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The problem of subsonic flow past micro-electro-mechanical-system-type (MEMS-
type) heating elements placed on a flat surface, where the MEMS devices have
hump-shaped surfaces, is investigated using triple-deck theory. The compressible
Navier–Stokes equations supplemented by the energy equation are considered in the
limit that the Reynolds number is large. The triple-deck problem is formulated, and
the linear and nonlinear analysis and results are presented. The current work is a
generalisation of the problem discussed by Koroteev & Lipatov (J. Fluid Mech.,
vol. 707, 2012, pp. 595–605; Z. Angew. Math. Mech., vol. 77, 2013, pp. 486–493),
where the MEMS devices have flat-shaped surfaces. The results show that the
hump-shaped heating elements enhance large drops in pressure, and peaks and troughs
in the skin friction over the centre of the hump compared with the flat-shaped devices,
which may be useful for controlling the flow.
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1. Introduction

Flow separation from the surface of a rigid body is one of the most interesting
phenomena in fluid motion. This separation causes major effects in flow fields.
Investigation of the separation and its consequences is of particular importance in
understanding flows at high Reynolds numbers. The explanation of the phenomena
of separation lies in the theory of the boundary layer, in particular triple-deck theory,
see Neiland (1969), Stewartson & Williams (1969) and Messiter (1970). In recent
years, there has been an increasing interest in using micro-electro-mechanical-system
(MEMS) devices to control the separation of flow at high Reynolds numbers. Based
on triple-deck theory, we investigate subsonic flow past MEMS-type heating elements
placed on a flat surface in which the heating element has a humped shape. The current
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work reduces to the problem investigated by, for example, Koroteev & Lipatov (2012,
2013) when the MEMS devices have zero hump height. Apart from MEMS devices,
another motivation for the current work is to try to understand how local hot spots
or cold bumps affect separation.

2. Problem formulation

We consider a subsonic viscous flow of a perfect gas past a semi-infinite flat plate
on which there is a small heating element. In cross-section, the hump has dimensions
that are small compared with those of the oncoming boundary layer along the plate.
The Reynolds number Re= ρ∞U∞L/µ∞ is asymptotically large, where ρ∞, U∞ and
µ∞ are the density, the streamwise velocity and the dynamic viscosity coefficient
respectively in the undisturbed flow above the surface where the heated section is
located, and L is the distance from the leading edge to the energy release domain.
Let Re−1/2

= ε. We assume that the hump has a length of O(Lε3/4) and a height of
O(Lε5/4). In particular, we consider humps that have profiles y∗/Lε5/4

= h̄F(x∗/Lε3/4),
where h̄ is O(1) and the function F is such that G(X)= h̄F(X) is of order 1. Variables
of the governing Navier–Stokes and energy equations are non-dimensionalised, with
U∞, L and ρ∞ being the characteristic velocity, length and density scales respectively.
Then, we use the following dimensionless variables:

(x, y)=
1
L
(x∗, y∗), (u, v)=

1
U∞

(u∗, v∗), T =
T∗R
U2
∞

,

p=
p∗ − p∞
ρ∞U2

∞

, µ=
µ∗

µ∞
and ρ =

ρ∗

ρ∞
.

 (2.1)

Here, (x, y) are the Cartesian coordinates, (u, v) are the corresponding velocity
components, p is the pressure, T is the temperature, µ is the viscosity, ρ is the
density, R is the gas constant and p∞ is the free-stream pressure. We also introduce
the free-stream Mach number M∞ =U∞/c∞, where c∞ =

√
γ p∞/ρ∞.

Neiland (1971) has discussed the arguments leading to the triple-deck scales, and
Lipatov (2006) and Koroteev & Lipatov (2012, 2013), in particular, have explained
how small changes in the surface temperature lead to a nonlinear interaction within
the triple deck. The interested reader is referred to these and other papers for more
details of the governing equations and expansions. Using this as our starting point,
the method of matched asymptotic expansions is used to obtain the equations of the
interaction problem. In our case, the main difference between the current and previous
work is that we also require no slip on the hump surface. In particular, in the lower
deck, the independent variables and expansions are given by

x= 1+ ε3/4X, y= ε5/4y3,

u= ε1/4u3 + · · · , v = ε3/4v3 + · · · , p= ε1/2p3 + · · · ,

ρ = ρ3 + · · · and T = T3 + · · · .

 (2.2)

Substitution into the Navier–Stokes equations leads to the lower-deck problem,

u3
∂ρ3

∂X
+ v3

∂ρ3

∂y3
+ ρ3

∂u3

∂X
+ ρ3

∂v3

∂y3
= 0, (2.3)

ρ3

(
u3
∂u3

∂X
+ v3

∂u3

∂y3

)
=−

∂p3

∂X
+

∂

∂y3

(
µ
∂u3

∂y3

)
, (2.4)
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Localised heating elements in boundary layers

∂p3

∂y3
= 0, ρ3T3 = 1, (2.5a,b)

ρ3

(
u3
∂T3

∂X
+ v3

∂T3

∂y3

)
=

∂

∂y3

(
µ

Pr
∂T3

∂y3

)
, (2.6)

with the boundary and matching conditions

u3→ λ(y3 + A(X)), T3→ TB(x, 0) as y3→∞,

u3 = v3 = 0, T3 = Tw(X) on y3 =G(X).

}
(2.7)

We also have the interaction law

p3(X)=
1

π
√

1−M2
∞

−

∫
∞

−∞

A′(ζ )
X − ζ

dζ . (2.8)

Here, A(X) is the displacement function, λ= (∂UB/∂y3)(1, y3 = 0) is the basic shear
of the oncoming boundary layer profile UB(x, y), TB(x, y) is the basic temperature
profile and G(X) is the physical hump shape. As a result, after further employing the
Howarth–Dorodnitsyn transformation followed by the Prandtl transformation, using the
Chapman viscosity law, setting the Prandtl number to be unity, and scaling to remove
some constants, the governing equations and boundary conditions for subsonic flow in
the lower deck can be shown to be given by

∂ub

∂xb
+
∂vb

∂yb
= 0, (2.9)

ub
∂ub

∂xb
+ vb

∂ub

∂yb
+ Tb

∂pb

∂xb
=
∂2ub

∂y2
b
, (2.10)

ub
∂Tb

∂xb
+ vb

∂Tb

∂yb
=
∂2Tb

∂y2
b
, (2.11)

pb(xb)=
1
π
−

∫
∞

−∞

K′(s)
xb − s

ds, (2.12)

with the no-slip conditions on yb = 0 given by

ub(xb, 0)= vb(xb, 0)= 0, (2.13)

and the prescribed wall temperature

Tb(xb, 0)= Tw(xb). (2.14)

The boundary conditions far from the surface (yb→∞) are given by

ub→ yb +A(xb)+H(xb), K(xb)=A(xb)+

∫
∞

0
(1− Tb(xb, η)) dη, Tb(xb, yb)→ 1,

(2.15a−c)
and far upstream

A(−∞)= 0. (2.16)

The interaction condition (2.12) can be represented in another form, as mentioned in
Smith (1973), as

K′′(xb)=−
1
π
−

∫
∞

−∞

p′b(s)
xb − s

ds. (2.17)
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Here, xb is the scaled streamwise coordinate in the triple deck, yb is the scaled
lower-deck coordinate (following the use of the Dorodnitsyn–Howarth transformation),
ub(xb, yb), vb(xb, yb) are the scaled lower-deck velocity components, Tb(xb, yb) is the
scaled temperature, pb(xb) is the induced pressure, K(xb) is the total displacement of
stream lines, A(xb) is the displacement of stream lines caused by the viscosity of the
fluid and Tw(xb) represents the prescribed wall temperature. The function H(xb) is the
shape of the element surface, which is related to the physical hump shape G(xb) in
the original variables by

H(xb)=

∫ G(xb)

0
ρ3(xb, yb) dyb. (2.18)

The main difference between the present work and that of Koroteev & Lipatov (2012,
2013) is that H(xb)= 0 in the latter.

3. Linear theory

In general, to solve (2.9)–(2.17) for variations of the temperature 1T of O(1) and
H(xb) of O(1), we require a numerical method. For small variations of the temperature
and hump height, we may study the problem analytically in the linear approximation.
We consider small variations of the temperature, i.e. σ =1T� 1. We may linearise
equations (2.9)–(2.17) related to the undisturbed boundary layer profile by expanding
the flow variables as follows:

ub = yb + σ Ũ +O(σ 2), vb = σ Ṽ +O(σ 2), (3.1a,b)

K= σK1 +O(σ 2), Tb = 1+ σ T̃ +O(σ 2), (3.2a,b)

pb = σ P̃+O(σ 2), H = σ H̃ +O(σ 2) and A= σA1 +O(σ 2) (3.3a−c)

as σ→ 0. After substituting the expansions, equations (3.1)–(3.3), into equations and
boundary conditions (2.9)–(2.17) we obtain the following linearised problem:

∂Ũ
∂xb
+
∂Ṽ
∂yb
= 0, (3.4)

yb
∂Ũ
∂xb
+ Ṽ +

∂P̃
∂xb
=
∂2Ũ
∂y2

b
, (3.5)

yb
∂T̃
∂xb
=
∂2T̃
∂y2

b
. (3.6)

The linearised boundary conditions are given by

Ũ(xb, 0)= 0, Ṽ(xb, 0)= 0, T̃(xb, 0)= T̃w(xb), (3.7a−c)

Ũ→A1(xb)+ H̃(xb), K1(xb)=−

∫
∞

0
T̃(x, η) dη+A1(xb), (3.8a,b)

T̃(xb,∞)→ 0 as yb→∞, (3.9)

A1(−∞)= 0 and K′′1(xb)=−
1
π
−

∫
∞

−∞

P̃′(s)
xb − s

ds. (3.10a,b)

We will use Fourier transforms to solve the above equations. The Fourier transform
of g(xb) and the inverse transform are defined by

ĝ(ω)=
∫
∞

−∞

g(xb)e−iωxb dxb, g(xb)=
1

2π

∫
∞

−∞

ĝ(ω)eiωxb dω. (3.11a,b)
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Localised heating elements in boundary layers

After applying the Fourier transformation, the linear equations may be solved to
obtain expressions for the perturbed pressure gradient and wall shear distributions as

∂P̃
∂xb
=

Ai′(0)
2πAi(0)

∫
∞

−∞

(iω)5/3 f̂ (ω)+ (iω)2Ĥ(ω)Λ
isgn(ω)Θ + (iω)4/3

eiωxb dω (3.12)

and
∂Ũ
∂yb

(xb, 0)=
1

2π

∫
∞

−∞

(iω)4/3 f̂ (ω)+ (iω)5/3Ĥ(ω)Λ
isgn(ω)Θ + (iω)4/3

eiωxb dω, (3.13)

where Θ = −(Ai′(0)/(
∫
∞

0 Ai(z) dz)) and Λ = Ai(0)/(
∫
∞

0 Ai(z) dz), and f̂ is the
transform of the wall temperature T̃w(xb). The multi-valued functions are defined such
that we have taken a branch cut along the positive imaginary axis for ω.

The expressions for the pressure and wall shear can be inverted for various wall
shapes and heating profiles (see the supplementary material for this paper available
at https://doi.org/10.1017/jfm.2017.277). For example, if we assume that the heating
region is located in |xb|< 0.5, the wall temperature function is given by

T̃(xb, 0)=
{

0.2, |xb|< 0.5,
0, |xb|> 0.5 (3.14)

and the hump shape is given by

H̃(xb)= h̃ exp(−5x2
b), (3.15)

then

f̂ (ω)=
0.4
ω

sin
(ω

2

)
, F{H̃(xb)} = Ĥ(ω)= h̃

√
5π

5
exp

(
−
ω2

20

)
. (3.16a,b)

A plot of the hump profiles used in the linear and nonlinear computations in
comparison to the extent of the heated region can be seen in figure 1. In figure 2(a,b),
we present the pressure P̃(xb) and the wall shear τ̃ = (∂Ũ/∂yb)(xb, 0) distributions for
different values of the hump height h̃. In figure 2(a), we can see that the pressure
increases as xb increases ahead of the hump but drops significantly on reaching the
beginning of the heating region at xb =−0.5, followed by recovery at the end of the
heated region. The wall shear distribution in figure 2(b) decreases initially, but there
is a sharp rise and drop on entering and leaving the heated region. The discontinuous
changes for h̃ = 0 at the start and end of the heated region are also seen in the
results of Koroteev & Lipatov (2012). The main difference between the flat-plate
case with h̃ = 0 and the humped shape is that the presence of the hump creates a
larger pressure drop and much larger rise in the wall shear stress across the heated
part compared with the flat-plate case. Moreover, the sharp discontinuous change seen
in the pressure and the wall shear distribution for the flat-plate case is smoothed out
for the hump-shaped profile.

4. The nonlinear theory

4.1. Numerical method to solve the nonlinear problem
The triple-deck equations are nonlinear, and in order to solve them we can use various
numerical methods. In Sychev et al. (1998), different approaches are described to
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FIGURE 1. Plots of the hump shapes (a) H̃(xb)/h̃= e−5x2
b and (b) H̃(xb)/h̃= e−0.25x2

b . The
arrows depict the extent of the heated region for |xb|< a/2.
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FIGURE 2. Distributions of (a) the pressure and (b) the wall shear for various values of
h̃ in the linear approximation.

solve these kinds of problems. Our method consists of using finite differences in
the x-direction (streamwise direction) and the Chebyshev collocation method in
the y-direction (wall normal direction) using the technique as described in Korolev,
Gajjar & Ruban (2002) and Logue (2008). Hereafter, the subscript b on the variables
is omitted. In the y-direction, we work with a finite domain [0, ymax], where ymax is a
suitably chosen large value. In the x-direction, we have a truncated domain [xmin, xmax].
The y-component of the node (xi, yk) is given by the Chebyshev collocation points,
which are represented using the mapping y→ z ⊆ (−1, 1) in Chebyshev space so
that the collocation points are given by z = zj = −cos(jπ/N), j = 0, 1, . . . ,N and
y = y(zk) = yk = (ymax(zk + 1))/2, k = 0, 1, . . . ,N, where N + 1 is the number of
points in the y-direction. Finite differences are used to discretise the x-direction. The
finite difference points are given by x= xi = xmin + (i− 1)1x, i= 1, 2, . . . ,M, where
1x= (xmax − xmin)/(M − 1).

The interaction law equation can be written as ∂p/∂x = −(1/π)
∫
∞

−∞
(K′′(s)/

(s− x)) ds. In order to discretise this, we use the method as presented in Kravtsova,
Zametaev & Ruban (2005) to isolate the singular part near s = x and utilise local
expansions in the vicinity of the singular point. Finally, using Newton linearisation,
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Localised heating elements in boundary layers

and by defining the unknown variables as

Li = (Ui, T i, Pi,Ai,Ki)
T, (4.1)

the linearised discrete equation system can be written as

AiLi−2 + BiLi−1 + C iLi + F iLi+1 + E iLi+2 = rhsi. (4.2)

Here, the block matrices Ai,Bi,C i,F i and E i are of size (2N+5)× (2N+5). It should
be noted that, from the interaction law, the additional terms that do not contribute to
the block pentadiagonal structure above are transferred to the right-hand side, treating
them as known quantities. This discrete system is applied to 3 6 i 6 (M − 2), while
for i < 3 we impose values that are given by undisturbed boundary layer profiles,
i.e. U= y, T = 1,K = 0 and P= 0. For i> (M− 2), one-sided differences are used. A
detailed description of the full discretised equation system can be found in Aljohani
(2016). The linear equations are solved directly using a solver that exploits the block
pentadiagonal sparsity pattern of the matrices in (4.2).

4.2. Results and discussion
In this section, we present results from the numerical solution of the nonlinear
triple-deck problem for subsonic flow past a MEMS-type heating element. The
results depend on the hump shape, which is chosen as

H(xb)= he−0.25x2
b, (4.3)

with parameter h, and also on the wall temperature, given by

Tw(xb)=

1+1T, |xb|6
a
2
,

1, |xb|>
a
2
,

(4.4)

with the parameter 1T being the amplitude of perturbations of the temperature and a
being the extent of the heated region. It should be noted that for the nonlinear results
the hump shape is vanishingly small for |xb|> 5, as can be seen in figure 1.

Koroteev & Lipatov (2012) investigated the problem of a subsonic laminar boundary
layer with local heated elements placed along the surface. A comparison of the wall
shear distribution obtained in Koroteev & Lipatov (2012) and by the present numerical
method is shown in figure 3, with 1T = 0.2, h= 0 and a= 14. Excellent agreement
between the results can be seen. The results of previous work, here and later, are
reproduced using digitising software developed by Rohatgi (2010). Various grid sizes
and other checks are carried out to justify that the results are consistent, as detailed
in Aljohani (2016).

In the remainder of the results presented below, we have fixed a=10. A comparison
of the linear and nonlinear results is shown in figure 4(a,b), where we present the
normalised pressure and wall shear distributions, with 1T = 0.3 and h= 0.2. It can be
seen that, for these values of h, the linear approximation is not that different from the
nonlinear results. One additional feature that can be noticed in figure 4(a) compared
with figure 2(a) is the rise and dip in pressure on the rear portion of the hump.
In figure 2(a), the heating was confined to a small part of the hump, whereas in
figure 4(a), the heating extends to xb = 5, which effectively coincides with the start
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FIGURE 3. A comparison of the present results with those of Koroteev & Lipatov (2012)
for the wall shear, with 1T = 0.2, a= 14 and h= 0.
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Linear solution
Nonlinear solution
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FIGURE 4. Comparisons of the nonlinear and linear results for (a) pressure and (b) wall
shear, with 1T = 0.3, a= 10 and h= 0.2.

of the flat-plate region. Once the heating is switched off, the pressure rises rapidly in
both cases. In figure 4(b), the rise and fall in the pressure over the rear portion of
the hump also gives rise to a dip and rise in the wall shear in the same region. In
figure 5, we have plotted the maximum and minimum values of the wall shear for a
larger value of h= 0.6, for varying values of 1T . Significant differences between the
linear and nonlinear results only show up after 1T exceeds 1 for the maximum wall
shear.

Further nonlinear results are presented in figure 6(a,b), keeping the hump size fixed
with h= 0.5 and with the wall temperature varying. It can be observed that increase
in 1T increases the pressure and wall shear maximum values, which are located on
the upstream edge of the heated region, and decreases the pressure and wall shear
minimum values, which are located on the downstream edge of the heating region.
Once the heating starts, the flow becomes more strongly attached over the hump,
although there is still a local rise and fall in the pressure over the rear portion of the
hump. Figure 7(a,b) presents distributions of the pressure and skin friction keeping the
heating the same with 1T= 0.4 while the hump height h varies. It can be noticed that
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FIGURE 5. Amplitudes of perturbations of the temperature 1T versus (a) maximum wall
shear values and (b) minimum wall shear values, with a= 10 and h= 0.6.
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FIGURE 6. (a) Pressure and (b) wall shear for h= 0.5 and various values of 1T .

increase in h leads to shifts in the maximum and minimum values of the pressure and
wall shear to be in the neighbourhood of the centre of the element rather being on its
edges. Increase in the hump height also promotes a much stronger adverse pressure
gradient on the rear portion of the hump.

5. Conclusion

The linear and nonlinear problems of subsonic flow past a heating element have
been discussed, and numerical methods were used to solve the linear and nonlinear
problems. The results for the heated hump are new and have not been seen before.
Our results have been shown to compare well with previous work for the flat-plate
case. We have shown that having a shorter hump with heating applied only to the
middle part of the hump smooths out the sharp variations in the wall shear and
temperature near the start and end of the heated region. Further, a shorter taller hump
generally enhances the favourable properties of the heated element in creating a
stronger attached flow. Moreover, for longer humps, the presence of the hump creates
large peaks and troughs in the pressure and wall shear, particularly near the centre
of the hump. These are not observed in the flat-plate case.
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FIGURE 7. (a) Pressure and (b) wall shear for 1T = 0.4 and various values of h.

Clearly, the size and shape of the hump and the location of the heating region are
important factors to be taken into consideration in designing suitable MEMS devices
that can be used to control the flow and separation.

Supplementary material

Supplementary material is available at https://doi.org/10.1017/jfm.2017.277.
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