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High-speed granular chute flows
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This paper reports experimental findings on the flow of sand down a steep chute.
Nearly all granular flow models have a maximum value for the friction and therefore
predict that flows on steep slopes will accelerate at a constant rate until the interaction
with the ambient fluid becomes important. This prediction has not been tested by
previous work, which has focused on relatively low slope angles where steady, fully
developed flows occur after short distances. We test this by investigating flows over
a much greater range of slope angles (30–50◦) and flow depths (4–130 particle
diameters). We examine flows with two basal conditions, one flat and frictional, the
other bumpy. The latter imposes a no-slip condition for slow, deep flows, but permits
some degree of slip for high flow velocities. The data suggests that friction can be
much larger than theories such as the µ(I) rheology proposed by Jop, Forterre &
Pouliquen (Nature, vol. 441, 2006) suggest and that there may be constant velocity
states above the angle of vanishing hstop. Although these flows do not vary in time,
all but the flows on the bumpy base at low inclinations accelerate down the slope.
A recirculation mechanism sustains flows with a maximum mass flux of 20 kg s−1,
allowing observations to be made at multiple points for each flow for an indefinite
period. Flows with Froude number in the range 0.1–25 and bulk inertial number
0.1–2.7 were observed in the dense regime, with surface velocities in the range
0.2–5.6 m s−1. Previous studies have focused on I / 0.5. We show that a numerical
implementation of the µ(I) rheology does not fully capture the accelerating dynamics
or the transverse velocity profile on the bumpy base. We also observe the transverse
separation of the flow into a dense core flanked by dilute regions and the formation of
longitudinal vortices.

Key words: rheology, granular media

1. Introduction
Dense granular flows occur frequently in both nature and industry, yet, despite

their prevalence, they remain poorly understood. The lack of a generally applicable
constitutive relation means that a theory encapsulating their dynamics for all situations
remains illusive. Depending on the local conditions, granular materials can behave as
a solid, liquid or gas. As the size of the grains and the length scales of the flow are
of the same order of magnitude, there is a lack of separation of scales. This, along
with the absence of thermodynamic equilibrium, means that a traditional continuum
approximation approach such as the Navier–Stokes equation for Newtonian fluids, has
limited utility when trying to capture the diverse range of behaviours.
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At one extreme, for flows under slow and small deformation, soil mechanics can
give good predictions (Jackson 1983). For very energetic, dilute flows, where the
dynamics are dominated by uncorrelated, binary collisions, modified kinetic theory
makes good quantitative predictions (Jenkins & Richman 1985; Goldhirsch 2003;
Mitarai & Nakanishi 2005) and some theories attempt to include correlations (Jenkins
& Berzi 2010). Between these two extremes lies a flowing regime where the volume
fraction φ > 0.5 and friction, collisions and force chains each play an important role in
the dynamics. While this regime has received a large amount of theoretical attention,
the validity of models and observations is restricted to a small number of experiments,
with little variation in the control parameters.

The simple geometry of the inclined chute not only provides a good basis for
studying natural gravity flows such as debris flows and avalanches, but is directly
relevant to industrial transport contexts. As a result it has formed the basis of
many experimental studies, e.g. Patton, Brennen & Sabersky (1987), Ahn, Brennen
& Sabersky (1991, 1992), Louge & Keast (2001) and Delannay et al. (2007), over a
variety of surface conditions. These studies focus on fully developed flows where all
quantities are constant in time and where there is no flow development down the slope.
The behaviour of these flows is captured by the flow rule

Fr =−γ + β h

hstop(θ)
(1.1)

for material constants γ and β (Pouliquen 1999). We define the bulk Froude number
as

Fr = us√
gh cos θ

. (1.2)

Where us is the average surface velocity, g the acceleration due to gravity and h the
flow thickness. Alternative definitions of Fr exist in the literature where the depth and
width averaged velocity ū is used instead of us; however, only the surface velocity is
known in our experiments so it is convenient to use this definition. The height hstop(θ)

is the depth of the deposit left after a flow on a plane at an inclination θ has arrested
and depends both on the material and the basal conditions. The minimum angle for
which hstop = 0 is denoted by θ2 and determining its value is equivalent to specifying
the maximal frictional resistance of the material under shearing for flows obeying
(1.1). For inclinations above θ2 we have hstop = 0 and the µ(I) model predicts that the
material accelerates indefinitely.

In order to track the development of accelerating flows on inclinations greater than
θ2, multiple measurements must be made along the chute. In our experimental set-up,
the problem of maintaining a flow for a sufficiently long time to achieve this has
been solved by using a recirculation system. After initiation, the flow rapidly becomes
steady in time, but accelerates down the slope. Along with the Froude number, Fr ,
and the inclination θ , the flow is characterized by its non-dimensional height n = h/d,
which measured the flow height in particle diameters and is controlled indirectly by
changing the mass flux.

We investigate accelerating flows using two different bases: one bumpy, which
usually imposes a no-slip boundary condition, and a flat, frictional base which permits
slip. The two control parameters in the experiment are the mass flux, q, and the
inclination of the chute, θ . Varying these determines the velocity and height of the
flow down the chute. Height and velocity can then be used to calculate the total
effective friction coefficient µ, which can then be compared with predictions using
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High-speed granular chute flows 37

the µ(I) rheology of Jop, Forterre & Pouliquen (2006) described below. The flows
presented here are all contained by flat walls. Despite this, the transverse velocity
profiles vary considerably between the different basal conditions, indicating a complex
boundary interaction.

The µ(I) rheology which provides good agreement with a number of experiments at
small inclinations (see MiDi 2004), equates the shear stress and the pressure using a
phenomenological expression for the internal friction coefficient

µi(I)= µ1I0 + µ2I

I0 + I
. (1.3)

We have adopted the subscript i to distinguish the friction in a continuum model from
the total friction µ which refers to dynamics of a slice of material averaged across the
width and depth of the chute. In (1.3) µ1 is the lower limit for the material’s frictional
resistance attained for vanishing I and µ2 = tan θ2 is the maximum attained in the limit
as I→∞. Here I0 sets the scale over which µi changes and is usually taken to be
constant and a function of the material properties. However, Jop, Forterre & Pouliquen
(2005) shows that it has a non-trivial, albeit weak dependence on the inclination of
the flow over the range studied. The inertial number I, which is the square root of the
Savage number (Savage 1984) or the Coulomb number (Ancey, Coussot & Evesque
1999), is defined as the ratio of the microscopic d/

√
P/ρ and macroscopic 1/

∣∣γ̇ij

∣∣
deformation time scales and is given by

I =
∣∣γ̇ij

∣∣ d√
P/ρ

, (1.4)

where
∣∣γ̇ij

∣∣ is the absolute value of the local shear rate, d is the particle diameter, P is
the particle pressure and ρ is the density of a single particle. Other slightly different
definitions are sometimes used that incorporate the packing fraction. The value of the
inertial number gives some indication of the nature of the flow: for high values of
I, the flow is highly energized, dilute and in the collisional regime, and for small I,
the deformation is slow and quasi-static. We consider I ≈ 0.5 as marking a transition
to high-speed flows, but there is no discontinuous change in flow regime. The dense
fluid regime investigated in this paper lies between these two extremes. We can use
typical values for the local shear rate

∣∣γ̇ij

∣∣= us/h and the basal pressure P= ρgh cos θ
to define the bulk inertial parameter as

Ib = usd√
gh3 cos θ

= Fr

n
. (1.5)

In our experiments Ib is in the range 0.1< Ib < 2.7 throughout which the flow remains
in the dense regime. The upper limit of this range is much larger than in previous
studies which have typically focused on the range Ib < 0.5 (MiDi 2004; Forterre &
Pouliquen 2008).

In § 2 we set out the theoretical framework for describing these results. In § 3 we
describe the experimental procedure and measurement techniques. Section 4 details our
experimental findings. A numerical implementation of the µ(I) rheology is described
in § 5, and the comparison with the experimental results is discussed in § 6.

2. Governing equations
The depth integrated equations of motion, or Saint-Venant equations (Savage &

Hutter 1989), provide a means of defining a macroscopic friction coefficient, or total
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38 A. J. Holyoake and J. N. McElwaine

friction, µ which measures the overall retardation of a slice of granular fluid due to
the frictional forces exerted on the material by the boundaries. This stress is then
transmitted through the material according to its rheology. We start by defining the
mass flux, which is given by

q= ρwφūh. (2.1)

Here ū is the mass averaged velocity at a position x down the slope, h is the flow
height, which is assumed to be only a function of x, w is the chute width, ρ is the
density of a particle and φ is the volume fraction. Previous studies (Louge & Keast
2001) have used non-invasive measurement techniques to show that φ is approximately
constant and this is in agreement with discrete element method (DEM) simulations
(Silbert et al. 2001), with the approximation improving for thicker flows. We can
therefore assume incompressibility (that is, φ = const.) to write the depth-integrated
conservation of mass as

∂h

∂t
+ ∂hū

∂x
= 0. (2.2)

For a steady flow we have ∂t = 0, and therefore q is constant down the slope.
Similarly, the x-component of the integrated conservation of momentum gives

ρ
s2

s2
1

∂
(
hū2
)

∂x
+ ∂

∂x

(
1
2

g cos θh2

)
= gh sin θ − hF, (2.3)

where the hydrostatic pressure P = ρgz cos θ is taken from the vertical (z) component
and substituted into the horizontal component and the sn are defined below. Here, we
have assumed that the velocity is solely in the down-slope direction. We have chosen
z = 0 to correspond to the free surface. We write the x-velocity, u, as the average
surface velocity us multiplied by a function to give the full width y and depth z
dependence:

u= us f (y/w, z/h). (2.4)

We define the sn as the average value of f n

sn = 1
wh

∫ ∫
f n dy dz. (2.5)

In this representation, f takes a value of 1 at a point on the surface. Since the flows
are presumed to be symmetric and the walls exert resistive forces, we expect this to
occur in the middle and therefore f (1/2, 0) = 1 with f < 1 at the walls. A flow with
a no-slip basal condition gives f (y/w, 1) = 0, a flow with Bagnold depth dependence
has f ∼ z3/2 and a plug flow has f (y/w, z/h)= 1. The first term on the right-hand side
of (2.3) represents the gravitational forcing, while the second term, F, is the resistance
of the material to flowing. The latter is dependent upon both the rheology and the
interaction of the flow with the boundaries. We can eliminate derivatives of h in (2.3)
using (2.2). Also using the relationship ū= s1us, we obtain(

s2 − 1

Fr2

)
us

dus

dx
= g sin θ − F. (2.6)

This demonstrates the change between subcritical and supercritical flow according to
whether

√
s2Fr is less than or greater than one. Using the divergence theorem, F can
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FIGURE 1. (Colour online) Diagram of the apparatus: (A) collection hopper; (B) screw
conveyor; (C) bucket conveyor; (D) feed hopper; (E) chute; (F) instrumentation and traverse;
(G) overflow; (H) return chute.

be written in terms of the stress tensor at the boundaries of the flow

hwρF =
∫ h

0

∫ w

0

∂σxx

∂x
dy dz+ 2

∫ h

0
σxy

∣∣
y=w

dz+
∫ w

0
σxz|z=h dy. (2.7)

The above expression assumes a symmetric flow about the centreline and no-stress
condition at the free surface. The total friction, µ, is then defined as

µ= F

g cos θ
. (2.8)

Assuming f (y, z) is everywhere positive (that is, there is no return flow), then
0 < sn < 1. For example, a plug flow has s1 = s2 = 1, while for linear shear we
find s1 = 1/2, s2 = 1/3 and for a Bagnold profile s1 = 3/5, s2 = 9/20. In this derivation
we have assumed that the lateral earth pressure coefficient is 1 (that is the horizontal
and vertical normal stresses are equal) in accordance with the findings of Ertaş et al.
(2001).

In steady, fully developed flows, the acceleration is by definition 0, and µ = tan θ .
The factor s2 − Fr−2 multiplying the advective acceleration in (2.6) gives some
indication of the range of validity of the assumption of time-steady flow. For
Fr > s−1/2

2 , the down-slope coordinate, x, behaves as a modified time coordinate
and the flows are super-critical, with the upstream conditions left unaffected by
downstream conditions. When Fr < s−1/2

2 , the flow is subcritical and the flow is
determined by the downstream conditions. In both cases the existence of a time-steady
state, and hence the validity of (2.6), will depend on the boundary conditions.

3. Experimental method
Our flows are generated by the equipment shown in figures 1 and 2. A crucial

feature of the apparatus is the recirculation mechanism. The recirculation process
starts with roughly 2000 kg of sand at rest in the collection hopper (A). This is fed
to a screw conveyor (B) which when operating at its maximum capacity can move
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FIGURE 2. (Colour online) Photograph of the apparatus

22 kg s−1 of material to the bucket conveyor (C). This lifts the material 6 m vertically
to the feed hopper (D). The feed hopper contains an overflow pipe (G) that ensures a
constant head of sand is maintained. This is necessary to ensure a constant flow rate
since our hopper is too small for the exit conditions to be governed by the Janssen
effect (Janssen 1895). The exit of the hopper consists of a rectangular aperture of
width 225 mm and of variable length which is controlled by a screw attached to a
pulley. The angular position of the screw is given by a digital rotary encoder with one
degree of rotation equivalent to 0.0139 mm of linear travel, giving very fine control
over the aperture geometry. The aperture length can be anywhere from fully closed to
225 mm at its maximum. The sand falls freely from the aperture onto the chute (E)
so that the conditions inside the chute do not affect the mass flow rate. The chute
is mechanically isolated from the recirculation system so that vibrations do not affect
the flow of the sand or the measurements. The inclination of the chute can be varied
from 15 to 55◦ and is measured to an accuracy of 0.1◦ by a digital inclinometer. There
were small variations in the inclination along the chute of around 0.1◦ due to it flexing
under its own weight. The chute itself is 4 m by 0.25 m, of which the entire width
and 3 m of length are observable experimentally. Whilst in the chute, measurements
are made by instrumentation mounted on a hand operated traverse (F) located above.
Finally, the sand falls freely from the chute onto the return chute (H) which deflects
the sand back into the collection hopper. The machine is enclosed to contain dust and
there is an extensive ventilation and filtering system which removes the finest particles
from the material and the air in the laboratory.
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FIGURE 3. (Colour online) Properties of new sand. (a) Cumulative distribution function
weighted by volume. The median diameter is 1.24 mm. Measured using the single-particle
optical sizing (SPOS) method. (b) Distribution of particle diameter over time. Median
diameter shown with error bars signifying the upper and lower quartiles. Dashed lines signify
the times at which new sand was added.

3.1. Material

The material used in our experiments is a polydisperse bumpy quartz sand which,
when new, has a size distribution shown in figure 3(a), with median diameter 1.24 mm
and first and third quartiles at 1.03 and 1.48 mm, respectively. The sand was sized
using the single-particle optical sizing technique detailed in White (2003) which
typically gives a particle size 20–30% bigger than sieving for natural sands. The
recirculation mechanism degrades the material and a considerable quantity of dust
is produced initially. However, figure 3(b) shows that the distribution quickly tends
to a steady state. New sand is periodically added to replace grains lost through the
degradation process.

The limits of the frictional resistance in the µ(I) rheology can be ascertained by
recording the value of the height hstop over a range of θ . If the formation of a steady,
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FIGURE 4. (Colour online) Plot of hstop/d as a function of the inclination over the bumpy
base. Fitting gives µ1 = 0.54 and µ2 = 0.68.

non-accelerating layer of sand at a given inclination is possible, then the friction must
exactly balance the gravitational force giving µ= tan θ .

We measure hstop as in the first method introduced in Pouliquen (1999). A flow is
started with constant mass flux; when this has reached a time-steady state, the mass
source is suddenly removed by shutting the gate. This allows the flow to slow down
while gradually decreasing in height until it stops, leaving behind a static layer.

The hstop(θ) curve has been shown to follow the phenomenological curve discussed
in MiDi (2004)

hstop(θ)= B
µ2 − tan(θ)
tan(θ)− µ1

, (3.1)

where the constants B, µ1 and µ2 are dependent on the material and on the basal
condition. The constants µ1 and µ2 are interpreted as the upper and lower limits of
the material’s internal friction for a given basal surface. Fitting equation (3.1) to the
data in figure 4 gives µ1 = 0.54 and µ2 = 0.68 for our material over the bumpy base.
Measurements for hstop on the flat base gave a very narrow range for the friction
angles, with µ1, µ2 = tan(24.4± 0.2◦). At this point it is not clear whether these limits
of the friction coefficient are the same as in a flowing configuration, particularly for
inclinations above tan−1µ2.

The density of each particle was ρ = 2660 kg m−3.

3.2. Initial conditions and mass flux
For bins and hoppers, the outflow is primarily a function of the exit geometry
(Nedderman et al. 1982). In the experiments presented here, the flux, q, is controlled
by the rectangular aperture at the bottom of the hopper, as described above. The
maximum mass flux of 20 kg s−1 is attained at an aperture length of around 0.1 m. In
order to avoid the effects of hysteresis in the hopper and to ensure that a repeatable
state is achieved for each run, the same startup routine is followed each time: empty
the hopper, select the aperture size and slowly fill up the hopper to the overflow.
Dimensional analysis suggests that the flux will vary as

q∼ ρuwl (3.2)
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FIGURE 5. Mass flux properties. (a) Non-dimensional mass flux q̂= q/ρw
√

gl3 as a function
of aperture opening l. (b) Variation of mass flux over time for different aperture openings.

for some characteristic velocity u at the aperture. Since the particles are in free fall
whilst exiting the hopper, the velocity is expected to scale as if it is accelerated by
gravity over a distance comparable to l, that is u∼√gl, and therefore

q∼ ρ√glwl. (3.3)

The mass flux was recorded by placing a large bag attached to a crane scale and
data logger under the end of the chute and measuring the bag’s contents as a function
of time. The derivative of this curve gives the flux, q. The plot of the scaled flux,
q̂ = q/ρw

√
gl3 in figure 5(a) shows that the scaling law described by equation (3.3)

accurately captures the functional dependence of the flux q upon the aperture length l.
For large aperture lengths, l> 59 mm the flow enters a slightly different regime within
the hopper where the value of q̂ alters slightly. The dependence of the mass flux q on
humidity and particle degradation has been checked and the effect is negligible. As the
flow in the chute is independent of the conditions within the hopper, it allows q to be
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FIGURE 6. Frame straddling, a technique developed for time-steady flows allowing for an
increase in temporal resolution using standard photography equipment.

calibrated against l once and the fit curve to be used for all subsequent experiments.
Figure 5(b) shows that the mass flux out of the hopper over time is constant over
intervals larger than the data logger’s sampling time of 0.1 s. The uncertainty in the
rate calculation was under 1 %. To ensure a symmetric initial condition, a small step of
height 30 mm is placed at the top of the chute, which slows and spreads the particles
evenly over the entire width.

3.3. Boundary conditions
The flow is bounded by two sidewalls, the basal surface and the ambient air at
the free surface. The sidewalls are the same for all experiments and are made of
Perspex whose surface has been allowed to erode to a steady state. These walls
exert a frictional stress with coefficient µw = 0.45, thus permitting a slip velocity.
This has been measured by conducting an hstop experiment with the Perspex as the
basal material. Two different basal surfaces were used, a flat surface identical to the
sidewalls and a coarse sandpaper with a median grain diameter of 0.5 mm. The latter
enforces a no-slip boundary condition for shallow angles, but some slip occurs at high
particle velocities.

3.4. Instrumentation
The chute is equipped with two measurement systems: one to measure surface velocity
and the other flow thickness. Surface velocity measurements are calculated using
particle image velocimetry (PIV). The images for this are obtained from a JAI CL
M4+ camera and a BitFlow R3 frame grabber. The frame rate of the camera is limited
to 24 fps, so in order to minimize streak and obtain a suitable interval between frames
for accurate measurements a frame straddling technique has been developed. Four
banks of high-powered LEDs illuminate a section of the chute at the end of one frame
and at the beginning of the next for approximately 1.5 ms. The interval between the
flashes is around 1.5 ms. A pictorial representation of the synchronization between
shutter and flash can be seen in figure 6. The PIV technique developed by Sveen &
Dalziel (2005) is then employed to cross-correlate the pairs of images and to extract
the velocities of the particles. This procedure produces a grid of 69 × 51 velocities
in both the x direction (u) and the y direction (v). This corresponds to a velocity
field with a spatial resolution of approximately 3.5 mm. Since the algorithm utilizes
subpixel detail and typical displacements are of the order of 5 pixels between frames,
the error in the velocity measurement is estimated to be less than 0.1 m s−1. Around
50 pairs of images are taken for each position on the slope which are then averaged
over time and along the x direction to give the cross-chute velocity profiles seen in
figure 9(a,b).
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The height of the flow is measured by a Micro Epsilon LLT2800-100 laser
triangulator. This equipment is precalibrated, and gives an absolute distance from
the flow surface to the CCD within. It records 100 points per profile at a rate
of 400 profiles per second. This gives the surface height at a resolution of around
1 mm between points. At each of 12 positions down the slope, data are recorded for
approximately 10 s, with the laser sheet oriented either parallel or perpendicular to the
flow. No significant difference in the mean flow height was seen between orientations.
This set-up gives the average flow height within 0.2 mm which is significantly less
than the median grain diameter. The central 120 mm of the flow are measured, and
the height within a profile typically varies by less than two grain diameters. Care must
be taken when defining the height of the surface as saltating particles can obscure
the dense region below. If the particles get too close to the CCD and are out of the
depth of field, then no data is recorded. The height data presented here have been
time-averaged profiles.

The triangulator is also used to calibrate the PIV measurements by taking a series of
photographs of a chequered pattern at different heights. The pixel coordinates of points
in the pattern are matched to real-world coordinates, thus removing the effects of lens
distortion and parallax from the velocity calculation.

3.5. Data preparation
In order to study the acceleration of the flow it is necessary to calculate the derivative
of the velocity data. Doing this directly amplifies noise, so the data is first fitted with
the form in (3.4). Median averaging of the surface velocity was chosen in order to
neglect the effect of outliers. The functional form used for the fit is

u2 = u2
0 +

β

κ
(1− e−κx) (3.4)

for some constants u0, β and κ . This satisfies the equation

∂u2

∂x
= β − κ(u2 − u2

0), (3.5)

which is a linearization of the momentum equation (2.3) in terms of the kinetic
energy E = u2/2. This form can represent convergence to a constant velocity state
for large κx as u2 = u2

0 + (β/κ). For positive κ this velocity is that which would be
attained in an infinitely long chute, barring any phase transition. Constant acceleration
(or deceleration) is also captured for small κx since u2 = u2

0 + βx + O((κx)2). This
fitted all of our data for appropriate choices of u0, β and κ . Many other choices
would doubtless also have worked without affecting our results. Using this fit, the total
friction µ is given by

µ= tan θ − β

2g cos θ
e−κx

(
s2 − 1

Fr2

)
(3.6)

where s2 is given by a Bagnold profile for the bumpy base and a plug flow for the flat
base. The height data was also fitted using a similar functional form that replaces u2

with h. The results of the fit can be seen as solid lines in figure 11(a–d).

4. Results
We observed a number of different flow regimes besides the fully dense regime

that we were expecting. The phase diagrams in figure 7 show the character of the
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FIGURE 7. (Colour online) Phase diagram for flows over (a) bumpy and (b) flat bases: (5)
constant velocity flows; (�) accelerating, dense flows; (+) flows with separation at walls; (×)
low-density flows; (◦) superstable heap formation.

(a) (b) (c) (d ) (e) ( f )

FIGURE 8. Transverse separation. Adjacent panels are separated by 0.25 m. Increasing x
from left to right.

flows as the inclination θ and the mass flux q change. The mass flux has been
non-dimensionalized using the scaling ρwd

√
gd.

Figure 7(a) shows that over the flat base two regimes were observed. At a fixed
inclination and for a sufficiently high mass flux the flows were dense and accelerating,
however for slightly lower mass fluxes an instability occurred whereby the flow
detached from the walls into a dense core flanked by dilute regions (pictured in
figure 8). This will be discussed further in § 4.2. The majority of flows on the bumpy
base also fell into one of these two regimes. The bumpy surface also produced a
number of regimes not seen on the flat base (figure 7b). For flows over the lowest
inclinations, the velocity was constant down the slope. Of these steady, fully developed
flows, sufficiently high mass fluxes produced a superstable heap at the base (Taberlet
et al. 2003) and the chute quickly overflowed. No constant velocity flows were
observed for the flat base, as the friction angle on the flat base was lower than
the lowest inclination investigated. For the highest inclinations and for low mass
fluxes, a low-density regime was observed whereby the entire flow became agitated.
These flows did not have a well-defined surface and so PIV and height data were
not available. The flows discussed here, unless otherwise specified, lie in the dense,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.331


High-speed granular chute flows 47

0.10 0.15 0.250

1.0

1.5

2.0

2.5

3.0

4.0

0.7

0.8

0.9

1.0

0   0.5 1.0

y (m)
0.05 0.20 0.10 0.15 0.250

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.7

0.8

0.9

1.0

0   0.5 1.0

y (m)
0.05 0.20

0.5

3.5

x (m)
3.46
3.21
2.96
2.71
2.46
2.21
1.96
1.71
1.46
1.21
0.96
0.8

(a) (b)

FIGURE 9. (Colour online) Evolution of the time-averaged transverse velocity profile as the
material accelerates down the slope: (a) flat base; (b) bumpy base. The flow parameters are
θ = 40◦ and q= 19.1 kg s−1. Inset shows u/umax against y/w.
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FIGURE 10. (Colour online) Evolution of the time-averaged transverse height profile as the
material accelerates down the slope: (a) flat base; (b) bumpy base. The flow parameters are
θ = 40◦ and q= 19.1 kg s−1. No height data was available at the edges.

accelerating regime. We did not notice any bistable regimes although we did not look
for these in detail.
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4.1. Fully dense flow
The flows over flat bases showed higher average surface velocities than over bumpy
bases, which is to be expected since a flat surface gives less resistance. The typical
surface velocity profile development for each base can be seen in figure 9. Each line
represents a time-averaged velocity profile at a given point on the slope. For both
flows depicted it can be seen that the material is accelerating as it progresses down the
slope.

A striking result was the effect of the basal surface on the shape of the velocity
profile at the free surface. Figure 9 shows flows with the same control parameters (q,
θ ) exhibiting qualitatively different surface profiles. Flows over the flat bases invariably
had a profile with a gradual and continuous change in velocity gradient across the
chute, whereas the flows over the bumpy base developed a plug region in the centre
of the chute. The plug region is flanked by sheared regions near the walls, with the
velocity varying linearly with distance from the wall. Flows over both of these surfaces
exhibit a non-constant acceleration.

The insets of figure 9 show each velocity profile normalized by its peak velocity. In
the flat case, the effect of the shape of the initial condition is transient over a distance
of around 1.5 m after release. After this point, the shape of the profile remains steady
in time, implying the y dependence of f is constant. In the bumpy case, however, the
slip velocity at the wall tends to a limit while the central, plug-flow region carries
on accelerating implying a non-self-similar shape and therefore the sn change as the
flow develops.

Figure 10 shows the height evolution for the same flows as figure 9. The variation
of the height across the slope is minimal, typically less than 2d. Height data for
the edges of the flow were not systematically available due to the limited width
of the laser sheet, however, the edges were checked periodically and showed no
significant deviation in height from the centre. As the flow accelerates down the slope,
conservation of mass causes the height to decrease. The surface velocities over a
bumpy base are typically lower and, by this principle, the flow is deeper for the same
q over the flat base.

Flows for which θ < θ2 showed no acceleration along the chute, maintaining
constant velocity and height throughout. No non-accelerating flows were observed
for flows over the flat base as the θ1,2 were outside of the investigated range.

For the accelerating flows, although the cross-slope velocity profiles are qualitatively
different between the bases, there is no qualitative difference in the development of
us down the slope. Comparing figure 11(b) with 11(a) and figure 11(d) with 11(c) we
see the same general behaviour from both surfaces: gradually changing acceleration
accompanied by the reduction in flow height enforced by mass conservation. For both
surfaces we see a general trend of increasing velocity for both increasing q and θ . The
third column in figure 11 plot the volume fraction multiplied by the shape parameter
s1 calculated using the expression q = ρφs1whus. This, in all cases, is in the range
0.3–0.7. A Bagnold profile has s1 = 3/5, so for a typical volume fraction of φ = 0.6
we should expect to see a value φs1 = 0.36, and we do for the bumpy base, indicating
that the Bagnold profile assumption is reasonable in the calculation of the friction
coefficient. Higher values of s1φ indicate the presence of some slip developing at the
basal surface.

For plug flows φs1 = 0.6 which is closer to the value seen on the flat base. However,
values seen in figure 11(a,c) show that the observed values are slightly lower than
predicted, indicating that some curvature is present in the z direction and the basal slip
velocity is therefore less than the mean surface velocity, as is to be expected as the
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FIGURE 11. (Colour online) Effect of varying q and θ on the two bases: (a) varying flux at
θ = 32.2◦ on the flat surface; (b) varying flux at θ = 38◦ on the bumpy surface; (c) varying
inclination for q = 11 kg s−1 on the flat surface; (d) varying inclination for q = 11 kg s−1 on
the bumpy surface.

plug-like profile is a zeroth-order approximation of the flow. Variation in φs1 down the
slope is small.

The different bases produced different behaviours with respect to the bulk friction
coefficient. For the bumpy base, a Bagnold depth dependence has been assumed in
the calculation of µ in (2.6). The precise choice of depth dependence does affect the
calculated value slightly. The difference in s2 at extremes of Bagnoldian and plug
flow is a factor of approximately 2, we may safely say that the deviation of µ from
the equilibrium value of tan θ can at most be affected by this much. However, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.331


50 A. J. Holyoake and J. N. McElwaine

Fr

Inclination

0.5

0.6

0.7

0.8

0.9

1.0

0 1.0 1.5 2.00.5

Fr

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 15 25205

0.8

0.9

1.0

0 10 20

30
32
34
36
38
40
42
44
46
47
50
52

0.4

1.1

0.7

1.1

(a) (b)

FIGURE 12. (Colour online) Plot of µ as a function of Fr : (a) bumpy base; (b) flat base.
Coloured by inclination. A Bagnold depth dependence is assumed for flows over the bumpy
surface and a plug flow for the flat surface. Inset shows µ divided by the value attained for a
non-accelerating flow, tan θ .

qualitative behaviour remains unchanged by the depth dependence. Figure 12(a) shows
that on a bumpy base, µ varies from around 0.55 to 1.1. The inset of figure 12(a)
shows that the ratio µ/ tan θ is less than the steady-state value of 1 for all flows,
and no lower than around 0.8. The very lowest values of µ are attained for low
inclinations, where the flows are steady. The friction balances gravity in these flows
despite the inclination being above the angle of maximal resistance θ2, as the sidewalls
give an extra frictional contribution. At higher inclinations, we see a dependence on
q appearing: the lower the value of the flux q, the lower the bulk Fr and the smaller
the range of µ down the slope. For a given Froude number and inclination the highest
values of µ are seen for the flows with smaller flow heights, this can be attributed
to increase in resistance caused by the flow having to dilate more near a boundary in
order to flow (Pouliquen 1999).

Figure 12(b) shows that on a flat base, there is only a weak variation of
0.5 < µ < 0.6 over all Fr . This is slightly larger than the maximal friction angle
obtained from the hstop measurement of µ= 0.45. This disparity is possibly due to the
addition of wall friction. The flux dependence over the flat base is more complicated
than for the bumpy base, and is discussed in § 6.

Figure 13 shows the velocity of the material at the end of the chute as a function
of the inclination θ . The exit velocity for a given inclination is a monotonically
increasing with the flux, and is reflected in the decreasing value of µ as the flux
increases. This cannot be collapsed by scaling with the flux q because if friction is the
only force limiting the velocity then eventually u∝√x, independent of q. Setting µ as
a constant in (2.3) and assuming Fr is large at equilibrium we integrate to obtain

1
2

u2
s =

1
s2
(sin θ − µ cos θ) xg+ 1

2
u2

0, (4.1)

for some constant u0. This expression is independent of q, and therefore we cannot
collapse the data for different fluxes.
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FIGURE 13. (Colour online) Velocity at the end of the chute as the inclination θ and the flux
q vary: (a) bumpy base; (b) flat base. Flows that are dense across the entire width are denoted
by (◦) and flows that have undergone transverse separation are denoted by (×).

4.2. Transverse separation
When the flows are sufficiently energetic a dilute, high-granular-temperature region
forms at the walls that flanks a dense core. For a given inclination, the value of q
at which this occurs is lower on a flat base than the bumpy base. This is possibly
due to the bumpy base dampening the high-energy particles at the boundary. Since the
interaction with the boundary in this regime is different to that of the fully dense flows,
a direct comparison in terms of µ becomes meaningless, and so these experiments
have been excluded from figure 12(b).

The data denoted by crosses in figure 13 show the values of θ and q for which
the flow visibly separated from the walls before the material exits the chute. At a
fixed inclination, the separation disappeared for sufficiently high mass fluxes. This
phenomenon is analogous to the two-dimensional numerical simulations performed
by McNamara & Young (1994), where a dense region appears and is contained by
boundary regions that have a high granular temperature and low volume fraction.
Similar effects have been reported in numerous other situations (see Goldhirsch 2003).
Figure 8 shows the development of the collapse of a flow over a flat base. The flow
invariably starts attached to the walls and detaches once there is sufficient agitation of
the grains at the boundary. The width of the high-density region in the centre of the
chute decreases and appears to tend to a limit. For sufficiently high inclinations and
low mass fluxes the agitation of the grains is large enough for the entire flow to be
in the dilute regime (see figure 7). These very energetic flows over the bumpy base
(θ > 52◦, q. 2 kg s−1) have been excluded from figure 12(a) as the saltating particles
form an ill-defined surface, and hence data is not available.

This low-density effect can also take place at the basal surface. On a bumpy base
this manifests itself at high inclinations (>46◦) and the effect can be seen through
the total friction, µ. When the separation occurs, µ is relatively small when compared
with lower inclinations (see figure 12a) and also becomes independent of the Froude
number and the mass flux.

The thickness and character of this basal layer is governed by a complicated
dependence on other flow parameters. DEM simulations were also performed to
investigate this. A soft particle model was used with a damped linear spring for the
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FIGURE 14. Height of the low-density layer at the basal surface in DEM simulations allowed
to reach a fully developed state. Small particles have radius 0.8, large particles have radius 1.2
and mixed consists of an equal volume of each particle type.

normal force (coefficient of restitution 0) and Coulomb friction for the tangential force
(coefficient of friction 0.5). Particle stiffness was chosen so that the maximum overlap
was less than 1 %. The time step was 1/10 of the binary collision time. Particles of
radius 0.8 and 1.2 were simulated in three combinations, all small, all large or mixed
equally by volume fraction. The base was made of an equal mixture of large and small
particles held at fixed positions taken from another simulation where a thick layer was
allowed to form randomly. The simulations were allowed to evolve until equilibrium
was reached and then the results recorded until flat profiles were obtained. The density
profile was analysed by fitting the regularized step function

φ(z)= 1
2

[
tanh

(
z− z0

l0

)
− tanh

(
z− z1

l1

)]
, (4.2)

which gave a very good fit in all cases. The width of the bottom layer l0 is shown
in figure 14 where one sees a very strong dependence on the inclination. At the base,
a low-density shear layer of thickness l0 supports a high-density passive overburden.
For all particle species, the thickness was shown to be monotonically increasing in
the slope angle. There are two transition points that can be seen, one where the
layer first separates from the base and a second above which the height of the layer
increases rapidly with inclination until the entire flow becomes diffuse and kinetic.
This density inversion phenomenon and the velocity independence of the friction
coefficient have also been reported experimentally by Taberlet et al. (2007). However,
in contrast to Taberlet et al. (2007) such flows were seen for high inclinations, far
above θ2, indicating that a much larger energy input is needed for our material
to maintain a supported state, possibly due to the increased rolling resistance and
therefore dissipation afforded by the irregularity of the particles’ shape.

4.3. Surface waves
Shallow flow systems are subject to instabilities known as roll waves or Kapitza
waves (Forterre 2006) due to the tendency of deeper regions to move faster. This
is typified by the flow rule in (1.1). For the flows investigated here, these waves
occurred at angles near θ2 for moderate flow rates. The space–time plot in figure 15
shows the amplitude of the waves on a slope of 32.2◦ at a mass flux of 5.9 kg s−1.
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FIGURE 15. Variation in height at θ = 32.2◦ q = 5.9 kg s−1. The colour represents a
deviation about the mean in millimetres. The black lines indicate the calculated velocity
from PIV measurements, showing that the waves move with the same velocity as the particles:
(a) x = 0.80 m, v = 0.80 m s−1, h = 0.047 m, Fr = 1.35; (b) x = 2.05 m, v = 0.93 m s−1,
h= 0.037 m, Fr = 1.68; (c) x= 3.46 m, v = 1.06 m s−1, h= 0.030 m, Fr = 2.18.

The time-averaged height has been subtracted at each position and the general trend
of decreasing height as the flow develops down the slope is apparent. The colour
difference has been normalized such that white corresponds to a 5 mm deviation above
the mean height and black represents a 5 mm depression. Waves appear soon after
exiting the hopper with an amplitude of around 2–3 mm and a wavelength of 404 mm.
Half way down the slope, at 2.05 m after release, the amplitude has increased by a
factor of two and the wavelength has increased slightly to 564 mm. The last reading,
which shows little surface variation, would suggest that the flow has crossed some
threshold and the disturbance has been neutralized. The linear theory presented in
Forterre & Pouliquen (2003) gives a stability threshold of Fr ' 0.7, above which
the flow is susceptible to these surface waves. The phase speed of the waves is in
agreement with the velocity calculated using PIV to within 5 %.
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FIGURE 16. (Colour online) Horizontal velocity for a flow on a bumpy base with θ = 44◦
and q= 13 kg s−1

4.4. Convection currents
Figure 16 shows typical behaviour for the horizontal velocities at the surface of a flow
over a bumpy base. There is a down-welling at the walls which is accompanied by an
up-welling around 2 cm toward the centre, reminiscent of wall-cooling. Such patterns
have been observed before but they are in contrast to the inferred flow field in studies
such as that of Savage (1979).

4.5. Longitudinal vortices
Figure 17 shows the flow over a bumpy base with θ = 40◦ and q = 5.5 kg s−1.
Approximately 3 m after the sand is released, peaks in the downstream velocity
develop similar to those seen by Forterre & Pouliquen (2001) and Börzsönyi, Ecke
& McElwaine (2009).

5. Numerical solution and comparison with µ(I) rheology
A first-order finite volume code has been developed to investigate the rheology

presented by Jop et al. (2006) in an accelerating regime. This rheology has received
a lot of interest recently but has only been tested for values of I that are typically
low (/0.5) and only for non-accelerating flows. This rheology assumes an isotropic
pressure and a constant density. Experimental evidence from Pouliquen et al. (2006)
suggests that some variation in φ will occur in regions of high I, but the dependence
is rather weak so we ignore this. The flow is observed to be flat across the slope so
can neglect ∂P/∂y and assume that cross-slope velocities are zero. Down the slope
the height varies by at most 20 mm over 2 m so the ratio of ∂P/∂x to gravitational
acceleration and friction is of order ∂h/∂x = O(1/100) so we neglect this. If we
again consider the surface height to vary from 40 to 20 mm over 1 s this gives a
vertical strain rate of order ∂w/∂z = 1 s−1. Owing to incompressibility this must of
course match the downslope strain rate ∂u/∂x = 1 s−1 (corresponding to a change of
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FIGURE 17. (Colour online) The formation of longitudinal vortices on a bumpy base with
θ = 40◦ and q= 5.5 kg s−1. The height decreases monotonically from 17 mm at the top of the
chute to 11 mm just before the exit.

2 m s−1 in 2 m). These seem like large strains but we neglect them because in the
µ(I) rheology these contribute to the deviatoric stress after being divided by the total
strain. This is dominated by ∂u/∂z, which for these rapidly accelerating flows could be
given by a flow of 4 m s−1 and 40 mm thick corresponding to a strain rate of 100 s−1.
Thus, the only stress components we consider are σxy and σxz since all others are
(1/100). Taking the velocity to be u = (u, 0, 0), then the conservation of momentum
of a time-steady flow is given by

ρφ

(
u
∂u

∂x

)
= ρφg sin θ + ∂σxy

∂y
+ ∂σxz

∂z
. (5.1)

Since we are taking h constant across the slope the depth and width integrated
conservation of mass equation is

ρφw
∂hū

∂x
= 0, (5.2)

therefore hū= const.= q/ρφw. Rearranging gives ū∝ h−1 as a function only of x. The
stress tensor is defined by

σij =−Pδij + τij and τij = µi(I)P
γ̇ij

|γ̇ | (5.3)

where the γ̇ij = ∂iuj + ∂jui are the components of the strain tensor and
∣∣γ̇ij

∣∣=√γ̇ijγ̇ij/2
is the local strain rate.

Solving the z component of the momentum equation in the long-wave approximation
(Gray, Wieland & Hutter 1999) gives hydrostatic pressure P = ρφgz cos θ . In this
rheology, µi(I) takes the form shown in (1.3), with the three parameters taken from
hstop measurements and a typical value of I0 = 0.3 (Jop et al. 2005).
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The stresses induced by changing surface height enter through the term

∂P

∂x
= ρφg cos θ

h

u

∂u

∂x
, (5.4)

using an upper bound for the acceleration ∂xu < g sin θ/u and the mass conservation
equation (5.2) we find we can neglect these stresses if µ > Fr−2 tan θ , which is
the case for the flows investigated here. For the bottom surface, a no-slip boundary
condition is applied while for the sidewalls a slip boundary with constant Coulomb
friction is applied. The latter can be written as

σxy =−µwPu/|u|, (5.5)

where µw is a constant taken from hstop measurements over the Perspex wall material
(µw = 0.45).

Care must be taken at the free surface as the highest derivative in (5.1) is multiplied
by zero. The equation is therefore singular and first-order there, and no boundary
condition is necessary. However, as σ ∝ P the surface is stress free which is the
boundary condition we would normally expect to apply. This leads to the behaviour
of I near the free surface being complicated and warrants further investigation. If we
assume a Bagnold depth dependence near the surface then

∂u

∂z
= Ibag

√
zg

d
(5.6)

for some constant Ibag. If, in addition to this, there is a cross-slope variation near the
surface, then

I = d√
zg

√(
∂u

∂y

)2

+
(
∂u

∂z

)2

=
√

d2

zg

(
∂u

∂y

)2

+ I2
bag, (5.7)

implying that I→∞ as z→ 0 at the free surface if ∂yu 6= 0. The thickness of the
boundary layer over which the y-variation in I decays to Ibag is given by

z= d2

I2
bagg

(
∂u

∂y

)2

. (5.8)

We do not attempt to resolve this boundary layer in our simulation as µi remains
finite and is multiplied by P = 0 at the surface, meaning that the stress remains
well-defined everywhere. A fixed rectangular grid, pictured in figure 18, is used to
define the locations at which velocity and stress information is stored. Each velocity
point is stored in the centre of a cell, with ∂iu calculated at the cell boundary using
central differencing. These derivatives are then in turn centrally differenced to give the
divergence of σ .

Care must also be taken in regions where
∣∣γ̇ij

∣∣ = 0 as (5.3) becomes an inequality
there. For such regions to start shearing, the yield stress τij = µ1P, which is implicitly
defined in the rheology, must be overcome. Full resolution of these areas would
require tracking a yield surface and estimating ill-defined static stresses. However, as
these regions are small compared with the bulk of the flow, this added complication
gives a negligible increase in accuracy at the expense of considerable computational
complexity. We can therefore relax this condition by introducing a small regularization
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FIGURE 18. (Colour online) Depiction of the cell structure and differentiation schemes used
in the finite volume method for solving the µ(I) rheology.

0

Without regularization
With regularization

0

FIGURE 19. Regularization of shear stress at zero strain.

parameter, ε, such that

∣∣γ̇ij

∣∣=
√(

∂u

∂z

)2

+
(
∂u

∂y

)2

+ ε2. (5.9)

This has the effect of removing the yield stress µ1P and placing an upper bound on
the effective viscosity of the material (νeff = µP/ε). The effect of this regularization
on the stress can be seen in figure 19. As a result, a small creep velocity appears in
regions that would otherwise be static. A similar procedure is followed with the wall
stress to aid convergence, whereby |u| is replaced with

√
u2 + δ2.

The strong nonlinearities in the problem obstruct the use of high-order solvers. In
particular, a pseudo-spectral Galerkin method produced solutions that degenerated into
noise after a few iterations. MATLAB’s ode15s, a first-order, multi-step, stiff ordinary
differential equation (ODE) solver gave rapid convergence to the solution.

The approach was as follows.

(a) Extrapolate velocity field quadratically half a grid space to the boundaries.
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FIGURE 20. (Colour online) Results of a simulation at θ = 38◦ and q = 17.8 kg s−1, 3.5 m
after release: (a) velocity; (b) I (boundary layer at free surface); (c) friction; (d) separability.
The parameters used are µ1 = 0.54, µ2 = 0.68, I0 = 0.3 and µw = 0.45. The height was
calculated as h= 0.017= 17d.

(b) Substitute in velocity boundary conditions.
(c) Calculate derivative quantities and stress tensor using central differences.
(d) Substitute in the stress boundary conditions at the walls.
(e) Take divergence of the stress tensor.
(f ) Use ode15s to calculate velocity field for chosen x values.

The initial condition requires u(0, y, z) to specified, but, experimentally, only
the initial velocity at the surface u(0, y, 0) can be measured. As such, the depth
dependence of the velocity profile is unknown and can be treated as a degree
of freedom with which to fit the numerical results to the experimental data.
Experimentally, to begin with, there is little y-variation of the velocity profile. For
this reason, the initial condition chosen is to be a near-plug flow with the value of the
mean velocity slightly less than the first recorded experimental measurement. This was
done to allow the effect of the initial condition to be minimized before the flow is
quick enough for comparisons to be made to the experimental data. There is a small
amount of shear introduced in the initial profile to avoid the problems of near-static
regions and to aid convergence. Other initial conditions based on the shape of the
experimental velocity profile have also been tried, but the results are largely similar
after around 1 m of travel.

Figures 20 and 21 show the internal properties of a typical flow at an inclination
just above the maximum friction angle. The velocity profile in figure 20(a) agrees

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.331


High-speed granular chute flows 59

100

300

500

700

900

1100

–150
–100
–50

0
50
100

–1200
–1000
–800
–600
–400
–200

–1.0

–0.8

–0.6

–0.4

–0.2

0

–1.0

–0.8

–0.6

–0.4

–0.2

0

–1.0

–0.8

–0.6

–0.4

–0.2

0

–0.4 0.40 0–0.4 0.4 –0.4 0.400

(a) (b) (c)

FIGURE 21. (Colour online) Derivative quantities of simulation at θ = 38◦ and q =
17.8 kg s−1, 3.5 m after release: (a)

∣∣γ̇ij

∣∣; (b) ∂u/∂y; (c) ∂u/∂z. The same parameters as
figure 20 are used.

qualitatively with expectations: the velocity is greatest at the free surface and
decreasing toward the boundaries. The profile of I in figure 20(b) has some interesting
features, there are a number of high I zones: the centre of the base, the upper portion
of the sidewalls and the boundary layer near the free surface, where the inertial
parameter is infinite (and so not plotted). Using numerical data we can use (5.8) to
estimate the size of the boundary layer. A typical value for uy at the surface for the
simulations presented in figure 20 is 1, meaning that the boundary layer has size
z/d = 0.02. The maximum value of uy at the surface is higher at 44 but is concentrated
very near the walls, where the assumption of a Bagnold background profile and
therefore (5.7) is invalid. This length scale is too small to affect the grains for the
size of the flows investigated here. This is to be expected as a large change in I only
elicits a small change in µ(I) and σ since µ→ µ2. This can be seen in figure 20(c).
The resolution of the simulations presented here would need to increase by an order of
around 100 to flatly capture the change in I over this layer.

Figure 20(d) shows the velocity field normalized by the transverse profile taken at
some arbitrary depth. Since the profiles are not just constant multiples of each other,
the functional form of the velocity is not separable, i.e. it cannot be represented by
the form u= U(x)f (y)g(z), meaning that the transverse and depth effects are intimately
tied.

Figure 21 shows the flatly changing derivatives of the velocity field used in the
calculation of I and the stress tensor σ . It can be seen that the largest shear occurs at
the base, and so the frictional losses are highest there.

Substitution of the µ(I) rheology and the boundary condition (5.5) into (5.3) gives
two contributions to the total friction:

µ= µw
h

w
+ µb, (5.10)

where µw is defined as in (5.5) and µb is the effective basal friction and must therefore
be in the range µ1 6 µb 6 µ2. This relationship specifies the total frictional resistance:
figure 22 shows the total friction approaching µ2 as the flows accelerate and get
thinner. This is a behaviour not seen in the experimental results and will be discussed
in § 6.

The transverse surface velocity profiles that are produced by the simulations exhibit
a qualitative difference to those observed experimentally. In the simulations, there is
invariably a flat change of gradient over the entire width of the chute, as opposed
to the experimental profiles on the bumpy base which have three linear regions. A
comparison between the numerical and experimental flows on an inclination slightly
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FIGURE 22. (Colour online) Numerical simulations of the total friction µ on a bumpy base:
µ2 = 0.68 and µw = 0.45.
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FIGURE 23. (Colour online) Experimental and simulation properties over a bumpy base at
θ = 38◦ and q = 17.8 kg s−1 using parameters µ1 = 0.54, µ2 = 0.68 = tan(34◦) and I0 = 0.3:
(a) surface velocities; (b) friction coefficient µ.

higher than θ2 is shown in figure 23. We see that the total friction µ for the
experimental data is much higher than the total friction predicted using the µ(I)
rheology.

For inclinations below the maximum friction angle, good quantitative agreement of
the average velocity, us, and µ can be achieved by changing the rheological parameters
from their experimental values. It is also possible to closely match the slip velocity at
the wall by changing the wall friction coefficient. Any change of µw only has a small
effect on the average velocity since its effect is weighted by the aspect ratio h/w and
can therefore be independently chosen to match the wall velocity.
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FIGURE 24. (Colour online) Plot of szφ/0.58: (a) flat base; (b) bumpy base. Coloured by
inclination. The dots indicate the measurement at the top of the chute. The bumpy case is
plotted against Ib, and the flat against Fr . The lines in (b) indicate the region where a Bagnold
profile is likely.

6. Discussion
The µ(I) rheology has been developed and validated primarily for equilibrium flows

with low I. However, we have compared it with our experiments of accelerating flows
and high I, and found poor agreement with our data. One crucial difference is the
existence of the limiting value of friction in (5.10) as the flow develops and thins. For
this rheology, which takes its parameters from hstop experiments, the limiting value is
independent of the inclination of the flow. A comparison between the numerical results
in figure 22 and the data presented in figure 12 strongly suggests that experimentally
this is not true. For inclinations where θ > tan−1µ2, the µ(I) rheology predicts a total
friction value of µ2, however we observe steadily increasing values much larger than
those measured in the hstop experiments.

Unless mentioned explicitly, all experimental data presented here appears dense at
the free surface. Without this property, accurate measurements could not be made with
our equipment. We can indirectly examine the averaged volume fraction by using the
equation for global conservation of mass q = s1ushwφρ. However, care must be taken
with the unknown shape parameter s1 in order to gain information about the volume
fraction. The parameter s1 is the product of two contributions: one from the z depth
dependence and from the y transverse dependence. If the velocity profile is separable
then this can be written s1 = sysz where

sy =
∫

u/us|z=0 dy, (6.1)

which is a function of the velocity profile at the surface. We can then use this to
calculate the product szφ.

Figure 24 shows szφ normalized by a packing fraction of 0.58, a typical volume
fraction as measured by Louge & Keast (2001). A value of 1 indicates a plug-like
depth dependence, which figure 24(a) suggests is a reasonable approximation for
θ > 36◦ on the flat base. Lower inclinations have a lower value of sz, indicating more
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curvature of the profile, indeed for the lowest inclinations a value of 0.6 is attained,
suggesting that a Bagnold profile is also possible for a flat base.

The bumpy base exhibits a larger range of sz as can be seen in figure 24(b). At the
very lowest inclinations the value of sz is small and suggests the presence of a static
region at the base of the flow, similar to those seen in Taberlet et al. (2003). These are
only seen for inclinations below the maximum friction angle, θ2. For inclinations >36◦

and Ib < 1, szφ remains very close to a value of 0.6, suggesting a Bagnold profile. In
this region, there is a slight decrease with I as seen before by Baran et al. (2006)
and Forterre & Pouliquen (2008), due to the packing fraction decaying as I increases.
For higher values of Ib the flow becomes slightly more dilute at the top surface and
a slip velocity develops at the base. It must be noted that for smaller values of Ib

the flows have a very well-defined surface, with exceedingly few saltating particles. A
combination of these two factors gives rise to the large variations in szφ, with its value
ranging from more than 0.6 to less than 0.2.

Despite the flow remaining dense in the accelerating regime, the grains are not
acting in the frictional manner as described by the µ(I) rheology. To first order, the
grains are acting as a pseudo-viscous fluid: the resistance of the fluid is roughly
proportional to Fr (see figure 12a), rather than being bounded above by µ2.

There are a number of possibilities that could account for the extra resistance
required to reconcile the rheology with the experimental data. One of them is that the
pressure is strongly non-isotropic. If the lateral pressure is much greater than that in
the z direction, the frictional force at the wall will be much larger. Another possibility
is the effect of air drag on the particles at the surface. The drag force on a spherical
particle is given by a Stokes’ drag modified by a turbulent drag factor (see Börzsönyi
& Ecke 2006)

Fdrag = 3πµairdvc(v), (6.2)

where µair is the dynamic viscosity of air and c(v) is given by c(v) = 1 +
0.15 (vdρair/µair)

2/3. Taking this expression and forming the ratio to the gravitational
force gives the relative magnitude of the drag effect

Fdrag

mg
= 18µairvc(v)

d2ρ
. (6.3)

The velocity at which the drag is equal to the gravitational forcing is around 7.5 m s−1

but only affects those particles saltating away from the bulk above the free surface.
Figure 25 shows the size of this ratio as the velocity varies. As the free surface is not
vertical, after the particles are ejected they rejoin the flow shortly afterwards, and so
this prediction of the terminal velocity is an upper bound and will not be reached. This
effect is also reduced by the flowing grains shearing the air immediately above. This
means that the ambient fluid is not at rest, the relative velocities are lower and the
drag is reduced. Another air-induced effect is the stress exerted by the stationary air
on the free surface of the flow. However, a Prandtl boundary layer analysis reveals that
this effect is small, and is around 0.1 % of the gravitational forcing (see Börzsönyi &
Ecke (2006) for more details).

One of the shortcomings of the hstop quantification of friction is that µ1 and µ2,
parameters relevant to the internal flow, are dependent on the boundary condition. As
such, for high-velocity flows, if the character of the boundary interaction changes, µ1

and µ2, which are defined for stopping flows, may no longer be relevant.
The pseudo-viscous effect for large I suggests that including higher-order terms as

an extension to the µ(I) rheology might be a good approximation. These would not
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FIGURE 25. The relative effect of gravity and the turbulent air drag on a spherical particle
falling vertically in an ambient fluid.

affect the rheology in the regime where it has been well validated, but might have
improved the accuracy for higher I. Such a form is

µ(I)=
µ1I0 + µ2I + cI2

(
d

h

)α
I0 + I

(6.4)

where the new constants c and α are used as fit parameters. This form captures the
general linear behaviour of µ for large I but is unable to capture the second-order
dependence on either q or θ . The result of the fit can be seen in figure 26(a).

Plotting µ as a function of either Fr or Ib leaves unresolved dependencies on both
q and θ . There are three non-dimensional groups in the problem, namely Fr , n and θ ,
which can be used to find a scaling law. Defining a combination of the first two as

Iα = Fr

nα
(6.5)

gives a modified version of Ib which collapses the data over q for each inclination for
a choice of α = 1/3 for accelerating flows. The fit is shown in figure 26(b) which
suggests a linear dependence between µ/ tan θ and I1/3

µ

tan θ
= a(θ)I1/3 + b(θ) (6.6)

for some choices of a(θ) and b(θ). The data suggest that a and b share an asymptote
as well as the position at which their gradient tends to zero and, as such, the
functional form of the hstop curve in (3.1) is well suited to this. We can write

a(θ)= B

(
tan(φ2)− tan θ
tan θ − tan(φ1)

)
(6.7)
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FIGURE 26. (Colour online) (a) Fit with I2 extension to the µ(I) rheology. Solid lines are
the experimental data, black, dashed lines are the fit curves. The fitting parameters were
µ1 = 0.58, µ2 = 0.82, I0 = 0.37, c = 0.0015 and α = −2. (b) Plot of µ against I1/3 (time-
steady flows removed). Black, dashed lines give fit of data using the θ dependence in (6.8).

where, upon fitting, B= 0.03, φ1 = 23.1◦ and φ2 = 55.9◦. This gives the representation

µ

tan θ
= a(θ)

[
1.5+ I1/3

]+ 0.75. (6.8)

This relationship removes the friction angles deduced from hstop experiments from the
rheology and replaces them with two other generalized friction angles. The larger
angle corresponds to the point after which µ/ tan θ is constant, and is coincidentally
the highest inclination for which experiments were carried out. At these high
inclinations, µ saturates at around 0.8 tan θ .

In order to reconcile this analysis with previous studies, it is necessary to investigate
the angles for which equilibrium states exist in more detail. We plot µ as a function
of Ib for two inclinations in figure 27 and against Fr in the inset. The first inclination,
θ = 34.1◦ is just below the angle of vanishing hstop θ2 = 34.2◦, and the second
one above at θ = 36◦. At the lowest mass fluxes, both inclinations indeed exhibit
flows with constant friction coefficient. For the lower inclination, these flows are not
accelerating as constant Fr (or, equivalently, Ib) is achieved down the slope. At the
higher inclination, Fr and Ib decrease as the flow progresses. The start point for each
flow is marked with a dot. The values of µ for these flows are in agreement with the
values recorded in the hstop experiments, and therefore also agree with the numerically
investigated rheology. A slight complication is introduced as µ is no longer a single-
valued function of either Fr or Ib possibly due to the stabilizing influence of the
sidewalls. The change in µ at θ = 36◦ as q varies is around 7 %, and drops to 4 % for
34.1◦. It is also interesting to note that accelerating flows for these low inclinations are
collapsed over q when using I1/3 as the appropriate non-dimensional number, whereas
the flows with constant µ are not. Steady µ flows are well explained by the µ(I)
rheology, whereas the accelerating flows need an extra rheological contribution to
explain the behaviour. It is proposed that I1/3 gives the appropriate scaling for these
extra contributions.
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FIGURE 27. (Colour online) Behaviour of effective friction at low inclinations as a function
of Ib and Fr . Dot indicates measurement at the top of the chute.
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FIGURE 28. (Colour online) Log plot of n against Ib for the bumpy base.

A further indication of a difference in regime can be seen in figure 28, which shows
a log–log plot of the dependence of h/d on Ib. Manipulation of the µ(I) (1.1) and
(3.1) gives

Ib =−γ n−1 + β
(

tan θ − µ1

µ2 − tan θ

)
. (6.9)
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FIGURE 29. Terminal state of flow simulations using different particle species. The
time-steady-state value of Ib is plotted for various q and θ .

The low inclinations for which this rheology is expected to work do exhibit a slope
of gradient −1, but quickly change as the inclination increases. The accelerating flows
exhibit a behaviour such that Ib ∼ n−3. Given that µ is no longer simply a function of
a parameter such as Ib, and different scalings are required to collapse the accelerating
and constant µ regimes, it is possible that other flow variables such as granular
temperature are needed to fully describe the system.

The form proposed in (6.8) predicts that the flow cannot reach a steady velocity
above θ = φ2. Below this threshold, the terminal state is given by I1/3 = 0.25/a(θ) −
1.5. Above this threshold, the total friction µ is always less than the maximum value
µ= 0.75 tan θ , resulting in an constantly accelerating flow.

However, DEM simulations for flows on high angles suggest that non-accelerating
states can exist, although they are not dense throughout their depth. Figure 29 shows
the steady-state value of Ib for multiple θ , q and particle species. At these high
values of Ib, the particle stiffness and size become important as the dissipation
during inelastic collisions provides another mechanism for energy dissipation. For
lower inclinations, the variation in terminal Ib is very small between different particle
species. For the high-inclination flows, the final state is periodic, where the flow
separates from the base and shortly after falls, colliding with the base again dissipating
energy, allowing µ→ tan θ , at least in an averaged sense. In order to replicate this in
the lab, the chute would need to be many kilometres long. It is also not clear if the
ambient fluid would have a significant effect on the flow in this state.

The fitting function in (3.4) also can be manipulated to give a prediction of if a
terminal velocity vterm exists. If κ > 0, then vterm can be calculated by v2

term = u2
0 + β/κ .

For flows with a constant velocity in the chute, vterm is taken directly from the data.
Although care must be taken when extrapolating data outside of the observed range,
all but one of the terminal velocities were less than double the velocity at the end of
the chute. This indicates it is not unreasonable to expect that the flow, when at the
extrapolated velocity, is in a dense state similar to how it is observed in the chute,
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FIGURE 30. (Colour online) (a) The terminal velocity of full-width flows on a bumpy base
as predicted by the fit formula (3.4). Each line represents the terminal velocities at a given
inclination as the flux varies. (b) The terminal value of I, Iterm, as it varies with q and θ . The
value of h used in the calculation is calculated from q, assuming a constant φ.

and so the extrapolated terminal state is a likely outcome. If the flow undergoes a
phase transition, then the development is likely to be substantially different to the
extrapolated development.

Figure 30 shows the terminal velocity vterm, and terminal inertial number Iterm (when
they exist) for flows over the bumpy base. Figure 30(a) shows vterm as a function of
the control parameters θ and q. A clear structure is shown where the terminal velocity
is a strong function of the inclination, especially at high inclinations. Indeed, for flows
over 51.8◦ no steady flows were predicted by the extrapolation, perhaps indicating
that there is still an upper limit to the friction, albeit much higher than the values
measured from hstop experiments. The dependence of vterm on the mass flux, q, is
also increasing. However, as q increases, the dependence weakens suggesting that the
terminal velocity will become independent of the mass flux (and, therefore, the flow
height). This is possibly due to the wall friction giving an increased contribution as the
flow deepens.

Figure 30(b) shows the terminal value of the inertial parameter Iterm, as a function of
θ . If I is indeed the only parameter that governs the flow then we would expect total
collapse of the data in this graph, however there is still significant spread. Plotting the
data in terms of I1/3 as in figure 26(b) does not significantly improve the collapse of
the data either.

The predicted values of the steady-state mass hold-up ñ = nφ/0.58 can be seen in
figure 31. In contrast to the µ(I) rheology which predicts that for flows on inclinations
θ > θ2 should have an indefinite, linear acceleration, we see that steady states are
possible in this region. Also shown is the shaded region underneath the hstop curve, in
which a heap will form with a flowing layer on top of it. At the other end of the space,
for high inclinations and small ñ we see the predicted steady state for the separated
flows. As no data was available for the dilute flows (as n is ill-defined), the boundaries
of this area of the phase plane were estimated.
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FIGURE 31. Phase diagram showing how the predicted terminal mass hold-up ñ and θ vary.
Here (+) indicates flows with a predicted constant velocity terminal state and (�) indicates
flows that have a predicted steady state, but have separated at the wall. No data exists for the
dilute flows as n is ill-defined there. There is also no data for low flow rates q as the apparatus
was sensitive to cross-slope variation in the initial condition for very thin flows. The shaded
area shows where h< hstop and heap flow occurs.

There are no data for very low fluxes q < 1 kg s−1 as the apparatus tended to
produce a low-energy, uneven saltating state, which is initiated by the drop from the
hopper to the chute, again making n ill-defined.

The flows over a flat base did not exhibit such a rich range of behaviours. The data
set was much smaller as transverse separation affected a large proportion of the flows,
and has therefore been excluded from most of the analysis. Figure 12(b) shows that
µ is invariably lower than on the bumpy base, as the flat base gives less resistance.
The range of µ seen over the small base is much lower, and is almost uniform for
all Fr . This fits in well with the hstop data, which only gave a difference of 0.2◦
between θ1 and θ2. As a result, the µ(I) model with constant µi gives good agreement
with the data. It not clear whether the flows on the flat base will approach a terminal
velocity in the same way as the bumpy base. Since the acceleration of these flows
is approximately linear, the fit (3.4) is degenerate for three parameters, meaning that
κ , and therefore the extrapolated terminal velocity, is very sensitive to small amounts
of noise.

However, this zeroth-order, sliding block model cannot capture the cross-slope
velocity variation. As the flow accelerates, mass conservation dictates that if φ stays
constant, then the height must decrease and the flow must elongate. This elongation
will then excite an internal flow structure, generating transverse gradients in the stress
and ultimately the cross-slope velocity profile seen at the surface.
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FIGURE 32. (Colour online) Plot of µ on a flat base, inclination 40◦ for varying fluxes. Dots
indicates measurement at the top of the chute.

Figure 32 shows an interesting dependence of µ on the mass flux for the flat
base. Low mass fluxes demonstrate the expected behaviour of µ increasing with Fr .
However, as the mass flux increases, the gradient of this slope decreases until it
becomes negative. This effect is seen for all of the fully dense flows investigated
here. Having a negative gradient of µ(Fr) indicates that in this regime the flows will
accelerate faster and faster until a flow transition occurs or other forces come into
effect.

7. Conclusion
Previous work on granular flows has concentrated on I < 0.5 (MiDi 2004). The

µ(I) rheology and the flow rule Fr = −γ + β(h/hstop) have been successful in
predicting the dynamics of such flows. However, they suggest that no non-accelerating
flows are possible for θ > tan−1µ2 since hstop = 0. Our experiments show that these
models are inaccurate for larger θ and that steady flows could be possible on much
steeper slopes. A number of interesting instabilities were also observed. We have
observed a transverse separation where a dense core in the middle of the chute is
flanked by dilute regions which grow in size down the chute. We have also seen a
transition where the entire bulk of the flow becomes energized, unstable and diluted. A
transverse velocity profile instability in the form of longitudinal vortices was also seen
for intermediate inclinations.

Flows over the flat base are well-modelled by constant total friction. Although
there was some complicated variation with the Froude number and flow depth, it was
small compared with the range of the total friction on the bumpy base. However, a
significant cross-slope velocity variation was observed that is incompatible with some
granular models which predict a plug flow over flat surfaces. Development of a model
to capture these effects remains a subject for future work. Of particular interest would
be a comparison of this data with the three-dimensional numerical simulations of
kinetic theory.
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BÖRZSÖNYI, T., ECKE, R. E. & MCELWAINE, J. N. 2009 Patterns in flowing sand: understanding
the physics of granular flow. Phys. Rev. Lett. 103 (17), 178302.

DELANNAY, R., LOUGE, M., RICHARD, P., TABERLET, N. & VALANCE, A. 2007 Towards a
theoretical picture of dense granular flows down inclines. Nat. Mater. 6 (2), 99–108.
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