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Abstract
Actuaries often encounter censored and masked survival data when constructing multiple-decrement
tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS
smoothing techniques that are employed in the presence of left-censored data, while still allowing
for right-censored and exact observations, as well as masked causes of failure. The smoothing
mechanism is incorporated as part of an expectation-maximisation algorithm. The proposed models
are applied to a bivariate African sleeping sickness data set.
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1. Introduction

Actuaries often encounter censored and masked survival data when constructing single or multiple-
decrement tables. Censoring is present in lifetime data when the time of death (or failure, in the more
general survival context) is not known precisely, and masking is present when the cause of death is
not known precisely. The survival literature is rather copious with respect to many parametric and
semi-parametric models that can be employed when censoring and/or masking is present.

A non-parametric maximum likelihood estimator (NPMLE) of the cumulative incidence for
competing risks data subject to right censoring was given by Aalen (1976) and Kalbfleisch & Prentice
(1980). Dinse (1982) proposed an NPMLE for right-censored and masked competing risks data to be
computed with the explicit use of an expectation-maximisation (EM) algorithm. Hudgens et al.
(2001) first presented an NPMLE estimated using an EM algorithm for competing risks data, subject
to both interval censoring and truncation. Jewell et al. (2003) and Groeneboom et al. (2008)
continued similar studies of an NPMLE for current status data, an extreme form of interval-censored
data, without masking. Subsequently, Adamic (2010, 2012) developed generalisations of Turnbull’s
(1974, 1976) classical univariate algorithms for modelling competing risks, but in a more general
setting, where each failure was allowed to be associated with any subset of possible failure modes
(i.e. masking). Overall, distribution-free models that can be employed in a multiple-decrement
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context have received relatively little attention to date, in part due to the complexity that censoring
and masking introduces.

In other recent research, models have been developed to analyse competing risks data subject to various
censoring schemes. Craiu & Reiser (2006) developed a dependent competing risks model using an EM-
based approach for masked data. Wang et al. (2012) proposed a new model for the NPMLE of interval-
censored and masked competing risks data, the random partition masking model, which does not rely on
the assumption that masked failure causes are independent of failure time. Yu& Li (2012, 2014) examined
the NPMLE proposed by Dinse (1982); they concluded that the NPMLE was inconsistent and not unique
and they introduced a consistent NPMLE of the joint distribution function with right-censored and masked
competing risks data under another new model (the dependent masking and right-censoring model).

In this paper, we develop a smoothed non-parametric density estimator for modelling multiple-decrement1

failure times that are subject to the possibility of both left censoring as well as right censoring, while still
allowing for exact observations. Despite the novelty of modelling masked competing risks data using an
EM algorithm, there is a significant drawback associated with the various approaches that have been
developed to date. As expounded in Hudgens et al. (2001), estimators of this type will have an unexpected
and undesirable property, namely, that the resulting estimator of the survival distribution will be
undefined over a potentially larger set of regions than the NPMLE of S(t), ignoring failure type.
Indeed, the problem is, quite intuitively, even more prevalent in the multiple-decrement environment: the
self-consistent competing risks algorithms or SC-CR algorithms of Adamic (2010, 2012) can be seen to
converge only over a class of intervals called cause-specific innermost intervals.

To remedy this problem, we have chosen to generalise a univariate kernel density estimate found in
Braun et al. (2005) that was used to fill in the gaps between the innermost intervals that were created by
invoking the self-consistent EM algorithm of Turnbull (1976). The converged estimator of the failure
rate distribution is often difficult to smooth, due to the large gaps between innermost intervals as well as
the multimodal shape of the distribution that will naturally arise when there are many gaps in
the probability masses. As mentioned in Duchesne & Stafford (2001), adopting a kernel smoothed
estimator at each iteration avoids the bias created by arbitrarily assigning probability mass at the right
end points of the innermost intervals, as recommended by Pan (2000), and is better at borrowing more
information from neighbouring data points than would otherwise be the case. Duchesne & Stafford
(2001) go on to state that since the innermost intervals are no longer in the picture, the kernel
modification moves the algorithm away from problem-causing areas – areas where Turnbull’s algorithm
can sometimes get stuck at local solutions (also see Li et al., 1997). Our generalisation of the approach
proposed by Braun et al. (2005) will be actualised in two ways: first, in order to smooth the data we will
use local regression and the LOcal regrESSion (LOESS) fitting procedure developed by Cleveland (1979)
and Cleveland & Devlin (1988) as opposed to kernel density estimation – indeed, the latter is just a
special case of the former; second, our models will be developed in the more general multiple-decrement
setting as opposed to the simpler univariate setting.

2. Definitions, Notation, and Terminology

This article will focus exclusively on the so-called doubly-censored data, that is, data that is subject
to both left and right censoring (in addition to exact observations), as defined by Zhou (2004) below.
This section is mostly from Adamic (2010).

1 The terms multiple decrement and competing risk will be used synonymously.
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Definition 2.1 Suppose lifetimes X1,… , Xn are non-negative, independent, and identically
distributed random variables subject to censoring. In the case of double censoring, we observe
both left and right censoring (in addition to exact observations). That is, we observe

Zi;Δif g=
Xi; 1ð Þ; if Li ≤Xi ≤Ri

Ri; 0ð Þ; ifXi >Ri

Li; 2ð Þ; ifXi <Li

8>><
>>:

where Li and Ri are the left and right-censoring times, respectively, ∀ i = 1,… , n, Ri≥Li. Also, Δi is
an indicator of the type of censoring, if any.

In a multiple risk forum, it may be the case that some of the failure modes that could have been
responsible for the actual failure are ruled out as possible candidates. In this case, the remaining
subset of possible failure modes are considered to be masked. A formal definition is given below.

Definition 2.2 Suppose a failure mode j, j∈ {1,… , k}, is associated with a failure time t.
If the mode is not known exactly, but is known only to belong to a certain subset of all possible
modes, then the failure is caused by a subset of modes that are said to be masked. Furthermore,
following Park & Padgett (2006), if the failure mode is completely unknown, then the set
of failure modes is said to be completely masked; if one or more of the failure modes can be ruled
out, then the remaining subset of possible failure modes is considered to be partially masked.

In this paper, the possibility of determining some of the failure modes a posteriori, and then
incorporating the new information into the model will not be directly addressed. However, the
algorithms will be sufficiently versatile that once a mode of failure can be determined exactly
(or reduced to a smaller set of possible modes), the algorithms can simply be executed again utilising
the updated information. See Flehinger et al. (1998) for more details on carrying out analyses using
updated masking information.

The following preliminary notation, based on the International Actuarial Notation (IAN) guidelines
as found in Bowers et al. (1997), is applicable to any survival or life table context. First, define

tqx = Pr{failure prior or equal to time (t +x) | subject is currently aged x}. For example, in human
mortality studies, 10q45 would represent the probability a 45-year-old dies in the next 10 years.
When working with a life table, it is often convenient to replace q with d to represent the number,
instead of the probability, of subjects that fail in a given time interval. Thus, tdx would represent the
number of failures in the interval (x, x + t]. Also, let tpx = Pr{survival to time (t + x) | subject is
currently aged x}. For example, 10p45 would represent the probability a 45-year old would survive to
age 55 years. Clearly, tpx + tqx = 1. When t = 1, the subscript is often omitted. Thus, 1p45 = p45,
could represent the probability a 45-year old survives 1 year.

To motivate the competing risks theory, some additional notation is required. A superscript
in brackets will be used to identify which specific risk is being considered. For example, hðjÞx ðtÞ would
represent the hazard rate for risk j at time x + t, given a current age of x. Note the implicit assumption
here that only one distinct cause (or failure mode) can be responsible for any particular failure. This
assumption is germane to all of the theory presented in this paper. The superscript τ will be used to
represent the set of all the risks taken together, in aggregate. For example, tp

ðτÞ
x would represent the
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probability of surviving all risks up to time t. The following relationships are given without proof:

hðjÞx ðtÞ= f ðt; jÞ
tp

ðτÞ
x

; hðτÞx ðtÞ=
X
j

hðjÞx ðtÞ; tqðτÞx =
X
j

tqðjÞx

where f(t, j)dt ≈ Pr{(t<T≤ t +dt)∩ (J = j)}, and h denotes the hazard function. For example, tq
ðjÞ
x

would represent the probability of failure for some subject aged x prior or equal to time x+ t by cause
j in the multiple risk forum.

A very important function to model in any competing risks analysis is the cumulative incidence
function (CIF), and this is usually accomplished for all of the possible failure modes. The standard
definition in the literature for the CIF for cause j is

FðjÞ
n ðtÞ=PrðT ≤ t; J= jÞ=

ðt
0
hðjÞðuÞupðτÞ0 du (1)

where the joint pair of random variables (T, J) capture the time of failure and the corresponding
mode of failure, respectively. It should also be noted that FðjÞ

n ðtÞ= tq
ðjÞ
0 under IAN. The most common

estimator for the CIF in counting process notation is

F̂ðjÞ
n ðtÞ=

ðt
0
ŜðuÞdΛ̂jðuÞ (2)

which, as opined in Lawless (2003), is typically estimated non-parametrically using

F̂ðjÞ
n ðtÞ=

X
i : ti ≤ t

ŜðtiÞ � δijni ; j= 1; ¼ ; k (3)

where δij equals 0 or 1 depending upon whether or not subject i failed due to cause j, and ni
captures the number at risk at time ti. Unfortunately, equation (3) cannot be used here for two
main reasons. First, equation (3) can only be used for complete or right-censored data.
Thus, this closed-form estimator for the CIF cannot be applied to doubly-censored data. Second,
equation (3) assumes that all of the failure modes are known exactly. Consequently, if any of the
failure modes are masked, this estimator cannot be applied. That is, all of the δij terms cannot be
extracted from the data.

It is also noteworthy to mention that there is a non-identifiability phenomenon at work in the
multiple-decrement model, as described by Tsiatis (1975). An observational study consisting of data
that only furnishes the joint pair (Ti, Ji) for each subject i (and possibly some additional indicator
variables for the censored range or ranges) will not allow for discrimination between independent
and dependent modes of failure. This fact was also noted by Cox (1959). In many cases however, this
is the only available data. Thus, for the sake of model simplification, an independence assumption
has traditionally been invoked between the various competing risks. Some recent research has
focussed on developing dependent competing risks models (see Escarela & Carriere, 2003; Craiu &
Reiser, 2006; Wang et al., 2012; Li & Yu, 2014). The complication of mutually dependent failure
modes will not be considered in the ensuing theory.

The assumption of independence is also found in another significant way, namely, in the manner in
which censored observations are reported. Censoring can sometimes be accomplished in such a way
that the number of exposures to the risk (or risks) depends on the censoring mechanism itself, a
dynamic which is often termed selection bias, as noted by Gichangi & Vach (2005). The absence of
selection bias implies that independent censoring is taking place (Gichangi & Vach, 2005), and the
assumption of independent censoring means that the cause-specific hazards do not depend on
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whether or not a particular subject was censored (Gichangi & Vach, 2005). Symbolically, this
means that

lim
h!0

PrfTi < t + h; J= j j Ti ≥ tg
h

= lim
h!0

PrfTi < t + h; J= j j Ti ≥ t;Ti 2 ξig
h

where subject i is censored by the observed set ξi, and will hold true for all of the k competing risks
(Gichangi & Vach, 2005).

One of the primary characteristics of the estimators of the cause-specific CIFs that will be developed
in this paper will be that they are members of the class of estimators that are called self-consistent
estimators. A formal definition of the concept of self-consistency for the univariate case is given
next, as found in Stafford (2005), and is followed by conceptualisations for use in the arena of
competing risks.

Definition 2.3 An estimator F̂nðtÞ for a cumulative distribution function (CDF) is said to be a
self-consistent estimator of the CDF if F̂nðtÞ=EF̂n

½FnðtÞ j Ψ�, where Fn(t) is the empirical CDF under
complete data and Ψ denotes the set of all of the observed data (complete or censored).

Essentially, Definition 2.3 is stating that at each time t, the expected value of the CDF is the same with
entirely complete data or with censored and/or masked data. Since any censored failure can have a failure
time at any t, we condition on the entire set of failures, Ψ. Note that in the multiple-decrement setting, the
CDF is simply replaced by the cause-specific CIF. Following Duchesne & Stafford (2001), a generalisation
for self-consistency pertaining to CIFs is offered as follows.

Definition 2.4 An estimator F̂ðjÞðtÞ for a CIF is said to be a self-consistent estimator if
F̂ðjÞðtÞ=EF̂½FðjÞðtÞ j Ψ�, where F(j)(t) is the empirical CIF under complete data, Ψ denotes the set of
all of the observed data (complete or censored, with the possibility of masking), and F̂ is understood
to include the current information in all of the CIFs for modes 1… k.

Consider the following as motivation for developing the SC-CR algorithm for doubly-censored data.
Huang (2000) noted that self-consistent equations are essentially score equations of indicator
variables appropriately defined, depending on the type of censoring. When the data are potentially
censored, Huang (2000) also states that F̂n can be obtained by taking the conditional expectation of Fn,
conditional on the observed data under the probability measure induced by F̂n itself. However,
evaluation of the conditional expectations in the SC equations will require the use of an iterative
scheme, as no closed-form expression for these expectations exist in these non-parametric cases. Also, as
noted by Turnbull (1974), convergence of a self-consistent iterative method implies that the application
of the SC equations at some iteration will essentially have no effect on the realised value of the estimator
(up to some small tolerance of discrepancy, ε say). Indeed, the SC procedure can also be shown to be a
special case of the more general EM algorithm of Dempster et al. (1977).

3. The SC-CR Algorithm for Doubly-Censored Data

3.1. A self-consistent algorithm

Section 3, which summarises the SC-CR algorithm for doubly-censored data, is from Adamic (2010)
and/or Adamic et al. (2010). The idea of a self-consistent algorithm, as well as the concept of
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self-consistency itself, were propounded by Efron (1967). Efron developed an iterative algorithm to
estimate the CDF for right-censored data using

~FKðxÞ= 1
n

NðxÞ�
X

Li ≤ x;Δi = 0

1�~FK�1ðxÞ
1�~FK�1ðLiÞ

" #
(4)

where N(x) = ∑ I[Xi≤x], Δi = 0 if Xi is right censored, and K indexes the iteration number (see Braun
et al., 2005). Turnbull (1974) extended Efron’s algorithm to included doubly-censored data, again, for a
single risk. Also noteworthy is the fact that Turnbull (1974, 1976) proved that the resulting survival
estimators, upon convergence of the algorithm, were NPMLEs. The algorithm is quite well known, and as
revealed by many researchers who employ survival techniques in practice (see Finkelstein, 1986; Yu et al.,
2000), it is one of the most common estimators that has been used in medical applications of censored
survival analysis over the last several decades. For the sake of brevity, Turnbull’s univariate algorithm will
not be summarised here. The reader is referred to Klein & Moeschberger (1997) for this purpose.

3.2. Developing the model

The SC-CR algorithm is carried out in the presence of doubly-censored failures, assuming the standard
independence assumptions previously mentioned. However, it is further assumed that the masking
probabilities are also independent of the failure cause itself. Based on these assumptions, the likelihood
function under a double censoring scenario with the possibility of exact observations (where the cause of
failure is known) and completely masked modes of failure can be expressed as

L /
Yn
i=1

ð1�ti p0Þciðtip0Þ
ri
Yk
j=1

ðti�ti�1
qðjÞti�1

ÞdðjÞti
" #

(5)

where ci represents the number of left-censored observations, ri the number of right-censored observations,
and dðjÞ

ti the number of failures for risk j, ∀ i = 1,… , n. Based on the notation in the likelihood, “exact”
should be taken here to mean, “since the last time point, ti−1”. Equivalently, it will be assumed that
[ti, ti] ≡ (ti−1, ti], which is consistent with the step-function nature of the CIF estimators.

The algorithm may be implemented as follows. For ease of appropriation, the steps, statements, and
logic of the algorithm will be directly generalised from those of the single variable algorithm of Klein
& Moeschberger (1997).

3.2.1. The SC-CR algorithm
Step 0: Provide initial estimates of the overall survival probabilities at each tr, tr p

ðτÞ
0 , by equally allotting all

of the probability mass for each time point. Also, find initial estimates for the probability of failing during
each time interval by cause j; tr�tr�1 q

ðjÞ
tr�1

, for r = 1,… , m, again by uniformly distributing the probability
mass. Ignore all of the left-censored observations when calculating these estimates.

Step 1: Using the current estimates of trp
ðτÞ
0 and tr�tr�1q

ðjÞ
tr�1

, calculate estimates of the conditional
probabilities eðjÞir =P½tr�1 <XðjÞ ≤ tr j XðτÞ ≤ ti�, where X(j) represents the event of failure due to cause j,
using

êðjÞ;Kir = tr�1 p̂
ðτÞ;K
0 �tr�tr�1 q̂

ðjÞ;K
tr�1

1�ti p̂
ðτÞ;K
0

; 8 r≤ i (6)
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Step 2: Using the results of the previous step, estimate the number of cause-specific failures at time ti
by using

d̂ðjÞ;K
i = dðjÞ

i +
Xm
i=r

ci ê
ðjÞ;K
ir (7)

Step 3: Compute tr�tr�1 q̂
ðjÞ
tr�1

8 r=1; ¼ ;m, using a generalised cause-specific product-limit estimator
based on the current estimates of d̂ðjÞ

i . If

sup
tr;j

tr�tr�1 q̂
jð Þ;K
tr�1

�tr�tr�1 q̂
jð Þ;K�1
tr�1

��� ���< ε

(jointly for all of the time points ti and causes j, given some small predetermined ε> 0), stop the
algorithm; otherwise return to Step 1.

So far, the issue of partial masking has been ignored. The possibility of partial masking, however, can be
easily introduced into the algorithm. In essence, there will need to be a proper allocation of the
left-censored observations into each of the partially masked sets, so that the property of self-consistency
will be maintained. To this end, Step 1 would need to be modified as follows. Define

eðj j SizÞirz =P tr�1 <XðjÞ ≤ tr XðSizÞ ≤ ti
��h i

(8)

∀ r ≤ i, j⊆Siz, where z = 1,…, yi≤2j−1 indexes each of the distinct masked sets, Siz, at time ti. Then for
each time point ti, and for each competing risk j, compute

êðj j SizÞ;Kirz = tr�1 p̂
ðτÞ;K
0 �tr�tr�1 q̂

ðjÞ;K
tr�1

ti q̂
ðSizÞ;K
0

; 8 r≤ i; j � Siz (9)

where ti q̂
ðSizÞ
0 represents the current probability of failing due to any of the causes that comprise Siz up until

time ti. Step 2 would also need to be modified slightly. The term d̂ðjÞ;K
i would now be calculated using

d̂ðjÞ;K
i = dðjÞ

i +
Xm
i=r

X
z

cðSizÞi êðj j SizÞ;Kirz (10)

where cðSizÞi represents the number of left-censored observations at time ti masked by the failure set Siz.

A proof that the SC-CR algorithms (for both the partially masked and completely masked cases)
produce self-consistent estimators of the CIFs for each failure mode can be found in Appendix. That
the CIFs derived from the SC-CR algorithms are also NPMLEs is strongly suggested by the fact that
the estimators are self-consistent (due to the fact that the expected values of the CIFs for all time
points equals an NPMLE of each CIF in the absence of any left-censored observations or masking –

as, for example, found in equation (3) of section 2). For the purposes of the present paper, we will be
content to rely on the statistical merits of self-consistency.

3.3. Illustrative numerical examples

In this section, the SC-CR algorithms will be illustrated with some numerical examples. First, a
simple example of Turnbull’s traditional univariate algorithm is furnished, and the results are
depicted in Table 1.

In Table 2, an SC-CR algorithm for doubly-censored competing risks is shown, where the total
failures for each risk (at each time point) equal those as found in the univariate case. This is useful for
comparative purposes, particularly because the resulting CIFs at each time point sum up to the CDF
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values as found in the univariate case. This fact was used in the proof of the self-consistency of the
SC-CR algorithms and is shown empirically here. Finally, in Table 3, we have an example of the
SC-CR algorithm under partial masking. In this case, the five left-censored observations at time 1 are

Table 1. Iterations 1, 2, 5 (one risk, doubly censored).

K ti Left Cause 1 Right F̂ðtÞ

1 5 110 15 0.1880
1 2 5 255 20 0.6382

3 10 180 5 0.9902
1 5 118.3722 15 0.1957

2 2 5 263.0723 20 0.6443
3 10 183.5555 5 0.9906
1 5 118.4970 15 0.1959

5 2 5 263.0086 20 0.6444
3 10 183.4945 5 0.9906

Table 2. Iterations 1, 2, 5 (two competing risks, doubly censored, complete
masking).

K ti Left Cause 1 Cause 2 Right F̂ð1ÞðtÞ F̂ð2ÞðtÞ

1 5 40 70 15 0.0684 0.1197
1 2 5 145 110 20 0.3243 0.3138

3 10 130 50 5 0.5786 0.4116
1 5 43.0444 75.3278 15 0.0712 0.1245

2 2 5 149.5901 113.4822 20 0.3263 0.3181
3 10 132.5679 50.9876 5 0.5763 0.4142
1 5 43.0898 75.4072 15 0.0712 0.1246

5 2 5 149.5539 113.4547 20 0.3263 0.3181
3 10 132.5238 50.9707 5 0.5763 0.4143

Table 3. Iterations 1, 2, 5 (two competing risks, doubly censored, partial masking).

K ti Left Cause 1 Cause 2 Right F̂ð1ÞðtÞ F̂ð2ÞðtÞ

1 5* 40 70 15 0.0684 0.1197
1 2 5 145 110 20 0.3243 0.3138

3 10 130 50 5 0.5786 0.4116
1 5* 44.9535 73.4187 15 0.0743 0.1214

2 2 5 149.5901 113.4822 20 0.3294 0.3149
3 10 132.5679 50.9876 5 0.5795 0.4111
1 5* 45.0918 73.4052 15 0.0745 0.1213

5 2 5 149.5539 113.4547 20 0.3296 0.3148
3 10 132.5238 50.9707 5 0.5796 0.4110

Note: *Partial masking: three failures are due to Cause 1, and two are due to either
Cause 1 or Cause 2.
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assumed to be masked in the following way: three of the failures were known to be caused by
Cause 1; the other two failure causes were not known. Thus, in Table 3, we see that the Cause 1 CIF
is larger than previously, as would be expected. Note also that the sum of the CIFs at each time point
again equals those as found in the univariate case, as it must. Finally, it should be noted that
convergence was achieved in all three cases after five iterations, assuming an ε of 0.0001.

4. LOESS Modification to the SC-CR Algorithm

4.1. Developing the model

As motivation, consider the case where data are interval censored. In such a situation, Stafford
(2005), based on the work of Goutis (1997), argues that a natural extension of the standard kernel
smoothing weight is to define wi as a conditional expectation, conditional on the observed interval
Ii = (Li, Ri]. That is, if the weight is defined as

wi =E
1
h
~K

Xi�x
h

� �����Ii
� �

(11)

the kernel density estimate of f is

f ̌ðxÞ= 1
n

Xn
i=1

E
1
h
~K

Xi�x
h

� �����Ii
� �

(12)

for a fixed kernel function ~K, as related in Stafford (2005). Now, Braun et al. (2005) espouse an
intriguing way to evaluate equation (12): use an iterative algorithm such as Turnbull’s algorithm,
and the kernel density estimate itself to evaluate the conditional expectation at each iteration.
For our development here, we will translate this insightful approach for the case of doubly-censored
data, use the more general framework of LOESS smoothing instead of kernel smoothing
(again, kernel smoothing is simply a special case of local regression), and further generalise to the
multivariate level comprising of multiple decrements.

We will first introduce the basic framework for the LOESS procedure proposed by
Cleveland (1979) and expanded upon by Cleveland & Devlin (1988). Let yi (i = 1,… , n) be
measurements of the dependent variable, and let xi = (xi1,… , xip), i = 1,… , n, be n measurements
of p independent variables. Suppose that the data are generated by yi = f(xi) + εi, where f is a smooth
function and the εi are errors assumed to be independent and identically distributed with mean 0
and variance σ2. Locally weighted regression provides an estimate of the smooth function, f (̌x).
The estimate of f at x, where x is any value in the p-dimensional space of independent variables, is
found by defining a neighbourhood in the space of independent variables where each point
in the neighbourhood is weighted according to its distance from x, with points closer to x being
weighted more heavily than points further from x. Therefore, a weight function and neighbourhood
size must be specified in order to complete the LOESS smoothing technique. Cleveland (1979)
defined four properties that any weight function, W, should possess when performing locally
weighted regression:

1. W(z)> 0 for |z| <1;

2. W(− z) = W(z);

3. W(z) is a non-increasing function for z≥0;

4. W(z) = 0 for |z|≥1.
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Following Cleveland & Devlin (1988), we introduce the tricube weight function

WðzÞ= ð1� jz j 3Þ3; if jz j≤ 1

0; otherwise

(
(13)

We must now specify the neighbourhood size. Following Loader (1999a), we define the span or
bandwidth (these terms will be used interchangeably) as h(x) and a smoothing window (x − h(x),
x +h(x)) for a fitting point x. To find the smooth function f (̌x), only observations within the
smoothing window are used. The weights for each observation (xi, yi) are then

wiðxÞ=W xi�x
hðxÞ

� �
(14)

Using a LOESS smoothing model at each iteration of the SC-CR algorithm, the smoothed estimate
for the Kth iteration is

f ̌KðxÞ=1
n

Xn
i=1

E
f ̌K�1

W
xi�x
hðxÞ

� �����Ψ
� �

(15)

conditioning on all observations, Ψ, since the LOESS smoother can use all of the observed data,
depending on the degree of smoothing that is desired.

For the competing risks setting, an expression analogous to equation (15) can be developed.
For modes of failure indexed by j = 1,… , k, assume independence between the modes of failure.
Then, the cause-specific LOESS smoothed estimate for iteration K would be expressed as

f ̌
ðjÞ
K ðxÞ= 1

n

Xn
i=1

E
f ̌
ðjÞ
K�1

W
xðjÞi �x
hðxÞj

 !�����Ψ
" #

(16)

where an optimal value for h(x), the span, should be chosen for the failure density of each
independent risk j. Although the independence assumption is not required for the SC-CR algorithm,
it is useful here to avoid the complication of having to invoke multivariate LOESS techniques that
reflect the joint distribution between the various competing risks.

The following theorem shows that as the bandwidths for the local fit of each risk tend to 0, the
smoothed estimator of the density approaches the self-consistent density. The theorem statement,
steps, and logic of the proof are direct generalisations of an analogous univariate proof from Braun
et al. (2005) regarding kernel density estimation. The tricube weight function, W(z), is also a
commonly used kernel function and the theorem can be applied to the LOESS setting.

Theorem 4.1 Let F ̌(x)ðjÞK ðxÞ=Ð x�1 f ̌ðxÞðjÞK ðtÞdt be the LOESS smoothed estimate of the corresponding CIF
for risk j at the Kth iteration with a cause-specific span h(x)j, under an interval-censoring scheme with the
possibility of masked failure modes. Then, assuming independent tricube weight functions for each risk j

lim
hðxÞj!0

F̌
ðjÞ
K ðxÞ=F̂ðjÞ

K ðxÞ 8x; j; K

Proof. The self-consistent CIF is

F̂ðjÞ
K ðxÞ=EK�1 FðjÞðxÞ��Ψh i

=EK�1
1
n

Xn
i=1

IðXðjÞ
i ≤xÞ

�����Ψ
" #
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since F(j)(x) captures the relative proportion of observations with Xi≤x and J = j, and is also the
NPMLE when using complete data. Bringing the expectation into the sum yields

=
1
n

Xn
i=1

EK�1 I XÞðjÞi ≤x
� ����Ψh i

Now, since the tricube weight function is a kernel function it is also a valid probability distribution
function that approaches the empirical distribution as the bandwidth tends to 0. And since each
competing risk is smoothed with its own unique span h(x)j

=
1
n

Xn
i=1

EK�1 lim
hðxÞj!0

ðx
�1

W
xðjÞi �u
hðxÞj

 !
du

�����Ψ
" #

= lim
hðxÞj!0

1
n

Xn
i=1

EK�1

ðx
�1

W
xðjÞi �u
hðxÞj

 !
du

�����Ψ
" #

since
Ð
W

xðjÞi �u
hðxÞj

� �
≤1, and therefore the limit can be taken outside of the expectation. By the

Fubini–Tonelli theorem, the order of expectation and integration may be interchanged in this case,
producing

□

= lim
hðxÞj!0

ðx
�1

1
n

Xn
i=1

EK�1 W
xðjÞi �u
hðxÞi

 !�����Ψ
" #

du

= lim
hðxÞj!0

ðx
�1

f
ð̌jÞ
K ðuÞdu

= lim
hðxÞj!0

F ̌
ðjÞ
K ðxÞ

4.2. Span selection

A key issue when employing local regression is the optimal choice of span. The magnitude
of the span is always a tradeoff between the bias and variability of the local regression fit and therefore a
compromise is always necessary. Values for the span that are too small will produce an estimate for the
smooth function, f (̌x), which shows too many spurious features, reflecting large variance due to the fact
that an insufficient amount of data falls into the smoothing window. In the case where the value for the
span is too large, the estimate within the smoothing window may be over-smoothed and hide key
structural features of the real smooth function, f(x), reflecting a large amount of bias.

There are a number of methods for finding the optimal span for a data set. The first method, which is
simplistic in nature, is fixed bandwidth selection. In this case, the span h(x) is chosen to be a constant
value, h. However, a constant choice for the bandwidth is rarely ideal because the estimate resulting from
a fixed bandwidth will often behave particularly poorly in boundary or tail regions and have large
variance due to differences in the density of the data, producing fits that are too noisy or in some cases
undefined if the neighbourhoods are empty. Methods to determine a single fixed bandwidth in local
regression include modern plug-in methods and classical methods such as cross-validation and Akaike’s
information criterion. Loader (1999b) examines these methods, challenging the superiority of plug-in
methods over their older counterparts, the classical methods. Four bandwidth selectors are considered by
Loader (1999b): generalised cross-validation, Mallows (1973) Cp method, the plug-in algorithm of Gasser
et al. (1991) (GKK), and a hybrid of Cp and plug-in methods proposed by Ruppert et al. (1995) (RSW).
See Loader (1999b) for further details on implementing these methods, the results from simulations, and
extensions to locally quadratic regression.
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However, the problems engendered due to data sparsity can be resolved by ensuring that all
neighbourhoods contain sufficient data. Using nearest neighbour bandwidth selection the bandwidth h(x)
is chosen so that the local neighbourhood will always contain a specific number of points. To compute the
nearest neighbour bandwidth h(x), a bandwidth parameter α>0 needs to be considered. The parameter α
gives the proportion of observations that are used to find the smoothed estimate and as α increases f (̌x)
becomes smoother. Following Cleveland & Loader (1996), Loader (1999a), and Irizarry (2001) when
0<α≤1 let q be equal to αn truncated to an integer. Then Δi(x) = |x−xi| is the distance between fitting
point x and the data points xi and Δ(i)(x) is the value of these distances ordered from largest to smallest.
Finally, the nearest neighbourhood bandwidth h(x) = Δ(q)(x), where Δ(q)(x) is the qth largest value of
Δ(i)(x), i = 1,… , n. For α>1, the nearest neighbour bandwidth is h(x) = α1/pΔ(n)(x) where p is the number
of numeric independent variables involved in the fit. Cleveland & Devlin (1988) propose using an M plot,
an adaptation of the Cp procedure developed byMallows (1966, 1973) to select the bandwidth parameter,
α, of nearest neighbour fitting. The M plot is a graph of an estimate of the expected mean squared error
summed over the xi in the sample and divided by σ2, M̂α, against the contribution of variance, Vα, for a
selection of values of α. Cleveland and Devlin admit that theM plot is not a definite method of determining
the span but because the M plot graphically represents the tradeoff between variance and bias as the
bandwidth parameter changes, it can aid in choosing the amount of smoothing required for a data set.

Another method for finding an appropriate span is graphical diagnostics. Lack of fit due
to under smoothing or over smoothing can often be detected using graphical representations
to compare the fit of models with varying magnitudes of spans. After the initial examination
of the fitted curves and the original data it is essential to refer to other graphical aids to view the whole
picture of a data set. Cleveland & Devlin (1988) suggest that other diagnostic procedures for regression
models (see Daniel & Wood, 1971; Belsley et al., 1980; Cook & Weisberg, 1982; Chambers et al.,
1983) can be applied to local regression. A normal probability plot of |εi| can be made to check the
normality assumption, a plot of |εi| against ŷi can be made to check the assumption of constant variance,
and a plot of |εi| against the independent variables can be used to check for bias in the model.

Selection of an appropriate bandwidth has a critical effect on the smoothed LOESS estimate f (̌x).
The advantage of more formal model selection criteria such as Cp or cross-validation is that they are
automated. The disadvantage is that these methods can easily give bandwidths that are not optimal
depending on the data set they are applied to. Graphical displays are powerful tools that show the
bias-variability tradeoff readily and aid in making decisions on the importance of each factor.
However, as noted by Cleveland & Loader (1996), graphical diagnostics are labour intensive and
therefore not the most efficient method for finding the optimal smoothed estimate. In practise, model
selection criteria can be used to decide on a fit and that fit should then be analysed using graphical
representations to study the goodness of fit. The importance of graphical representations when
completing LOESS smoothing and choosing an appropriate value for the span cannot be emphasised
enough – both methods are more powerful when used in conjunction.

4.3. Polynomial degree selection

Another important decision when fitting a LOESS model is the choice of polynomial degree, λ, which
also affects the bias-variability tradeoff. Polynomials with higher degrees will produce estimates that are
generally less biased but more variable than their lower degree counterparts. In R2 the loess() function

2 R is a free command line statistical software and implementation of S that can be downloaded from
www.r-project.org
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allows for the fitting of polynomials of degree 0, 1, and 2. Cleveland & Loader (1996) state that
polynomials with degree 0, or locally constant fits, are rarely if ever the best choice because they cannot
exactly fit any mathematical curve except for a straight line, which can only be fit in special cases. Loader
(1999a) affirms that the most common choices in practise are local linear, λ = 1, and local quadratic,
λ = 2, fits. By using polynomials of degrees greater than 0, the bandwidth can be increased without
introducing intolerable bias. Higher-order polynomials have a larger number of coefficients to estimate,
resulting in higher variance. However, the final fit will be smoother due to a larger neighbourhood size.
In practice, fitting local polynomials of third degree and higher is rarely beneficial. Often a choice
between a local linear fit and a local quadratic fit, the default in R, can be made by examining the
scatterplot of the data (see Jacoby, 2000). A LOESS modification was integrated into the SC-CR algo-
rithm that was programmed in R. The program was then used to model the trypanosomiasis data.

5. Application to a Real Data Set

The Trypanosoma brucei is a parasite that causes the rare disease African trypanosomiasis,
colloquially referred to as African sleeping sickness. The parasite is transferred to humans by the bite
of the tsetse fly. A person can be infected for long periods without exhibiting any symptoms. Indeed,
when symptoms do appear, the disease is often already at an advanced stage of development. There
are two forms that the disease can take: the neurological form (N) and the lymphatic-sanguine (LS)
form. These will comprise the two competing modes of failure, where the failure time, ti, is the age at
which a person is first infected by the parasite. This diagnosis phase is crucial because it determines
the appropriate type of treatment, which is highly toxic.

The data is from the Bulletin Épidémiologique Hebdomadaire that was published by the Institut de
Veille Sanitaire as found in Legros et al. (2006), and is summarised in Table 4. There were 26 cases of
the disease reported in France during the years 1980 and 2004. Due to the long incubation period where
the disease was not detected, the exact age at infection was not always known precisely, resulting in
numerous left-censored observations. Also, in few cases, the exact form of the disease (N or LS) was not
able to be determined. This resulted in observations that can be viewed as masked competing risks. As
such, the SC-CR algorithm of Adamic (2010) can therefore be used to model the cumulative incidence
failure times under these two forms of the trypanosomiasis disease. The SC-CR algorithm was run on
the data, assuming an ε of 0.0000001. The results are given in the second and third columns of Table 5.

Note that <50% of the possible data points have cause-specific innermost intervals for the two
competing risks. Smoothing these two vectors of probability mass would not be advisable since there
are so many gaps between the innermost intervals, making the probability landscape sparse and
multimodal. Use of the LOESS modification at each iteration of the SC-CR algorithm is therefore
opportune. To implement the smoothing modification, a LOESS function with a span of 1.6 and
degree of 2 was used. Independent local fits for each risk seemed justified, since the correlation
coefficient of the two competing densities before smoothing was only −0.1473877.
Thus, a multivariate LOESS modification was not necessary in this case. The converged results after
32 iterations are also shown in Table 5, where an ε of 0.00000001 was again used.

The LOESS modification to the SC-CR algorithm produced revealing results. Note that the gaps
between the innermost intervals were successfully filled in an optimal manner. In turn, this produces
valuable information that was not previously available. First, there are obviously non-zero
probabilities of decrement at each of the possible ages in reality. This is immediately rectified
once the LOESS modification is employed. Second, the magnitudes of the failure probabilities are
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themselves revealing. For example, consider age 50. Before the LOESS modification, it was not
known whether failure due to cause N or cause LS was more likely (since they were both 0). Now,
we can estimate that infection at age 50 is over twice as likely to be due to form N than form LS.
Figure 1 depicts the final CIF curves for each of the two competing risks.

6. Conclusion and Future Work

There are other advantages that can be realised from using the LOESS modification to the SC-CR
algorithm. First, local regression adapts well to bias problems at boundaries and in regions of high
curvature. We note that the issue of larger bias introduced from arbitrarily placing probability mass
at the right end of the innermost intervals, a dynamic outlined in Duchesne & Stafford (2001), is
even more relevant in the competing risks framework due to the larger number of innermost intervals
involved. The LOESS modification to the SC-CR algorithm is unarbitrarily data driven, thereby
making the cause-specific innermost intervals, and the problems they engender, irrelevant, as was
also stated in Braun et al. (2005) for kernel smoothing. Second, the use of the LOESS modification
tends to reduce the number of iterations required for convergence. Many methods have been developed
to provide fast computation of a smoothed estimate for one or more independent variables, partially
because of the conceptual simplicity and excellent theoretical properties of local regression, a dynamic

Table 4. Summary of the trypanosomiasis data.

Case Year Age at infection Form of disease

1 1980 [20,20] N
2 1981 (0,29] LS
3 1981 [29,29] LS
4 1981 (0,32] LS
5 1981 [43,43] N
6 1982 (0,19] LS
7 1982 [23,23] N
8 1983 (0,40] LS or N
9 1984 [24,24] N
10 1984 (0,31] N
11 1986 [13,13] N
12 1988 [2,2] N
13 1988 (0,34] N
14 1990 [27,27] N
15 1991 [34,34] N
16 1992 (0,62] LS or N
17 1992 (0,50] N
18 1993 (0,30] N
19 1993 [27,27] LS
20 1993 [30,30] N
21 1996 [53,53] N
22 1997 (0,53] LS
23 1998 [45,45] LS
24 1999 (0,50] LS
25 1999 (0,34] LS or N
26 2001 [28,28] N

Note: N, neurological form; LS, lymphatic-sanguine form.
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that also allows it to work for many different distributional assumptions. Finally, local regression does
not require the smoothness and regularity conditions required by other smoothing methods, such as
boundary kernels. These and other strengths of local regression, as outlined in Hastie & Loader (1993),
make local regression an attractive supplement to the SC-CR algorithm.

In terms of future work directly related to the LOESS modification, we note that the modification can
be applied, not only to left and right-censored failures, but to other censoring mechanisms as well. It

Figure 1. Converged cumulative incidence functions for the trypanosomiasis data. N, neurological
form; LS, lymphatic-sanguine form.

Table 5. Converged failure rates for the trypanosomiasis data set.

ti f̂ ðNÞðtiÞ f̂ ðLSÞðtiÞ f
ð̌NÞðtiÞ f ̌

ðLSÞðtiÞ

2 0.11176990 0.00000000 0.09532087 0.00000000
13 0.11176990 0.00000000 0.08710922 0.00066400
19 0.00000000 0.00000000 0.07929145 0.00542837
20 0.07451327 0.00000000 0.07187282 0.00948088
23 0.07451327 0.00000000 0.06485857 0.01279662
24 0.07451327 0.00000000 0.05838599 0.01534092
27 0.07451327 0.07451327 0.05250641 0.01712799
28 0.07451327 0.00000000 0.04709622 0.01820631
29 0.00000000 0.07451327 0.04203177 0.01862433
30 0.06773934 0.00000000 0.03718945 0.01843050
31 0.00000000 0.00000000 0.03252463 0.01765627
32 0.00000000 0.00000000 0.02814704 0.01636821
34 0.05419147 0.00000000 0.02416456 0.01466751
40 0.00000000 0.00000000 0.02068509 0.01265536
43 0.04563492 0.00000000 0.01781653 0.01043294
45 0.00000000 0.04563492 0.01554459 0.00800064
50 0.00000000 0.00000000 0.01377329 0.00527441
53 0.04166667 0.00000000 0.01248798 0.00222874
62 0.00000000 0.00000000 0.01167401 0.00000000
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can be applied to a variety of self-consistent models that include left-censored, doubly-censored,
truncated, and other more elaborate censoring schemes that are very much at the forefront of
contemporary scholarship in survival analysis.
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Appendix

Note that the definition and notation for univariate self-consistency, as found in the first two lines of
the proof, come from Braun et al. (2005).

Proof for the self-consistency of the CIFs derived from the SC-CR algorithms
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F̂ðjÞ
K ðxÞ; if and only if F̂ðjÞ

K ðxÞ is a self�consistent estimator of FðjÞ
K ðxÞ

= FðjÞ
K ðxÞ; a property of the SC�CRalgorithm

Thus, F̂ðjÞ
K ðxÞ must be a self-consistent estimator of FðjÞ

K ðxÞ, otherwise a contradiction would ensue.
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