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Space-scale-time dynamics of liquid–gas shear
flow
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Two-point statistical equations of the liquid-phase indicator function are used to appraise
the physics of liquid–gas shear flows. The contribution of the different processes in the
combined scale/physical space is quantified by means of direct numerical simulations
of a temporally liquid–gas shear layer. Light is first shed onto the relationship between
two-point statistics of the phase indicator and the geometrical properties of the liquid/gas
interface, namely its surface density, mean and Gaussian curvatures. Then, the theory is
shown to be adequate for highlighting the preferential direction of liquid transport in either
scale or flow position space. A direct cascade process, i.e. from large to small scales, is
observed for the total phase indicator field, while the opposite applies for the randomly
fluctuating part, suggesting a transfer of ‘energy’ from the mean to the fluctuating
component. In the space of positions within the flow, the flux tends to redistribute energy
from the centreline to the edge of the shear layer. The influence of the mean shear rate and
statistical inhomogeneities on the different scales of the liquid field are revealed.

Key words: gas/liquid flow, breakup/coalescence

1. Introduction

Two-phase flows, e.g. liquid/gas flows, or more generally flows involving two immiscible
phases, are widely encountered in natural, domestic and industrial situations. At
sufficiently high injection velocity, such flows have strong propensity to break up into
a myriad of liquid fragments, subsequently atomizing into a stream of dispersed droplets
in a gaseous atmosphere, called spray. The process of successive disintegration of a bulk
liquid flow into a stream of drops is referred to as liquid atomization.

Liquid atomization is essentially a multi-scale and multi-dimensional phenomenon,
i.e. with dynamics that is generally turbulent, which can differ significantly depending
on the region of the flow, the sizes of the involved liquid structures and the fluid/flow
physical parameters. Before breaking up into spherical droplets, these liquid structures
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have complex geometry, morphology and topology whose description still remains a
challenging task (Di Battista et al. 2019; Essadki et al. 2019; Thiesset et al. 2019b). Another
difficulty resides in the local and singular nature of liquid break-up. Indeed, atomization
results from topological transitions due to local pinch-off of liquid necks, a nice physical
example of the formation of singularities at finite time (e.g. Eggers & Villermaux 2008,
and references therein). Exploring and predicting liquid atomization thus necessitates
some sophisticated theoretical tools, among which some need yet to be elaborated. When
compared to single-phase flows, the complexity in the theoretical description of two-phase
flows rises in a significant manner. Indeed, the presence of the liquid–gas interface and
hence surface tension effects, together with the density and viscosity jump across the
interface, makes inoperative most of available theoretical results obtained in the context
of single-phase turbulence (Gorokhovski & Herrmann 2008). Some specific theories are
thus required.

However, although the presence of such an interface could appear as an overwhelming
obstacle, it also constitutes a glaring anchor point. One can indeed conjecture that many
key facets of the multi-scale and multi-dimensional character of the whole flow can be
quantified solely through the multi-scale and multi-dimensional characteristics of the
liquid–gas interface. Similarly, instead of characterizing the scale/space/time properties
of the whole turbulent velocity field, one can focus on the scale/space/time properties of
the transport of liquid relative to the gas phase, thereby reducing the analysis to a single
scalar field variable, viz. the liquid phase indicator field. Further, as will be thoroughly
detailed later, by use of a statistical analysis, the singular nature of liquid break-up is likely
to be smoothed out by the averaging procedures. It is then expected that once averaged,
liquid atomization (i) recovers some degree of regularity so that the dynamics of liquid
structures appear continuous, (ii) retrieves some degree of predictability in the statistical
sense. These are the key hypotheses the present paper aims at discussing.

Here, the multi-scale features of liquid/gas turbulent flows are appraised using the
recent theoretical framework proposed by Thiesset et al. (2020). This theory is inspired
by the generalized Kármán–Howarth–Kolmogorov equation (e.g. Hill 2002; Casciola
et al. 2003; Danaila, Antonia & Burattini 2004; Marati, Casciola & Piva 2004; Portela,
Papadakis & Vassilicos 2017, and reference therein) which is adapted to a relevant scalar
of two-phase flows: the phase indicator function. As shown by Thiesset et al. (2020), this
new framework is promising for characterizing turbulent liquid/gas flows because, (i) the
notion of scale is explicit and unambiguously defined, (ii) it is exact and thus applies
to the entire flow field, from the injection to the spray dispersion zone and irrespective
of the flow configuration or regime and (iii) the effect of different physical parameters
(surface tension, viscosity and density, inflow velocity conditions), although implicit in the
equations, can be probed as a function of the scale and flow position. Thiesset et al. (2020)
reported an analysis of a statistically homogeneous flow evolving in a triply periodic box
which was numerically simulated using the code ARCHER. This particular configuration
is not influenced by any preferential forcing direction. Hence, the liquid-phase statistics
were invariant by translation within the flow, thereby reducing the problem to a scale/time
analysis only. Here, we aim at extending the study of Thiesset et al. (2020), by exploring
the full scale/space/time evolution of the liquid phase in a flow which reveals a substantial
degree of inhomogeneity: a liquid/gas shear layer. This is a new test case for the proposed
formalism using two-point statistics. This flow configuration is one step further towards
real atomization situation since the forcing effect due to a mean velocity gradient is
included. Although still quite far from a real situation, it is archetypal of the so-called
air-assisted atomization (Lasheras & Hopfinger 2000; Marmottant & Villermaux 2004;
Fuster et al. 2013; Ling et al. 2017, 2019).
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Additionally, because two-phase flows are not the only physical situations where a
discontinuity separates two media of different natures, our objective is to address this
question within the broader context of heterogeneous media. Therefore, we expect some
of our elaborations to apply not only to two-phase flows but we hope that they can help
better characterizing the structure and dynamics of heterogeneous fields in general such
as, for instance, porous media, fractal aggregates or colloids.

The paper is organized as follows. The theoretical framework first reported by Thiesset
et al. (2020) is recalled briefly in § 2. Section 3 is devoted to the presentation of
the two-phase flow solver ARCHER, which was used to simulate the liquid–gas shear
layer under consideration. The numerical database used to appraise the contribution
of the different terms of the equations is detailed. Section 4 aims at emphasizing the
close relationship between two-point statistics of the liquid-phase indicator function
and some geometrical properties of the liquid/gas interface and liquid structures. The
space/scale/time evolution of the liquid phase in the shear layer is performed for both
the total and the fluctuating field in §§ 5 and 6, respectively. The paper closes with some
conclusions.

2. Space-scale-time analysis of liquid transport

The present study follows the lines of Thiesset, Dumouchel & Ménard (2019a); Thiesset
et al. (2020) and is based on an analysis of the phase indicator field φ which is 1 (or 0) in
the liquid (or gas) phase. As per Thiesset et al. (2019a, 2020), we define the second-order
structure functions of φ, as the averaged squared difference of φ between two arbitrary
points separated by a vector r (see figure 1) viz.〈

(δφ)2
〉
E

=
〈[

φ(x+) − φ(x−)
]2

〉
E

=
〈[

φ
(

X + r
2

)
− φ

(
X − r

2

)]2
〉
E

, (2.1)

where the brackets denote average and the subscript E indicates an ensemble average.
As seen in figure 1, the mid-point is defined by X = (x+ + x−)/2 and the separation
vector r = (x+ − x−) (Hill 2002). A physical interpretation of (δφ)2 is provided later in
§ 4. Because we consider the averaged squared difference of φ, we sometimes refer to
(δφ)2 as the ‘energy’ content at a given scale, in analogy with the second-order structure
function of the velocity field, which effectively represents the kinetic energy at a given
scale. Alternatively, we call (δφ)2 the scale distribution.

Thiesset et al. (2019a, 2020) derived the transport equation for the second-order
structure functions of the phase indicator field. They considered the equation not only
for the total field φ but also the fluctuating field φ′ = φ − 〈φ〉E, viz.

∂t

〈
(δφ)2

〉
E

= −∇r •
〈
(δu) (δφ)2

〉
E

− ∇X •
〈
(σu) (δφ)2

〉
E

, (2.2a)

∂t

〈(
δφ′)2

〉
E

= −∇r •
〈
(δu)

(
δφ′)2

〉
E

− 2
〈
(δφ′)(δu′)

〉
E

• ∇r 〈δφ〉E

− ∇X •
〈
(σu)

(
δφ′)2

〉
E

− 2
〈
(δφ′)(σu′)

〉
E

• ∇X 〈δφ〉E , (2.2b)

where u ≡ (u, v, w) represents the velocity field; ∂t denotes the time derivative; ∇r and
∇X are the gradient operators in the r and X space, respectively; δ• and σ• represent the
difference and the average of a given quantity between the two-points considered. At this
level, the different terms of (2.2a) and (2.2b) depend on X ≡ (X, Y, Z) (the mid-point
between the two-points corresponding to the position within the flow), r ≡ (rx, ry, rz)
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–r/2

x+

x–

X

r/2

Figure 1. Schematic representation of two points x+ and x−, the mid-point X = (X, Y, Z) and the separation
vector r = (rx, ry, rz).

(the separation vector whose magnitude can be associated with the probed scale) and
time t, i.e. a seven-dimensional problem. The methodology for deriving these equations
is described in great detail by Thiesset et al. (2020), Hill (2002) and Danaila et al.
(2004) and is not repeated here. It is only worth noting that (2.2a) and (2.2b) are exact
equations which can be derived directly from the transport equation for the phase indicator
supposing the flow to be incompressible with no phase change. Equations (2.2a) and (2.2b)
explicitly account for the anisotropic (through the dependence to the separation vector r)
and inhomogeneous (through the appearance of the position space X ) characters of the
flow.

2.1. Average along homogeneity directions
Here, we explore the specific configuration of a temporally evolving shear layer with two
homogeneity directions in the streamwise x and spanwise directions z (see § 3). Therefore,
planar averages over the set of points P(Y) = {X, Y, Z|Y, 0 ≤ X ≤ Lx, 0 ≤ Z ≤ Lz} can be
used in place of ensemble averages; Lx and Lz represent the size of the averaging domain
in the streamwise and spanwise directions, respectively. Equations (2.2a) and (2.2b) then
reduce to

∂t

〈
(δφ)2

〉
P︸ ︷︷ ︸

dt term

= −∇r •
〈
(δu) (δφ)2

〉
P︸ ︷︷ ︸

r-Transfer

−∂Y

〈
(σv′) (δφ)2

〉
P︸ ︷︷ ︸

Y-Transfer

, (2.3a)

∂t

〈(
δφ′)2

〉
P︸ ︷︷ ︸

dt term

= −∇r •
〈
(δu)

(
δφ′)2

〉
P︸ ︷︷ ︸

r-Transfer

−2
〈
(δφ′)(δv′)

〉
P

∂ry 〈δφ〉P︸ ︷︷ ︸
r-Production

−∂Y

〈(
σv′) (

δφ′)2
〉
P︸ ︷︷ ︸

Y-Transfer

−2
〈
(δφ′)(σv′)

〉
P

∂Y 〈δφ〉P︸ ︷︷ ︸
Y-Production

, (2.3b)

where we have used 〈v〉P = 0 and hence v = v′. Equation (2.3a) is the transport equation
for the second-order structure function of the total field φ. It reveals that time variations
of 〈(δφ)2〉P are due to the combined effect of two transfer processes (more precisely
divergence of fluxes) which occur concomitantly in scale r and physical space Y . The
transfer in scale space, abbreviated by the r-transfer term, quantifies the direction and
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amplitude of the cascade process, i.e. the transfer of the quantity 〈(δφ)2〉P between
different orientations and the modulus of the vector r. Hereafter, in this paper, the word
‘cascade’ will be used to designate the transfer of ‘energy’ between scales which is
mathematically given by the r-divergence term in (2.3a) and (2.3b). The other transfer
term, abbreviated Y-transfer, represents the transport of a given liquid scale in geometrical
space, i.e. from one position within the flow (here, one Y plane location) to another.

Equation (2.3b) pertains to the fluctuating component φ′. In addition to similar transfer
terms, the latter contains two additional processes, namely two production processes
which again act concomitantly in scale and physical space. The production process is
associated with the presence of inhomogeneities, i.e. some gradients of liquid volume
fraction 〈φ〉P. As was proved by Thiesset et al. (2020), this production mechanism can
also be interpreted as an exchange of liquid between the mean and the fluctuating fields
which acts to homogenize the mean volume fraction field. Further physical interpretations
and algebraic decompositions of the different terms of (2.3a) and (2.3b) are provided by
Thiesset et al. (2020) but are not considered in the present study.

Note here again that (2.3a) and (2.3b) hold even if the flow is anisotropic and
inhomogeneous.

2.2. Average over all directions of the separation vector
The different terms of (2.3a) and (2.3b) have argument list (r, Y, t), i.e. a five-dimensional
(5-D) problem. The dependence of the statistics on the separation vector r embeds the
anisotropic character of the transport of liquid, which is of major importance in this flow.
However, substantial information can first be gained by averaging over all orientations
of the separation vector r, thereby reducing the problem complexity to a 3-D problem
with argument list (|r|, Y, t). This can be achieved in two fashions. The first method is to
perform an angular average over all solid angles. This operation is denoted 〈•〉Ω and is
defined by

〈•〉Ω = 1
4π

∫∫
Ω

• sin θ dθ dϕ, (2.4)

where the set of solid angles Ω = {ϕ, θ | 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π} with ϕ = arctan(ry/rx)
and θ = arccos(rz/|r|). The angular average is related to the spherical average within a
sphere of radius r = |r|, noted 〈•〉S and defined by (Hill 2002; Thiesset et al. 2020)

〈•〉S = 3
4πr3

∫∫∫
S

•r2 sin θ dθ dϕ dr = 3
r3

∫ r

0
〈•〉Ωr2 dr. (2.5)

2.3. Average along the inhomogeneity direction
Finally, a spatial average can further be performed. In our case, the latter operates on the
Y direction and writes

〈•〉Y = 2
Ly

∫
Y

• dY (2.6)

with Y = {Y| − Ly/4 ≤ Y ≤ Ly/4} (Y = 0 is located at the shear layer centreline). Using
the gradient theorem, averaging over Y allows us simplifying the Y-Transfer terms as
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follows〈
∂Y

〈(
σv′) (δφ)2

〉
P

〉
Y

=
〈(

σv′) (δφ)2
〉
P(Y=Ly/4)

−
〈(

σv′) (δφ)2
〉
P(Y=−(Ly/4))

, (2.7a)

〈
∂Y

〈(
σv′) (

δφ′)2
〉
P

〉
Y

=
〈(

σv′) (
δφ′)2

〉
P(Y=Ly/4)

−
〈(

σv′) (
δφ′)2

〉
P(Y=−(Ly/4))

. (2.7b)

2.4. Summary
In summary, roughly speaking, an angular (spatial) average enables studying the
time/scale/space transport of liquid structures independently of their orientations (position
in the flow). Consequently, these different averaging procedures have the advantage of
reducing the problem complexity but this is automatically accompanied by a loss of
information which can be summarized as follows.

(i) 〈•〉P leads to a problem in five dimensions, with argument list (r, Y, t). It
corresponds to the more general version of the equations in the temporally evolving
shear layer with x and z being the homogeneity directions.

(ii) 〈•〉P,Ω yields a problem in three dimensions, with argument list (r, Y, t), the
information about the preferential orientation (anisotropy) of the liquid structures
is lost.

(iii) 〈•〉P,Ω,Y corresponds to a 2-D problem, with argument list (r, t), the information
about the locality within the flow is lost.

In the present paper, for the sake of pedagogy, we start by considering the most
simplified version of the problem (angularly and spatially averaged budgets) and then
successively lift some averaging operations up to the more general version of the two-point
transport equations. Most of the present analysis is rendered feasible thanks to data from
numerical simulations. In the following sections, we describe the simulation code and
database.

3. Numerical simulations of liquid–gas shear flow

3.1. The ARCHER code
The liquid–gas shear flow is simulated using the high-performance-computing code
ARCHER developed at the CORIA laboratory (Ménard, Tanguy & Berlemont 2007). It
is based on the one-fluid formulation of the incompressible Navier–Stokes equation which
is solved on a Cartesian mesh, viz.

∂tρu + ∇ • (ρu ⊗ u) = −∇p + ∇•(2μD) + f + γHδsn. (3.1)

Here, p is the pressure field, D the strain rate tensor, f a source term, μ the kinematic
viscosity, ρ the density, γ the surface tension, n the unit normal vector to the liquid–gas
interface, H its mean curvature and δs is the Dirac function characterizing the location of
the liquid–gas interface. For solving (3.1), the convective term is written in conservative
form and solved using the improved Rudman (1998) technique presented in Vaudor et al.
(2017). The Sussman et al. (2007) method is used to compute the viscous term. To ensure
incompressibility of the velocity field, a Poisson equation is solved. The latter accounts for
the surface tension force and is solved using a multigrid preconditioned conjugate gradient
algorithm (Zhang 1996) coupled with a ghost-fluid method (Fedkiw et al. 1999).

A coupled level-set and volume-of-fluid solver is used for transporting the interface, the
level-set function accurately describing the geometric features of the interface (its normal
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and curvature) and the volume-of-fluid function ensuring mass conservation. The density
is calculated from the volume of fluid (or liquid volume fraction) as ρ = ρlφ + ρg(1 − φ),
where ρl, ρg is the density of the liquid and gas phase. The dynamic viscosity (μl or μg)
depends on the sign of the level-set function. In cells containing both a liquid and a gas
phase, a specific treatment is performed to evaluate the dynamic viscosity, following the
procedure of Sussman et al. (2007). For more information about the ARCHER solver, the
reader can refer to e.g. Ménard et al. (2007), Duret et al. (2012) and Vaudor et al. (2017).

3.2. Numerical domain and flow features
The flow configuration is that of a planar liquid layer being sheared by a gas stream. The
flow is directed towards the x axis, and z denotes the spanwise and y the vertical axis,
respectively. The calculation domain is Lx × Ly × Lz = 8 × 4 × 4 cm3 in the streamwise,
vertical and spanwise directions, respectively. The liquid and gas properties correspond
to those of water and air at ambient pressure. The dynamic viscosity μ (kg m−1 s−1) is
μl = 1.0 × 10−3 and μg = 1.8 × 10−5 for the liquid and gas phases, respectively. The
fluid density ρ (kg m−3) is ρl = 1.0 × 103 and ρg = 1.2, respectively. The surface tension
γ = 0.072 N m−1.

Close to the liquid–gas interface, an error function profile for the streamwise velocity u
is initially prescribed and is given by

u(x, y, z) = ug

2

[
1 + erf

{
86.83

(
y
Ly

− 1
2

)}]
. (3.2)

The spanwise w and vertical v velocity components v(x, y, z) = w(x, y, z) = 0. ug =
7.5 m s−1 denotes the maximum gas velocity. The constant 86.83 corresponds to
a vorticity thickness of δω = 1.15 mm. This was set so that the most unstable
wavelength of the Kelvin–Helmholtz instability is expected to be half of Lx and the
spanwise Rayleigh–Taylor instability has a wavelength of approximately Lz/6 (Marmottant
& Villermaux 2004). These two modes were forced in the present simulation by
superimposing on the liquid–gas interface a small sinusoidal perturbation with period Lx/2
and Lz/6 in the streamwise and spanwise directions, respectively. This was done to trigger
the destabilization of the liquid layer and consequently reduce the overall computational
time. The initialized level-set function G was set as follows:

G(x, y, z) =
(

Ly

2
− y

)
+ Ly

200

[
sin

(
4π

x
Lx

)
+ sin

(
12π

z
Lz

)]
. (3.3)

Periodic boundary conditions are used in the streamwise and spanwise direction. A no-slip
boundary condition is applied to the bottom frontier while an outflow condition is used at
the uppermost boundary of the calculation domain. The mesh size consisted of Nx × Ny ×
Nz = 512 × 256 × 256 cells and 1024 processors were used. This corresponds to a cell size
�x = �y = �z ≈ 0.156 mm. The question of the adequacy of a given resolution depends
on the physical quantity of interest. Indeed, the resolution needed for some large-scale
quantities, such as the turbulent kinetic energy or the liquid volume fraction, to be grid
independent is most likely not the same as the one needed for some small-scale quantities
(e.g. the enstrophy) to be faithfully resolved. As emphasized in subsequent sections, the
budgets given by (2.3a) and (2.3b) will be proved to be nicely closed proving that the
present resolution is adequate, at least as far as the liquid–gas interface properties are
concerned.

912 A39-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1152


F. Thiesset, T. Ménard and C. Dumouchel

The initial Weber number based on the gas velocity ug and the shear-layer vorticity
thickness δω is Weg = ρgu2

gδω/γ = 1.08. As per Taguelmimt, Danaila & Hadjadj (2016),
we define the Reynolds number by use of the average dynamic viscosity, i.e. Re =
2ugδω/(νg + νl) = 1078.

Typical snapshots of the flow simulation are presented in figure 2. The overall
phenomenology of this flow is quite similar to what is commonly referred to as an
air-assisted atomization process, as documented by e.g. Lasheras & Hopfinger (2000),
Marmottant & Villermaux (2004) and Fuster et al. (2013). The rapid destabilization of the
liquid–gas interface is observed to be followed by the oblique ejection of ligaments, which
subsequently break into a myriad of droplets. Qualitatively, one observes that the degree
of tortuousness of the liquid–gas interface is increasing from t∗ = 0.98 up to t∗ = 1.37
and then becomes smoother at t∗ = 1.83. Further, while liquid structures manifest mainly
as ligaments at t∗ = 0.98 and t∗ = 1.37, some detached droplets are clearly identified at
t∗ = 1.83. The break-up mechanism thus occurs between t∗ = 1.37 and t∗ = 1.83. Still,
at t∗ = 1.83, the interface separating the liquid and gas phases located near the centreline
of the shear layer is experiencing a relaxation mechanism most likely attributable to the
increasing influence of surface tension relative to the decreasing shear rate. This flow
configuration thus reveals some multi-scale features and a concomitant transport of the
liquid phase in scale and flow position space. It is therefore a very nice candidate for being
explored with two-point statistical equations. However, it is worth stressing that the present
simulation reveals a much less complex physics than the one presented by e.g. Fuster
et al. (2013) and Ling et al. (2017, 2019). Indeed, the liquid–gas interface being forced
with perturbations of finite amplitude probably bypasses some mechanisms revealed in a
striking manner by Ling et al. (2017, 2019) using very detailed simulations. Here, the focus
of the paper is mostly on discussing the potential of two-point statistics to extract some
information about a given flow and we do not pretend that the simulation configuration
presented here can be considered as representative of real liquid-sheet shear-induced
atomization configurations.

For assessing the two-point budgets which will be described in the subsequent section,
we saved the velocity, the level-set and the volume of fluid fields for 90 time steps during
the simulation, each separated by 3.75 × 10−4 s. This ensured that the time derivative
terms were accurately estimated. Two-point statistics were computed using an in-house
Python/Fortran code which makes use of a hybrid OpenMP–MPI parallelization. Structure
functions were calculated in the range of scales −Ly/2 ≤ (rx, ry, rz) ≤ Ly/2 so that
the large-scale dynamics of the flow is well captured. This imposes the minimum and
maximum reachable positions for the mid-point Y , as the coordinates y+ = max(Y) +
max(ry)/2 and y− = min(Y) + min(ry)/2 should stay within the computational domain,
i.e. stay within the interval (−Ly/2; Ly/2). Choosing −Ly/2 ≤ (rx, ry, rz) ≤ Ly/2, leads
to −Ly/4 ≤ Y ≤ Ly/4 as represented in figure 3.

Contrary to Thiesset et al. (2019a, 2020), the angular averages were here preferred to
the spherical average. The reason is that 〈•〉Ω relies only on a double integral which, given
the size of the present database, yields substantial reduction of the computational effort.
This operation is performed as follows. First, each two-point quantity at a given plane Y
is interpolated from Cartesian (rx, ry, rz) to spherical coordinates (r, θ, φ) using the radial
basis function ‘Rbf’ algorithm of the SciPy-interpolation library. We employed a linear
radial basis function. Then, the double integral was calculated using the ‘dblquad’ method
of the SciPy-integration library. The overall database represents approximately 0.9 TB and
approximately 250 000 CPU hours were necessary for the simulation and post-processing.
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Space-scale-time dynamics of liquid–gas shear flow

t* = 0.98

t* = 1.37

t* = 1.83
x

y

z

(a)

(b)

(c)

Figure 2. Typical snapshots of the simulation. The flow is from left to right. The liquid–gas interface is initially
perturbed with a sinusoidal pattern which promotes the destabilization of the flow, thereby reducing the overall
computational cost. From (a–c) t∗ = tLx/ug = 0.98, 1.37, 1.83.

Given this quite high number of computational resources, we considered here only one
set of parameters. The library employed here to compute two-point statistics could be
substantially optimized using the methodology described by Gatti et al. (2019). Hence, we
expect to be able, in the short term, to reduce significantly this amount of computational
time to post-process larger simulation domains.

Instead of investigating an inhomogeneous and time-evolving shear layer, one could
have thought of a simpler homogeneous configuration for which a steady state could have
been possibly reached. The first that comes to mind is homogeneous sheared turbulence,
as was recently addressed by Rosti et al. (2019). This flow can potentially reach a steady
state, hence the time derivative terms in (2.2a) and (2.2b) are zero. This flow is further
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Y = –Ly/2

Y = Ly/4

Y = Ly/2

Y = –Ly/4

Y = 0

max(Y ) = Ly/4

min(Y ) = –Ly/4

min(y–) = min(Y ) + min(ry)/2 = –Ly/2

max(y+) = max(Y ) + max(ry)/2 = Ly/2

Figure 3. Representation of the maximum and minimum reachable positions for the mid-point Y .

homogeneous, i.e. the gradient of mean liquid volume fraction is zero and hence the
two production terms in (2.2b) are zero. The transfer in X -space can also be proven to
be zero using the Green–Ostrogradski theorem (see (B5) of Thiesset et al. 2020). By
difference, the only remaining term (the r-transfer) is also zero. Hence, homogeneous
sheared two-phase flows leads to the very simple conclusion that all terms in the budget
are zero. This conclusion is quite obvious given that a stationary flow configuration
means that liquid structures have reached statistical equilibrium and hence there is no
transfer between scales or between different positions within the flow. Consequently, this
configuration, which is very common when dealing with shear turbulence, does not allow
us to extract any relevant information about the statistical behaviour of liquid–gas shear
turbulence. Note also that the steady state can only be achieved artificially in the case of a
bounded numerical domain (e.g. Pumir 1996). Otherwise, the turbulent length scales and
kinetic energy grow in time. Another configuration is Taylor–Couette flow, for which the
presence of the wall on the upper and lower boundaries yields the exact same conclusions.
In addition, it requires handling the interaction (the contact) between the liquid and the
sliding walls, which could lead to numerical complexities. Because the present study
focuses on the phase indicator (a scalar field), one can further think of a configuration
similar to homogeneous scalar mixing in forced turbulence fed by a uniform scalar gradient
(e.g. Yeung, Donzis & Sreenivasan 2005, and references therein). Here again, a steady state
is achieved only using a bounded domain. This additionally requires imposing a uniform
liquid gradient in the domain, which appears hardly feasible numerically. In addition, since
φ is a non-diffusive scalar, (there is no diffusion term in the transport equation for φ), the
dissipation of φ variance is zero. It is thus not even sure that, in this situation, the statistics
of φ reach a steady state in bounded domains as there is no dissipative process (except
maybe a surface tension effect) to compensate for φ scalar production. To conclude, all
these configurations, though attractive, may reveal more drawbacks than advantages.

4. Physical interpretation of the phase indicator increments

We now aim at substantiating the physical meaning of the second-order structure of
the phase indicator field. First, its relation to the more widely used correlation function
is presented, allowing the large-scale limit of (δφ)2 to be estimated. Secondly, the
two-point statistics are interpreted in terms of disjunctive union of sets, thereby providing a
graphical representation for this quantity. Next, light is shed on the small-scale limit of the
second-order structure function which is extended to anisotropic, inhomogeneous media
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Space-scale-time dynamics of liquid–gas shear flow

and validated for synthetic fields and the shear-layer data. Finally, the relation between the
transport equation for the two-point statistics and the surface density is highlighted.

4.1. Relation to the correlation function
Straightforward calculations allow us to write the second-order structure function in terms
of the correlation function, viz.〈

(δφ)2
〉
E

=
〈
φ2(x+)

〉
E

+
〈
φ2(x−)

〉
E

− 2
〈
φ(x+)φ(x−)

〉
E

. (4.1)

The right-most term on the right-hand side of (4.1) is the correlation function of the
phase indicator. It is worth stressing that this is not the first time that the correlation
function of the indicator function has been defined. Indeed, it is widely used for
characterizing porous media (Debye, Anderson Jr & Brumberger 1957; Adler, Jacquin
& Quiblier 1990; Torquato 2002, to cite but a few), colloids (Grimson 1983) and
fractal aggregates (Sorensen 2001). For all these physical situations, it is used as an
indicator of the geometrical features of the pore or aggregate structure. The correlation
function of the phase indicator can also be experimentally measured through the use
of small-angle-scattering techniques, which opens up nice perspectives in the context of
two-phase flows. This remains far beyond the scope of the present study.

Equation (4.1) reveals that, for a homogeneous medium, i.e. for which 〈φ2(x+)〉E =
〈φ2(x−)〉E = 〈φ〉E, the large-scale limit of the phase indicator structure function is (see
Thiesset et al. 2020)

lim
r→∞〈(δφ)2〉E = 2〈φ〉E − 2〈φ〉2

E
= 2〈φ〉E(1 − 〈φ〉E). (4.2)

This can be readily demonstrated by recalling that the correlation function 〈φ(x+)φ(x−)〉E

asymptotes to the value 〈φ〉2
E

at large scales (Fitzhugh 1983). In very diluted media, i.e.
〈φ〉E � 1, the limit value at large scales is thus 2〈φ〉E. In the inhomogeneous case, it
depends on the volume fraction at points x+ and x− and on the way the autocorrelation
〈φ(x+)φ(x−)〉E varies with respect to r. It is not even sure that, in this situation, 〈(δφ)2〉E

tends towards a plateau at large scales. Hence, the physical interpretation of the large-scale
limit of 〈(δφ)2〉 in inhomogeneous cases is much more complex. In what follows, we
present a simple case where the limit at large scales can be obtained even though the
medium is inhomogeneous.

4.2. Geometrical representation of the phase indicator two-point statistics
Further, (δφ)2(X , r) can be interpreted by resorting to some geometrical reasoning. From
the definition of (δφ)2(X , r) and figure 1, one easily remarks that, when the points x+ and
x− lie together within the liquid or gas phase, then (δφ)2 is zero. On the contrary, (δφ)2 is
activated as soon the phases found at the two points x+ and x− are different. Consequently,
(δφ)2 measures the scale/space distribution of jumps between the two phases.

Further insights into the physical meaning of the structure and correlation functions can
be gained by recalling that the spatial average over x of the correlation function φ(x)φ(x +
r) is the convolution of φ(x) with its translated version at a distance r, φ(x + r) (Sorensen
2001). Geometrically, it thus reads as the intersection of the ensemble E− = {x ∈
R|φ(x) = 1} with the ensemble E+ = {x ∈ R|φ(x + r) = 1}, which can conveniently
be written E− ∩ E+. Analogously, the spatially averaged structure function of φ can be
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|r|

φ(x)

φ(x + r)

〈(δφ)2〉
R

(r)

r

〈φ+φ–〉
R

(r)

Figure 4. Graphical representation of the spatially averaged phase indicator correlation function (green) and
structure function (orange) given φ(x) (blue) and φ(x + r) (yellow).

defined as the symmetric difference (disjunctive union) of the ensemble E− with the
ensemble E+, or E−�E+.

This is illustrated in figure 4 in the case of a single closed set. It is seen that, when
|r| → 0, the structure function (orange zones) tends to zero while the correlation function
(green zones) is equal to the volume of E−, which is here 〈φ〉R. When the separation |r| is
larger than the extent of E−, the opposite is observed: the correlation function is zero while
the structure function is equal to the volume of E− plus the volume of E+, i.e. twice the
volume of E−, or 2〈φ〉R. As said previously for homogeneous cases, the structure function
tends towards 2〈φ〉R(1 − 〈φ〉R) at large scale. For the case presented in figure 4, there
is only one structure surrounded by an arbitrarily large volume, and hence 〈φ〉R � 1 so
that the structure function tends towards a plateau whose value is obtained by the limit
2〈φ〉R(1 − 〈φ〉R) → 2〈φ〉R.

For intermediate scales, the intersection and symmetric difference of E− with E+
depends on the morphology of the media under consideration. For instance, it is extremely
well known from the literature dedicated to porous media that the two-point statistics
of the phase indicator are often used to assess information about the tortuousness of
the interface (Adler et al. 1990; Torquato 2002, and references therein). Similarly, the
fractal facets of aggregates are often appraised by use of correlation function of the phase
indicator at intermediate scales (see e.g. Sorensen 2001). In particular, Morán et al. (2019)
showed that, when increasing the ratio between the largest scales (the aggregate radius
of gyration) and the smallest scales (the radius of the primary particle), the correlation
function reveals an increasing range of scales complying with a fractal scaling (a power
law). When several structures are present, it also depends on the way the different liquid
structures are organized in space.

When |r| is small, figure 4 reveals that E−�E+ delineates the contours of E−. It
is thus expected that (δφ)2(X , r) is related to the surface area for small values of the
separation r. A more specific discussion on this aspect is detailed in the next subsections.
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Space-scale-time dynamics of liquid–gas shear flow

To summarize, the phase indicator correlation function provides information about the
liquid volume, morphology/tortuousness and surface area at large, intermediate and small
scales, respectively. In this regard, two-point statistics of the phase indicator field thus
appear as a nice candidate for asserting the multi-scale features of the liquid/gas interface.
In the next subsections, we provide more details on this aspect.

4.3. Small-scale expansion of the structure function
In Thiesset et al. (2020), the authors came up with the fortunate observation that, in the
limit of small |r|,

lim
r→0

〈(δφ)2〉R,S ∝ 〈Σ〉Rr, (4.3)

where 〈Σ〉R is the surface density defined as the amount of surface of the liquid–gas
interface within the computational domain R ∈ {X, Y, Z}. Therefore, it appears that (δφ)2

contains information about the geometry of the liquid–gas interface, namely its surface
area. Here again, this observation should be interpreted in the light of previous works
dedicated to heterogeneous media.

In this respect, the wide literature pertaining to porous media (Torquato 2002, for
instance) discusses in great detail the relationship between the small-scale limit of the
correlation function and the surface density. This question dates back to the work by
Debye et al. (1957), who addressed the special case of isotropic and homogeneous fields,
for which correlation functions depend only on r = |r|. Once written in terms of the
second-order structure function, they proved that

lim
r→0

〈(δφ)2〉E = 〈Σ〉Er
2

. (4.4)

Equation (4.4) can be readily derived using the same methodology as the one used to solve
the Buffon needle problem. Hence, the derivation is quite straightforward. Later, Kirste &
Porod (1962) and Frisch & Stillinger (1963) extended the analysis to the next order and
proved that, for isotropic–homogeneous media, and by further assuming that the interface
separating the two phases is of class C2

〈(δφ)2〉E = 〈Σ〉Er
2

[
1 − r2

8

(
〈H2〉0,E − 〈G〉0,E

3

)]
+ O(r5). (4.5)

Here, H and G are the mean and Gaussian curvatures, respectively, and 〈•〉0,E denotes
an area weighted average. Note that there is no square terms in (4.5). Ciccariello (1995)
showed that for smooth surfaces, all even-order terms in the expansion of 〈(δφ)2〉 with
respect to r vanish. Wu & Schmidt (1971) and Ciccariello (1995) provided the next r5 and
r7 terms in the expansion, which are not added here for the sake of simplicity.

When the medium is anisotropic yet homogeneous, Berryman (1987) proved that (4.4)
remains valid when the (anisotropic) correlation function is angularly averaged. To better
understand this result, it is worth noting that, since the geometrical variables appearing
in (4.5) are intrinsic to the interface, they are invariant to rotation and translation. The
angular average can thus be thought of as being equivalent to an average operation
over several randomly oriented structures characterized by the same surface density and
curvature. Similarly, the spatial average is equivalent to calculating an average over several
randomly located, yet geometrically equivalent, structures. Therefore, it is worth testing if
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the third-order expansion (4.5), which was derived rigorously for isotropic homogeneous
media, applies to anisotropic inhomogeneous media after application of an angular and a
spatial average.

4.4. Assessment of geometrical measures using synthetic fields
For doing this, we consider the simple toy model of a spheroid characterized by its
eccentricity e =

√
1 − (a/c)2 (a is the semi-axis and c is the distance from centre to

pole), placed in the centre of a domain. We consider different values for the eccentricity
e = 0 %, 58 %, 70 %, 87 % by modifying the value of c while keeping a constant. This
obviously results in different degrees of anisotropy. In addition, the spheroid being placed
at the centre of a wider domain, the field is also inhomogeneous. Two-point statistics
are obtained by averaging over space R = {X, Y, Z} and further angularly averaged
as per (2.4). Results are presented in figure 5. It is observed that, at small scales,
spatially and angularly averaged structure functions perfectly match the ‘homogenized’
and ‘isotropized’ version of (4.5) which writes

〈(δφ)2〉R,Ω = 〈Σ〉Rr
2

[
1 − r2

8

(
〈H2〉0,R − 〈G〉0,R

3

)]
+ O(r5). (4.6)

The area weighted Gaussian curvature was here estimated by use of the Gauss–Bonnet
theorem, i.e. Ssph〈G〉0,R = 4π, where Ssph is the surface area of a spheroid. The value
of 〈H2〉0,R was estimated numerically by using the routines described by Essadki et al.
(2019) and Di Battista et al. (2019) now available through the project Mercur(v)e (http://
docs.mercurve.rdb.is/). Further, when increasing the eccentricity, both the slope at small
scales (recall that a is kept constant) and the limiting value at large r increase. Figure 5
further shows that (4.6) holds very nicely up to a separation r ≈ 2a. Kirste & Porod
(1962) and Frisch & Stillinger (1963) proved that (4.5) should hold up to a separation
r equal to twice the ‘reach’ of the surface, the ‘reach’ being defined as the minimal
normal distance from the surface to the medial axis (Federer 1959). In the present case,
the latter is close to a. It is also verified that the second-order structure function can be
used to estimate the geometrical properties of the liquid field, namely its volume (limit at
large r which is 2〈φ〉R), its surface density (first-order expansion at small scales) and a
measure of surface curvature 〈H2〉0,R − 〈G〉0,R/3 (third-order expansion at small scales).
Results are gathered in table 1, where estimates obtained by the structure function perfectly
match those obtained either analytically (volume, surface area and area weighted Gaussian
curvature) or numerically (for 〈H2〉0,R) using the routines of Essadki et al. (2019) and
Di Battista et al. (2019). The maximum error is for 〈H2〉0,R − 〈G〉0,R/3, for which the
departure from the theoretical prediction is very limited (approximately 1 %). The surface
area and volume are within less than a per cent.

Equation (4.6) is further tested for a planar geometry (G = 0) with two facing interfaces
perturbed with a controlled multi-scale sinusoidal perturbation. We have considered four
cases, with (a) one, (b) three, (c) four and (d) five forcing wavelengths, respectively. For
case (a), the period is equal to Lx, for (b) the periods are Lx, 2Lx and 4Lx. For (c), we had a
fourth sinusoid with period 8Lx. For (d), a fifth wavelength is added with period equal to
16Lx. Their respective amplitudes are kept constant (≡ Ly/64) and their phases are shifted
by 2π/10. The resulting phase indicator fields are portrayed in figure 6. It is readily shown
that increasing the number of sinusoids increases the tortuousness and the scale content of
the interface. It also results in a decrease of the reach of the media, i.e. the minimal normal
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Space-scale-time dynamics of liquid–gas shear flow
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Figure 5. Angularly averaged structure functions of the phase indicator field for prolate spheroids with
different eccentricities (anisotropies) e =

√
1 − (a/c)2 = 0 %, 58 %, 70 %, 87 % (a is the semi-axis and c is

the distance from centre to pole). Symbols corresponds to the direct estimation and lines are given by (4.6).

e = 0 % e = 58 % e = 70 % e = 87 %

〈φ〉R (×103) 2.42 2.43 2.96 2.97 3.43 3.42 4.85 4.84
(0.27 %) (0.18 %) (0.09 %) (0.10 %)

〈Σ〉R (×10−2 m−1) 2.91 2.92 3.35 3.35 3.74 3.72 4.97 4.92
(0.41 %) (0.37 %) (0.41 %) (0.85 %)

〈H2〉0,R − 〈G〉0,R

3
(×10−8 m−2) 10.66 10.55 9.55 9.45 9.01 9.06 8.31 8.38

(1.10 %) (0.98 %) (0.65 %) (0.83 %)

Table 1. Comparison of theoretical values for the volume, surface density and curvature (bold font) to those
inferred from the limiting behaviour of 〈(δφ)2〉R at either large or small scales (normal font). The error is given
within the parantheses.

distance from surface to the medial axis decreases. Hence, it is expected that the range of
scales over which (4.6) applies shortens from (a) to (d).

The angularly averaged second-order structure functions for these four fields are
portrayed in figure 6. We have made the choice of normalizing the separation r by
the surface density to appraise the scaling 〈(δφ)2〉R,Ω at small scales. Scrutinizing this
particular range of scales, one observes that the collapse is very well satisfied, proving
again that the first-order expansion of (4.6) applies well. Pushing the analysis to the third
order, figure 6 reveals that (4.6) applies satisfactorily for case (a) and (b) and over a
narrower portion of scales when moving from case (c) to (d). This simply translates to
the diminution of the reach.

Travelling along larger scales where (4.6) no longer applies, the different curves depart
from each other when increasing the tortuousness of the interface. This indicates that, as
expected, the structure function contains information about the morphology of the media
under consideration which differs significantly from case (a) to case (d). We also point
out that increasing the scale content of the interface (the number of sinusoids), results in

912 A39-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1152


F. Thiesset, T. Ménard and C. Dumouchel

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

0.05

0.10

0.15

0.20

0.25

(a)
(b)
(c)
(d)

(a)

(b)

(c)

(e)

(d )

〈Σ〉
R

r
〈(δ

φ
)2 〉 R

,Ω

Figure 6. (a–d) The phase indicator field of four sinusoidally perturbed media and (e) their respective
angularly averaged structure functions. The dashed lines correspond the numerical estimation of the scale
distribution and the full lines represent the theoretical expression given by (4.6).

broader distributions of 〈(δφ)2〉R,Ω . This shows that the second-order structure function
has great potential for appraising the multi-scale features of heterogeneous media and thus
appears to be a nicely tailored tool for characterizing two-phase flows in particular.

In summary, using synthetic fields, we have emphasized a close relationship between
the second-order structure functions at small scales and the geometrical properties of the
interface (surface area and curvatures). At very large scales, it provides a measure of
liquid volume. At intermediate scales (larger than the reach but smaller than the extent
of the typical liquid structures), the structure function provides information about the
morphology of the medium and its scale content. Therefore, the reach of the surface plays
an important role here as it separates the range of scales for which geometry applies (viz.
Σ , H and G together with (4.6) are sufficient to describe the media under consideration)
and the range of scales for which two-point statistics become a morphological descriptor
(Torquato 2002) for which both the geometry and the additional information about the
medial axis are required for the structure to be characterized. For scales larger than the
reach, the separation r should be referred to as the morphological parameter, as is generally
done in morphological analysis using e.g. integral geometrical measures (Minkowski
functional) of parallel sets (Arns, Knackstedt & Mecke 2004).

By virtue of (2.5), (4.6) implies

〈(δφ)2〉R,S = 3〈Σ〉Rr
8

[
1 − r2

12

(
〈H2〉0,R − 〈G〉0,R

3

)]
+ O(r5). (4.7)

In Thiesset et al. (2020), it was observed that a prefactor of 1/3 should be preferably used
in (4.7) instead of the value of 3/8. The origin of this difference was not yet explained. By
re-analysing the data of Thiesset et al. (2020), it appeared that this difference is attributed
to the post-processing procedure and particularly an imprecise estimation of spherical
averages at small scales. Indeed, in Thiesset et al. (2020), use was made of a simple
(and computationally light) linear interpolation for transforming two-point statistics from
Cartesian to spherical coordinates which was the source of the error. Here, the radial
basis function algorithm is used instead with a much more accurate estimation, thereby
confirming that the prefactor in (4.7) is indeed 3/8.
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Space-scale-time dynamics of liquid–gas shear flow

Another difference between the present work and that of Thiesset et al. (2020) is the
scalar field which is employed as being representative of the liquid phase. Thiesset et al.
(2020) considered the two-point equation for the liquid volume fraction whereas, here, the
phase indicator is used instead. The latter field can take only 0 or 1 values while the former
can take any value between 0 and 1 in cells containing an interface. When the mesh cell
size goes to zero, the liquid volume fraction tends to the phase indicator. The motivation
for the choice of phase indicator is that comparisons are here made with some theoretical
elaborations (Berryman 1987; Kirste & Porod 1962; Frisch & Stillinger 1963) pertaining
to porous media, whose description is made on the basis of the phase indicator but not
the (solid) volume fraction. Another argument in favour of the colour-function field is the
dependence of the two-point statistics of the liquid volume fraction field on the numerical
resolution. For more details on this aspect, the reader is referred to the technical report of
Thiesset & Poux (2020).

4.5. Assessment of geometrical measures in the shear layer
Equation (4.6) can further be generalized by lifting the spatial average. In this case,
〈(δφ)2〉Ω is expected to relate to the local values of Σ,H2,G. For the shear-layer flow
considered in the present study, this can be written as

〈(δφ)2〉P,Ω = 〈Σ〉Pr
2

[
1 − r2

8

(
〈H2〉0,P − 〈G〉0,P

3

)]
+ O(r5), (4.8)

where 〈Σ〉P, 〈H2〉0,P, 〈G〉0,P, which depend on Y and t, are respectively the surface
density, the area weighted average of H2 and G within a volume of size LxLz�y.

In figure 7 we compare the values of 〈Σ〉P as estimated directly from the zero level-set
surface (we used the routines described by Di Battista et al. 2019; Essadki et al. 2019) or
from the limit to small scales of 2〈(δφ)2〉P,Ω/r. The agreement is nearly perfect, with the
absolute difference within less than a per cent, confirming that (4.8) holds with a very nice
degree of confidence. The agreement is also verified for the spatially averaged values of
〈Σ〉P,Y. Again, the difference between the two methods is within a per cent (see figure 7).
Here, the analysis was carried out only for the first-order expansion of (4.8) and did not
incorporate the dependence on the r3 term. The reason is that the flow is populated by some
rather small liquid structures with a small local radius of curvature. Hence, since (4.8) is
expected to hold up to a separation r/2 smaller than the smallest radius of curvature, the
present numerical resolution was not sufficient for efficiently assessing the r3 scaling of
the second-order structure function. This could be done in future work using a refined
simulation.

4.6. Transport equation for the surface density
Since, at small scales, 〈(δφ)2〉Ω is proportional to the surface density, the angular average
of (2.2a) should approach the transport equation for the surface density when r → 0. The
latter written by Pope (1988), Candel & Poinsot (1990) and Drew (1990) was

∂tΣ + w • ∇xΣ = KΣ, (4.9)

where K is the stretch rate, which for a liquid–gas interface in an incompressible flow is
equal to the tangential strain rate ∇t · ut, where ut is the tangential velocity at the interface
and ∇t is the surface gradient (Giannakopoulos et al. 2019). Here, w is the velocity of the
interface, which is equal to the velocity at the interface u when there is no phase change.
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Figure 7. Values of 〈Σ〉P and 〈Σ〉P,Y as estimated either from the tessellation of the zero level surface (dashed
grey curve) or from the limit of the second-order structure function (full line). The grey dash-dotted line in (a)
and the circles in (b) illustrate the three typical snapshots used to compute the scale space budgets.

Since σu → u and ∇X → ∇x as r → 0, the transfer in X -space tends to u • ∇xΣ , i.e. the
convective term in (4.9). Consequently, the limit towards small scales of the r-transfer term
corresponds to the right-hand side of (4.9). In other words, at small scales, the transfer term
is proportional to the stretch rate K. A similar conclusions was drawn by Thiesset et al.
(2020) using different arguments. This again reinforces the conclusion of Thiesset et al.
(2020) that the stretch rate plays for the phase indicator field (a non-diffusive scalar) the
same role as the scalar dissipation rate in diffusive scalar turbulence. Pushing the analysis
to the third order, one expects the transport equation for 〈H2〉 − 〈G〉/3 to be recovered.
Hence, the two-point equation for the phase indicator embeds the transport equation for
both the surface density and a measure of the surface curvatures.

5. Results for the total field

We now explore the contribution of the different terms of the scale/space/time budget of
the total field (2.3a).

5.1. Spatially and angularly averaged budget
We start by studying the budget after applying the angular (2.4) and spatial averages (2.6).
Recall that, by doing so, the different terms have argument list (r, t) and thus light is
shed on the scale and time dependence of the transport of liquid. The information about
the vertical position within the shear layer and the orientation of the liquid structures are
hidden.

Results are presented in figure 8 for three typical snapshots during the simulation. These
were selected because they are typical of the surface density production period (t∗ =
tLx/ug = 0.98), the period of maximum surface density (t∗ = 1.37) and the relaxation
period (t∗ = 1.83), respectively (see figures 2 and 7).

By comparing in figure 8 the time derivative term to the right-hand side of (2.3a), it first
becomes evident that the budget is accurately closed. This is a stringent test which ensures
that the simulation resolution and post-processing methods are adequate.

A careful examination of figure 8 further reveals that, in the range of scales r � 0.15Lx,
the transfer in Y-space is negligible (if not zero) compared to the one in r-space. By virtue
of (2.7), this is due to the flux 〈(σv′)(δφ)2〉P at the plane Y = −Lx/4 being almost (if not
strictly) equal to the flux at Y = Lx/4. Therefore, over this range of scales, the angularly
and spatially average budget (2.3a) can be approximated by that of a homogeneous flow,
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Space-scale-time dynamics of liquid–gas shear flow

0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25
r/Lx r/Lx r/Lx

0

0.02

0.04

0.06

0.08

0.10 r-Transfer
Y-Transfer

dt term
RHS

0 0.01 0.02

0

0.05

0.10

t∗

〈T
er

m
s〉 Ω

,Y
 ×

 L
x/

u g 
[–

]
(a) (b) (c)

Figure 8. Angularly and spatially averaged budgets of the total phase indicator field for the three snapshots
displayed in figures 2 and 7. From (a–c) the production period (t∗ = 0.98), the maximum surface density
(t∗ = 1.37) and the relaxation period (t∗ = 1.83). The inset represents a closer look at small scales of the
r-transfer term.

the configuration explored by Thiesset et al. (2020). When not zero, the Y-transfer term
is negative, meaning that the flux 〈(σv′)(δφ)2〉P flowing through the plane Y = Lx/4 is
slightly larger than the one crossing Y = −Lx/4. In other words, when averaged over the
set Y = {Y| − Ly/4 ≤ Y ≤ Ly/4}, the Y-transfer term evidences a net transport of liquid in
the direction of positive Y , i.e. in the upward direction. At scales r � 0.15Lx, the Y-transfer
term is of same amplitude as the r-transfer term with opposite sign, and thus the time
derivative term tends to zero at large scales. This means that the quantity 〈(δφ)2〉P,Y,Ω

is conserved when r → ∞. The same deduction was carried out in the homogeneous
configuration studied by Thiesset et al. (2020).

Let us now focus on the scale/time evolution of the r-transfer term displayed in
figure 8. This term is found to be positive over almost the whole range of scales and
irrespective of the investigated time. This indicates that, on average, the transfer between
the different scales is directed towards small scales, following a direct cascade mechanism.
The r-transfer term peaks at scales r ≈ 0.03, 0.05, 0.08Lx at times t∗ = 0.98, 1.37, 1.83,
respectively, meaning that the cascade process is maximum at these scales. The time
evolution of the peak location could be related to the increase of the shear-layer thickness.
However, we do not yet have any physical argument for proving this.

By carefully scrutinizing around r → 0 (see the inset of figure 8), it further appears
that the slope of the r-transfer term, which provides information about the stretch rate, is
positive, approximately zero and negative at t∗ = 0.98, 1.37, 1.83, respectively. This yields
a time evolution of 〈(δφ)2〉P,Y,Ω at small scales in agreement with the evolution of 〈Σ〉P,Y

where at t∗ = 0.98 the surface area is increasing, then at t∗ = 1.37 the surface density is
maximum and finally at t∗ = 1.83 the surface area starts decreasing (see figure 7). At
t∗ = 1.83, the narrow portion of scales (r � 0.02Lx) where the r-transfer term is negative
while larger scales follow a direct cascade mechanism, suggests that, while the largest
scales continue transferring the ‘energy’ towards the small scales, a small portion of the
smallest scales start relaxing into liquid structures of larger size. This inverse cascade
mechanism was found to dominate in decaying liquid/gas turbulence (Thiesset et al. 2020)
and was attributed to the prominent role of merging and relaxation by the capillarity effect
of liquid structures. By analogy, it is likely that, in the shear layer, this negative r-transfer
at small scales is attributable to the effect of surface tension which acts in ‘sphericalizing’
some elongated liquid structures of typical size less than 0.02Lx.
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Figure 9. Terms of the angularly averaged budget of the total phase indicator field. The orange filled contours
represent 〈(δφ)2〉P,Ω (light to dark corresponds to values from 0 to 1). The coloured lines correspond to the
contours of the different terms normalized by ug/Lx. Positive (negative) values are displayed by full (dashed)
lines. From left to right: t∗ = 0.98, 1.37, 1.83; (a–c) r-transfer term, (d–f ) Y-transfer term, (g–i) time derivative
term.

5.2. Angularly averaged budget
We now turn our attention to the evolution of the different terms of (2.3a) with the average
over the inhomogeneity direction Y being lifted. The dependence on the orientation of the
vector r remains hidden by the application of the angular average. The terms now depend
on three arguments (Y, r, t). Recall that the centreline of the shear layer is located at Y = 0.
Results are presented again for t∗ = 0.98, 1.37, 1.83 in figure 9 and discussed below.

It is again observed that, for the majority of scales and irrespective of t∗, the r-transfer
term is positive throughout the shear layer. This means that the cascade is mostly directed
towards small scales. The peak is observed at approximately the same scale as in figure 8
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Space-scale-time dynamics of liquid–gas shear flow

and appears to move upward with increasing time, i.e. from approximately Y = 0.01Lx
at t∗ = 0.98 up to Y = 0.03Lx at t∗ = 1.83. This is again most likely attributable to
the increase of the shear-layer thickness. At t∗ = 1.83, the r-transfer term reveals a
pocket of negative values around (Y, r) ≈ (−0.01Lx, 0.01Lx). This indicates that the scale
distribution close to the centreline undergoes an inverse cascade process. Arguably, this
inverse cascade is consistent with the relaxation mechanism of the interface by capillary
effect and a diminishing influence of velocity shear which was already identified in
figure 2.

Close to the centreline (Y = 0), the Y-transfer term is negative, meaning that all scales
tend to be convected upwards. The local minimum appears at (Y, r) ≈ (0, 0.02Lx). On
the contrary, this term appears positive (i.e. downward transport) on both sides of the
centreline. Analysing together the r-transfer and Y-transfer terms reveals an interesting
picture for the scale/space transport of the liquid phase in a turbulent shear layer. Indeed,
our analysis suggests that the liquid structures located close to the centreline are first
dominantly convected in the upward direction. Then, once sufficiently pulled away from
the centreline, these structures start transferring their ‘energy content’ predominantly in
the direction of small scales, thereby following a direct cascade process. When these two
processes are summed this yields the time derivative of 〈(δφ)2〉P,Ω which is negative close
to the centreline and positive on the edge of the shear layer. This observation applies for all
t∗. This is a key characteristic of the vertical expansion of the shear layer. This expansion
is felt by all scales, i.e. it is found that, independently of the probed scale, the probability
of crossing an interface (i.e. 〈(δφ)2〉P,Ω ) is decreasing close to the centreline while it
increases on both sides of the centreline. This is readily observed when comparing the
scale distributions 〈(δφ)2〉P,Ω from time t∗ = 0.98 to t∗ = 1.83.

5.3. Anisotropic scale/space fluxes
We now lift the angular average so as to appraise the full scale/space/time transport of
liquid within the shear layer. The different terms of (2.3a) have now argument list (Y, r, t),
i.e. a 5-D manifold. Hence, one has to face the difficulty of displaying the results in such
a large parameter space. An attempt of a possible 3-D representation of both the scale
distribution 〈(δφ)2〉P and energy fluxes (〈(δu)(δφ)2〉P, 〈(δw′)(δφ)2〉P, 〈(σv′)(δφ)2〉P) in
the subset (rx, rz, Y, ry = 0) is given in figure 10. This figure exemplifies the very
complex patterns of liquid transport within the shear layer. The flow appears to be highly
inhomogeneous, with a noticeable dependence of 〈(δφ)2〉P and its fluxes on the location
Y . Furthermore, the anisotropic character of the two-point statistics is striking. Indeed,
isotropy would have revealed itself as concentric circles for 〈(δφ)2〉P. This obviously
does not apply to the present data. A careful analysis of figure 10 further indicates that
the streamlines of the energy fluxes are mostly directed towards positive (negative) Y for
scales located at positive (negative) Y , thereby yielding a vertical expansion of the scale
distribution. For positive Y , the paths of fluxes are directed towards positive (negative) rz,
suggesting a redistribution of the ‘energy’ content in the spanwise direction.

Although the 3-D representation of the two-point statistics provided in figure 10 allows
us to substantiate the complex nature of liquid transport in this particular flow field, a more
quantitative analysis is required. To do this, we made the choice of displaying the results
for only a few relevant sub-planes of the full 5-D manifold, all them containing at least one
component in an inhomogeneity direction, Y or ry. In figure 11, we represent the contours
of 〈(δφ)2〉P together with the flux components in the following sub-planes:
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Figure 10. Three-dimensional visualization of the second-order structure function in the subset (rx, rz, Y, ry =
0) at t∗ = 0.98 (small to large values are displayed by light blue to yellow). The streamlines indicate the path
of ‘energy’ flux (〈(δu)(δφ)2〉P, 〈(δw′)(δφ)2〉P, 〈(σv′)(δφ)2〉P) and are coloured by the magnitude of the local
fluxes (small to large values: blue to red). The three axes are normalized by Lx. An interactive 3-D file for this
figure is given as supplementary material available at https://doi.org/10.1017/jfm.2020.1152.

(i) the (rx, ry)-plane (Y = rz = 0) with flux components (〈(δu)(δφ)2〉P, 〈(δv′)(δφ)2〉P);
(ii) the (rx, Y)-plane (ry = rz = 0) with flux components (〈(δu)(δφ)2〉P, 〈(σv′)(δφ)2〉P);

and
(iii) the (ry, Y)-plane (rx = rz = 0) with flux components (〈(δv′)(δφ)2〉P, 〈(σv′)(δφ)2〉P).

Note that the two-point statistics possess a central symmetry with respect to
(rx, ry, rz) = (0, 0, 0). Thus, only the positive halves of the abscissae are represented in
figure 11. The distribution of 〈(δφ)2〉P and its respective flux components reveal again the
very complex nature of energy transfer in this particular flow field. Two-point statistics
are strongly dependent to the orientation of the separation vector r (see e.g. figure 11a–c),
suggesting a very high degree of anisotropy. The dependence on the location Y within
the flow is also readily perceptible (see figures 11d–f and 11g–i) meaning that, obviously,
inhomogeneity effects are further at play in the shear layer.

Firstly, let us focus on figure 11(a–c). For |ry| � 0.025Lx, the flux component in the rx
direction, i.e. 〈(δu)(δφ)2〉P clearly dominates over that in the ry direction 〈(δv′)(δφ)2〉P.
This can be largely explained by the strong velocity shear and thus the large difference
between the gas and the liquid streamwise velocities. Indeed, the increment of streamwise
velocity δu can be decomposed as δu = δ〈u〉P + δu′ while the statistical symmetry with
respect to the x and z directions implies 〈v〉P = 0 and thus δv = δv′ and σv = σv′.
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Figure 11. Iso-values of 〈(δφ)2〉P (orange filled contours, from (light) 0 to (dark) 1) and flux components
(streamlines coloured by the flux magnitude) in different sub-planes of the full manifold; (a–c) (rx, ry)-plane,
(d–f ) (rx, Y)-plane, (g–i) (ry, Y)-plane. Left to right: t∗ = 0.98, 1.37, 1.83

Therefore, for large ry separations, the rx flux dominates over the ry flux because
δ〈u〉P ≈ ug � δu′ ∼ δv′. Figure 11(a–c) further evidences that, for positive values of ry,
the flux components are mostly directed towards positive rx while, by symmetry, the
opposite is observed for negative values of ry. Consequently, the fluxes in the (rx, ry)
plane act in distributing the ‘energy’ content from the ry component to the rx component.
Pragmatically speaking, this indicates, due to the velocity shear, liquid structures will
tend to tilt in the clockwise direction. For |ry| � 0.025Lx, the rx and ry-fluxes are of the
same order of magnitude, and reveal a complex spiralling behaviour which, interestingly,
appears rather similar to the one observed for the total kinetic energy in turbulent channel
flows Cimarelli, De Angelis & Casciola (2013).

Figure 11(d–f ) represents the scale distribution 〈(δφ)2〉P and fluxes (〈(δu)(δφ)2〉P,

〈(σv′)(δφ)2〉P) in the (rx, Y, ry = 0, rz = 0)-plane. At t∗ = 0.98, i.e. during the surface
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production period, the flux in the Y direction dominates over the one in the rx direction.
This reflects the strong vertical expansion of 〈(δφ)2〉P. This is also readily visible by
comparing the scale distribution 〈(δφ)2〉P which appears to spread in the Y direction from
t∗ = 0.98 to t∗ = 1.83. This expansion mechanism appears to be roughly independent of
rx for all scales rx � 0.025Lx. Still, at t∗ = 0.98, the fluxes’ amplitude and direction appear
to follow those of the gradient of 〈(δφ)2〉P. During the relaxation period, i.e. t∗ = 1.83,
and for positive Y , the fluxes are directed towards the direction of smaller rx, revealing a
direct cascade mechanism.

The scale distribution 〈(δφ)2〉P in the (ry, Y, rx = 0, rz = 0)-plane together with the
corresponding fluxes (〈(δv′)(δφ)2〉P, 〈(σv′)(δφ)2〉P) are portrayed in figure 11(g–i). Here,
〈(δφ)2〉P displays a kind of triangular shape, which is characteristic of the strong
inhomogeneity in this particular flow. At t∗ = 0.98, t∗ = 1.37 and maybe in a less obvious
manner at t∗ = 1.83, the magnitude and direction of the fluxes nicely align with the
amplitude and direction of the gradient of 〈(δφ)2〉P. Here again, fluxes appear to be mostly
oriented towards smaller scales (direct cascade); (〈(δv′)(δφ)2〉P, 〈(σv′)(δφ)2〉P) also tend
to transport 〈(δφ)2〉P on both sides of the centreline, i.e. towards positive (negative) Y
for all scales located at planes Y > 0 (Y < 0). Consequently, at time increases, 〈(δφ)2〉P

appears to spread in the Y and ry directions.
In summary, figure 11 suggests the following picture for the scale/space/time transport

of liquid in the shear layer. The time evolution of the scale distribution 〈(δφ)2〉P is first
affected by a strong contribution of the flux in Y-space, which results in vertical expansion
of the two-point statistics towards both sides of the shear-layer centreline. Further, the
strong velocity shear ∂Y〈u〉E is responsible for the predominant contribution of the rx flux
process and the strong anisotropy of the fluxes in the (rx, ry)-plane. The shear rate also
acts in distributing the ‘energy’ content from the ry component to the rx component, i.e.
liquid structures tend to rotate in the clockwise direction.

A last comment is to be made at this stage. In Thiesset et al. (2019a, 2020), it was shown
that the fluxes in scale and physical space can be decomposed into local and non-local
interactions. The former (later) indicates that the transfer process occurs between adjacent
(separate) scales or positions. Here, at several occasions in figure 11, it was emphasized
that the paths of local fluxes in the combined physical/scale space match quite well in
direction and amplitude with local gradients of 〈(δφ)2〉P. These correspond to the zones
where the transfer is mostly local. In such zones, it is worth mentioning that a closure for
the fluxes in the form of a diffusion by a gradient process can be invoked, with a diffusion
coefficient which remains yet to be evaluated. However, there are also many regions in the
(X , r)-space where local paths of energy do not follow the local gradients of 〈(δφ)2〉P.
Here, non-local interactions are at play and some other type of closure scheme ought to be
considered.

6. Results for the fluctuating field

Previous considerations were dedicated to the total phase indicator field φ. However,
the present flow configuration reveals a strong statistical inhomogeneity which notably
manifests itself as a significant gradient of the liquid volume fraction 〈φ〉P in the Y
direction. Such an inhomogeneity does not appear explicitly in the equation for the total
field (2.3a). With the goal of better quantifying its effect, one has to push the analysis to
the fluctuating field φ′ = φ − 〈φ〉P by using (2.3b). By doing so, the production terms in
the directions Y and ry are made explicit. The latter can be interpreted as an exchange of
energy from the mean field to the randomly fluctuating field.
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Figure 12. Angularly and spatially averaged budgets for the fluctuating phase indicator field. From (a–c),
t∗ = 0.98, 1.37, 1.83.

6.1. Spatially and angularly averaged budget
As was done in § 5, we start with the spatially and angularly averaged version of (2.3b)
and then progressively go deeper into detail by lifting first the spatial average and then the
angular average.

The right-hand side of the spatially and angularly averaged budget of the fluctuating
field (2.3b) contains two transfer terms and two production terms which are represented in
figure 12, for the three same time steps t∗ = 0.98, 1.37, 1.83.

Here again, it is worth noting that, once angularly and spatially averaged, the time
derivative term and the right-hand side of (2.3b) collapse very nicely. This again shows that
the balance between the different terms of the budget is well satisfied, which reinforces our
statement that the resolution and numerical procedures are adequate. The time derivative
term appears to be positive irrespective of the probed scale r (except maybe at very small
scales during the relaxation period). This means that the portion of randomly fluctuating
scales is increasing as the shear layer develops in time. Note that, contrary to figure 8,
the time derivative term is not zero at large scales, suggesting that 〈(δφ′)2〉P,Y,Ω is not
conserved, but increasing, and that, on the contrary, the ‘energy’ content of the mean field
is decreasing.

As it was observed for the total field (figure 8), the Y transfer term is negligible.
The same reasoning thus applies: the Y-flux crossing the plane located at Y = −Lx/4
is comparable (if not equal) to the one flowing through the plane Y = Lx/4. The amplitude
of the r-transfer term also appears to be rather small and contributes negatively at
small scales. This reveals that the cascade process for the fluctuating field is mostly
directed towards larger scales, an inverse cascade mechanism. In other words, the negative
r-transfer term indicates that the random nature of the fluctuating field is first felt at small
scales and is progressively transported towards larger scales. The terms that contribute
the most to the budget are the two production terms in the r- and Y-space. Note that the
production process due to gradient of 〈φ〉P with respect to ry is predominant at small scales,
while the Y-production mechanisms is monotonically increasing for increasing scales.
That means that, at small scales, the time evolution of 〈(δφ′)2〉P,Y,Ω is almost entirely
piloted by the ry-production term, while at large scales, both the ry- and Y- production
terms are at play.

As stated previously, the production terms can be interpreted as the exchange of ‘energy’
between the mean and the fluctuating fields. Therefore, the liquid/gas shear layer explored
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here is consistent with the classical vision of sheared turbulence where the inhomogeneity
of the mean field is responsible for the generation of turbulent (randomly fluctuating)
scales. This picture is usually thought to apply to the velocity and diffusive scalar field.
Our data suggest that it also applies to the phase indicator field in turbulent liquid/gas shear
flow.

6.2. Angularly averaged budget
With the goal of probing the region within the flow where the processes of transfer and
production are at play, we now lift the spatial average and focus on the angularly averaged
version of (2.3b). Results are presented in figure 13 in the form of 2-D plots in the (Y, r)
planes for times t∗ = 0.98, 1.37, 1.83.

While in figure 9 the distribution of the total phase indicator field 〈(δφ)2〉P,Ω was
prominently located around large scales (r � 0.10Lx), the distribution of the fluctuating
field 〈(δφ′)2〉P,Ω is concentrated at smaller scales (r � 0.10Lx) and is centred around the
shear-layer centreline. Note also that, while the ‘energy’ content of the total field was
diminishing with respect to time, that of the fluctuating field is substantially increasing
from t∗ = 0.98 to t∗ = 1.83. This again reinforces the statement that part of the mean field
‘energy’ is transferred to the randomly fluctuating field.

A careful analysis of figure 9 provides further substance and confirms this. Indeed, it
is readily perceived that the contours of 〈(δφ′)2〉P,Ω match almost perfectly those of the
ry-production term. To a large extent, the time increase in 〈(δφ′)2〉P,Ω is thus due to this
production mechanism, which further appears to be dominant over the whole extent of
the shear layer and for almost all scales. In the zones where 〈(δφ′)2〉P,Ω is maximum, the
transfers in both r- and Y-space are negative and also contribute quite significantly to the
budget. In these zones, these two terms thus act in redistributing the energy either towards
larger scales or in the direction of positive Y , respectively. The production in Y-space does
not contribute much, except maybe at rather large scales where it is positive.

The analysis of figure 9 allows us to draw the following portrait for the scale/space
transport of the fluctuating liquid field in the shear layer. The driving mechanism is the
production of fluctuating quantities due to gradient of the mean liquid volume fraction in
the ry direction. ‘Energy’ is produced in the zone where inhomogeneities are the largest,
here, on the centreline of the shear layer. Then, the transfer mechanisms in either scale
space and geometrical space act in redistributing this produced ‘energy’ over larger scales
and in the upward direction, respectively. Summing up these different contributions yields
the time variations of 〈(δφ′)2〉P,Ω which increases for almost all scales and all vertical
positions within the shear layer. Note that the rate at which 〈(δφ′)2〉P,Ω increases in time
is the highest on both sides of the centreline, in compliance with a vertical enlargement of
the shear layer.

6.3. Anisotropic scale/space fluxes
The dependence on the orientation of the separation vector r is now incorporated into the
analysis by lifting the angular average. As in § 5, we selected the same sub-planes of the
full 5-D manifold:

(i) the (rx, ry)-plane (Y, rz = 0) with flux components (〈(δu)(δφ′)2〉P, 〈(δv′)(δφ′)2〉P);
(ii) the (rx, Y)-plane (ry, rz = 0) with flux components (〈(δu)(δφ′)2〉P, 〈(σv′)(δφ′)2〉P);

and
(iii) the (ry, Y)-plane (rx, rz = 0) with flux components (〈(δv′)(δφ′)2〉P, 〈(σv′)(δφ′)2〉P).
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Figure 13. Budget of the fluctuating phase indicator field. Orange filled contours represent 〈(δφ′)2〉P,Ω (light
to dark corresponds to values from 0 to 0.5). The coloured lines correspond to the contours of the different
terms normalized by ug/Lx. Positive (negative) values are displayed by full (dashed) lines. From left to right:
t∗ = 0.98, 1.37, 1.83. From top to bottom: r-transfer term, r-production term, Y-transfer term, Y-production
term, time derivative term.
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Figure 14. Iso-values of 〈(δφ′)2〉P (orange filled contours, from (light) 0 to (dark) 0.5) and flux components
(streamlines coloured by the flux magnitude) in different sub-planes of the full manifold; (a–c) (rx, ry)-plane,
(d–f ) (rx, Y)-plane, (g–i) (ry, Y)-plane. Left to right: t∗ = 0.98, 1.37, 1.83.

Results are presented in figure 14 where both contours of the scale distribution 〈(δφ′)2〉P

and streamlines of fluxes in the combined physical/scale space are portrayed. Here again,
one is struck by the very complex nature of the energy paths in this shear dominated
flow. Nevertheless, one can retrieve in figure 14 many of the key observations that were
drawn previously for the angularly averaged budget of the fluctuating liquid field. The
most obvious is probably the increase in the energy content throughout the different
sub-planes when time increases from t∗ = 0.98 to t∗1.83. The scale distribution 〈(δφ′)2〉P

appears to evolve mainly towards larger scales and also spreads in the vertical direction.
By comparing figures 11 and 14, one also recovers several common points between the
total and the fluctuating fields.

Firstly, by scrutinizing the results in the (rx, ry, Y = 0, rz = 0)-plane, it is clear that,
due to the strong shear, the flux in the rx direction dominates over the one in ry direction.
One further observes the same propensity of local fluxes to tilt liquid scales in the
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clockwise direction. In the vicinity of the shear-layer centreline, one recovers the same
spiralling behaviour.

Secondly, the paths of energy fluxes in the (rx, Y, ry = 0, rz = 0)-plane in figure 14
are very similar to those observed for the total liquid field in figure 11. Here again, one
notes a predominant contribution of vertical Y-fluxes, which results in a significant vertical
expansion of the scale distribution 〈(δφ′)2〉P. The expansion of 〈(δφ′)2〉P(rx) along the
Y-direction, is readily visible by comparing the results at time t∗ = 0.98 and t∗ = 1.83. It
appears to be roughly of the same amplitude for all scales rx � 0.025Lx.

Thirdly, the distribution of 〈(δφ′)2〉P in the (ry, Y, rx = 0, rz = 0)-plane reveals the
same kind of triangular shape as the one of the total field (figure 11) except that
the maximum values are located in the region where the gradient of 〈(δφ)2〉P was
the strongest. Note also that at t∗ = 0.98 and t∗ = 1.37, the streamlines of the energy
fluxes appear to align quite well with the gradient of 〈(δφ′)2〉P. Here again, this suggests
that, in this situation, the paths of liquid transport in the combined scale/physical space
can be well approximated by local interactions through a classical diffusion by a gradient
process.

7. Conclusions

The theoretical framework firstly documented in Thiesset et al. (2020) for a statistically
homogeneous flow is here invoked to explore the dynamics of liquid transport in a
liquid–gas shear layer, a strongly inhomogeneous flow. The key quantity in this theory
is the second-order structure function of the phase indicator field.

A literature review reveals that this observable is widely employed in other areas
of physics dealing with heterogeneous media: e.g. porous media, colloids and fractal
aggregates. This vast corpus of research which dates back to the 1950s with the pioneering
work by e.g. A. Guinier, G. Porod and P. Debye, has had a tremendous impact in
terms of better characterizing the structure of media which reveal a certain degree of
heterogeneity at some scales. Positioning the problematic two-phase flows into the wider
context of heterogeneous media has allowed us to highlight the close link between the
second-order structure function of the phase indicator and some valuable features of the
liquid/gas interface. In particular, the first-order expansion for the increments of φ at small
scales relates to the interface surface density, while the third-order expansion enables
a combination of the squared mean curvature and Gaussian curvature to be estimated.
At intermediate scales, the second-order structure functions behave as a morphological
descriptor with r being the morphological parameter. At large scales and under some
conditions the liquid volume can also be estimated from two-point statistics.

Most of known theoretical results on the two-point correlation function were obtained
for homogeneous/isotropic fields. However, two-phase flows generally encountered in real
situations reveal an evolution in a preferential direction due, for instance, to the presence
of velocity gradients. Therefore, there is need to generalize such results to inhomogeneous
and anisotropic cases. Following along the lines of Berryman (1987), our data suggest
that the relationship between correlation functions and geometric variables remains true
when two-point statistics are averaged over all orientations of the separation vector r.
It further appears that the homogeneity assumption can further be relaxed, in which
case the two-point statistics depend on local values of surface area and curvature. In
summary, the results of Kirste & Porod (1962) and Frisch & Stillinger (1963) appear to
be possibly generalizable to anisotropic inhomogeneous media. Note, however, that this
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remains yet to be demonstrated and will most likely pose some mathematical difficulties.
Indeed, for anisotropic media, one has to consider the dependence on the vector r of the
auto-correlation functions, which is not taken into account in previous analyses (except
by Berryman 1987, who coped with this dependence by using an angular average). For
inhomogeneous cases, one has to tackle the dependence of both the auto-correlation
function and liquid volume fraction on the position vector X , which has never been
addressed in previous theoretical work. However, any progress towards such a generalized
expression may have important repercussions, not only for treating liquid–gas flows of
practical relevance but also for characterizing several classes of heterogeneous media.

The analogy between two-phase flows and e.g. porous media breaks down once one
recalls that the liquid phase is a dynamical system. Indeed, contrary to porous media,
where it is in general relevant to consider a frozen geometry, liquid–gas flows evolve
in time thanks to local two-way interactions with the velocity field. In this regard, one
of the merits of the present study is to supplement the analysis of two-point statistics
with a transport equation which allows us to explore the space/scale/time evolution of the
liquid phase. This framework highlights that the dynamical evolution of the second-order
structure function of the phase indicator is associated with some transfer and production
terms which act together and concomitantly in a combined scale(r)/physical(X ) space.
Interestingly, at small scales, this equation asymptotes to the transport equation for the
surface density and it was further evidenced that the transfer in scale space is proportional
to the stretch rate at sufficiently small values of r. This is another proof that the stretch
rate plays for the phase indicator the same role as the scalar dissipation rate in ‘classical’
scalar turbulence. In its general formulation, one has to deal with a 7-D problem, six
dimensions to characterize the dependence on r (anisotropy) and X (inhomogeneity) and
one dimension to account for the time evolution. The liquid–gas shear layer explored in the
present work possesses two homogeneity directions, thereby contracting the problem to a
5-D manifold. A solution for further reducing the problem complexity is then provided
by considering different averaging procedures. More precisely, (i) the dependence to
the orientation of the separation vector r and physical position Y are first concealed
by use of both an angular and spatial average. Then (ii), the dependence on Y is
incorporated by lifting the spatial average before (iii) withdrawing the angular average,
thereby allowing the anisotropic character of the ‘energy’ fluxes to be quantified. We
applied this methodology for both the total and the fluctuating fields and explored different
time steps during the time evolution of the shear layer, corresponding to the surface area
production period, the time of maximum area and to the relaxation period, respectively.

This procedure allowed us to extract some key characteristics of the scale/space/time
transport of liquid in the shear layer, some of which are summarized below.

(i) It is first shown that, in this particular flow, the total transfer between scales complies
with a direct cascade scenario, where the sense of evolution is directed towards small
scales. The opposite was observed for the fluctuating field, suggesting that part of
the energy content of the mean field is transferred to the fluctuating field.

(ii) As far as the total phase indicator field is concerned, it was observed that turbulent
scales are transported from the centreline towards the edge of the shear layer. As
soon as they are sufficiently pulled away, ‘energy’ starts being transferred towards
small scales. This observation applies qualitatively for almost all scales and does not
change significantly during the time evolution of the shear layer, may it lie within
the production or relaxation period.

(iii) The fluctuating component of the phase indicator is substantially influenced by the
dominant role of production due to gradients of the mean liquid volume fraction.
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The ry component of the production term is predominant at small scales while the
budget indicates a strong contribution of the ry and Y production processes at larger
scales. This indicates that inhomogeneities plays a significant role in the turbulent
liquid/gas shear layer.

(iv) The very complex nature of liquid transport in the combined scale/physical space is
exemplified by quantifying the paths of energy fluxes in some sub-planes of the full
5-D manifold. The effect of velocity shear appears in a striking manner and manifests
itself in a dominant flux in the rx direction which causes the tilting of liquid scales
in the clockwise direction. Further, in some regions of the scale/physical space,
it was observed that the paths of energy fluxes align nicely with the gradient of
either 〈(δφ)2〉P or 〈(δφ′)2〉P. This indicates that these zones are driven by some
local interactions so that a closure scheme on the basis of a diffusion by gradient
process can be formulated. Some other zones are on the contrary predominantly
influenced by non-local interactions which requires a different treatment. Further
work is needed to better understand the underlying physics at play for the fluxes to
comply with either local or non-local interactions.

As an overall conclusion it may be worth recalling that the theoretical framework
invoked here is a descriptive tool which allows scrutinizing of the details of liquid transport
in both scale and physical space. The theory is not yet predictive, i.e. two-point equations
are not closed since the flux/production terms cannot yet be expressed solely in terms
of second-order structure functions of φ or φ′. Consequently, the present paper is rather
observational and intends to document the peculiarities of the phase indicator evolution,
a necessary step before providing some physics-informed modelling strategies. In this
regard, we have evidenced that the transfer term in the combined scale/physical space
can partly be closed by a gradient diffusion process. We also showed theoretically that
the two-point budget contains information on the transport of surface density. There thus
exists a close link between the present framework and some modelling strategies (e.g.
the Eulerian Lagrangian spray atomization model; see e.g. Lebas et al. 2009; Anez et al.
2019) which treat liquid/gas flows by use of specific closures for φ and Σ . Second-order
structure function of the phase indicator field can also be expressed as a function of some
statistical moments of H and G. Two-point statistics thus share some similarities with
recent theoretical attempts aiming at generalizing the notion of the drop size distribution
using either the Minkowski functional (Thiesset et al. 2019b), or geometrical metrics and
topological invariants (Di Battista et al. 2019; Essadki et al. 2019).

Further, although turbulence is by definition a random process and even though
atomization is inherently a local process (pinch-off) which yields discontinuities at finite
time, we conjecture that, by using a statistical approach, we can recover some degree of
regularity and predictability for the statistics. The present data appear to confirm this
statement. Indeed, to some extent, the phase indicator field was found to behave rather
similarly to a diffusive passive scalar field in single-phase turbulence. For instance, the
intricate interaction between the randomly fluctuating and mean fields complies quite well
with the classical picture of turbulence in the sense that, at early times in the shear-layer
evolution, the scalar ‘energy’ is mainly carried by the mean field, which progressively
loses ‘energy’ as time increases by feeding the randomly fluctuating part of the φ-field.
The analogy between the stretch rate for the phase indicator field and the scalar dissipation
rate for ‘classical’ scalar turbulence is another example which opens up nice perspectives
for modelling purposes.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1152.
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