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Abstract

We carry Sprindžuk’s classification of the complex numbers to the field Qp of p-adic numbers. We
establish several estimates for the p-adic distance between p-adic roots of integer polynomials, which
we apply to show that almost all p-adic numbers, with respect to the Haar measure, are p-adic S̃ -numbers
of order 1.
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1. Introduction

For an integer polynomial P(X), its height, denoted by H(P), is the maximum of
the absolute values of its coefficients and its degree is denoted by deg(P). In 1932,
Mahler [8] introduced a classification of the complex numbers based on the real
numbers

wn(H, ξ) = min{|P(ξ)| : P(x) ∈ Z[x], deg(P) ≤ n,H(P) ≤ H, and P(ξ) , 0}

for positive integers n and H. He first defined

wn(ξ) = lim sup
H→∞

−log wn(H, ξ)
log H

and then, according to the behaviour of the sequence (wn(ξ))n≥1, he divided the set
of complex numbers into four classes, called A-, S -, T -, and U-numbers. Setting
w(ξ) = lim supn→∞(wn(ξ)/n), we say that ξ is:

• an A-number, if w(ξ) = 0;
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• an S -number, if 0 < w(ξ) <∞;
• a T -number, if w(ξ) =∞ and wn(ξ) <∞ for any integer n ≥ 1;
• a U-number, if w(ξ) =∞ and wn(ξ) =∞ for some integer n ≥ 1.

The set of A-numbers coincides with the set of complex algebraic numbers. Almost
all complex numbers (in the sense of the Lebesgue measure) are S -numbers. The sets
of T -numbers and of U-numbers are nonempty and of zero Hausdorff dimension. The
reader is directed to [5] for further results and references on Mahler’s classification.

In 1962, Sprindžuk [10] (see also [11, pages 140–142]) introduced a new
classification of the complex numbers by reverting the roles played by the degree and
the height in Mahler’s classification. Namely, instead of fixing first a bound for the
degree and letting the height tend to infinity (as we did to define the functions wn), he
fixed first a bound H for the height and let the degree tend to infinity and considered
the quantities

lim sup
n→∞

log(−log wn(H, ξ))
log n

.

Sprindžuk divided the complex numbers into four disjoint classes and called the
numbers in these classes Ã-, S̃ -, T̃ -, and Ũ-numbers. He showed that the set of Ã-
numbers is equal to the set of complex algebraic numbers and observed that, by results
of Feldman, π and logα are S̃ -numbers for any algebraic number α different from 0
and 1. While Ũ-numbers are easy to construct, the existence of T̃ -numbers remained
open for a long time, until it was confirmed in 1996 in a beautiful paper of Amou [1].

Throughout the present paper, p denotes a fixed prime number and | · |p denotes
the p-adic absolute value on Q, normalized such that |p|p = p−1. We denote by | · |p
the extension of | · |p to the field Qp of p-adic numbers. Further, we denote by Cp the
completion, with respect to | · |p, of the algebraic closure of Qp.

In 1935, Mahler [9] carried mutatis mutandis his classification of the complex
numbers to the field Qp; see [5, Section 9.3] for references. The only difference is
that the modulus |P(ξ)| in the definition of wn(H, ξ) is replaced by the p-adic absolute
value. As far as we are aware, Sprindžuk’s classification of p-adic numbers has not
been studied up to now. It is defined as follows by simply replacing the modulus by
the p-adic absolute value. Given a p-adic number ξ and positive integers n and H, we
define the quantities

wn(H, ξ) = min{|P(ξ)|p : P(x) ∈ Z[x], deg(P) ≤ n,H(P) ≤ H, and P(ξ) , 0}, (1-1)

w(H, ξ) = lim sup
n→∞

log(−log wn(H, ξ))
log n

, and w(ξ) = sup
H∈N

w(H, ξ).

Observe that H 7→ w(H, ξ) is a nondecreasing function. We call w(ξ) the order of ξ. If
w(ξ) is finite, then we define

t(H, ξ) = lim sup
n→∞

log 1
wn(H,ξ)

nw(ξ) and t(ξ) = lim sup
H→∞

t(H, ξ)
log H

.
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We call t(ξ) the type of ξ. If w(ξ) is infinite, then we denote by H0(ξ) the smallest
integer H such that w(H, ξ) is infinite if such an integer exists and we set H0(ξ) = ∞

otherwise. We call ξ:

• a p-adic Ã-number, if 0 ≤ w(ξ) < 1 or if w(ξ) = 1 and t(ξ) = 0;
• a p-adic S̃ -number, if 1 < w(ξ) <∞ or if w(ξ) = 1 and t(ξ) > 0;
• a p-adic T̃ -number, if w(ξ) =∞ and H0(ξ) =∞;
• a p-adic Ũ-number, if w(ξ) =∞ and H0(ξ) <∞.

The purpose of the present paper is to establish the p-adic analogues of some of the
main results on Sprindžuk’s classification of complex numbers.

We start with the p-adic analogue of a result due to Sprindžuk [10] (see also
[11, pages 140–142]) asserting that the set of complex Ã-numbers coincides with the
set of complex algebraic numbers.

Theorem 1.1. The class of p-adic Ã-numbers exactly consists of the p-adic algebraic
numbers. More precisely:

(1) the order of a p-adic algebraic number is at most equal to 1. If a p-adic algebraic
number ξ has order 1, then its type is equal to 0;

(2) the order of a p-adic transcendental number is at least 1. If a p-adic
transcendental number ξ has order 1, then its type is at least equal to 1.

Sprindžuk [10] proved that almost all complex numbers, in the sense of the
Lebesgue measure onC, are S̃ -numbers of order less than or equal to 2 and conjectured
that almost all complex numbers are S̃ -numbers of order 1. Chudnovsky [6, page 120]
solved Sprindžuk’s conjecture, but his proof was apparently not complete. Amou [1]
supplied a complete proof of Sprindžuk’s conjecture. Later, Amou [2] improved his
result, which was subsequently refined by Amou and Bugeaud [3, 4].

The main purpose of the present note is to establish the p-adic analogue of
Sprindžuk’s conjecture, which is an immediate consequence of the following p-adic
analogue of Amou and Bugeaud [3, Théorème 2]. Throughout the rest of this note,
‘almost all’ always refers to the Haar measure on Qp.

Theorem 1.2. Let ε be a positive real number. Then, for almost all p-adic numbers ξ,
there exists a positive real constant c(ξ, ε), depending only on ξ and ε, such that every
integer polynomial P(x) satisfies

|P(ξ)|p > exp(−(3 + ε)n log H − (4 + ε)n log n)

whenever max{n,H} ≥ c(ξ, ε), where n and H denote the degree and the height of P(x),
respectively.

We highlight the following straightforward consequence of Theorem 1.2.

Corollary 1.3. Almost all p-adic numbers are p-adic S̃ -numbers of order 1 and type
at most 3.
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One may expect that almost all p-adic numbers are p-adic S̃ -numbers of order 1
and type 1, but such a statement seems to be very difficult to prove.

Besides the classification based on (1-1), there exist other ways to classify the
elements of Qp. Namely, for a p-adic number ξ and positive integers n and H, let
us consider the quantity

min{|ξ − α|p : α ∈ Qp, deg(α) ≤ n,H(α) ≤ H, and ξ , α},

where Qp denotes the set of elements of Cp which are algebraic over Q. Here, the
height H(α) and the degree deg(α) are the height and the degree of the minimal
defining polynomial of α over Z. However, since it is more natural to approximate
p-adic numbers by p-adic numbers (and not by numbers in a larger field), we should
rather consider the quantity

w∗n(H, ξ) = min{|ξ − α|p : α ∈ Qp ∩ Qp, deg(α) ≤ n,H(α) ≤ H, and ξ , α}.

Then a difficulty occurs, since the fact that an integer polynomial P(x) is p-adically
small at a p-adic number ξ does not straightforwardly imply that P(x) has a root in
Qp which is p-adically close to ξ; see, for example, [5, Section 9.3] for a discussion.
By using the quantities w∗n(H, ξ) in place of wn(H, ξ), we can divide the set of p-adic
numbers into four classes, called Ã∗-, S̃ ∗-, T̃ ∗-, and Ũ∗-numbers. It then follows from
Theorem 1.2 that almost all p-adic numbers are p-adic S̃ ∗-numbers.

It is claimed in [5, page 167] that any two algebraically dependent complex numbers
belong to the same class in Sprindžuk’s classification. A (tentative) proof is left as part
of Exercise 8.1. However, the hint given is not sufficient since the constants c1 and
c3 occurring in (3.3) of [5, Ch. 3] heavily depend on the degree n. Consequently, it
may be the case that, unlike Mahler’s classification, Sprindžuk’s classification does
not enjoy a strong invariance property. We leave this as an open problem.

Problem 1.4. Do there exist two algebraically dependent (transcendental) p-adic
(respectively, complex) numbers which do not belong to the same class in Sprindžuk’s
classification?

The proof of Theorem 1.2 rests on several estimates for the p-adic distance between
p-adic roots of integer polynomials, stated and proved in Section 2. In Section 3, we
apply these results to establish Theorems 1.1 and 1.2.

2. Lower bounds for the p-adic distance between roots of integer polynomials

Let P(x) = an(x − α1) · · · (x − αn) be a nonzero integer polynomial. The Mahler
measure of P(x), denoted by M(P), is the quantity

M(P) = |an|

n∏
i=1

max{1, |αi|}.

The Mahler measure is a multiplicative function, which satisfies (see [5, pages
219–220])

M(P) ≤
√

n + 1H(P). (2-1)
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Let P(x) = anxn + · · · + a0 be an integer polynomial of degree n ≥ 1 and coprime
coefficients. Denote the roots of P(x) in Cp by α1, . . . , αn. Then (see [12, Lemma 3.1])

|an|p

n∏
i=1

max{1, |αi|p} = 1. (2-2)

Let En (n = 0, 1, 2, . . .) be subsets of Qp and assume that
∑∞

n=0 λp(En) converges,
where λp denotes the Haar measure on Qp. By a classical covering argument (see, for
example, [5, Lemma 1.3]),

λp

( ∞⋂
N=1

∞⋃
n=N

En

)
= 0. (2-3)

Our first result in this section is a p-adic analogue of [3, Théorème 1]. We also
refer the reader to [5, Appendix A] and [3] for further references. It is crucial for our
application that, in Theorems 2.1–2.3, the dependence on n occurs through the quantity
nn and not through the quantity 2n2

.

Theorem 2.1. Let P(x) be an integer polynomial of degree n ≥ 2. Let α be a root of
P(x) in Cp of degree n1 and of multiplicity s1. If β is a root of P(x) in Cp, distinct from
α and of multiplicity s2, then

|α − β|p ≥

((
n + 1
s1 + 1

)
H(P)

)−n1/s2

M(P)1/s2−n/(s1 s2) max{1, |α|p}max{1, |β|p},

if s2 ≥ s1, while

|α − β|p ≥

((
n + 1
s + 1

)
H(P)

)−n/(2s2)

M(P)1/(2s)−n/(2s2) max{1, |α|p}3/2 max{1, |β|p}3/2,

if s1 = s2 = s. In particular,

|α − β|p ≥ 2−3n/(2s1 s2)n−n(2s1+3)/(2s1 s2)H(P)−2n/(s1 s2), (2-4)

if s2 ≥ s1, while

|α − β|p ≥ 2−n/sn−n(2s+3)/(4s2)H(P)1/(2s)−n/s2
max{1, |α|p}3/2 max{1, |β|p}3/2,

if s1 = s2 = s.

We prove Theorem 2.1 by adapting the method of the proof of [3, Théorème 1] to
the p-adic case.

Proof of Theorem 2.1. We adapt the proof of [3, Théorème 1] to the p-adic case. Let
Q(x) = a1(x − α1) · · · (x − αn1 ) be a separable integer polynomial with α = α1. Note that
α1, . . . , αn1 are in Cp. Then Q(x) divides P(x) in Z[x] and the integer polynomials Q(x)
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and P(s1)(x)/s1! are relatively prime. Since their resultant, denoted by Res(Q,P(s1)/s1!),
is a nonzero integer,∣∣∣∣∣Res

(
Q,

P(s1)

s1!

)∣∣∣∣∣−1

p
≤

∣∣∣∣∣Res
(
Q,

P(s1)

s1!

)∣∣∣∣∣ ≤ |a1|
n−s1

n1∏
i=1

|P(s1)(α′i)|
s1!

≤

(
n + 1
s1 + 1

)n1

H(P)n1 M(Q)n−s1 ,

where α′1, . . . , α
′
n1

are the complex roots of Q(x). Hence,

1 ≤
(

n + 1
s1 + 1

)n1

H(P)n1 M(Q)n−s1 |a1|
n−s1
p

n1∏
i=1

∣∣∣∣∣P(s1)(αi)
s1!

∣∣∣∣∣
p
. (2-5)

We have ∣∣∣∣∣P(s1)(αi)
s1!

∣∣∣∣∣
p
≤ max{1, |αi|p}

n−s1 (i = 2, . . . , n1). (2-6)

Denoting the leading coefficient of P(x) by a,∣∣∣∣∣P(s1)(α)
s1!

∣∣∣∣∣
p

= |a|p
∏
γ,α

P(γ)=0

|α − γ|p ≤ |a|p|α − β|s2
p max{1, |α|p}n−s1−s2

∏
γ,α,γ,β
P(γ)=0

max{1, |γ|p}.

(2-7)
Here and below, the roots γ of P(x) are counted with their multiplicities. Combining
(2-5)–(2-7) and using (2-2) and the inequality M(Q) ≤ M(P)1/s1 ,

|α − β|p ≥

((
n + 1
s1 + 1

)
H(P)

)−n1/s2

M(P)1/s2−n/(s1 s2) max{1, |α|p}max{1, |β|p} (s2 ≥ s1).

Thus, using (2-1) and the inequalities n1 ≤ n/s1 and
(

n+1
s1+1

)
≤ (n + 1)(n/2)s1 ,

|α − β|p ≥ 2−3n/(2s1 s2)n−n(2s1+3)/(2s1 s2)H(P)−2n/(s1 s2) (s2 ≥ s1).

If s1 = s2 = s, we can choose Q(x) such that α2 = β. We then have the analogue of
(2-7) for |P(s)(β)/s!|p, namely the upper bound∣∣∣∣∣P(s)(β)

s!

∣∣∣∣∣
p
≤ |a|p|α − β|sp max{1, |β|p}n−2s

∏
γ,α,γ,β
P(γ)=0

max{1, |γ|p}. (2-8)

Combining (2-5), (2-7), (2-8), and (2-6) for i = 3, . . . , n1 and using (2-2) and the
inequalities n1 ≤ n/s and M(Q) ≤ M(P)1/s,

|α − β|p ≥

((
n + 1
s + 1

)
H(P)

)−n/(2s2)

M(P)1/(2s)−n/(2s2) max{1, |α|p}3/2 max{1, |β|p}3/2.

Hence, using (2-1) and the inequality
(

n+1
s+1

)
≤ (n + 1)(n/2)s,

|α − β|p ≥ 2−n/sn−n(2s+3)/(4s2)H(P)1/(2s)−n/s2
max{1, |α|p}3/2 max{1, |β|p}3/2.

This completes the proof of Theorem 2.1.
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Our second result in this section is a p-adic analogue of Diaz and Mignotte
[7, Lemme].

Theorem 2.2. Let P(x) be an integer polynomial of degree n ≥ 1 and ξ be a number
in Cp. Let α be a root of P(x) in Cp such that |ξ − α|p ≤ |ξ − t|p for any root t of P(x)
in Cp. Let s and d denote the multiplicity of α as a root of P(x) and the degree of α,
respectively. Then

|ξ − α|sp ≤

((
n + 1
s + 1

)
H(P)

)d

M(P)n/s−1|P(ξ)|p.

In particular,
|ξ − α|sp ≤ 2nnn+3n/(2s)H(P)2n/s−1|P(ξ)|p. (2-9)

Proof of Theorem 2.2. We adapt the proof of Diaz and Mignotte [7, Lemme] to the
p-adic case. Let Q(x) = a(x − α1) · · · (x − αd) be the minimal polynomial of α = α1
over Z. (Note that α1, . . . , αd are in Cp.) Then Qs(x) divides P(x) in Z[x] and the
integer polynomials Q(x) and P(s)(x)/s! are relatively prime. Hence, their resultant is
a nonzero integer. Thus, as in the proof of Theorem 2.1,∣∣∣∣∣Res

(
Q,

P(s)

s!

)∣∣∣∣∣−1

p
≤

∣∣∣∣∣Res
(
Q,

P(s)

s!

)∣∣∣∣∣ ≤ ((
n + 1
s + 1

)
H(P)

)d

M(Q)n−s.

So,

1 ≤
((

n + 1
s + 1

)
H(P)

)d

M(Q)n−s|a|n−s
p

d∏
i=1

∣∣∣∣∣P(s)(αi)
s!

∣∣∣∣∣
p
. (2-10)

By the hypothesis of the theorem, |ξ − α|p ≤ |ξ − γ|p for any root γ of P(x) in Cp.
This implies that

|γ − α|p ≤ max{|γ − ξ|p, |ξ − α|p} = |ξ − γ|p
for any root γ of P(x) in Cp. Denoting the leading coefficient of P(x) by b,∣∣∣∣∣P(s)(α)

s!

∣∣∣∣∣
p

= |b|p
∏

t,α
P(t)=0

|α − t|p ≤ |P(ξ)|p|ξ − α|−s
p . (2-11)

We have ∣∣∣∣∣P(s)(αi)
s!

∣∣∣∣∣
p
≤ max{1, |αi|p}

n−s (i = 2, . . . , d). (2-12)

Combining (2-10)–(2-12) and using (2-2) and the inequality M(Q) ≤ M(P)1/s,

|ξ − α|sp ≤

((
n + 1
s + 1

)
H(P)

)d

M(P)n/s−1|P(ξ)|p.

Hence, using (2-1) and the inequalities d ≤ n/s and
(

n+1
s+1

)
≤ (n + 1)(n/2)s,

|ξ − α|sp ≤ 2nnn+3n/(2s)H(P)2n/s−1|P(ξ)|p.

This completes the proof of Theorem 2.2.
Our last result in this section is a p-adic analogue of [5, Theorem A.1].
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Theorem 2.3. Let P(x) and Q(x) be integer polynomials of degrees n ≥ 1 and m ≥ 1,
respectively. Let α be a root of P(x) in Cp and β be a root of Q(x) in Cp. Denote the
multiplicity of α as a root of P(x) and that of β as a root of Q(x) by s and t, respectively.
Assume that P(β) , 0. Then

|P(β)|p ≥ (n + 1)−m/t(m + 1)−n/(2t)H(P)−m/tH(Q)−n/t max{1, |β|p}n

and

|α − β|p ≥ (n + 1)−m/(st)(m + 1)−n/(2st)H(P)−m/(st)H(Q)−n/(st) max{1, |α|p}max{1, |β|p}.
(2-13)

Proof of Theorem 2.3. Let Q1(x) = b(x − β1) · · · (x − βq1 ) be the minimal
polynomial of β = β1 over Z. (Note that β1, . . . , βq1 are in Cp.) Then Qt

1(x) divides
Q(x) in Z[x] and the polynomials Q1(x) and P(x) are relatively prime. Hence, the
resultant of the polynomials Q1(x) and P(x) is a nonzero integer. Thus,

|Res(Q1, P)|−1
p ≤ |Res(Q1, P)| ≤ (n + 1)q1 H(P)q1 M(Q1)n.

So,

1 ≤ (n + 1)q1 H(P)q1 M(Q1)n|b|np

q1∏
i=1

|P(βi)|p. (2-14)

We have
|P(βi)|p ≤ max{1, |βi|p}

n (i = 2, . . . , q1). (2-15)

Combining (2-14) and (2-15) and using (2-2),

1 ≤ |P(β)|p(n + 1)q1 H(P)q1

( M(Q1)
max{1, |β|p}

)n
.

Hence, using the inequalities (2-1), q1 ≤ m/t, and M(Q1) ≤ M(Q)1/t,

|P(β)|p ≥ (n + 1)−m/t(m + 1)−n/(2t)H(P)−m/tH(Q)−n/t max{1, |β|p}n. (2-16)

Furthermore, denoting the leading coefficient of P(x) by an,

|P(β)|p = |an|p|β − α|
s
p

∏
γ,α

P(γ)=0

|β − γ|p ≤ |an|p|β − α|
s
p max{1, |β|p}n−s

∏
γ,α

P(γ)=0

max{1, |γ|p}.

Thus, using (2-2),

|P(β)|p ≤ |β − α|sp max{1, |β|p}n−s max{1, |α|p}−s. (2-17)

We infer from (2-16) and (2-17) that

|α − β|p ≥ (n + 1)−m/(st)(m + 1)−n/(2st)H(P)−m/(st)H(Q)−n/(st) max{1, |α|p}max{1, |β|p}.

This completes the proof of Theorem 2.3.
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3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let ξ be a p-adic algebraic number of degree m and let
Q(x) be the minimal polynomial of ξ over Z. Let n and H be positive integers and
let P(x) be an integer polynomial with deg(P) ≤ n, H(P) ≤ H, and P(ξ) , 0. Then, by
Theorem 2.3,

|P(ξ)|p ≥ (n + 1)−m(m + 1)−nH−mH(Q)−n.

With the notation of Section 1, we get w(H, ξ) ≤ 1 and thus w(ξ) ≤ 1. Furthermore, if
w(ξ) = 1, then we get t(ξ) = 0. This proves assertion (1) of Theorem 1.1.

Let ξ be a p-adic transcendental number with |ξ|p = p−h and let n and H be positive
integers. As proved by Mahler [9], there exists an integer polynomial P(x) with
deg(P) ≤ n and H(P) ≤ H such that

0 , |P(ξ)|p ≤ p−nt+1(H + 1)−n−1,

where t = min{0, h}. We get w(H, ξ) ≥ 1 and thus w(ξ) ≥ 1. Furthermore, if w(ξ) = 1,
then we get t(ξ) ≥ 1. This proves assertion (2) of Theorem 1.1.

Proof of Theorem 1.2. Let ε be a positive real number. Let B be a ball of radius
1 in Qp and let n0 ≥ 4 be an integer which we will determine later. By Sprindžuk’s
theorem [11, pages 89 and 112], for almost all p-adic numbers ξ in B, in the sense of
the Haar measure on Qp, the inequality

|P(ξ)|p ≤ exp(−(2 + ε)n log H)

is satisfied by only a finite number of integer polynomials P(x) of degree n < n0 and
of height H. Denote by E the set of p-adic numbers ξ in B such that the inequality

|P(ξ)|p ≤ exp(−(3 + ε)n log H − (4 + ε)n log n)

is satisfied by infinitely many integer polynomials P(x) of degree n ≥ n0 and of height
H. Hence, in order to prove the theorem, it is sufficient to show that the Haar measure
of E is equal to zero. For any positive integers n, s, and H with 1 ≤ s ≤ n and n ≥ n0, we
denote by A(n,H, s) the set of numbers α in Cp which are the roots, with multiplicity
s, of some integer polynomials P(x) of degree n and of height H. For any positive
integers n, s, and H with 1 ≤ s ≤ n and n ≥ n0, let E(n,H, s) denote the set of p-adic
numbers ξ for which there exists an algebraic number α in A(n,H, s) such that

|ξ − α|p ≤ exp
(( 2

s2 −
3 + ε

s

)
n log H +

( 3
2s2 −

3 + ε

s

)
n log n +

n
s

log 2
)
. (3-1)

Setting E(n,H) := E(n,H, 1) ∪ · · · ∪ E(n,H, n), we observe that (2-9) in Theorem 2.2
ensures that every p-adic number ξ in E belongs to infinitely many sets E(n,H). Thus,

E ⊆
∞⋂

N=n0

∞⋃
n=N

∞⋃
H=1

E(n,H) ∪
∞⋂

H0=1

∞⋃
n=n0

∞⋃
H=H0

E(n,H). (3-2)
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By [3, Lemma 1], the number of elements of A(n,H, s) is bounded from above by

CardA(n,H, s) ≤ min
{
23nHn, 27n2/s2

H2n/s2}
. (3-3)

Let us denote the number in the right-hand side of (3-1) by ρ and let D(n,H, s) denote
the set of numbers in Cp whose distance to the ball B is less than ρ. For any positive
integers n and s with n ≥ 4 and 3 ≤ s ≤ n, it follows from (2-4) and (2-13) that

|α − β|p ≥ 2−n/sn−5n/(2s)H−2n/s (3-4)

holds for any α, β in A(n,H, s) with α , β. Let us denote the number in the right-hand
side of (3-4) by δ. We observe that δ ≥ 4ρ holds for sufficiently large n. Hence, the set
D(n,H, s) can be covered by at most [2δ−1] + 2 open balls of radius δ. For 3 ≤ s ≤ n,
this yields for sufficiently large n the bound

Card(A(n,H, s) ∩ D(n,H, s)) ≤ 23n/sn5n/(2s)H2n/s. (3-5)

In order to bound the Haar measure of E(n, H, s), we separate three cases with
respect to the value of s:

s = 1, 2; 3 ≤ s < n
√

7/ log n; n
√

7/ log n ≤ s ≤ n.

For s = 1, 2, the first upper bound of (3-3) and (3-1) yield

λp(E(n,H, s)) ≤ exp
(
−

n
s

(
ε log H +

(3
2

+ ε
)

log n − 4 log 2
))
.

For 3 ≤ s < n
√

7/ log n, (3-5) and (3-1) imply that for sufficiently large n,

λp(E(n,H, s)) ≤ exp
(
−

n
s

((1
3

+ ε
)

log H + ε log n − 4 log 2
))
.

For n
√

7/ log n ≤ s ≤ n, the second upper bound of (3-3) and (3-1) yield for sufficiently
large n that

λp(E(n,H, s)) ≤ exp
(
−

n
s

((
3 + ε −

4
s

)
log H +

(
3 + ε −

3
2s
−

s
n

log 2
)

log n − log 2
))
.

In all these three cases, choosing n0 sufficiently large, we have for n ≥ n0 the inequality

λp(E(n,H, s)) ≤ (nH)−(2+η),

where η is an appropriate positive real number depending on ε. Hence,

λp(E(n,H)) ≤ (nH)−(1+η)

and the series
∞∑

n=n0

∞∑
H=1

λp(E(n,H))

converges. Then (2-3) and (3-2) imply that the Haar measure of E is zero. This
completes the proof of Theorem 1.2. �
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[1] M. Amou, ‘On Sprindžuk’s classification of transcendental numbers’, J. reine angew. Math. 470

(1996), 27–50.
[2] M. Amou, ‘Transcendence measures for almost all numbers’, in: Analytic Number Theory (Kyoto,
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