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Abstract

In the present work, some new maximal inequalities for nonnegative N -demi(super)-
martingales are first developed. As an application, new bounds for the cumulative
distribution function of the waiting time for the first occurrence of a scan statistic in
a sequence of independent and identically distributed (i.i.d.) binary trials are obtained. A
numerical study is also carried out for investigating the behavior of the new bounds.
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1. Introduction

Demimartingales have drawn the attention of many researchers during the last decades
(see e.g. the pioneering papers of Newman and Wright [14] and Christofides [7], respectively,
where the latter two concepts were introduced), because of the fact that they can be exploited to
develop useful tools for dealing with stochastical dependence. The martingale theory possesses
an important feature: many of the techniques and tools derived by it remain valid or can be
easily extended under very general assumptions on the underlying structure. For more details,
we refer the interested reader to, e.g. Prakasa Rao [18].

This is not always straightforward or guaranteed, though. On the contrary, it may prove
to be quite tricky as it is suggested by a recent contribution of Dai et al. [8], in which a
counterexample for the validity of some Chow type maximal inequalities forN -demimartingales
was provided. This counterexample also applies to another well-known maximal inequality for
N -demimartingales (see [7, Theorem 2.1] or [18, Theorem 3.2.1]), which could have been of
special interest for the purposes of this paper, should it be valid.

The main objective of this work consists in developing some alternatives to the latter inequal-
ity. More precisely, after recalling the necessary preliminary notions and notation (see Sec-
tion 2), in Section 3 some new maximal inequalities for nonnegativeN -demi(super)martingales
are derived. These inequalities are implemented, in Section 4, for obtaining bounds for the
cumulative distribution function (CDF) of the waiting time for the first occurrence of a certain
type of scan. In Section 4 we conclude with a numerical investigation of the behavior of the
bounds.
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Note that scan statistics are defined as random variables enumerating the moving windows in
a sequence of binary outcomes trials that contain a prescribed number of successes. The asso-
ciated waiting time problems have proven to be of particular importance due to the widespread
applicability of scan statistics in a substantial number of scientific areas such as actuarial
science, reliability theory, and molecular biology; see, e.g. [3], [15], and [6], respectively. For
a survey of the area, we refer the interested reader to Balakrishnan and Koutras [1] and to the
edited volume of Glaz et al. [12]. In Pozdnyakov et al. [17] and Pozdnyakov and Steele [16], a
martingale approach (for other approaches, see, e.g. [9], [10], and [19]) has been exploited for
scan and pattern related problems. Despite this, there seems to be a gap in taking advantage of
results related to the aforementioned generalizations of martingales to arrive at useful outcomes
for scan statistics problems. This gap was the motivation for the last section of our work, and
hopefully for a small contribution in addressing it.

2. Preliminaries

The notation N stands for the set of all positive integers, and N0 := N ∪ {0}. The set of
all real numbers is denoted by R, while R+ := {x ∈ R : x ≥ 0}. If d ∈ N then R

d denotes
the Euclidean space of dimension d . Moreover, x ∧ y := min{x, y}, x ∨ y := max{x, y}, and
x+ := x ∨ 0 for x, y ∈ R. For n ∈ N and i ∈ {1, . . . , n}, the i-canonical projection from R

n

onto R is denoted by πi .
Throughout what follows, we consider an arbitrary but fixed probability space (�,�,P).
By σ(Z) := {Z−1(B) : B ∈ B} we denote the σ -algebra generated by the �-measurable

function Z, where B := B(R) stands for the Borel σ -algebra of subsets of R. On defining
TZ := {B ⊆ R : Z−1(B) ∈ �} for any �-measurable function Z, it is clear that B ⊆ TZ .
We denote by PZ : TZ → R the image measure of P under Z. The restriction of PZ to B
is denoted again by PZ , while RZ stands for the range of Z. The notation bin(n, p), where
n ∈ N and p ∈ (0, 1), stands for the law of the binomial distribution. Moreover, its probability
mass and cumulative distribution function at point x ∈ R will be denoted by b(x; n, p) and
Fb(x; n, p), respectively, while Mb(α, n, p) := ∑n

x=α xb(x; n, p) for each α ∈ {1, . . . , n}.
A set N ∈ � with P(N) = 0 is called a P-null set. A sequence {Zj }j∈N of �-measurable

functions satisfies a property P-a.s. (P-almost surely) if there exists a P-null set, say O, such
that the property is satisfied by {Zj }j∈N for all ω /∈ O.

The family of all real-valued P-integrable functions on � will be denoted by L1(P). Func-
tions that are P-a.s. equal are not identified. The (unconditional) expectation of the random
variable Z is denoted by EP[Z]. If Z ∈ L1(P) and F is a σ -subalgebra of �, then each
function Z̃ ∈ L1(P | F ) satisfying, for each F ∈ F , the equality

∫
F
Z dP = ∫

F
Z̃ dP is said

to be a version of the conditional expectation of Z given F , and is denoted by EP[Z | F ].
Furthermore, for any E ∈ � we set P(E | F) := EP[1E | F ], where 1E stands for the
indicator (or characteristic) function of E.

A family {Fj }j∈N of σ -subalgebras of �, such that Fj ⊆ Fj+1 for each j ∈ N, is called a
filtration for the measurable space (�,�). Moreover, a sequence {Zj }j∈N of random variables
on � is said to be adapted to a filtration {Fj }j∈N if each Zj is Fj -measurable. If Fj =
σ(

⋃j
i=1 σ(Zi)) for each j ∈ N then {Fj }j∈N is said to be the canonical filtration for {Zj }j∈N,

and is denoted by {F (Z)
j }j∈N.

3. Maximal inequalities for nonnegative N -demimartingales

Some notions that are fundamental for the purposes of this section are first recalled.

https://doi.org/10.1017/jpr.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.5


New maximal inequalities for N -demimartingales and scan statistics 365

Definition 1. Let {Zj }j∈N be a sequence in L1(P). Then {Zj }j∈N is said to be

(i) a P-martingale (with respect to {F (Z)
j }j∈N), if

EP[(Zj+1 − Zj )f (Z1, . . . , Zj )] = 0 for each j ∈ N (1)

and for every measurable function f on R
j such that the above expectations exist;

(ii) a P-demimartingale, if condition (1) but with ‘≥’in the place of the equality is satisfied for
every coordinatewise nondecreasing function f on R

j such that the above expectations
exist;

(iii) a P-demisubmartingale, if condition (1) but with ‘≥’in the place of the equality is satisfied
for every f as in (ii) but with f ≥ 0;

(iv) an N -demimartingale under P, if condition (1) but with ‘≤’ in the place of the equality
is satisfied for every f as in (ii). In particular, if f ≥ 0 then {Zn}n∈N is said to be an
N -demisupermartingale under P.

From the definitions given above it is clear that the class of all P-martingales is a subset of
the class of all demimartingales, which in its own turn is a subclass of the demisubmartingales’
one. Moreover, it is obvious that any N -demimartingale is also an N -demisupermartingale.
For more on Definitions 1 and the way that the notions given there are related to each other, we
refer the interested reader to Prakasa Rao [18].

The next result is provided as an alternative to [7, Theorem 2.1].

Proposition 1. If {Zj }j∈N is an N -demimartingale under P such that Zj ≥ 0 P-a.s. for each
j ∈ N, then for any fixed t ∈ N and for each ε > 0 the following inequality holds:

P

(
max

1≤j≤t Zj > ε
)

≤ 1 − 1

ε
EP[Z1] + 1

ε

t∑
m=1

EP[Zm 1{Zm>ε}]. (2)

If, in addition, {Zj }j∈N is upper bounded by a positive number ζ then

ζP

(
max

1≤j≤t Zj ≥ ε
)

≥ EP[Z1] − EP[Zt 1{max1≤j≤t Zj<ε}].

Proof. First fix on arbitrary t ∈ N and ε > 0. Define next the random variable τt,ε : � −→ R

by means of

τt,ε(ω) := τt,ε(Z1, . . . , Zt )(ω)

=
{

inf{j ∈ {1, . . . , t} : Zj (ω) > ε} if ω ∈ ⋃t
j=1{Zj > ε},

t if ω ∈ ⋂t
j=1{Zj ≤ ε}, (3)

for each ω ∈ �. Clearly, τt,ε is an F (Z)
t -measurable function and Rτt,ε = {1, . . . , t}.

Moreover, it can be proven that τt,ε is a coordinatewise nonincreasing function ofZ1, . . . , Zt
by distinguishing the following cases.

(i) Let ω ∈ ⋃t
j=1{Zj > ε}. Then we may claim that there exists a j1 ∈ {1, . . . , t} such that

inf{j ∈ {1, . . . , t} : Zj (ω) > ε} = j1, and so τt,ε(Z1, . . . , Zt )(ω) = j1. Consider now
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a sequence {Ẑj }j∈N of random variables on � such that

(a) Ẑj2(ω) > Zj2(ω) for some j2 ∈ {j1, . . . , t} and Ẑj (ω) = Zj (ω) for all j �= j2.
Then, we have

τt,ε(Ẑ1, . . . , Ẑj2 , . . . , Ẑt )(ω) = τt,ε(Z1, . . . , Ẑj2 , . . . , Zt )(ω) = j1; (4)

(b) there exists a j3 ∈ {1, . . . , j1 −1} such that Ẑj3(ω) > Zj3(ω) and Ẑj (ω) = Zj (ω)

for all j �= j3. If Ẑj3(ω) ≤ ε then condition (4), with j3 in the place of j2, holds,
while if Ẑj3(ω) > ε, we obtain

τt,ε(Ẑ1, . . . , Ẑj3 , . . . , Ẑt )(ω) = τt,ε(Z1, . . . , Ẑj3 , . . . , Zt )(ω) = j3 < j1.

(ii) Let ω ∈ ⋂t
j=1{Zj ≤ ε}. Consider a sequence {Z̆j }j∈N of random variables on � such

that Z̆j4(ω) > Zj4(ω) for some j4 ∈ {1, . . . , t} and Z̆j (ω) = Zj (ω) for all j �= j4. If
Z̆j4(ω) > ε we obtain τt,ε(Z̆1, . . . , Z̆j4 , . . . , Z̆t )(ω) = j4 < t , otherwise the equality
τt,ε(Z̆1, . . . , Z̆j4 , . . . , Z̆t )(ω) = t holds.

Consequently, 1[0,t](τt,ε) is a coordinatewise nondecreasing function of Z1, . . . , Zt .
The latter, along with our assumption that {Zj }j∈N is an N -demimartingale under P, yields

EP[Z1] ≤ EP[Zτt,ε∧t ] (see [13] or better, see, e.g. [18, Theorem 3.1.7]); therefore,

EP[Z1] ≤ EP[Zτt,ε 1{max1≤j≤t Zj>ε}] + EP[Zt 1{max1≤j≤t Zj≤ε}]
and the following inequality ensues:

εP
(

max
1≤j≤t Zj ≤ ε

)
≥ EP[Z1] − EP[Zτt,ε 1{max1≤j≤t Zj>ε}]. (5)

But since the last expectation is equal to

t∑
m=1

EP[Zτt,ε 1{max1≤j≤t Zj>ε, τt,ε=m}] =
t∑

m=1

EP[Zm 1{max1≤j≤t Zj>ε, τt,ε=m}]

and all random variables Zn are P-a.s. nonnegative, it follows that

EP[Zτt,ε 1{max1≤j≤t Zj>ε}] ≤
t∑

m=1

EP[Zm 1{max1≤j≤t Zj>ε,Zm>ε}] =
t∑

m=1

EP[Zm 1{Zm>ε}].

Making use of the last inequality in (5), we deduce

ε − εP
(

max
1≤j≤t Zj > ε

)
≥ EP[Z1] −

t∑
m=1

EP[Zm 1{Zm>ε}];

thereof obtaining an alternative expression for (2).
Assume now, in addition, that there exists ζ > 0 such that Zj ≤ ζ for each j ∈ N. Consider

the random variable τ̈t,ε : � −→ R defined as τt,ε in (3) but with ≥ and < in the place of >
and ≤, respectively.

Then following the same reasoning as in the proof of (2), we obtain

EP[Z1] − EP[Zt 1{max1≤j≤t Zj<ε}] ≤ EP[Zτ̈t,ε 1{max1≤j≤t Zj≥ε}] ≤ ζP

(
max

1≤j≤t Zj ≥ ε
)
,

which completes the proof. �
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Another alternative to Theorem 2.1 from [7] is next presented.

Proposition 2. If {Zj }j∈N is an N -demisupermartingale under P such that Zj ≥ 0,P-a.s. for
each j ∈ N, then for any fixed t ∈ N and for each ε > 0 the following inequality holds:

εP
(

max
1≤j≤t Zj ≥ ε

)
≤

t∑
m=1

EP[Zm 1{max1≤j≤m Zj≥ε}].

Proof. First fix on arbitrary t ∈ N and ε > 0. Define next the random variable τ̃t,ε : � −→ R

by means of

τ̃t,ε(ω) := τ̃t,ε(Z1, . . . , Zt )(ω)

:=
{

sup{j ∈ {1, . . . , t} : Zj (ω) ≥ ε} if ω ∈ ⋃t
j=1{Zj ≥ ε},

1 if ω ∈ ⋂t
j=1{Zj < ε},

for each ω ∈ �. Clearly, τ̃t,ε is an F (Z)
t -measurable function and Rτ̃t,ε = {1, . . . , t}.

Moreover, τ̃t,ε is a coordinatewise nondecreasing function of Z1, . . . , Zt . This can be
verified by following similar arguments as those used for proving the corresponding assertion
for τt,ε in the proof of Proposition 1. Consequently, 1[0,t](̃τt,ε) is a coordinatewise nonincreasing
function of Z1, . . . , Zt .

The latter, together with our assumption that {Zj }j∈N is an N -demisupermartingale under
P, yields EP[Z1] ≥ EP[Zτ̃t,ε∧t ] (see [13] or better, see, e.g. [18, Theorem 3.1.7]), and so we
obtain

EP[Z1] ≥ EP[Zτ̃t,ε 1{max1≤j≤t Zj≥ε}] + EP[Z1 1{max1≤j≤t Zj<ε}]
or, equivalently,

EP[Z1 1{max1≤j≤t Zj≥ε}] ≥ EP[Zτ̃t,ε 1{max1≤j≤t Zj≥ε}].
But since all random variables Zn are P-a.s. nonnegative, it follows that

EP[Zτ̃t,ε 1{max1≤j≤t Zj≥ε}] ≥ EP[Zt 1{max1≤j≤t Zj≥ε}∩{max1≤j≤t−1 Zj<ε,Zt≥ε}]
≥ εP

(
max

1≤j≤t−1
Zj < ε,Zt ≥ ε

)
;

hence, setting ψ(t) := ψ(t; ε) := P(max1≤j≤t Zj ≥ ε), we obtain

ε[ψ(t)− ψ(t − 1)] ≤ EP[Z1 1{max1≤j≤t Zj≥ε}] for each t ∈ N,

since t was chosen arbitrarily. Then by induction our proposition follows. �

4. An application related to scan statistics

Let {Xn}n∈N be a sequence of binary trials on �, each resulting in either a success (i.e.
{Xn = 1}) or a failure (i.e. {Xn = 0}) with probabilities of success pn (0 < pn < 1). Then, for
any fixed k ∈ N and for each m ∈ N such that m ≤ k, the sequence Xn,Xn+1, . . . , Xn+m−1
of random variables on � is called a moving window (for {Xn}n∈N) of length m. In particular,
if

∑n+m−1
j=n Xj ≥ r then the above subsequence of {Xn}n∈N is said to be a scan or generalized

run of type r/k, i.e. the term ‘scan of type r/k’ refers to subsequencesXn,Xn+1, . . . , Xn+m−1
of length m ≤ k such that the number of successes contained therein is at least r .
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In what follows, we setX0 := 0 and assume that every sum over an empty index set is equal
to 0. For each n ∈ N and k ∈ N0, consider the random variable Yn,k on � defined by

Yn,k :=
n∑

j=max{n−k+1,1}
Xj . (6)

For any fixed k ∈ N, the sequence {Yn,k}n∈N will be called a scan enumerating process of
width k for the sequence of binary trials {Xn}n∈N. The random variable T (k)r , defined on � by
means of

T (k)r := min{n ∈ N : Yn,k ≥ r},
is said to be the waiting time for the first occurrence of a scan of type r/k.

It is clear that for any fixed k ∈ N the sequence {Yn,k}n∈N is not P-independent. On the
other hand, it can be easily proven that for any fixed k ∈ N and for all r, k, t ∈ N with r ≤ k,

the equality {T (k)r ≤ t} = {max1≤n≤t Yn,k ≥ r} holds; therefore, it seems reasonable to wonder
whether maximal inequalities can be exploited for obtaining some upper and lower bounds for
the CDF Fr:k(t;p) := P(T

(k)
r ≤ t); see also, e.g. [18, Chapters 2 and 3].

Motivated by the above question, the membership of {Yn,k}n∈N, for k ∈ N fixed, in the
classes of demi(sub)martingales and N -demi(super)martingales is first explored below and
then a relevant N -demimartingale result is given.

In what follows, unless it is stated otherwise, we assume that {Xn}n∈N is a sequence of
P-independent and identically distributed (P-i.i.d.) binary trials.

The next result is an immediate consequence of the definition of conditional expectation and
the monotonicity of the functions used in the statement of the outcomes.

Lemma 1. Let k ∈ N be arbitrary but fixed. For each n ∈ N with n ≥ k, also let f be
a coordinatewise nondecreasing real-valued function on R

n as well as {hi,k}i∈{1,...,n} be a
sequence of such functions on R

i∧k . Then the following holds:

ηn,k,0(hi,k; f ) ≤ ηn,k,1(hi,k; f ),
where

ηn,k,x(hi,k; f ) := EP[f (h1(X1), . . . , hn(Xn−k+1, . . . , Xn)) | {Xn−k+1 = x}], x ∈ {0, 1}.
In particular,

EP[f (Y1,k, . . . , Yn,k) | {Xn−k+1 = 0}] ≤ EP[f (Y1,k, . . . , Yn,k) | {Xn−k+1 = 1}].
It can be easily seen that the sequence {Xn}n∈N is anN -demimartingale under P but it is not

a P-demisubmartingale. The latter can be also obtained as a special case of the next result.

Lemma 2. Let k ∈ N be arbitrary but fixed. Then the sequence {Yn,k}n∈N is neither a P-
demisubmartingale nor an N -demisupermartingale under P.

Proof. First fix on an arbitrary k ∈ N. Then note that, by (6), we have

Yn,k − Yn−1,k = Xn −X(n−k)+ for each n ∈ N; (7)

hence, for each n ∈ N and for every measurable function f on R
n such that each expectation

Hn,k(f ) := Hn,k(Y1,k, . . . , Yn,k; f ) := EP[(Yn+1,k − Yn,k)f (Y1,k, . . . , Yn,k)]
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exists, we obtain

Hn,k(f ) = EP[(p −X(n−k+1)+)f (Y1,k, . . . , Yn,k)].

If in addition, f is coordinatewise nondecreasing, it follows by Lemma 1 that

Hn,k(f ) = pq[ηn,k,0(hi,k; f )− ηn,k,1(hi,k; f )] ≤ 0 for each n ∈ N with n ≥ k, (8)

where

hi,k(x(i−k+1)∨1, . . . , xi) :=
i∑

j=(i−k+1)∨1

xj

for each k ∈ N and for each (x(i−k+1)∨1, . . . , xi) ∈ R
i∧k , while it is immediate that

Hn,k(f ) = pEP[f (Y1,k, . . . , Yn,k)] ≥ 0 for each n ∈ N with n < k. (9)

Suppose now that {Yn,k}n∈N is a P-demisubmartingale. It then follows that for each n ∈ N

and for every nonnegative coordinatewise nondecreasing function f on R
n such that Hn,k(f )

exists, we have Hn,k(f ) ≥ 0. The latter, together with an application of condition (8) for
f = πn, yieldsHn,k(πn) = 0 for each n ∈ N with n ≥ k. But since by assumption {Xn}n∈N is
P-independent, it follows that

PYn,k = bin(n ∧ k, p) for each n ∈ N, (10)

implying, in conjunction with conditions (7) and (10), that

Hn,k(πn) = EP[(Yn+1,k − Yn,k)Yn,k] = EP[Xn+1Yn,k] − EP[Xn−k+1Yn,k] = −pq;

hence, 0 = Hn,k(πn) = −pq for each n ∈ N with n ≥ k, a contradiction. Thus, {Yn,k}n∈N

cannot be a P-demisubmartingale.
Moreover, suppose that {Yn,k}n∈N is an N -demisupermartingale under P. Then applying

similar arguments as above and consideringf = 1 instead off = πn, we infer, by condition (9),
that 0 = Hn,k(1) = p for each n < k, which is not valid; hence, {Yn,k}n∈N cannot be an N -
demisupermartingale under P either. This completes the proof. �

As a result of Lemma 2, none of the maximal inequalities that are valid either for N -
demi(super)martingales or for demi(sub)martingales can be exploited in the case of the enu-
merating process {Yn,k}n∈N, where k ∈ N is arbitrary but fixed. To overcome this difficulty,
consider, for any fixed k ∈ N, the sequence {Ỹn,k}n∈N0 of random variables on � defined by
means of

Ỹn,k :=

⎧⎪⎨⎪⎩
Yn,k if n ∈ {k, k + 1, . . .},
Yk,k if n ∈ {1, . . . , k − 1},
0 if n = 0,

(11)

and note that RỸn,k = {0, . . . , k} for each n ∈ N.

Proposition 3. For any fixed k ∈ N, the sequence {Ỹn,k}n∈N is anN -demimartingale under P.
Moreover, it is not a P-demisubmartingale.
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Proof. First fix on an arbitrary k ∈ N. Then note that the sequence {Ỹn,k}n∈N is adapted to
{F (X)
n }n∈N, since {Yn,k}n∈N is so by virtue of (6). Furthermore, for each n ∈ N and for every

coordinatewise nondecreasing function f on R
n such that each expectation

H̃n,k(f ) := H̃n,k(Ỹ1,k, . . . , Ỹn,k; f ) := EP[(Ỹn+1,k − Ỹn,k)f (Ỹ1,k, . . . , Ỹn,k)]
exists, it follows, by (11), that

H̃n,k(f ) =
{
Hn,k(f ) if n ∈ {k, k + 1, . . .},
0 if n ∈ {1, . . . , k − 1},

implying, together with condition (8), that H̃n,k(f ) ≤ 0 for each n ∈ N. The latter, in view
of the fact that EP[Ỹn,k] = kp < ∞ for each n ∈ N, yields that the sequence {Ỹn,k}n∈N is an
N -demimartingale under P.

Suppose now that {Ỹn,k}n∈N is a P-demisubmartingale as well. It then follows that H̃n,k(f ) =
0 for each n ∈ N and for every nonnegative coordinatewise nondecreasing function f on R

n

such that each expectation H̃n,k(f ) exists. But then, by the proof of Lemma 2, we infer, for
each n ∈ N with n ≥ k, that 0 = H̃n,k(πn) = Hn,k(πn) = −pq, a contradiction. So, our
statement that {Ỹn,k}n∈N is not a P-demisubmartingale follows. �

In the remainder of this section, we focus on illustrating how Propositions 1 and 2 can be
exploited for obtaining bounds for the CDF of the waiting time T (k)r ; see Corollaries 1 and 2,
respectively. Note that bounds and approximations are widely used in the study of scans and
runs as an extensive literature (including among others the fundamental contribution of Glaz
and Naus [11], [4], and [5] as well as [1, Chapters 9 and 11], where an overview on this subject
can be found) witnesses.

Corollary 1. For any fixed k ∈ N and for all r, t ∈ N with r ≤ k < t, the following holds:

(r, k, p) ≤ Fr:k(t;p) ≤ u1(r, k, t, p),

where

u1(r, k, t, p) := 1 − kp

r − 1
+ t

r − 1
Mb(r, k, p), (r, k, p) := 1

k
Mb(r, k, p).

Proof. First fix on arbitrary r, k, t ∈ N with r ≤ k < t . We shall now proceed by carrying
out the next three steps.

(i) We shall prove the inequality Fr : k(t;p) ≤ u1(r, k, t, p).
By virtue of Proposition 3 we may apply Proposition 1 for {Zj }j∈N = {Ỹn,k}n∈N and

ε = r − 1; hence, (2) becomes

(r − 1)P
(

max
1≤n≤t Ỹn,k ≥ r

)
≤ (r − 1)− EP[Ỹ1,k] +

k∑
n=1

EP[Ỹn,k 1{Ỹn,k≥r}]

+
t∑

n=k+1

EP[Ỹn,k 1{Ỹn,k≥r}],

which together with conditions (10) and (11) as well as the fact that

{T (k)r ≤ t} =
{

max
k≤n≤t Yn,k ≥ r

}
=

t⋃
n=k

{Yn,k ≥ r}, (12)
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yields

Fr : k(t;p) ≤ 1 − kp

r − 1
+ t

r − 1

k∑
y=r

yb(y; k, p).

(ii) If we set �r,k,t (y) := P(Yt,k = y,maxk≤n≤t Yn,k ≤ r − 1) for y ∈ N0 then

�r,k,t (y) ≤ b(y; k, p) for each y ∈ {0, . . . , r − 1}.
For proving the above fact, note that since Yn,k = ∑n

j=1(Yj − Yj−1,k) for each n ∈ N, we
obtain, by (7),

Ym,k − Yn,k =
m∑

j=n+1

(Xj −X(j−k)+) =
m∑

j=n+1

Xj −
m−k∑

j=n−k+1

Xj+ (13)

for each n,m ∈ N such that m > n. So, by the P-independence of the binary trials {Xn}n∈N, it
follows, for each y ∈ {0, . . . , r − 1}, that

�r,k,t (y) = P

(
Yt,k = y, max

k≤n≤t

( t−k∑
j=n−k+1

Xj −
t∑

j=n+1

Xj

)
≤ r − 1 − y

)

≤ P

(
Yt,k = y, max

k≤n≤t

( t−k∑
j=n−k+1

Xj − t + k

)
≤ r − 1 − y

)

≤ P

(
Yt,k = y,

t−k∑
j=1

Xj ≤ t − k + r − 1 − y

)
= b(y; k, p)Fb(t − k + r − 1 − y; t − k, p)

= b(y; k, p),
which completes (ii).

(iii) Finally, we shall prove that Fr:k(t;p) ≥ (r, k, p).
Because of Proposition 3 and the fact that the process {Ỹn,k}n∈N is upper bounded by k, we

may apply the ‘in addition’ part of Proposition 1 for {Zj }j∈N = {Ỹn,k}n∈N and (ε, ζ ) = (r, k)

to obtain
kP

(
max

1≤n≤t Ỹn,k ≥ r
)

≥ EP[Ỹ1,k] − EP[Ỹt,k 1{max1≤n≤t Ỹn,k≤r−1}],
which together with conditions (10)–(12), yields

Fr : k(t;p) ≥ p − 1

k
EP[Yt,k 1{maxk≤n≤t Yn,k≤r−1}].

But since EP[Yt,k 1{maxk≤n≤t Yn,k≤r−1}] = ∑r−1
y=1 y�r,k,t (y), we obtain, by (ii),

EP[Yt,k 1{maxk≤n≤t Yn,k≤r−1}] ≤
r−1∑
y=1

yb(y; k, p) = kp −Mb(r, k, p),

and so (iii) follows.
Steps (i) and (iii) prove the corollary. �
We shall next derive three additional upper bounds for Fr;k(t;p). In order to arrive at these

we need to prove first the following lemma.
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Lemma 3. For any fixed k ∈ N, for all l, m ∈ N such that l ≥ m ≥ k and for each Bm ∈ B,
the quantities dl;m := dl;m(Yl,k;Ym,k, Bm) := EP[Yl,k 1

Y−1
m,k(Bm)

] satisfy the following equality:

dl;m = dm;m + [(m− l) ∧ k]p
∑
y∈Bm

[b(y; k, p)− b(y − 1; k − 1, p)].

Proof. First note that the validity of the above equality for m = l is obvious. Fix now on
arbitrary k, l ∈ N such that k ≤ l.

Condition (13) yields, for each m ∈ N with m > l and for each Bm ∈ B,

dl;m = dm;m +
m−k∑

j=l−k+1

EP[Xj 1
Y−1
m,k(Bm)

] −
m∑

j=l+1

EP[Xj 1
Y−1
m,k(Bm)

]. (14)

By the P-independence of {Xn}n∈N, we obtain, for each m ∈ N with m > l and for each
Bm ∈ B,

m−k∑
j=l−k+1

EP[Xj 1
Y−1
m,k(Bm)

] = (m− l)pPYm,k (Bm); (15)

in addition, for each j ∈ {m− k + 1, . . . , m}, we may write

EP[Xj 1
Y−1
m,k(Bm)

] = pP

({
1 +

m∑
j �=i=m−k+1

Xi ∈ Bm
} ∣∣∣∣ {Xj = 1}

)
= p

∑
y∈Bm

b(y − 1; k − 1, p). (16)

Also note that, for each m ∈ N with m > l and for each Bm ∈ B, the second sum of (14)
can be rewritten as

m∑
j=1+(m−k)∨l

EP[Xj 1
Y−1
m,k(Bm)

] +
(m−k)∨l∑
j=l+1

EP[Xj 1
Y−1
m,k(Bm)

];

hence, by virtue of (16) and the P-independence of {Xn}n∈N, we infer that the sum

m∑
j=l+1

EP[Xj 1
Y−1
m,k(Bm)

]

reduces to (m− l − k)+pPYm,k (Bm)+ [(m− l) ∨ k]p∑
y∈Bm b(y − 1; k − 1, p).

The latter together with conditions (14) and (15) yields the requested equality. �
Corollary 2. For any fixed k ∈ N and for all r, t ∈ N with r ≤ k < t, the CDF Fr : k(t;p) is
upper bounded by each of the following three functions:

u2(r, k, t, p) := t

r
Mb(r, k, p)

+ 1

r

t∑
m=k+1

r−1∑
y=r+k−m

yb(y; k, p)[1 − Fb(r − 1 − y;m− k, p)],

u3(r, k, t, p) := k

r
Mb(r, k, p)+ (t − k)(t − k + 3)k

2r
[1 − Fb(r − 1; k, p)],
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and

u4(r, k, t, p) :=
[k
r

+ (t − k)(t − k + 3)

2r

]
Mb(r, k, p)

+ p

r
[Fb(r − 2; k − 1, p)− Fb(r − 1; k, p)]

t∑
m=k+1

m∑
n=k

[(n− k) ∧ k].

Proof. First fix on arbitrary r, k, t ∈ N with r ≤ k < t .
Since by Proposition 3 the sequence {Ỹn,k}n∈N is an N -demimartingale, it is also an

N -demisupermartingale; hence, we may apply Proposition 2 to obtain the inequality

rP
(

max
1≤n≤t Ỹn,k ≥ r

)
≤

t∑
m=1

EP[Ỹ1,k 1{max1≤n≤m Ỹn,k≥r}],

which taking into account conditions (10)–(12), entails that

rFr : k(t;p) ≤
k∑

m=1

EP[Yk,k 1{Yk,k≥r}] +
t∑

m=k+1

EP[Yk,k 1{maxk≤n≤m Yn,k≥r}]

or, equivalently,

rFr : k(t;p) ≤ k

k∑
y=r

yb(y; k, p)+
t∑

m=k+1

EP[Yk,k 1{maxk≤n≤m Yn,k≥r}]. (17)

Next we bound the expectation

U(r, k,m, p) := EP[Yk,k 1{maxk≤n≤m Yn,k≥r}]
from above in three different ways.

(i) Set �̃r,k,m(y) := P(Yk,k = y,maxk≤n≤m Yn,k ≥ r) for any fixed m ∈ N with m > k and
for each y ∈ N0. Then condition (13) together with (6) and the P-independence of the binary
trials {Xn}n∈N, yields, for each y ∈ {0, . . . , k},

�̃r,k,m(y) ≤ P

(
Yk,k = y, max

k≤n≤m

n∑
j=k+1

Xj ≥ r−y
)

= b(y; k, p)[1−Fb(r−1−y;m−k, p)].

Therefore,

U(r, k,m, p) ≤
r−1∑

y=r+k−m
yb(y; k, p)[1 − Fb(r − 1 − y;m− k, p)] +Mb(r, k, p),

which in turn yields

t∑
m=k+1

U(r, k,m, p) ≤
t∑

m=k+1

r−1∑
y=r+k−m

yb(y; k, p)[1 − Fb(r − 1 − y;m− k, p)]

+ (t − k)Mb(r, k, p). (18)
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(ii) Since {Ỹn,k}n∈N is upper bounded by k, it follows, by (12), that

t∑
m=k+1

U(r, k,m, p) ≤
t∑

m=k+1

kP

( m⋃
n=k

{Yn,k ≥ r}
)

≤
t∑

m=k+1

m∑
n=k

P(Yn,k ≥ r)

(6)=
t∑

m=k+1

(m− k + 1)[1 − Fb(r − 1; k, p)]

= [1 − Fb(r − 1; k, p)] (t − k)(t − k + 3)

2
. (19)

(iii) Setting now dl;m(r) := dl;m(Yl,k;Ym,k, [r,∞)) = EP[Yl,k 1{Ym,k≥r}] for all positive
integers l, m in {k, k + 1, . . .}, we obtain

U(r, k,m, p) = EP[Yk,k 1⋃m
n=k{Yn,k≥r}] ≤

m∑
n=k

dk;n(r) (20)

for all m, n ∈ N with m ≥ n ≥ k.
Applying Lemma 3 and taking into account the clear facts that dn;n(r) = Mb(r, k, p) for

each n ∈ N, and
∑k
y=r b(y − 1; k − 1, p) = 1−Fb(r−2; k−1, p), we obtain, for allm, n ∈ N

with m ≥ n ≥ k,

dk;n(r) = Mb(r, k, p)+ p[Fb(r − 2; k − 1, p)− Fb(r − 1; k, p)][(n− k) ∧ k],
implying

m∑
n=k

dk;n(r) = (m− k+ 1)Mb(r, k, p)+p[Fb(r− 2; k− 1, p)−Fb(r− 1; k, p)][(n− k)∧ k].

So, it follows, by (20), that the sum
∑t
m=k+1 U(r, k,m, p) is upper bounded by

(t − k)(t − k + 3)

2
Mb(r, k, p)+p[Fb(r−2; k−1, p)−Fb(r−1; k, p)]

t∑
m=k+1

m∑
n=k

[(n−k)∧k].

The latter, in conjunction with (17), yields Fr : k(t;p) ≤ u4(r, k, t, p). Moreover, condi-
tion (17) together with (18) and (19) implies that the CDF Fr : k(t;p) is upper bounded by
u2(r, k, t, p) and u3(r, k, t, p), respectively. This completes the proof. �

The following result is an immediate consequence of Corollaries 1 and 2.

Proposition 4. For any fixed k ∈ N and for all r, t ∈ N such that r ≤ k < t , the following
holds true:

(r, k, p) ≤ Fr : k(t;p) ≤ u�(r, k, t, p) := min
i∈{1,2,3,4} ui(r, k, t, p),

where the functions , u1 and u2, u3, u4 are as in Corollaries 1 and 2, respectively.

Remark 1. A first look at Proposition 4 suggests that the lower bound (r, k, p) seems to be
of restricted practical value since, due to the fact that it is independent of t , its performance is
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not expected to be good for all t . Moreover, based on the following facts one might argue that
u4(r, k, t, p) is expected to outperform the other three upper bounds.

(i) Condition limp→0+ Fr : k(t;p) ≤ limp→0+ ui(r, k, t, p) = 0 holds for i ∈ {2, 4} but
not for i ∈ {1, 3}. In fact, limp→0+ u3(r, k, t, p) = (t − k)(t − k + 3)(k/2r), while
u3(r, k, t, p) tends to 1 as p decreases to 0, fully opposing the intuitively natural fact that
as the success probability p of each binary trial tends to 0, the probability P(T

(k)
r ≤ t)

should do so as well. Also note that limp→0+ (r, k, p) = 0.

(ii) The upper bounds u1(r, k, t, p) and u3(r, k, t, p)may be used for all other values of p if
they do not differ much from the other two bounds, since they are very easily attainable.
On the other hand, the computation of u2(r, k, t, p) and u4(r, k, t, p) becomes quite
cumbersome as t increases.

(iii) The upper bounds u2(r, k, t, p) and u4(r, k, t, p) seem to be more appropriate than the
other two, not only because of (i) but also because they are more sophisticated as the
proof of Proposition 4 reveals. Note that a key element in that proof is the technique
applied for bounding from above the expectation EP[Yk,k 1{maxk≤n≤m Yn,k≥r}]. Clearly, the
technique used for obtaining u3(r, k, t, p) is the simplest one (see (ii) of the above proof).
On the contrary, u2(r, k, t, p) and especially u4(r, k, t, p) is extracted by less ‘naive’
approaches. More precisely, in the case of u2(r, k, t, p), i.e. in (i) of the same proof,
we follow a reasoning similar to the one applied in Corollary 1, while for establishing
u4(r, k, t, p) the implementation of Lemma 3 was essential.

(iv) The first three upper bounds possess an additional disadvantage: they are all nondecreas-
ing functions of t , something that cannot be claimed for u4(r, k, t, p).

Concluding this section, we deem it necessary to stress that its main objective was to serve as
an illustration for the applicability of the new maximal inequalities provided in Propositions 1
and 2, which are of independent interest. The bounds given in Proposition 4 are of some value
only if a rough estimate of Fr : k(t;p) is needed and the computation complexity of obtaining
that is of major importance. Otherwise, one may resort to a bundle of more efficient bounds
that are available in the literature (see, e.g. [11]).

In Tables 1–3, the computed values for the bounds of Fr : k(t;p) provided in Proposition 4,
together with the exact or simulated value of the CDF of T (k)r (depending on the examined type
of scan) are presented. Note that for almost perfect runs, i.e. for scans of type either (k− 1)/k
or (k − 2)/k, the exact CDF is computed by exploiting Proposition 1 of Bersimis et al. [2];
otherwise, the computation of the empirical CDF of T (k)r is performed via simulation. More
precisely, a sequence of i.i.d. binary trials with success probability p is generated each time
and the number of trials needed until a scan of type r/k appears is recorded; the number of
simulated sequences used for calculations was 1000.

Moreover, the values in bold denote the tightest upper bound (at each t), which is also recor-
ded in the sixth column of each table. In the last column we have computed the relative error

u�(r, k, t, p)− κ(r, k, t, p)

κ(r, k, t, p)

for the upper bound (r.e.u. for short), where κ(r, k, t, p) is the exact or simulated value of the
CDF (sim. for short). Since the lower bound (r, k, p) does not depend on t , its value is given
in the caption of each table.
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Table 1: Computed bounds versus exact CDF: (r, k, p) = (6, 7, 0.1); (6, 7, 0.1) = 5.5 × 10−6.

t Exact u1 u2 u3 u4 u� r.e.u.

8 0.000 011 0.860 062 0.000 066 0.000 583 0.000 057 0.000 057 4.057
13 0.000 038 0.860 100 0.001 240 0.007 303 0.000 173 0.000 173 3.977
18 0.000 058 0.860 139 0.009 118 0.020 743 0.000 324 0.000 324 4.561
23 0.000 082 0.860 177 0.034 884 0.040 903 0.000 493 0.000 493 5.039
28 0.000 105 0.860 216 0.092 585 0.067 783 0.000 681 0.000 681 5.481
33 0.000 129 0.860 254 0.195 339 0.101 383 0.000 888 0.000 888 5.907
38 0.000 152 0.860 293 0.352 587 0.141 703 0.001 113 0.001 113 6.324
43 0.000 175 0.860 331 0.568 994 0.188 743 0.001 357 0.001 357 6.736
48 0.000 199 0.860 370 0.844 688 0.242 503 0.001 620 0.001 620 7.145
53 0.000 222 0.860 408 1.176 250 0.302 983 0.001 901 0.001 901 7.551

Table 2: Computed bounds versus exact CDF: (r, k, p) = (4, 6, 0.15); (4, 6, 0.15) = 0.004.

t Exact u1 u2 u3 u4 u� r.e.u.

7 0.008 994 0.755 885 0.046 577 0.3184 0.047 124 0.046 577 4.179
12 0.023 292 0.795 803 0.208 762 3.8495 0.154 067 0.154 067 5.615
17 0.037 355 0.835 721 0.604 470 1.9117 0.301 887 0.301 887 7.082
22 0.051 214 0.875 638 1.230 840 21.5050 0.482 810 0.482 810 8.427
27 0.064 874 0.915 556 2.038 740 35.6294 0.696 837 0.696 837 9.742
32 0.078 337 0.955 474 2.972 430 53.2848 0.943 969 0.943 969 11.050
37 0.091 606 0.995 392 3.986 510 74.4714 1.224 200 0.995 392 9.866
...

42 0.104 684 1.035 310 5.049 160 99.1890 1.537 540 1.035 310 8.890
47 0.117 574 1.075 230 6.139 950 127.4380 1.883 990 1.075 230 8.145
52 0.130 278 1.115 150 7.246 560 159.2180 2.263 530 1.115 150 7.559

Table 3: Computed bounds versus simulated CDF: (r, k, p) = (14, 28, 1
4 ); (14, 28, 1

4 ) = 0.002.

t Sim. u1 u2 u3 u4 u� r.e.u.

30 0.046 0.587 144 0.122 368 7.520 0.128 012 0.122 368 1.660
32 0.047 0.595 518 0.147 594 2.861 0.161 861 0.147 594 2.140
33 0.049 0.599 705 0.166 470 29.755 0.184 118 0.166 470 2.397
37 0.052 0.616 453 0.305 068 8.153 0.307 031 0.305 068 4.867
39 0.053 0.624 826 0.426 376 114.246 0.387 820 0.387 820 6.317
41 0.054 0.633 200 0.593 177 154.268 0.480 737 0.480 737 7.903
45 0.055 0.649 947 1.091 080 252.100 0.700 671 0.649 947 10.817
47 0.056 0.658 321 1.432 420 309.910 0.826 547 0.658 321 10.756
50 0.057 0.670 882 2.067 290 407.741 1.033 640 0.670 882 10.767
52 0.061 0.679 255 2.572 470 48.374 1.183 060 0.679 255 10.135
54 0.062 0.687 629 3.141 010 558.936 1.340 900 0.687 629 10.091

Summarizing the conclusions of our numerical study, we may state the following.

• For the case of almost perfect runs, the r.e.u. usually increases as t does so and the other
three parameters r, k, p are kept fixed. However, for some time intervals the r.e.u. may
behave as follows: up to a trial, say t1, increases with t , then it becomes a nonincreasing
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function of t until another trial, say t2, and so forth (see Tables 1 and 2); in other words,
its graph versus time may resemble a multimodal function. Concerning now the way
the r.e.u. evolves as p varies and r, k, t remain fixed, we mention that we obtain mixed
messages for different values of t as far as scans of type (k−2)/k are concerned. However,
it should be mentioned that for extremely small values of p (i.e. for p < 0.01) the r.e.u.
behaves as a nondecreasing function of p. The same applies for the other type of almost
perfect runs and for small values of p (p ≤ 0.15). Our numerical evidence (see Tables 1
and 2) indicates that again, for small values of p, the tightest upper bound is attained by
u4(r, k, t, p), verifying in this way the main assertion of Remark 1. As far as the relative
error for (r, k, p) is concerned, it becomes smaller as p increases, while it tends to 1
as t increases. The above facts are confirmed not only by the entries in Tables 1 to 2 but
also by a similar numerical study conducted for the 3/5-, 4/5-, and 5/6-almost perfect
runs as well as for (r, k, p) = (6, 7, 0.15).

• For other types of scan, the comments made in the previous paragraph do not apply in
general. In fact, in many cases, even the tightest of the upper bounds produces values
greater than 1 (this may happen since all bounds of Proposition 4 do not correspond to
probabilities). The scan of type 4/14 with p = 0.1 (as well as the 4/6-almost perfect run
for p = 0.15) is such a case. However, exceptions as the one presented in Table 3 may
occur. It is also worth noting that for scans other than almost perfect runs the simplest
bounds to compute, i.e. u1(r, k, t, p) and u3(r, k, t, p), are usually proved to be more
efficient than the other available upper bounds.
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