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The migration of a sphere in the pressure-driven channel flow of a viscoelastic
fluid is studied numerically. The effects of inertia, elasticity, shear-thinning viscosity,
secondary flows and the blockage ratio are considered by conducting fully resolved
direct numerical simulations over a wide range of parameters. In a Newtonian fluid in
the presence of inertial effects, the particle moves away from the channel centreline.
The elastic effects, however, drive the particle towards the channel centreline. The
equilibrium position depends on the interplay between the elastic and inertial effects.
Particle focusing at the centreline occurs in flows with strong elasticity and weak
inertia. Both shear-thinning effects and secondary flows tend to move the particle
away from the channel centreline. The effect is more pronounced as inertia and
elasticity effects increase. A scaling analysis is used to explain these different effects.
Besides the particle migration, particle-induced fluid transport and particle migration
during flow start-up are also considered. Inertial effects, shear-thinning behaviour,
and secondary flows are all found to enhance the effective fluid transport normal
to the flow direction. Due to the oscillation in fluid velocity and strong normal
stress differences that develop during flow start-up, the particle has a larger transient
migration velocity, which may be potentially used to accelerate the particle focusing.

Key words: micro-/nano-fluid dynamics, particle/fluid flow, viscoelasticity

1. Introduction
Particle transport in channel flow of Newtonian and non-Newtonian fluids has been

widely studied because of its importance in many industrial and biological applications.
Depending on the flow conditions, inertial effects, proximity of the channel wall, fluid
elasticity, shear-thinning, particle deformability and particle–particle interactions may
affect the dynamics of the particle motion and the flow field. Interplay between
these effects result in various interesting phenomena, such as cross-streamline particle
migration (Segré & Silberberg 1961), particle focusing at the channel centreline
(Kang et al. 2014; Lim et al. 2014a), wall-surface accumulation of particles (Karnis
& Mason 1966; Gauthier, Goldsmith & Mason 1971), self-assembly of two particles
(Lee et al. 2010) and the particle-induced lateral transport of the fluid (Amini et al.
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Dynamics of particle migration in channel flow of viscoelastic fluids 487

2012). These phenomena have been successfully used for the manipulation of cells
and particles suspended in microfluidic platforms.

The two most important dimensionless parameters characterizing the problem are
the flow Reynolds number and the Weissenberg number, quantifying inertia and
elasticity effects, respectively. The flow Reynolds number is defined as Re= ρUcH/µ,
where Uc is the characteristic flow velocity, such as the velocity at the channel
centreline, H is the characteristic length scale in the channel cross-sectional plane,
ρ is the fluid density and µ is the fluid zero-shear viscosity. The flow Weissenberg
number is defined as Wi = λUc/H, where λ is the relaxation time of the fluid. The
ratio between these two parameters gives the elasticity number El=Wi/Re= λµ/ρH2,
which only depends on the channel dimension and fluid properties. Other important
parameters include the geometry of the channel, the strength of the shear-thinning
effect, the initial position of the particle and the blockage ratio defined as d/H, where
d is the particle diameter.

Cross-streamline migration of particles was first observed in a Newtonian fluid
(El=Wi= 0) by Segré & Silberberg (1961). In a tube flow, initially randomly
distributed particles gradually focus into a narrow annulus at around 0.3 diameter,
resulting in the ‘tubular pinch’ effect. This phenomenon was later confirmed in
several experimental (Karnis, Goldsmith & Mason 1966; Matas, Morris & Guazzelli
2004) and analytical (Schonberg & Hinch 1989) and numerical (Feng, Hu & Joseph
1994; Pan & Glowinski 2005; Yang et al. 2005) studies. Similar phenomenon occurs
in square- and rectangular-shaped channels, where particles accumulate at 0.3 times
the width of the channel away from the centreline (Chun & Ladd 2006; Kim &
Yoo 2008; Shao, Yu & Sun 2008; Di Carlo et al. 2009; Choi, Seo & Lee 2011).
Inertia is necessary for this phenomenon. The balance of two competing effects,
the shear-gradient lift force (Asmolov 1999) and the wall repulsive force (Zeng,
Balachandar & Fischer 2005), determine the equilibrium position of the particles.
These two forces scale differently but both depend on the Reynolds number (Matas
et al. 2004) and blockage ratio (Di Carlo et al. 2009; Gossett et al. 2012). By
properly designing the geometry of apparatus, the cross streamline migration can
be used in cell and particle focusing, sorting, separation, filtration, enrichment and
trapping. Review articles by Di Carlo (2009) and Karimi, Yazdi & Ardekani (2013)
provide a comprehensive discussion of the progress and future directions in this area.

In channel flows of viscoelastic fluids in a low-Reynolds-number regime, the
particle migration shows a different behaviour depending on the fluid rheology. For
example, particles move towards the centreline in viscoelastic fluids of constant
viscosity, whereas they move towards the walls in a shear-thinning fluid (Karnis
& Mason 1966; Gauthier et al. 1971). Particles also move towards the centreline
in solutions of moderately cross-linked polymers, whereas little or no migration is
observed in solutions of highly cross-linked polymers (Tehrani 1996). Under the
assumption of zero Reynolds number and small blockage ratio, Ho & Leal (1976)
showed that a lateral force, originating from the normal stress differences, drives
the particle towards the lower-shear region in a second-order fluid. This conclusion
has been verified in other experiments and simulations, where particles move to the
central axis of a circular tube (Tehrani 1996; D’Avino et al. 2012; Romeo et al.
2013; Kang et al. 2014) and to both the centreline and corners in a rectangular
channel (Leshansky et al. 2007; Yang et al. 2011). Based on simulations of the
Giesekus and Phan Thien-Tanner constitutive equations, Villone et al. (2011, 2013)
and D’Avino et al. (2012) observed bistable dynamics of particles in shear-thinning
fluids, i.e. the particle may move towards or away from the channel centreline
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depending on its initial position. The same behaviour is also observed in experiments
(Nam et al. 2012). The second normal stress difference leads to a secondary flow in a
non-circular channel, which may also directly affect the particle motion by advection
(Villone et al. 2013). In a concentrated suspension of rigid particles in Newtonian
fluids, the secondary flow resulting from anisotropic particle microstructure affects the
particle distribution (Ramachandran 2013; Zrehen & Ramachandran 2013). A recent
review article focusing on particle dynamics in viscoelastic fluids in the absence of
inertia can be found in D’Avino & Maffettone (2015).

These studies are mostly conducted in flows with dominating elastic effects, where
the Reynolds number is small (El > 0, Re ' 0). The interplay between elastic and
inertial forces (El > 0, Re > 0) result in different particle migration behaviour. For
example, even in a weakly inertial regime in a rectangular channel of viscoelastic
fluid, the equilibrium positions at the corners become unstable and particles focus
only at the channel centreline (Yang et al. 2011). This elasto-inertial particle focusing
in the range of low Reynolds number (Re ∼ 10−2–10−1) and high elasticity number
(El∼ 101–102) is destabilized as the channel Reynolds number increases beyond order
unity (Yang et al. 2011; Kang et al. 2014). Conversely, a recent study by Lim et al.
(2014a) shows that stable particle focusing at the channel centreline can be achieved
in weakly viscoelastic flows at a high Reynolds number (El∼ 0.1, Re∼ 2000). Their
experiments illustrated particle focusing at very high flow rates. Another recent study
by Seo, Kang & Lee (2014) showed that the flow rate, blockage ratio and shear-
thinning properties of viscoelastic fluids have complex effects on the particle migration
in a square microchannel in the presence of both elastic and inertial effects.

Despite the above mentioned numerical and experimental studies, there exist gaps
in the parameter space, where the mechanisms of particle migration due to the
combined effects of rheological properties of viscoelastic fluids, flow conditions and
particle–fluid interaction are poorly understood. Experiments have some limitations in
providing all the detailed information, and most previous simulations are conducted in
flows with that consider only inertial effects (El= 0) or only elastic effects (Re= 0),
and the interplay of the two forces for spherical particles have not been numerically
investigated. The present numerical study aims at bridging this gap in the parameter
space.

In the present study, we investigate the particle migration in a square channel by
means of three-dimensional direct numerical simulations. Our simulations include the
effects of fluid inertia, fluid elasticity, and shear-thinning viscosity in a relatively large
range of parameters by using the Oldroyd-B and Giesekus constitutive equations. Our
results for a particle in an Oldroyd-B channel flow show that there exists a critical
elasticity number above which the particle migrates to the centreline. In a Giesekus
fluid with relatively strong inertial effects, we find that the particle migrates away
from the centreline. Besides the migration dynamics of the particle in a steady state
channel flow, we also study some other less-explored aspects of the problem such as
the particle-induced fluid transport and the migration behaviour that occurs during flow
start-up.

2. Mathematical model and numerical method
In this study, we consider the motion of a rigid particle in a straight, square channel

filled with a viscoelastic fluid. A Cartesian reference frame is considered with its
origin at the centre of the channel cross-section. The computational domain spans
over [−L/2, L/2] in x, [−H/2, H/2] in y and [−H/2, H/2] in z directions. Unless
otherwise stated, the particle is initially at rest and a constant pressure gradient G
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is imposed along the x-direction at time t = 0 to drive the channel flow. In what
follows, the length is scaled by the channel width H, velocity by U0 = 4kGH2/π3µ,
time by H/U0, shear and angular velocity by U0/H, density by ρ and pressure and
stress by µU0/H, where k is a constant, depending on the geometry of the channel.
For a square-shaped channel, k=∑∞n,odd (1/n

3)(1− sech(nπ/2))' 0.571. In Newtonian
and Oldroyd-B fluids, U0 is equal to the steady centreline velocity of the channel Uc
(Fetecau & Fetecau 2005), whereas in shear-thinning fluids Uc > U0. The particle is
neutrally buoyant and has a spherical shape with diameter d. The blockage ratio is
set to κ = d/H = 0.25, unless otherwise stated. Hereinafter, unless otherwise stated,
all equations and variables are written in dimensionless form. Initially, the particle
has zero translational and rotational velocity and is located at X0

p= (0, 0.25, 0), unless
otherwise stated. The rigid-body motion of the particle is described by the translational
velocity Up = (Up, Vp,Wp) and angular velocity Ωp = (Ωx, Ωy, Ωz). The centre of the
particle is located at Xp = (Xp, Yp, Zp).

A distributed Lagrange multiplier method is used in our simulations and details of
the method can be found in Ardekani, Dabiri & Rangel (2008), and in Doostmohammadi,
Dabiri & Ardekani (2014). The entire domain is treated as a fluid, and a forcing
term f is added inside the particle domain to enforce the rigid body motion of the
particle. The dimensionless governing equations for an incompressible fluid are

ReG

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · τ − π3

4k
Hv(t)ex + f , (2.1a)

∇ · u= 0, (2.1b)

u|y,z=±0.5 = 0,
∂u
∂x

∣∣∣∣
x=±L/H

= 0, u|t=0 = 0 (2.1c−e)

Xp|t=0 = X0
p, Up,Ωp|t=0 = 0, (2.1f ,g)

where ReG = ρU0H/µ= 4kρGH3/π3µ is the Reynolds number based on the pressure
gradient. The flow Reynolds number is equal to Re=ReG in Newtonian and Oldroyd-
B fluids, while Re>ReG in shear-thinning fluids. Here, u is the fluid velocity, p is the
pressure, τ is the total deviatoric stress tensor, Hv(t) is the Heaviside function and ex
is the unit vector along the x-direction. The forcing term f is calculated in an iterative
procedure to ensure the rigid motion of the particle

f = f ∗ + ReG
φ

1t
(Up +Ωp × (x− Xp)− u), (2.2)

where f ∗ is the force from the previous iteration, φ is the volume fraction occupied
by the particle in each computational cell (φ = 1 inside, φ = 0 outside and 0<φ < 1
for the cells at the surface of the particle), Up and Ωp are determined by

UP = 1
Mp

∫
P

ρp

ρ
u dV, ΩP = I−1

p

∫
P

ρp

ρ
(x− Xp)× u dV, (2.3a,b)

where P represents the particle domain, ρp/ρ is the ratio of the particle density to
the fluid density, which is equal to unity in all our simulations. Mp and Ip are the
dimensionless mass and moment of inertia of the particle, respectively. Particle mass
and moment of inertia are scaled by ρH3 and ρH5, respectively. Equations (2.1)–(2.3)
reduce to Newton’s second law for the particle as shown in Doostmohammadi et al.
(2014).
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The total deviatoric stress tensor, τ , can be split into contributions from the
solvent and polymer as τ = τ s + τ p. The Newtonian viscous stress is defined as
τ s = βs(∇u+ ∇uT), where βs is the ratio of the solvent viscosity to the zero shear
viscosity of the polymeric material. In all our simulations of viscoelastic fluids,
βs = 0.1. To characterize the evolution of the polymer stress, we utilize the Giesekus
constitutive equation (Giesekus 1982) which captures the constrained elongation
of the individual polymer chains and the shear-thinning behaviour of the resulting
viscoelastic liquid. In dimensionless form, the resulting constitutive equation can be
written as

τ p +WiG

5
τ p + WiG α

1− βs
(τ p
· τ p)= (1− βs)(∇u+∇uT), (2.4)

where WiG = λU0/H = 4kλGH/π3µ is the Weissenberg number and λ is the polymer
relaxation time. The mobility factor, α, represents the anisotropy of the hydrodynamic
drag exerted on the polymer molecules by the surrounding solvent molecules. Based
on thermodynamic considerations, the mobility factor must be in the range of 0 to 1/2
(Schleiniger & Weinacht 1991). For special case of α= 0, the Giesekus model reduces
to the Oldroyd-B model. Similar to the Reynolds number, Wi=WiG in Newtonian and

Oldroyd-B fluids, and Wi > WiG in a Giesekus fluid. The notation
5
A represents the

upper-convected derivative

5
A= ∂A

∂t
+ u · ∇A−∇uT

· A− A · ∇u. (2.5)

Simulations are conducted in a non-inertial frame moving with the velocity Upex
so that the centre of the particle stays at Xp = 0. The velocity of the fluid in the
non-inertial frame becomes u′ = u − Upex and the governing equation (2.1) can be
rewritten for variable u′.

A finite volume method based on a staggered grid is used for the computations. A
conventional operator-splitting method is applied to enforce the continuity equation.
The second-order total variation diminishing (TVD) Runge–Kutta method is used for
time marching. The spatial derivatives in the convection term are evaluated using
the quadratic upstream interpolation for convective kinetics (QUICK) scheme and the
diffusion terms are discretized using the central difference scheme. The viscoelastic
stress is solved using a commonly used formulation denoted as the elastic–viscous
stress splitting (EVSS) method (Guénette & Fortin 1995). The grid size ∆= 0.0125
(20 grid elements across the particle diameter) is uniform in y-, z-directions and in
a domain xf ∈ [−0.2, 0.2] near the particle in the x-direction. The grid is gradually
stretched in the x-direction outside this domain moving away from the particle. The
computational domain along the x-direction is [−8, 8], and the dimension of the
channel cross section in y–z plane is [−0.5, 0.5] × [−0.5, 0.5]. The time step is
1t= 10−5–10−4 depending on the Reynolds number.

This method has been extensively used for the motion of particles in fluids
and verified in our previous publications of inert particles in Newtonian fluids of
homogeneous density (Ardekani & Rangel 2008; Ardekani et al. 2008), density-
stratified fluids (Doostmohammadi & Ardekani 2013; Doostmohammadi et al. 2014)
and active squirming particles in Newtonian (Li & Ardekani 2014) and viscoelastic
fluids (Li, Karimi & Ardekani 2014). For the case of ReG = 18.9, El= 0.05, α = 0.0
and κ = 0.25, convergence studies have been performed to assess the effects of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.619


Dynamics of particle migration in channel flow of viscoelastic fluids 491

t
0 50 100 150

–0.005
–0.005

–0.010

–0.010

0

0

0 5 10 15 20

t
0 50 100 150

1.0

0.5
0.5

5 10 15 200

1.0

(a) (b)

FIGURE 1. (Colour online) Comparison of the time history of (a) migration velocity Vp
and (b) angular velocity Ωz of the particle. The corresponding parameters are ReG =
18.9, El = 0.05, α = 0.0 and κ = 0.25. Red solid lines: finest grid size ∆ = 0.0125 with
20 grid elements across the particle diameter, time step 1t= 10−4, the domain size in the
x-direction is x∈ [−8, 8] and the domain size with a uniform fine grid is xf ∈ [−0.2, 0.2].
Green dashed lines: ∆= 0.00625, 1t= 2× 10−5, x ∈ [−12, 12] and xf ∈ [−0.4, 0.4]. Blue
dashdot lines: ∆= 0.0125, 1t= 10−4 and x= xf ∈ [−1.6, 1.6].

grid resolution, time step and domain size. The computed results are independent of
the mesh size, time step and domain size as shown in figure 1. The calculations
in a non-inertial frame are also compared with the same case performed in a
laboratory-fixed frame. A uniform grid is used in the entire computational domain
for the laboratory-fixed calculations and periodic boundary conditions are used at
both inlet and outlet of the channel. The migration velocity of the particle in the
laboratory-fixed simulation has some oscillations because of the relative motion of
the particle and the fixed grid that is intrinsically caused by the numerical method
(D’Avino et al. 2010b). By conducting the simulations in a coordinate system moving
with the particle in the x-direction, the oscillations can be greatly reduced since the
relative motion of the particle and the grid in the streamwise direction is zero.

3. Results
In this section, simulation results for particle migration in a channel flow of a

viscoelastic fluid are discussed. The simulation parameters are: ReG ∼ 3–300, El ∼
0–0.2,WiG ∼ 0–3, α = 0, 0.1 and 0.2 and κ = 0.25 and 0.125, the flow Reynolds and
Weissenberg numbers are Re∼ 3–1000 and Wi∼ 0–15. We first show the steady flow
field for three different cases. We then discuss the dynamics of particle migration
in § 3.2. In § 3.3, particle-induced fluid transport in the channel will be investigated.
Finally in § 3.4, we will discuss the role of flow start-up on the particle migration.

3.1. Steady flow field
Figure 2 shows the steady flow field in a channel of Newtonian, Oldroyd-B and
Giesekus fluids after the particle has reached its equilibrium position. The Reynolds
number is the same in all cases ReG = 18.9, the elasticity number is El = 0.05 in
both the Oldroyd-B and Giesekus fluids and α = 0.2 for the Giesekus fluid. Far
away from the particle, the flow velocity (blue arrows) in the Oldroyd-B channel
shows the same distribution as in the Newtonian Poiseuille flow in a square channel

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.619


492 G. Li, G. H. McKinley and A. M. Ardekani
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–1.25
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FIGURE 2. (Colour online) Steady flow field around the particle in a channel filled with
(a) Newtonian, (b) Oldroyd-B fluid with El = 0.05 and (c) Giesekus fluid with El =
0.05, α = 0.2. The Reynolds number in all cases is ReG = 18.9. The far left planes show
the velocity profile, first normal stress distribution (in b,c) and secondary flow (in c) at
the inlet of the channel. In the z = 0 plane, streamlines (green lines) are plotted in the
frame of reference moving with the particle velocity Upex. In the x= 0 plane, streamlines
(black lines) are plotted using the velocity field projected on the x= 0 plane.
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(Fetecau & Fetecau 2005). While in a Giesekus fluid, the velocity profile is flatter
near the centre of the channel and a larger maximum velocity is achieved due to
the shear-thinning effect. A weak secondary flow consisting of eight vortices (black
lines) is generated because of the second normal stress difference in the fluid. These
vortices induce a fluid flow from the channel centreline to the wall centre; it then
returns to the centreline from the corners. The first normal stress difference, defined
as N1= τxx− τyy is non-zero in viscoelastic fluids and its spatial gradient leads to the
elasto-migration of the particle (Ho & Leal 1976). The first normal stress difference
is mainly generated near the four walls of the channel, whereas it is much weaker
close to the centre and four corners of the channel. This particular distribution in
a rectangular cross-section channel is considered to be the main reason behind the
particle accumulation at the channel centre and corners (Ho & Leal 1976). The
shear-thinning effect reduces the first normal stress difference. We will illustrate
that in a Giesekus fluid a different particle migration occurs compared to that in
an Oldroyd-B fluid due to the variation in the distribution of the first normal stress
difference and secondary flows.

The equilibrium position of the particle may be away from the centreline, as in
Newtonian and Giesekus fluids, or at the centreline, as in an Oldroyd-B fluid for
a large enough elasticity number. In all three cases, the streamlines in the z = 0
plane (green lines) are reversed, indicating a particle-induced convection along the
flow direction (Zurita-Gotor, Blawzdziewicz & Wajnryb 2007; Amini et al. 2012).
However, we should note that the blockage is not necessary for the flow reversal,
nor is inertia, but either effect (as well as elasticity) may cause it (Lin, Peery &
Schowalter 1970; Mikulencak & Morris 2004; Subramanian & Koch 2006). In the
cross-sectional plane of x = 0, the secondary flow streamlines (black lines) show
different flow patterns depending on the fluid properties. In Newtonian and Giesekus
fluids, in-plane vortices are generated and the flow has an overall net transport in the
negative y-direction. In an Oldyroyd-B fluid, the fluid flows away from the particle.
Besides the difference in flow patterns, the contour plots of v in the z = 0 plane
show that the magnitude of v is an order of magnitude smaller in an Oldroyd-B
fluid compared to Newtonian and Giesekus fluids. In a Giesekus fluid, the flow
field shows greater asymmetry around the particle in the x-direction compared to
a Newtonian fluid. Since both enhanced velocity magnitude and flow asymmetry
around the particle increase the particle-induced lateral transport in a channel, we
expect enhanced fluid transport properties in a Giesekus fluid. The particle-induced
transport will be quantified in more detail in § 3.3.

3.2. Dynamics of particle migration
Figure 3 shows the time history of the particle lateral position Yp under different
flow conditions, where particles are released from the initial position Y0

p = 0.25 or
Y0

p = 0.1. In a Newtonian fluid, the particle gradually migrates to a place near the
channel wall with the equilibrium position Ye

p ' 0.3, which is the same as the result
of Di Carlo et al. (2009) at a similar Reynolds number. This equilibrium position is
determined by the balance between two opposing forces: (i) the shear-gradient lift
force originating from the curvature of the velocity profile in confined flows which
moves the particles away from the centreline of the channel (Asmolov 1999), and
(ii) the wall repulsion force arising from the asymmetry of the corresponding wake
vorticity distribution which pushes the particles away from the walls (Zeng et al.
2005).
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FIGURE 3. (Colour online) Time history of the lateral position of the particle Yp at
different flow conditions.

In viscoelastic fluids, the particle migration is much more complex, and it depends
on the fluid rheological properties. Besides the two forces arising in a Newtonian
fluid, the net elastic force, shear-thinning effects and the resulting secondary flow
may all affect the particle migration. In Oldroyd-B fluids, the elastic effects drive
the particle towards the centreline and its equilibrium position depends on both the
Reynolds number and elasticity number. In flows of small ReG and El, the migration
stops before the particle reaches the centreline. The equilibrium position of the particle
depends on the flow parameters. At higher ReG or higher El, for example ReG =
18.9,El= 0.05 and ReG= 301.7,El= 0.01, the particle eventually migrates all the way
to the centreline of the channel, i.e. particle focusing is achieved. This elasto-focusing
phenomena has been observed in channel flows of Re ∼ 0–10−1, El ∼ 100–102 in
experiments (Leshansky et al. 2007; Yang et al. 2011; D’Avino et al. 2012; Romeo
et al. 2013; Kang et al. 2014), simulations (D’Avino et al. 2010a; Villone et al. 2011;
D’Avino et al. 2012), and recently in flows of Re∼ 103,El∼ 10−1 (Lim et al. 2014a).
Here we show that the critical elasticity number Elc, above which particle focusing
occurs, is of the order Elc∼O(10−2) for moderate-Reynolds-number flows. For a given
ReG and El, the particles migrate more slowly in a channel with a smaller blockage
ratio κ , as observed in previous experiments (Kang et al. 2014; Lim et al. 2014a).
Compared to the two-dimensional cases in Huang et al. (1997), particle focusing in a
three-dimensional channel is easier for large particles. In their simulations, a particle
with a blockage ratio of κ = 0.25 is attracted to the wall at ReG = 5 and WiG =
0.2, even if released at the centreline of the channel. This is due to a strong elastic
force generated from the compression of streamlines for a large blockage ratio, which
pushes the particle towards the wall (Huang et al. 1997). In a three-dimensional case,
however, the compression of the streamlines is much weaker.

When the Reynolds number ReG increases, the equilibrium position of the particle
Ye

p moves towards the channel wall in a Newtonian fluid, whereas in an Oldroyd-B
fluid of a given elasticity number, it moves towards the centreline (see the inset of
figure 4a). The equilibrium position of the particle is independent of its initial position
in an Oldroyd-B fluid. Here, we quantify the dependence of the particle equilibrium
position Ye

p on ReG,El and Wi. The critical elasticity number Elc, above which particle
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FIGURE 4. (Colour online) Dependence of the particle equilibrium position on (a) Re,El
and (b) Re,Wi. Note that Re=ReG and Wi=WiG in Newtonian and Oldroyd-B fluids. The
inset in (a) shows the dependence of the particle equilibrium position Ye

P on Re for three
different elasticity numbers.

focusing occurs, is high at small Reynolds numbers, but it decreases dramatically at
higher ReG. The critical Weissenberg number Wic increases with Reynolds number and
roughly shows a linear relationship with ReG. Another interesting phenomenon shown
in both figure 3 and the inset of figure 4(a) is that equilibrium position for most
particles in an Oldroyd-B fluid is either at Yp & 0.15 or at the channel centreline. This
is due to the occurrence of the peak inertial force at Yp' 0.15, which is explained in
the following analysis. Following the analysis of Ho & Leal (1976) for a second-order
fluid, the viscoelastic force on the particle is

F∗e =− 40
3 πρU2

c d2κEl(1− βs)Yp, (3.1)

where Yp is the dimensionless vertical position of the particle away from the channel
centreline. The superscripts ∗ refer to dimensional variables. The negative sign
indicates that the force drives the particle towards the centre of the channel. In
Newtonian fluids, inertial effects push the particle away from both the walls and the
centre. The shear-gradient lift force, which causes the particle to migrate away from
the central axis, has the general form (Di Carlo et al. 2009)

F∗i = ρU2
c d2κC1(Yp), Yp . 0.3, (3.2)

where C1 is a positive function of Yp and has a maximum value of around 0.05 at Yp'
0.15 and is equal to zero at both Yp=0 and Yp'0.3. Similar results can also be found
in the analysis of Ho & Leal (1974) for a two-dimensional Poiseuille flow at low
Reynolds number Re� κ2, in which the scaling is given as F∗i = C2(Yp)ρU2

c d2κ2 in
the entire domain and the peak of C2 is around 0.24 at Yp'0.15. The balance between
F∗e and F∗i determines whether the particle can be focused at the centreline. In flows
of high El, the elastic force overcomes the maximum inertial force and the particle
migrates towards the centreline. However in flows of low El, the particle stops at a
location before F∗i reaches its maximum. A balance between (3.1) and (3.2) at Yp '
0.15 leads to an estimate for the critical elasticity number Elc ' 0.01. The analysis
of Ho & Leal (1974), however, leads to Elc ' 0.04κ , which gives the same estimate
for κ = 0.25. This prediction agrees with the present simulation results for high Re as
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FIGURE 5. (Colour online) Dependence of the migration velocity Vp on the particle
position Yp in (a) Newtonian and Oldroyd-B fluids at different ReG and El and (b)
Giesekus fluid at ReG = 18.9. Black dot shows the initial location of the particle.

shown in figure 4. The prediction fails at relatively low Reynolds numbers, indicating
a stronger and more complex coupling between the two effects.

For a non-zero α (i.e., shear thinning effects), the particle migration shows a more
complex behaviour in a viscoelastic fluid. At fixed ReG = 18.9 and El = 0.05, the
particle migrates towards the centreline for α = 0.1. While for α = 0.2, the particle
migrates in the opposite direction and gets closer to the wall. This phenomenon is
due to the interplay between shear-thinning effects and the secondary flow generated
due to the second normal stress difference. The shear-thinning properties affect the
particle migration in two ways: (i) they reduce the elastic force by decreasing the
fluid viscosity, and (ii) they increase the inertia force by increasing the flow velocity
Uc, causing the equilibrium position of the particle to move closer to the wall in
shear-thinning fluids. The secondary flow, whose velocity magnitude is comparable to
the particle migration velocity in flows at relatively large El and α, drives the particle
towards the wall. For example, in a Giesekus fluid with El = 0.05, ReG = 18.9 and
α = 0.1, the maximum value of the far-field v-velocity component, which occurs at
y ' 0.33, is 2.7 × 10−4. While in the flow with α = 0.2 at the same El and ReG,
the corresponding maximum is 3.4 × 10−3, the same order as the particle migration
velocity. When increasing ReG or El, the particle moves towards the wall, illustrating
that the role of the shear-thinning effect and secondary flow is stronger in flows of
larger inertia and/or elastic effects. We should also emphasize that, in a Giesekus fluid,
the particle may settle into a different equilibrium position depending on its initial
location. At low Reynolds number, the particle migrates towards or away from the
channel centreline if it is released near or away from the centreline, respectively. This
result is similar to the simulations of D’Avino et al. (2012), Villone et al. (2013)
in the zero Reynolds number regime. At a high Reynolds number, e.g. Re = 75.4,
however, the particle migrates away from the channel centreline independent of its
initial position.

The migration velocity of the particle is the most important measure of particle
focusing, and its dependence on the particle size has been used for particle separation
applications (Nam et al. 2012; Kang et al. 2014; Lim, Nam & Shin 2014b). In
figure 5(a,b), we plot the particle migration velocity Vp as a function of particle
position Yp in Oldroyd-B and Giesekus fluids, respectively. The particle initially
has a large transient migration velocity. After the channel flow reaches steady state,
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FIGURE 6. (Colour online) Steady distribution of (a) velocity u and (b) vorticity ωz in
fluids of different El and α at Re = 18.9. Symbols correspond to the velocity/vorticity
profile at x=−5 far from the particle, lines correspond to the velocity/vorticity profile at
x= 0 across the particle centre, filled circles mark the centre of the particle.

the migration velocity decreases and eventually goes to zero when the particle
reaches its equilibrium position. In this section, we mainly focus on the particle
migration velocity after the flow has reached the steady state. The migration of
the particle during flow start-up will be discussed in § 3.4. The magnitude of
the dimensionless migration velocity O(10−3–10−2) is of the same order as the
experimental measurements of Lim et al. (2014a), and is one order of magnitude
larger than experienced in the Stokes regime Re� 1 (D’Avino et al. 2012; Romeo
et al. 2013). In a Giesekus fluid at El= 0.01, the migration velocity decreases as α
increases. At El = 0.05 and α = 0.1, the particle still moves to the centreline, but
at α = 0.2, it migrates towards the wall. An approximately linear relation between
Vp and Yp exists before the particle reaches its equilibrium position. This linear
relationship holds very well in flows corresponding to small elasticity numbers and
low Reynolds numbers.

The relative motion of the particle and surrounding fluid at steady state are shown in
figure 6. The distribution of streamwise velocity u and vorticity ωz= ∂v/∂x− ∂u/∂y in
the z= 0 plane are plotted at two different locations: x= 0 across the particle centre
and x = −5 far from the particle. In Newtonian and Oldroyd-B fluids, the far-field
velocity profiles are identical. In a Giesekus fluid, however, the flow velocity increases
due to shear-thinning effects, and more remarkable enhancement is observed at higher
elasticity numbers (see the inset in figure 6a). The flow disturbance due to the particle
is restricted to a relatively small region close to the particle (one radius away from
the particle). Particularly for the case of El = 0.05 and α = 0, in which the particle
equilibrium position is at the centre of the channel and the particle does not rotate, the
velocity quickly recovers to its far-field value. The velocity distributions clearly show
that the translational velocity of the particle is smaller than the far-field velocity at
the same lateral position, i.e. the particle lags the flow. The experiments of Lim et al.
(2014a) showed that the centreline-focused particles lead the viscoelastic fluid in the
presence of weak or strong shear-thinning effects. At relatively large blockage ratios,
as in our cases, the wall effect, which tends to increase the drag force acting on the
particle (Happel & Brenner 1983), overcomes the viscoelastic effect (Chhabra 1993).
Therefore, the particle lags the fluid. These results indicate that the lateral migration
of the particle is not directly related to the slip velocity.
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The vorticity ωz, however, shows a different behaviour depending on the fluid
properties. In Newtonian and Oldroyd-B fluids as well as in Giesekus fluids with
low-elasticity numbers, half the angular velocity of the particle 1/2Ωz is equal to the
far-field vorticity. Whereas in a Giesekus fluid of El= 0.05 and α= 0.2, it is smaller
than the far-field vorticity due to the reduction of the fluid viscosity, and consequently
the viscous torque on the particle, in the presence of shear-thinning effects. We also
observe that the shear-thinning effect increases the background vorticity in the
near-wall region, whereas in the centreline region, it is almost the same as in the
Newtonian and Oldroyd-B fluids. Because ∂v/∂x is very small compared to ∂u/∂y
when far away from the particle, the local shear rate γ̇ = ∂v/∂x+ ∂u/∂y distribution
in the fluid has a similar distribution as −ωz (results not shown here).

3.3. Particle-induced fluid transport
Besides the dynamics of particle migration in a channel flow, the effect of a large
rigid particle on fluid transport is another interesting topic, but it has been much
less explored in the literature. The fore–aft symmetry around the particle in a Stokes
flow is broken in a Newtonian fluid with finite inertia. A net recirculating flow
perpendicular to the primary flow direction is developed which depends on the
combined effects of the near-field flow, particle rotation, and the channel confinement.
This net lateral transport of the fluid, which resembles the well-known Dean flow,
occurs in a straight channel and has been successfully applied to perform fluid
switching and mixing (Amini et al. 2012). As shown in § 3.1, in an Oldroyd-B fluid,
the particle-induced lateral flow is greatly inhibited due to the absence of particle
rotation. In a Giesekus fluid, the configuration of this lateral secondary flow shows a
remarkable difference from the one in a Newtonian fluid, and has a stronger fore–aft
asymmetry. In this section, we mainly focus on the secondary flow field after the
particle has reached to its equilibrium position.

For three cases: (i) ReG = 18.9, El = 0, (ii) ReG = 301.7, El = 0 and (iii) ReG =
18.9, El= 0.05 and α = 0.2, we compare the flow field in the z–y plane at different
locations (x=±1.25,±0.125 and x= 0) in figure 7. The lateral flow generally shows
similar flow pattern for the two Newtonian cases. Upstream, far from the particle,
the fluid has a weak tendency to flow in the positive y-direction. Due to the particle
rotation, the flow is driven in the negative y-direction when approaching the particle,
and this is then reversed downstream of the particle. Further downstream, the flow
starts to recover, and velocity has an opposite sign compared to the upstream velocity.
Around the particle, the magnitude of the lateral flow is on the order of ωza∼ 0.1, and
it decays away from the particle. At higher Reynolds numbers, the flow decays more
slowly, particularly downstream of the particle. The flow is in the positive y-direction
in the middle of the channel (see figure 7j). In a Giesekus fluid, the flow shows a
strong fore–aft asymmetry due to both inertia and the viscoelastic wake, similar to
the flow field around a settling sphere (Arigo et al. 1995; Fabris, Muller & Liepmann
1999; Abedijaberi & Khomami 2012). These secondary flows interact with the particle-
induced flow, and further enhance the fluid mixing.

To quantitatively compare the fluid transport, we calculate the net velocity 〈v〉x,y
averaged in both x and y directions and compare the distribution over the channel
width z. In a Newtonian fluid, the net flow velocity has a peak at the centreline
both upstream and downstream of the particle (see figure 8a). As ReG increases, two
additional peaks appear near the walls. In the upstream region, the magnitude of the
net flow decreases at the centreline with the Reynolds number. In the downstream
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FIGURE 7. (Colour online) Particle-induced lateral flows at different x-locations for (i)
ReG = 18.9, El = 0, (ii) ReG = 301.7, El = 0 and (iii) ReG = 18.9, El = 0.05 and α = 0.2.
Contour plots show the distribution of the velocity component v. Vectors show the in-plane
projection of the velocity field. (a,f,k) x=−1.25, (b,g,l) x=−0.125, (c,h,m) x= 0, (d,i,n)
x= 0.125, (e,j,o) x= 1.25. The scaling of velocity vector is shown in the lower left corner
of each panel.

region, it increases with the Reynolds number. The contribution from the downstream
wins, and the net fluid transport, which mainly occurs in the middle of the channel,
drives the fluid towards the particle. The fluid transport induced by a particle in a
Giesekus fluid is shown in figure 8(b). The net fluid transport in the domain [−1.25,
1.25] occurs mainly in two regions between the centreline and the channel walls. The
flow direction is away from the particle. Figure 9 shows the net averaged velocity
〈v〉x,y,z over the domain [−1.25, 1.25] × [−0.5, 0.5] × [−0.5, 0.5] for different flow
conditions. In a Newtonian fluid, the net fluid transport increases with the flow
Reynolds number. In a viscoelastic fluid, there is a more complex relationship with
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FIGURE 8. (Colour online) The distribution of the fluid velocity over the channel width z
for (a) Newtonian fluid and (b) Giesekus fluid. The integration in the y-direction is over
the entire channel height [−0.5, 0.5], and integration in the x-direction are performed for
different regions: upstream region [−1.25, 0] (green dotted lines), downstream region [0,
1.25] (blue dashdot lines) and central region [−1.25, 1.25] (red solid lines). (a) El = 0,
(b) ReG = 18.9.
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FIGURE 9. (Colour online) Dependence of the averaged velocity 〈v〉x,y,z over the domain
[−1.25, 1.25] × [−0.5, 0.5] × [−0.5, 0.5] on (a) Re and ReG (inset), and (b) Wi and WiG
(inset).

the Reynolds number, elasticity number El and mobility factor α. However, the
net velocity shows an approximately linear relationship with the flow Weissenberg
number Wi.

3.4. Particle migration during flow start-up
In the Poiseuille flow of viscoelastic fluids, velocity oscillation can be observed during
flow start-up (Fetecau & Fetecau 2005) because of the propagation of stress waves
in the channel (Duarte, Miranda & Oliveira 2008). Transient velocity oscillations
also occur for a particle settling in viscoelastic fluids, often causing the particle to
‘rebound’ during the first oscillation (Arigo & McKinley 1997; Goyal & Derksen
2012). The pulsatile character of blood circulation is an important example of
unsteady channel flow of a non-Newtonian fluid. However, recent studies have not
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FIGURE 10. (Colour online) (a) Time history of particle migration velocity for different
flow conditions. (b) Time history of the channel centreline velocity Uc far away from the
particle, particle streamwise velocity Up, and migration velocity Vp at flow start-up. The
flow conditions are ReG = 18.9, El= 0.05 and α = 0.

reported the particle migration in an unsteady background flow. In this section, we
discuss the transient behaviour of particle migration during flow start-up.

Figure 10(a) shows the time history of the particle migration velocity for different
flow conditions. At relatively large Re and El, the migration velocity oscillates during
flow start-up. In a shear-thinning fluid, the particle initially migrates towards the
centreline, but after the growth of the secondary flow, the particle moves towards
the wall. In figure 10(b), we compare the channel centreline velocity Uc far from
the particle, the particle streamwise velocity Up and the migration velocity Vp during
flow start-up for the case of ReG = 18.9, El = 0.05 and α = 0. The fluid velocity
oscillates for times t< 10 before it reaches steady state, and the peak velocity occurs
at t ' 2. The streamwise particle velocity Up follows this oscillatory response until
t ∼ 10, it then slowly increases as the particle moves towards the centreline region.
The migration velocity Vp, however, shows a more complex time dependence. At
t< 1, the migration velocity is towards the wall because the viscoelastic stresses are
still very weak and inertial effects dominate the flow. As the viscoelastic stress grows,
Vp quickly grows and overshoots at the same time instant as Uc and Up. After some
oscillations, its magnitude gradually decreases. The magnitude of the overshoot of Vp,
which is about twice its steady value, is larger than the corresponding values for Uc
and Up. Figure 11 shows the distribution of first normal stress difference N1 at time
t= 3. The first normal stress difference in the gap between the particle and the wall is
stronger than on the other side. Furthermore, a strip of large normal stress difference
is generated near the wall upstream of the particle due to the relative motion of the
particle and the wall as well as the particle rotation. This strip disappears as the
particle approaches its equilibrium position and moves away from the wall.

4. Concluding remarks
Particle migration in the pressure-driven channel flow of viscoelastic fluids is

affected by the interplay between several effects: inertia, elasticity, shear-thinning
viscosity as well as the secondary flow induced by the second normal stress difference
in a non-circular channel. In an Oldroyd-B fluid, the competition between the inertia
force and the elastic force determines the particle migration. The elastic force, which
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FIGURE 11. (Colour online) First normal stress difference around the particle at t= 3 in
the z plane. The flow conditions are ReG = 18.9, El= 0.05 and α= 0. The corresponding
video is available as supplementary material in http://dx.doi.org/10.1017/jfm.2015.619.

drives the particle towards the channel centreline, decreases monotonically as the
particle reaches the centreline. The inertia force, which has a peak at Yp ' 0.15,
pushes the particle towards the wall. If the elastic force is weaker than the inertia
force, the particle migration stops at a location where the two forces are balanced.
Once the elastic force overcomes the maximum inertia force, the particle moves till
it reaches the centreline. A scaling analysis of the force balance provides a good
estimate for the critical elasticity and Weissenberg numbers for particle focusing
in flows at relative large Reynolds numbers. Both the shear-thinning effect and the
corresponding secondary flow tend to move the particle closer to the wall, and their
effects are more pronounced with stronger inertia and elasticity. Besides the particle
migration, we have also considered the particle-induced fluid transport and the particle
motion induced during flow start-up. An effective fluid transport perpendicular to the
primary flow direction can be achieved in flows with strong inertial and shear-thinning
effects. The particle can have a substantially larger transient migration velocity during
flow start-up in a viscoelastic fluid due to the streamwise velocity oscillation and the
strong normal stress difference that develops.
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