (1.039). The three panels show
model-predicted executive function trajectories for two levels
of baseline episodic memory (41 SD and —1 SD) and differ-
ent amounts of gray matter change. To enhance clinical rel-
evance of these figures, gray matter change values were
chosen that represented average gray matter change in clinical
diagnosis groups. The left panel represents gray matter
change that is average for those who were Normal at baseline,
the center corresponds to average gray matter change for indi-
viduals with a MCI diagnosis, and the right to average change
for those with Dementia. There are several salient findings.
First, baseline executive function differed substantially in
relation to episodic memory, and in contrast, different gray
matter change rates were not as strongly related to baseline
executive function. Second, the difference in the rate of cog-
nitive decline across individuals with different levels of gray
matter change was minimal for those with above average epi-
sodic memory at baseline, but was more substantial when
baseline episodic memory was below average. Stated differ-
ently, brain atrophy had a stronger negative relation to cog-
nitive change for individuals with low baseline episodic
memory, and of particular importance, better baseline epi-
sodic memory protected against the effects of more advanced
atrophy.
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Fig. 2. Model-predicted trajectories of executive function decline by
rate of gray matter change and baseline episodic memory. [Expected
executive function trajectories are presented for three atrophy rates cor-
responding to average rates for Normal, MCI, and Dementia baseline
diagnosis groups and two levels of episodic memory (+1.0 SD and
—1.0 SD). Executive function slope is calculated as global cognitive
slope x 1.039 (executive function slope loading in primary, multivari-
able analysis). The interaction of baseline episodic memory with gray
matter atrophy is significant (p =.003).]
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Fig. 3. Model-predicted trajectories of executive function decline by
rate of gray matter change and education level. [Expected executive
function trajectories are presented for three atrophy rates correspond-
ing to average rates for Normal, MCI, and Dementia baseline diagnosis
groups and two levels of education (8 and 16 years). Executive func-
tion slope is calculated as global cognitive slope X 1.039 (executive
function slope loading in primary, multivariable analysis). The inter-
action of education with gray matter atrophy is significant (p = .027).]

Figure 3 shows the moderation effects for education. The
two hypothetical education levels are roughly 2 SD apart,
similar to the values for episodic memory depicted in
Figure 2. The education effect on baseline executive function
was smaller than that for baseline episodic memory. More
education was associated with a more positive executive
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function slope in the hypothetically normal individual, but
a more negative slope in the hypothetical dementia case.

A secondary analysis included interaction effects on
global cognitive slope of baseline brain variables with gray
matter change. None of the baseline brain by gray matter
change interactions were significant; the episodic memory
main effect and the episodic memory by gray matter change
interaction continued to be significant. This suggests that the
episodic memory modification of the gray matter change
effect on cognitive decline cannot be explained by measured
baseline brain variables that could influence baseline episodic
memory. The results for education as a reserve proxy did not
change.

We added diagnosis as a main effect in the model in an
additional secondary analysis. The episodic memory by gray
matter change interaction effect was significant (f = —.027,
SE =.010, p=.005) and was essentially the same as this
effect in the primary analyses (Table 3). This suggests that
episodic memory performance has cognitive reserve proper-
ties that go beyond what can be explained by associations
with diagnosis.

DISCUSSION

This study examined the construct validity of educational
attainment and cross-sectional measures of different cogni-
tive domains as proxies for cognitive reserve in a sample
of diverse older adults. A cognitive reserve effect was
inferred if a measure explained longitudinal cognitive change
beyond the effects of baseline brain variables and longi-
tudinal gray matter change and more importantly, moderated
the gray matter change effect on cognitive change (Stern
etal., 2018). Baseline episodic memory satisfied both of these
criteria. Education failed to satisfy these criteria, as education
was not related to cognitive change independent of gray mat-
ter change, demographic variables, and baseline cognition,
and gray matter change effects on cognitive decline were
stronger and more negative in those with more education.
Baseline measures of semantic memory, executive function,
and spatial ability also failed to show significant reserve-like
effects.

Baseline episodic memory was associated with longi-
tudinal cognitive change in all four domains, so it would
be expected that baseline episodic memory would be associ-
ated with global cognitive change. However, this effect was
independent of all other effects, including brain volume
change, and in addition, it moderated the brain change effect
on cognitive decline. In contrast, none of the other cognitive
domain intercepts were incrementally associated with cogni-
tive decline or did they moderate the brain change effect.
Baseline executive function also was associated with cogni-
tive change in all four domains in an unconditional model,
and had the strongest loading on the second-order global cog-
nitive change factor, but did not meet the criteria for construct
validity as an indicator of cognitive reserve. The overall
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pattern of the results suggests that episodic memory has
unique cognitive reserve properties.

The results of this study provide evidence that episodic
memory is an effective measure of cognitive reserve. This
replicates and extends results from an earlier study with this
cohort (Reed et al., 2010) and other studies involving differ-
ent cohorts that utilized different episodic memory measures
(McKenzie et al., 2020; Zahodne et al., 2013), and expands
on these earlier studies by showing episodic memory effects
in relation to longitudinal brain atrophy. Education, in con-
trast, was not related to cognitive decline independent of
brain atrophy, and the education by brain atrophy interaction
went in the opposite direction of the episodic memory—brain
atrophy interaction. The obtained results suggest that educa-
tion provides no prognostic information about cognitive
decline in the absence of information about brain status; brain
status measures or proxies like clinical diagnosis are required
for fully understanding the impact of education on future cog-
nitive decline. Clinically, a high level of education is a pos-
itive prognostic indicator in the context of minimal brain
atrophy, which corresponds to roughly the upper 50% of
the distribution of brain atrophy rate in cognitively normal
individuals (Mungas, Gavett, et al., 2018). But higher educa-
tional attainment indicates poorer prognosis when brain atro-
phy is more rapid (lower 50% of MCI distribution and most of
dementia distribution (Mungas, Gavett, et al., 2018)). An
alternate way of considering these results is that episodic
memory has the same effect on future cognitive decline
across the entire range of baseline cognitive function,
whereas education is associated with slower decline in those
with relatively normal cognition but faster decline in those
with significant cognitive impairment. While both have value
as reserve indicators, higher episodic memory unambigu-
ously signals a higher level of reserve, but education level
may signal higher or lower reserve depending on the current
degree of brain degeneration and cognitive impairment.

This study showed that episodic memory was superior to
other cognitive domains as an indicator of cognitive reserve.
There are important caveats to concluding that episodic
memory is the only or best indicator of reserve. This study
examined a limited number of non-episodic memory mea-
sures, and different measures might be effective reserve
indicators. This is a question that should be addressed with
additional measures in different and larger samples.

A hypothesis to explain the results of this study is that epi-
sodic memory represents the neural basis of cognitive reserve
better than other cognitive abilities. Episodic memory is more
strongly associated with brain measures in previous studies
involving this cohort (Mungas, Reed, Farias, & Decarli,
2009; Reed et al., 2010) and other cohorts (Dowling et al.,
2011) and is less associated with life exposure variables like
education (Early et al., 2013). In this study, education was
weakly associated with baseline episodic memory (explain-
ing 5.3% of the variance) but more strongly associated with
executive function (16.8% of variance) and semantic memory
(25% of variance). The overall pattern that emerges is that
episodic memory is more strongly associated with brain
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Fig. 4. Conceptual model of cognitive reserve effects of episodic
memory on cognitive decline. [Rectangles represent observed
variables and ovals represent latent/hypothetical variables.
Observed episodic memory reflects latent variance components
due to Demographics, Measured Brain, Unmeasured Brain,
Measurement Error, and Cognitive Reserve. Observed cognitive
decline is adjusted in the regression model for demographic and
measured brain effects, so the regression effect estimate of
observed episodic memory on cognitive decline represents the
combined effects of unmeasured brain and cognitive reserve vari-
ance components. |

variables, independent of demographics including education,
than are other cognitive domains and is less associated with
education and other demographic variables including race/
ethnicity. Thus, biological variables appear to have a stronger
relative impact on episodic memory than on other cognitive
domains. Brain function mechanisms that promote resil-
ience to disease-related changes in brain structure are com-
monly regarded as the neural basis of cognitive reserve
(Barulli & Stern, 2013; Park & Reuter-Lorenz, 2009; Stern,
2006). Future research could examine how measures of epi-
sodic memory and other cognitive domains are differentially
related to functional imaging markers of cognitive reserve.
Collectively, the results of this study raise important ques-
tions about what cognitive reserve means and how it is best
measured. Figure 4 presents a conceptual model of the epi-
sodic memory effect found in this study. The observed epi-
sodic memory score theoretically can be decomposed as in
Reed et al. (2010) into uncorrelated components that
represent variance explained by brain effects included in
the model (Measured Brain), brain effects not included in
the model (Unmeasured Brain), Demographic effects,
Measurement Error, and Cognitive Reserve (everything else).
The episodic memory effect is adjusted in the model for
Measured Brain and Demographics, and Measurement
Error by definition should not be systematically related to
external variables like cognitive decline, so the independent
episodic memory effect on cognitive decline is a result of
Cognitive Reserve and Unmeasured Brain components.
Unmeasured Brain variables may well account for additional
episodic memory variance that influences cognitive decline.
With better understanding of the brain mechanisms underly-
ing episodic memory, Unmeasured Brain will diminish as it
becomes Measured Brain, and the Cognitive Reserve
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component will be more purely represented in the episodic
memory effect on cognitive decline. The ultimate goal is to
replace the Cognitive Reserve component entirely by known
brain mechanisms.

The Cognitive Reserve and Unmeasured Brain compo-
nents cannot be separated in the current study. Ultimately,
labeling the episodic memory effect on cognitive decline
as cognitive reserve is not entirely accurate because this does
not account for unmeasured brain effects. Practically, how-
ever, these results show that measured episodic memory adds
value for predicting cognitive decline above and beyond
major brain effects, including longitudinal brain atrophy.
Thus, episodic memory behaves as a cognitive reserve indi-
cator should behave, and, pragmatically, provides unique
information about future cognitive trajectories.

An important strength of this study is that the measures of
the four cognitive domains were developed to have matched
psychometric characteristics, specifically, similar levels of
reliability across the ability continuum relevant to diverse
older adults (Mungas et al., 2004). This minimizes the extent
to which cross-domain differences in results are due to differ-
ent basic psychometric properties. Additional strengths are
the availability of comprehensive MRI measures of brain
injury and brain degeneration, and a diverse sample with con-
siderable longitudinal follow-up of both cognitive and brain
measures. Limitations are other cognitive measures that
might be relevant to cognitive decline were not included,
notably measures of cognitive speed and single-word reading
tests of life course acquisition of semantic knowledge.
Despite attempts to recruit a sample that is representative
of the communities from which it was drawn, this was not
a population-based sample and unknown selection factors
might bias results. Alzheimer’s disease was the predominant
etiologic diagnosis for those with dementia in this sample,
and results could be influenced by the type and degree of
pathology in a specific sample. Replication in different sam-
ples and in population-based samples is important.

CONCLUSIONS

The results of this study have direct clinical relevance. They
suggest that assessment of episodic memory in an older adult
will be important not only to characterize that person’s clini-
cal status, but also to predict their future cognitive trajectory
and characterize their resilience to progressive brain disease.
Measures from other cognitive domains are helpful for char-
acterizing cognitive status and identifying clinically relevant
patterns of cognitive impairment but will be less useful for
measuring resilience to brain pathology. Education has lim-
ited prognostic value in the absence of information about
brain or clinical status. With respect to cognitive reserve,
more education is a positive indicator only when brain atro-
phy is minimal. Episodic memory, in contrast, is a positive
indicator of reserve regardless of the degree of atrophy.
Another advantage of episodic memory is that it can change
over time and so can track dynamic changes in cognitive
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reserve. This is important because understanding the implica-
tions of depleting reserve and its underlying neural basis are
areas that have very limited research thus far. Future research
is needed to better delineate brain mechanisms underlying
episodic memory and other cognitive domains and to explain
cross-domain differences in associations with brain degener-
ation and cognitive decline, with a goal of both predicting and
understanding mechanisms of cognitive decline.
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