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We examine the high-speed flow of pressurized gases between non-concentric
cylinders where the inner cylinder rotates at constant speed while the outer cylinder
is stationary. The flow is taken to be steady, two-dimensional, compressible, laminar,
single phase and governed by a Reynolds lubrication equation. Approximations for
the lubricating force and friction loss are derived using a perturbation expansion for
large speed numbers. The present theory is valid for general Navier–Stokes fluids
at nearly all states corresponding to ideal, dense and supercritical gases. Results of
interest include the observation that pressurization gives rise to large increases in the
lubricating force and decreases in the fluid friction. The lubrication force is found to
scale with the bulk modulus. Within the context of the Reynolds equation an exact
relation between total heat transfer and power loss is developed.

Key words: lubrication theory

1. Introduction
Thin viscous films arise in a wide variety of applications including those

concerned with rotating machinery, tribology, the spreading of droplets or coatings,
particle–particle interaction and bio-lubrication. In such films, inertia is typically
ignored and shear forces must be balanced by pressure forces. In lubrication
applications, the pressure variations provide the force required to maintain the
separation between solid surfaces, i.e. in order to maintain a load. Perhaps the
earliest study of such thin film flows was carried out by Reynolds (1886) who stated
that the pressure in a steady, incompressible, laminar, two-dimensional thin film
satisfies

h3(x)
dp
dx
= 6µUh(x)+ const., (1.1)

where h(x) is the film thickness, x is the spatial variable in the main flow direction,
µ > 0 is a constant shear viscosity and U is a measure of the relative speed of the
solid surfaces being lubricated. Both (1.1) and its first derivative with respect to x
are known as the Reynolds equation. In the time since the publication of Reynolds’
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study, the Reynolds equation has been extended to include the effects of unsteadiness,
turbulence, property variations and more complex configurations. In recent years, there
has been increasing interest in the use of gases rather than liquids as lubricating fluids;
see, e.g. Dostal, Driscoll & Hejzlar (2004), DellaCorte et al. (2008), Wright et al.
(2010), Conboy et al. (2012) and Crespi et al. (2017). The advantages of gases over
liquids are compatibility with working fluids in power systems and turbomachinery,
the reduction of weight, the reduction of fouling due to leaks and the reduction of
complications due to phase changes. Because the viscosity of gases is smaller than
that of high viscosity oils, gas lubrication requires considerably higher speeds than
those used in applications involving liquids and the resultant flows are typically taken
to be compressible.

Most of the previous investigations of compressible gas lubrication have focused
on the behaviour of ideal, i.e. low pressure, gases. Examples include the discussions
of Pinkus & Sternlicht (1961), Gross et al. (1980), Hamrock, Schmidt & Jacobson
(2004), Peng & Khonsari (2004), DellaCorte et al. (2008) and Szeri (2010). Recent
studies have examined the behaviour of pressurized gases, i.e. gases corresponding to
pressures and temperatures of the order of those of the thermodynamic critical point.
Studies of lubrication with pressurized gases include those of Conboy (2013), Dousti
& Allaire (2016), Kim (2016), Qin (2017), Heshmat, Walton & Cordova (2018)
and Guenat & Schiffmann (2018) who applied pure numerical schemes to different
versions of the Reynolds equation. The behaviour of pressurized gases in these studies
was evaluated using a digital table look-up such as the NIST REFPROP database
(Lemmon, Huber & McLinden 2002) used by Conboy (2013), Kim (2016), Qin
(2017) and the CoolProp database (Bell et al. 2014) used by Guenat & Schiffmann
(2018). Dousti & Allaire (2016) have employed a gas model based on a linear
pressure–density relation, but this model is not expected to be valid over the full
range of pressures and temperatures corresponding to the dense and supercritical
regimes (Heshmat et al. 2018).

Important differences between pressurized gases and ideal gases are the strong
dependence on the thermodynamic state and the rapid and sometimes singular
dependence of material properties on the density and temperature. Chien, Cramer
& Untaroiu (2017a) have examined the approximations leading to the Reynolds
equation for compressible flows of pressurized gases. A general form of the Reynolds
equation was derived and its range of validity was delineated. In addition to the
well-known thin film and lubrication limitations on the film thickness and mild
conditions on the imposed temperature difference between isothermal walls, it was
shown that the Reynolds equation breaks down in the vicinity of the thermodynamic
critical point. It was also shown that the temperature equation can be simplified
whenever the Reynolds equation is valid.

In the case of ideal gases governed by the Reynolds equation, the simplest flows are
governed by a single parameter referred to as the speed or bearing number (Pinkus
& Sternlicht 1961; Gross et al. 1980; Hamrock et al. 2004; Szeri 2010). The speed
number gives a measure of either the flow speed or the overall compressibility of the
flow. In the case of pressurized gases, computations must take into account the local
thermodynamic state. Chien et al. (2017a) have shown that the local thermodynamic
state enters the problem solely through the effective bulk modulus

κTe = κTe(ρ, T)≡
κT(ρ, T)
µ(ρ, T)

, (1.2)
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FIGURE 1. Effective bulk modulus of carbon dioxide (CO2) versus V/Vc. Viscosity model
is that of Chung, Lee & Starling (1984), Chung et al. (1988) and the gas model is the
Redlich–Kwong–Soave (RKS) equation. Here V ≡ 1/ρ is the specific volume and µ0 =

µ0(T) is the ideal gas (V −→∞) value of µ. The subscript ‘c’ denotes values at the
thermodynamic critical point.

where ρ and T are the fluid density and absolute temperature,

κT ≡ ρ
∂p
∂ρ

∣∣∣∣
T

, (1.3)

is the bulk modulus of the fluid and p= p(ρ, T) is the thermodynamic pressure. The
effective bulk modulus (1.2) is recognized as a measure of the local fluid stiffness to
the local shear forces.

In the limit of ideal gases, the effective bulk modulus (1.2) increases monotonically
with pressure or density at constant temperatures. In the case of pressurized gases,
the variation of κTe is no longer monotonically increasing with pressure and can take
on relatively small values in the general neighbourhood of the thermodynamic critical
point. To illustrate this variation we have plotted the variation of a scaled version of
(1.2) along isotherms in figure 1.

A non-dimensional measure of the flow speed or the overall compressibility of the
flow is the speed or bearing number defined as

Λ≡ 6
UL

h2
oκTe|ref

, (1.4)

where U, L and ho are measures of the flow speed, length scale in the general
flow direction and the gap width, respectively, and are defined more precisely in the
next section. The quantity κTe|ref is the effective bulk modulus (1.2) evaluated at a
reference thermodynamic state. The form (1.4) is that given by Chien et al. (2017a),
Chien, Cramer & Untaroiu (2017b) and arises naturally when pressurized gases are
considered.
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In many applications the speed number (1.4) is relatively large partly due to the
need to generate sufficiently large lubrication forces and partly to avoid thermal
runaway instabilities. Such instabilities will result in excessive heating of the solid
components of the device resulting in thermal expansion which in turn can lead to
metal-on-metal contact and failure of the bearing; see, e.g. the discussions of Howard
et al. (2007) and Briggs et al. (2008). Gross et al. (1980) was one of the first to
derive the analytical solutions to the Reynolds equation for lubrication flows with
large speed numbers. Peng & Khonsari (2004) adopted a similar approach to evaluate
the lowest-order load generated by different configurations. However, the approximate
solutions provided by Gross et al. (1980) and Peng & Khonsari (2004) are valid for
low-pressure gases only and thermal effects were not considered.

Chien & Cramer (2019) have presented approximate solutions to the Reynolds
and corresponding temperature equation for the local values of the density, pressure,
temperature and heat flux valid for flows of pressurized gases with large speed
numbers. These solutions reveal the role played by material functions, e.g. the
effective bulk modulus and thermal expansivity, in the variation of the fundamental
local quantities. The goal of the present study is to develop approximations for the
total force and total friction loss valid for large speed numbers. The results will be
valid everywhere the Reynolds equation of Chien et al. (2017a) is, i.e. at all pressures
and temperatures in the ideal, dense and supercritical gas regimes except sufficiently
close to the thermodynamic critical point. Although the first-order theory described
by Chien & Cramer (2019) is sufficient to find the first corrections to the density,
pressure and temperature distributions, we have found that the first corrections to
global parameters such as load, loss and net heat transfer require expansions which
are second order in Λ−1.

Because our primary interest is to examine the effects of pressurization and finite
speed number (1.4), we follow previous investigators in restricting attention to a
simple canonical lubrication model, i.e. that of Chien et al. (2017a), which is the
simplest model for compressible thin film flows of high-pressure gases. In addition
to requiring the usual thin film conditions of a small lubrication Reynolds number
and small layer thickness, Chien et al. (2017a) have required that the thermodynamic
states be sufficiently far from those of the thermodynamic critical point; order of
magnitude estimates for the size of the near-critical condition in the context of
thin films were given by Chien et al. (2017a). The particular form of the Reynolds
and temperature equation used here is valid for steady, laminar, two-dimensional and
single-phase gas flows. Here we focus on supercritical temperatures so that multiphase
flows will not be relevant. The motivation for the restriction to two-dimensional
steady flows is done in order to focus attention on the new behaviour arising from
pressurization. The condition of two-dimensional flow will be approximately satisfied
for long bearings near the plane of symmetry. As demonstrated by Szeri (2010), a
Reynolds equation for turbulent flows can be developed, but its form is essentially
the same as that used here with a Reynolds number dependent turbulent viscosity
and other average properties replacing the local values used here.

In order to present concrete results, we examine the simple case of non-concentric
cylinders: the details of this configuration are described in the next section. The large
speed number approximations are developed in § 3. We compare our approximations to
numerical solutions of the compressible Reynolds equation in § 4. A short derivation
of the relation between power loss and heat transfer leaving the fluid film is given in
appendix A. The latter result is exact within the context of the Reynolds equation.
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FIGURE 2. (Colour online) Sketch of physical configuration.
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FIGURE 3. Unwrapped configuration. The stationary outer cylinder of figure 2 is
approximated by the y= h(x) surface and the rotating inner cylinder is approximated by
the y= 0 surface. The minimum gap width is ho ≡ h(0) and the maximum value of h(x)
is hm ≡ h(L/2).

2. Formulation

The physical configuration is that sketched in figure 2. The flow is taken to be
contained between the inner and outer cylinders depicted there. The inner cylinder
has a radius Ri and the outer cylinder has a radius Ro. The origin of the stationary
x′–y′ coordinate system is located at the centre of the inner cylinder. The centre of
the outer cylinder is located at x′=−e, y′= 0. The inner cylinder rotates at a constant
rate ω while the outer cylinder is stationary. For convenience, we refer to the inner
cylinder as the rotor and the outer cylinder as the stator.

Throughout this work we apply the thin film approximation so that we compute
the flow details using the ‘unwrapped’ configuration sketched in figure 3. When
Ro ≈ Ri the fluid can be taken to be contained in the region 0 6 y 6 h(x), where
the variable y is recognized as a distance measured normal to the inner cylinder
and x ≡ θRi is distance measured along the inner cylinder. The curve y = h(x) in
figure 3 approximately corresponds to the surface of the stator. We can now define
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6 S. Y. Chien and M. S. Cramer

L≡ 2πRi which is just the circumference of the inner cylinder and ho ≡ h(0) which
is the minimum gap width; we take ho to be a measure of the film thickness. For
the non-concentric cylinders sketched in figure 2, the thickness of the fluid layer can
be approximated by

h≡
h(x)
ho
≈ 1+ δ − δcos(θ), (2.1)

where
δ ≡

1
2
(hm − 1)=

ε

1− ε
. (2.2)

The quantity hm ≡ h(x = 1/2) = h(θ = π) is the maximum value of h. The factor
δ has been related to the eccentricity ratio ε ≡ e/c where c ≡ Ro − Ri is called the
radial clearance; the eccentricity ε is commonly used in the lubrication literature; see,
e.g. Pinkus & Sternlicht (1961), Gross et al. (1980), Hamrock et al. (2004) or Szeri
(2010).

In our detailed calculations we will employ (2.1). However, many of our results are
also valid under the weaker condition that h be symmetric about θ =π, i.e.

h(π− θ)≡ h(θ −π). (2.3)

As a result, the derivatives of h(θ ) will satisfy

dh
dθ
(π− θ)=−

dh
dθ
(−(π− θ)). (2.4)

In order to ensure that h is a minimum at x= 0, 1 or θ = 0, 2π, we require that

dh
dθ

> 0 if 0 6 θ 6π

6 0 if π6 θ 6 2π. (2.5)

The flow will be taken to be steady, two-dimensional, compressible, single phase
and laminar. The physical flow is required to satisfy the usual thin film and lubrication
restrictions, i.e.

ho

L
� 1, (2.6)

Re
h2

o

L2
� 1, (2.7)

where Re is the Reynolds number based on L, U ≡ Riω, µref and ρref . The subscript
‘ref’ will always refer to quantities evaluated at a given reference thermodynamic
state. Here we take that reference state to be that at x = 0 and L. As discussed by
Chien et al. (2017a) we also need to require that the flow be sufficiently far from
the thermodynamic critical point. If the rotor and stator are both isothermal, we
must also require that the product of the fixed, known temperature difference and the
thermal expansion coefficient defined by (A 6) be small. Under these conditions, the
flow will satisfy the Reynolds equation of Chien et al. (2017a) which can be written
in non-dimensional form as

d
dx

(
h

3
κTe

dρ
dx

)
=Λ

d(ρh)
dx

, (2.8)
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Load and loss for pressurized gases 7

where ρ ≡ ρ/ρref is the non-dimensional density. Here x≡ x/L and

κTe = κTe(ρ)≡
κTe(ρ, Tref )

κTe|ref
=

κTe(ρ, Tref )

κTe(ρref , Tref )
(2.9)

is the scaled effective bulk modulus. For the present purposes, the Reynolds equation
(2.8) will be integrated subject to the periodicity conditions

ρ(0)= ρ(1)= 1. (2.10)

The solution for the fluid density is generally obtained by integrating (2.8) subject
to (2.10) to yield ρ = ρ(x; Λ) once the reference thermodynamic state (ρref , Tref ) and
gas models are specified. The pressure is then found by substitution in the equation
of state.

In the following discussion, a convenient first integral of (2.8) is

ρ =
1
h
+

1
Λ

(
h

2
κTe

dρ
dx
−

1
h

dρ
dx
(0)
)
, (2.11)

where we have used the fact that h= κTe = 1 at x= 0. In the limit of incompressible
flow with constant viscosity (2.11) reduces to Reynolds’ original formula (1.1) with

dρ
dx
(0) (2.12)

playing the role of the integration constant.
With the thin film approximation (2.6) we can write the x′ and y′ components of

the forces on the rotor from the fluid as

Fx′ ≈

∫ 2π

0
pcos(θ) dθ =−

1
2π

∫ 2π

0

dp
dx

sin(θ) dθ, (2.13)

Fy′ ≈

∫ 2π

0
psin(θ) dθ =

1
2π

∫ 2π

0

dp
dx

cos(θ) dθ, (2.14)

where

F≡−
h2

o

µref U2πR2
i b

F′, (2.15)

b is the length of the cylinders in the z′-direction, and F′ is the dimensional force
on the rotor. The quantity p is the scaled pressure and is related to the dimensional
pressure p by

p≡
h2

o

µref UL
(p− pref ). (2.16)

The power loss is the work per time done on the rotor, i.e. the y = 0 surface in
figure 3. In the thin film approximation, this can be written

P= bU
∫ L

0
Tyx dx≈

bLU2µref

ho
P, (2.17)

where the scaled loss is

P≡
∫ 1

0

(
µ
∂u
∂y

)∣∣∣∣
y=0

dx, (2.18)

µ≡ µ/µref is a scaled version of the viscosity, and y≡ y/ho is the scaled y-coordinate.
The x-component of the fluid velocity, denoted by u, is scaled with U and its
expression is given in appendix A.
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FIGURE 4. Scaled density versus x/L at V(0)=V(L)=10Vc, T(0)=T(L)=1.05Tc, δ=0.5,
Λ = 40. The symbols E denote the exact solutions to the Reynolds equation (2.8). The
solid line denotes the lowest-order solutions, i.e. ρ = 1/h. The dashed and dash-dot lines
represent the first- and second-order solutions of the scaled density (3.1), respectively.

3. General results
We now determine the approximate solutions to the Reynolds equation (2.8) for

lubrication flows with large speed numbers. We first consider the second-order
expansion for density, i.e.

ρ = ρ0 +
ρ1

Λ
+
ρ2

Λ2
+O

(
1
Λ3

)
. (3.1)

If we substitute (3.1) and its derivative in (2.11), we then obtain the functions

ρ0 =
1
h
, (3.2)

ρ1 =−κTeo
dh
dx
, (3.3)

ρ2 =−h
2 d
dx

(
κ2

Te
dh
dx

) ∣∣∣∣
o

+
1
h

d2h
dx2 (0), (3.4)

where the subscript ‘o’ will always refer to quantities evaluated at the lowest-order
density, ρ ≈ 1/h. For example,

κTeo(ρ)≡ κTe

(
1
h

)
. (3.5)

It is easily verified that (3.1)–(3.4) satisfy the boundary conditions (2.10) and the
equation for h, i.e. (2.1), to the appropriate order.

To demonstrate the accuracy of (3.1)–(3.4), we have plotted a comparison of the
approximate density (3.1) and the numerical solution to the exact Reynolds equation
(2.8) at Λ= 40 in figures 4–5. Here we take the channel sketched in figure 3 to be
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FIGURE 5. Scaled density versus x/L at V(0) = V(L) = 2Vc, T(0) = T(L) = 1.05Tc, δ =
0.5,Λ=40. The symbolsE denote the exact solutions to the Reynolds equation (2.8). The
solid line denotes the lowest-order solutions, i.e. ρ = 1/h. The dashed and dash-dot lines
represent the first- and second-order solutions of the scaled density (3.1), respectively.

given by ho/L = 1.989 × 10−5, and δ = 0.5. The gas models are taken to be those
described in § 4. The temperature at the entrance and exit is taken to be T(0) =
T(L)= 1.05Tc. In figure 4 the specific volume, i.e. V ≡ 1/ρ, is taken to satisfy V(0)=
V(L)= 10Vc. The pressure at this state is approximately 21.2 bar ≈0.29pc, so that the
thermodynamic state can be regarded as that of a dense gas. In figure 5 we consider
the case of a slightly supercritical fluid in which the reference specific volume is taken
to be V(0) = V(L) = 2Vc and the corresponding pressure is approximately 78.2 bar
≈1.06pc.

Inspection of figures 4 and 5 reveals that the second-order approximation is
in excellent agreement with the exact solutions. As compared to the lowest-order
approximation, the first-order term corrects the slope of the curves near both ends of
the channel whereas the second-order correction term further improves the prediction
of the position and magnitude of the local minimum.

The accuracy of our approximation for both cases increases as Λ−→∞. In order to
illustrate the accuracy of the approximation, we have also plotted the root-mean-square
error (RMSE) between the approximate density (3.1) and the exact solution to the
Reynolds equation (2.8) as a function of Λ in figure 6. It was found that the second-
order approximation can provide reasonable accuracy when Λ > 20. When Λ = 20,
the RMSEs of the second-order approximation for cases of V(0)= V(L)= 10Vc and
2Vc are approximately 1.4 % and 8 %, respectively.

We now turn to the determination of the large Λ approximation for the forces, i.e.
(2.13) and (2.14), on the rotor. If we use (1.3), (1.4) and (2.16), the expressions for
the exact force components (2.13) and (2.14) can be rewritten as

−
Λ

6
Fx′ =

1
2π

∫ 2π

0
R

dρ
dx

sin(θ) dθ, (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.113
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FIGURE 6. Root-mean-square error (RMSE) between the approximate and exact density
versus Λ at T(0) = T(L) = 1.05Tc and δ = 0.5. The symbols p, u and s represent
the lowest-, first- and second-order approximations, respectively, at V(0) = V(L) = 2Vc.
The symbols @, E and C represent the lowest-, first- and second-order approximations,
respectively, at V(0)= V(L)= 10Vc.

Λ

6
Fy′ =

1
2π

∫ 2π

0
R

dρ
dx

cos(θ) dθ, (3.7)

where the factor
R =R(ρ, Tref )≡

κT

ρ
, (3.8)

can be expanded in a Taylor series for ρ near 1/h yielding

R(ρ, Tref )=Ro +
dR

dρ

∣∣∣∣
o

(
ρ −

1
h

)
+

1
2

d2R

dρ2

∣∣∣∣
o

(
ρ −

1
h

)2

+O
(

1
Λ3

)
. (3.9)

If we combine (3.9) with (3.1), and multiply the result by the derivative of (3.1), we
find

R
dρ
dx
=Ro

dρ0

dx
+

1
Λ

d(Roρ1)

dx
+

1
Λ2

d
dx

[
Roρ2 +

1
2

dR

dρ

∣∣∣∣
o

ρ2
1

]
+O

(
1
Λ3

)
. (3.10)

Through substitution of (3.2)–(3.4) and (3.10) in (3.6) and straightforward manipulation
we then obtain

−
πΛ

3
Fx′ = Ix1 +

Ix2

Λ
+

Ix3

Λ2
+O

(
1
Λ3

)
, (3.11)

where the quantities

Ix1 ≡−2π

∫ 2π

0

κTo

h
dh
dθ

sin(θ) dθ, (3.12)
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Load and loss for pressurized gases 11

Ix2 ≡ 4π2
∫ 2π

0
κToκTeoh

dh
dθ

cos(θ) dθ, (3.13)

Ix3 ≡ −8π3
∫ 2π

0

[
1
2
κ2

Teo
d

dρ

(
κT

ρ

) ∣∣∣∣
o

+ hκTo
dκ2

Te

dρ

∣∣∣∣
o

] (
dh
dθ

)2

cos(θ) dθ

+ 8π3
∫ 2π

0
κToκ

2
Teoh

3 d2h
dθ 2

cos(θ) dθ

− 8π3 d2h
dθ 2

(0)
∫ 2π

0
κTocos(θ) dθ. (3.14)

We note that κT > 0 for all fluids due to the Gibbs stability condition and both dh/dθ
and sin(θ ) are antisymmetric with respect to θ =π. Thus, the quantity Ix1 will always
be non-zero. From conditions (2.5) we can also show that Ix1 < 0 for all fluids. That
is, the lowest order Fx′ > 0 so that the x′-component of the dimensional force on the
rotor will point to the left in figure 2. On the other hand, the quantity Ix2= 0, because
each term in the integrand of Ix2 is symmetric with respect to θ =π except for dh/dθ
which is antisymmetric. In (3.14) the integrand of each integral is symmetric about
θ =π. As a result, each term of Ix3 is seen to be non-zero.

If we substitute (3.1)–(3.4), (3.10) in (3.7), we then find

πΛ

3
Fy′ = Iy1 +

Iy2

Λ
+O

(
1
Λ2

)
, (3.15)

where

Iy1 =−2π

∫ 2π

0

κTo

h
dh
dθ

cos(θ) dθ, (3.16)

Iy2 =−4π2
∫ 2π

0
κToκTeoh

dh
dθ

sin(θ) dθ. (3.17)

We note that κTo, h, and cos(θ ) are symmetric about θ =π while the derivative dh/dθ
is antisymmetric. Hence Iy1= 0 for all fluids. In like manner, it is easily demonstrated
that Iy2 6= 0 in general. If we further require that the conditions (2.5) hold, the y′-
component of the dimensional force on the rotor will be positive in figure 2.

From (3.11)–(3.17) we can obtain the approximation for the magnitude of the scaled
load

Λ|F| =
3|Ix1|

π

[
1+

1
Λ2

(
Ix3

Ix1
+

1
2

I2
y2

I2
x1

)
+O

(
1
Λ3

)]
, (3.18)

and the angle of the load, i.e. attitude angle

ϕ ≡ tan−1

(
Fy′

Fx′

)
≈π−

1
Λ

Iy2

Ix1
+O

(
1
Λ2

)
, (3.19)

where we have used the expansion of the tangent function for ϕ≈π in (3.19). Given
the conditions (2.5), it is easily verified that

π

2
6 ϕ 6π. (3.20)
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12 S. Y. Chien and M. S. Cramer

In order to obtain the expression for the approximate loss, we substitute the
derivative of u, as given by (A 9), and the exact solution (2.11) in (2.18) yielding

− P =
∫ 1

0

µ

h
dx+

3
Λ

(
1−

1
Λ

dρ
dx
(0)
) ∫ 1

0

κT

ρ2

dρ
dx

dx+
3
Λ2

∫ 1

0

µκ2
Te

ρ5

(
dρ
dx

)2

dx

+
3
Λ2

∫ 1

0

µκ2
Te

ρ5

(
dρ
dx

)2 (
ρ3h

3
− 1
)

dx. (3.21)

We note that the second integral is identically zero and the last integral is seen to be
O(Λ−3). As a result, the second-order approximation for loss is found to be

− P=
∫ 1

0

µ

h
dx+

3
Λ2

∫ 1

0
κTeoκToh

(
dh
dx

)2

dx+O
(

1
Λ3

)
. (3.22)

In (3.22) the values of µ in the first integral have been left as their exact values.
However, to be consistent, the shear viscosity in (3.22) should be expanded in a
Taylor series for ρ ≈ 1/h in a manner similar to that done for (3.9). Alternatively, to
simplify the computations, we evaluate the viscosity in the first integral of (3.22) by
substituting the O(Λ−2) density expansion (3.1) in the viscosity model. Errors in this
approach will be of the order of the terms already neglected.

In the ideal gas limit, i.e. κT −→ p−→ ρRT and µ−→µ(Tref ), we can take κT = ρ

and µ= 1 so that all the integrals in (3.18), i.e. (3.12)–(3.14) and (3.16)–(3.17), and
(3.22) can be integrated explicitly. As a result, the expression of the scaled load can
be written as

Λ|F| =
12π(1+ δ −

√
1+ 2δ)

δ
√

1+ 2δ

[
1+

2π2

Λ2
(1+ δ)(

√
1+ 2δ − 2)

]
+O

(
1
Λ3

)
, (3.23)

and the attitude angle (3.19) becomes

ϕ ≈π−
2π
√

1+ 2δ
Λ

+O
(

1
Λ2

)
. (3.24)

The expression for the scaled loss can also be written as

− P=
1

√
1+ 2δ

+
12π2

Λ2
(1+ δ −

√
1+ 2δ)+O

(
1
Λ3

)
. (3.25)

Our lowest-order load and loss, i.e. the first terms of (3.23) and (3.25), the expression
of the attitude angle and the fact that the first corrections for the load and loss are
O(Λ−2) are consistent with the ideal gas results by Gross et al. (1980). The work
here indicates that this ordering of the large Λ expansion also holds for general
fluids. Examination of (3.18), (3.19) and (3.22)–(3.25) reveals that the lowest-order
approximation of the scaled load and loss and attitude angle are dependent on δ and
Λ alone when the gas is ideal. However, for pressurized gases, the lowest-order scaled
load also depends on the variation of the scaled bulk modulus κT ; the lowest-order
scaled loss depends on the variation of the scaled shear viscosity µ; the attitude angle
depends on the variation of both κT and µ in addition to δ and Λ.
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Load and loss for pressurized gases 13

4. Numerical results
In this section, we compare the approximation for the scaled load (3.18), scaled

loss (3.22) and the attitude angle (3.19) to their exact values based on the density
variation obtained from the exact Reynolds equation (2.8). More specifically, the exact
Reynolds equation (2.8) was solved through the use of a straightforward shooting
method. Once the pressure distribution was determined by substituting the resulting
density variation in the equation of state, the exact scaled load was then computed
using (2.13)–(2.15). The exact scaled loss was calculated using (2.18). The exact
attitude angle was computed by taking the ratio of (2.14) to (2.13).

As described in § 3, the viscosity in the first integral of (3.22) was evaluated using
the second-order density and the reference temperature. In the remaining integrals
of our approximation, i.e. (3.12)–(3.14) and (3.17), the bulk modulus (1.3) and
shear viscosity were computed based on the lowest-order density and the reference
temperature. Derivatives of the bulk modulus and viscosity seen in (3.14) were
estimated numerically. All numerical integrations of (2.13)–(2.14), (2.18), (3.12) and
(3.14), (3.17) and (3.22) were computed using Simpson’s rule. Discretization errors
were checked for all computations presented here. For example, the difference in ρ
between 200 and 300 points distributed over the interval 0 6 x 6 1 was less than
0.006 %. The tolerance for the value of ρ(1) for the shooting method was set to
be 10−8.

For the purpose of illustration, we use the Redlich–Kwong–Soave equation of
state and the polynomial curve fit for the ideal gas specific heat provided in Reid,
Prausnitz & Poling (1987). The fluid was chosen to be carbon dioxide (CO2). The
physical properties of CO2 were taken from Reid et al. (1987); the critical pressure
and temperature of CO2 are pc= 73.77 bar and Tc= 304 ◦K, respectively. The acentric
factor for CO2 was given by Reid et al. (1987) to be 0.239. The viscosity model
is that of Chung et al. (1984, 1988). Parameters required for the application of the
model of Chung et al. (1984, 1988) were taken from Reid et al. (1987). We take
the channel sketched in figure 3 to be given by ho/L = 1.989 × 10−5. Unless stated
otherwise, δ = 0.5.

We first consider the effect of pressurization on the load. In figure 7 we have
plotted the variation of the lowest-order scaled load, i.e. the first term in (3.18), with
the reference specific volume for a range of reference temperatures. At Tref = 1.05Tc
pressurization can increase the scaled load by 56 % over the scaled load attained at
low pressure. The physical reason for this increase can be seen by an examination
of figure 8, in which the variation of κT with x is plotted for various thermodynamic
states. At the lowest pressure, i.e. for V(0) = 10Vc, κT is < 1 over much of the
range of x. As the pressure is increased, the variation of κT from 1 decreases. At
V(0) = 2Vc and 1Vc, it is seen that the values of κT are approximately one. As a
result, the scaled load will be larger than that at low pressure. The observation that κT
does not decrease significantly at high pressures is due to the non-monotone variation
of the bulk modulus. At higher temperatures, the variation of the bulk modulus is a
monotonically decreasing function of the specific volume. As a result, κT < 1 over
most of the bearing resulting in an insignificant increase in the scaled load.

We note that the scaled load in figure 7 remains nearly constant as the reference
specific volume is varied in the range V(0) > 4 Vc. This observation suggests that the
load scales with the reference bulk modulus κT |ref . This fact becomes obvious if we
multiply (3.18) by

κT |ref

pc
, (4.1)
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14 S. Y. Chien and M. S. Cramer
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FIGURE 7. Lowest-order scaled load versus reference specific volume. The parameter
δ = 0.5.
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x/L

0.8

V(0) = 10Vc

V(0) = 6Vc

V(0) = 2Vc

V(0) = Vc

1.0

FIGURE 8. Scaled bulk modulus versus x/L for Tref = 1.05Tc. The parameter δ = 0.5.

and use (2.15). The resultant scaled load is

6|F′|
pcRib

. (4.2)

The scaled force (4.2) gives a measure of the physical force which is independent
of the reference states. The variation of the lowest-order load (4.2) with reference
thermodynamic state is plotted in figure 9. This version of the load is seen to increase
significantly with pressurization at most temperatures and pressures. In the general
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FIGURE 9. Rescaled load versus reference specific volume. The parameter δ = 0.5.
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FIGURE 10. Lowest-order scaled loss versus reference specific volume. The parameter
δ = 0.5.

vicinity of the thermodynamic critical point, the non-monotone variation of the bulk
modulus will give rise to a corresponding non-monotone variation in the load.

We next consider the lowest-order loss, i.e. the first term of (3.22), where µ is
evaluated at the lowest-order density. Following the conventional scaling used in the
lubrication literature where the film thickness is scaled with the radial clearance, we
have multiplied (3.22) by 1+δ and have plotted this version of the scaled loss in
figure 10 for various reference thermodynamic states. Inspection of figure 10 reveals
that the reference temperature has an insignificant effect on the scaled loss. This is due
to the fact that the shear viscosity roughly scales with the ideal gas shear viscosity,
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Tref = 1.05Tc

Tref = 1.10Tc

Tref = 1.15Tc

Tref = 1.20Tc

Tref = 1.25Tc

0 2 4 6 8
V/Vc

10

3

2

1

µ
/µ

0

FIGURE 11. Scaled shear viscosity of CO2 versus V/Vc. The viscosity model is that of
Chung et al. (1984, 1988).

at least for the purposes of computing the temperature dependence. To illustrate this
point, we have plotted the variation of the ratio of the shear viscosity to the ideal gas
viscosity at the same temperatures in figure 11.

As indicated in the discussion of (3.25), the scaled loss for low-pressure gases will
depend only on δ due to the fact that µ= 1 in the ideal gas limit. Thus, each curve
in figure 10 will approach the same low-pressure asymptote for fixed δ. We note that
the loss has been scaled with the loss found when the load is zero, i.e. when δ ≡ 0.
As a result, the scaled loss will always be larger than 1 as we approach the ideal
gas limit. However, observation of figure 11 reveals that the viscosity will depend
on the local density as the reference pressure is increased. Because the viscosity
increases monotonically with increasing density, µ< 1 over most of the fluid domain.
An example of the viscosity variation with x is plotted for various thermodynamic
states in figure 12. As result, the scaled loss will decrease and even become less
than 1 as the reference pressure is increased. That is, for pressurized gases the scaled
loss generated by non-concentric cylinders can be smaller than that corresponding to
concentric cylinders.

The effects of pressurization on the attitude angle are displayed in figure 13 for
various reference temperatures at Λ = 50. Here we used the associated attitude
angle ψ ≡ π − ϕ, i.e. the angle between the direction of the total force and the
negative x′ axis seen in figure 2. Inspection of figure 13 reveals that ψ increases with
pressurization for a fixed reference temperature. At Tref = 1.05Tc pressurization results
in 25.5 % increase of ψ over the value of ψ obtained at low pressure. The reason
for this increase is due to the non-monotone variation of both κT and κTe leading to
a smaller decrease in the size of the integrand in (3.17). At higher temperatures both
κT and µ monotonically increase as the pressure is increases. Thus, the integrands in
(3.19) will be smaller and the increase in ψ will be smaller at higher temperatures.

A comparison of the approximate and the exact scaled load is plotted as a function
of δ at Λ = 20, 30, 40, 50 and ∞ with various reference thermodynamic states in
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FIGURE 12. Variation of scaled viscosity with x/L for Tref = 1.05Tc. The parameter
δ = 0.5.
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FIGURE 13. Attitude angle (ψ) versus reference specific volume. The parameter δ = 0.5
and the speed number Λ= 50.

figure 14. The reference temperature is taken to be Tref = 1.15Tc. The range of the
speed numbers is selected to be within the general operating range described by
previous investigators (Conboy 2013; Kim 2016). From (1.4) the rotational speeds
corresponding to Λ = 20 at V(0) = 12Vc, 6Vc and 3Vc are found to be 8432 rpm,
14 221 rpm and 19 660 rpm, respectively. The solid lines denote the lowest-order
theory and the broken lines represent the second-order approximation (3.18). At
V(0)= 12Vc there is little variation of the load with Λ and it is reasonable to suggest
that the lowest-order approximation is sufficient to predict the scaled load for this
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FIGURE 14. Scaled load versus δ at V(0) = 3Vc, 6Vc and 12Vc. The speed numbers
were taken to be Λ = 20, 30, 40, 50, ∞ and the reference temperature Tref = 1.15Tc.
Symbols represent the exact scaled load computed from (2.13)–(2.15) in which the
pressure variation was obtained from the Reynolds equation (2.8) and the equation of
state. Lines denote the approximation of the scaled load (3.18). The lowest-order results,
i.e. Λ =∞, are represented by ——. Results for Λ = 50 are denoted by @ and – – – –,
results for Λ= 40 are denoted byE and – · – · –, results for Λ= 30 are denoted by6 and
— · · — and results for Λ= 20 are denoted byA and - - - -.

range of δ. As the reference pressure increases, the scaled load increases as expected,
and more importantly, the effect of Λ on the scaled load is seen to become more
significant. As a result, the second-order approximation is seen to be necessary to
evaluate the load generated by pressurized gases. Even at Λ = 20 it was found that
the maximum discrepancy between the second-order approximation and the exact
scaled load for the case of V(0)= 3Vc is 4.7 %.

In order to illustrate the effect of Λ on the loss, we have plotted the approximate
and exact scaled loss as a function of δ at V(0) = 12Vc and 3Vc in figure 15 and
figure 16, respectively. The speed number Λ=20, 30, 40, 50 and ∞, and the reference
temperature was taken to be Tref = 1.15Tc. Examination of figure 15 indicates that
the agreement between the approximate and exact scaled loss is excellent for each
Λ at V(0)= 12Vc. The maximum difference between the second-order approximation
and the exact scaled loss is found to be 2.5 % at Λ = 20. The scaled loss is seen
to decrease with the increase of Λ and to increase monotonically as δ increases. At
higher pressures, the rate of increase of the viscosity with increasing density is larger
than in the low-pressure case so that the loss for the case V(0) = 3Vc has a local
minimum located at δ≈0.2. At these higher pressures the difference between the exact
and approximate solutions is larger than in the low-pressure examples. Nevertheless,
the maximum difference between the exact solution and the Λ= 20 approximation is
less than 10 % for the chosen values of δ and V(0).

The attitude angle ψ is plotted as a function of δ at Tref = 1.15Tc for V(0)= 12Vc

and 3Vc in figure 17 and figure 18, respectively. The speed numbers were taken to be
Λ= 20, 30, 40 and 50. Observation of figure 17 reveals that the agreement between
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FIGURE 15. Scaled loss versus δ at V(0) = 12Vc. The speed numbers are taken to be
Λ= 20, 30, 40, 50, ∞ and the reference temperature Tref = 1.15Tc. Symbols represent the
exact scaled loss computed from (2.18). Lines denote the approximation of the scaled loss
(3.22). The lowest-order results, i.e. Λ=∞, are represented by ——. Results for Λ= 50
are denoted by@ and – – – –, results for Λ= 40 are denoted byE and – – – –, results for
Λ = 30 are denoted by 6 and — · · — and results for Λ = 20 are denoted by A and
- - - -.
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FIGURE 16. Scaled loss versus δ at V(0) = 3Vc. The speed numbers are taken to be
Λ= 20, 30, 40, 50, ∞ and the reference temperature Tref = 1.15Tc. Symbols represent the
exact scaled loss computed from (2.18). Lines denote the approximation of the scaled loss
(3.22). The lowest-order results, i.e. Λ=∞, are represented by ——. Results for Λ= 50
are denoted by@ and – – – –, results for Λ= 40 are denoted byE and – · – · –, results for
Λ = 30 are denoted by 6 and — · · — and results for Λ = 20 are denoted by A and
- - - -.
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FIGURE 17. Attitude angle versus δ at V(0)= 12Vc. The speed numbers are taken to be
Λ = 20, 30, 40 and 50 and the reference temperature Tref = 1.15Tc. The scaled attitude
angle is defined as ψ ≡ π − ϕ, i.e. the angle between the direction of the load and
the negative x′ axis seen in figure 2. Symbols represent the exact scaled attitude angle
computed from (2.13) and (2.14). Lines denote the approximation of the scaled attitude
angle obtained from (3.19). Results for Λ = 50 are denoted by @ and – – – –, results
for Λ = 40 are denoted by E and — · —, results for Λ = 30 are denoted by 6 and
— · · — and results for Λ= 20 are denoted byA and - - - -.

the exact ψ and the first-order approximate ψ is seen to be very good for each
Λ at V(0) = 12Vc where the maximum discrepancy is found to be 4 % at Λ = 20.
The scaled attitude angle decreases with the increase of Λ and the decrease in δ. At
V(0)= 3Vc, the first-order approximation of ψ still has reasonable agreement with the
exact ψ when Λ > 30. At Λ = 20, the maximum difference between the exact ψ
and approximate ψ is found to be 10.6 %. We note that the non-zero attitude angle
at δ = 0 is due to the fact that both Fx′ and Fy′ −→ 0 at the same rate as δ −→ 0.
The limiting value of ψ can be found by taking δ −→ 0 in (3.19), (3.12) and (3.17)
yielding

ψ ∼
2π

Λ
as δ −→ 0. (4.3)

Thus, ψ at δ= 0 will be independent of the reference thermodynamic state. For Λ=
20, 30, 40 and 50, the values of ψ at δ= 0 will be 18◦, 12◦, 9◦ and 7.2◦, respectively.
This non-zero limit of ψ as δ vanishes is consistent with the finding of Gross et al.
(1980) for ideal gases.

5. Summary

We have obtained approximate solutions for the load and loss of a two-dimensional,
steady, compressible, laminar and single-phase flow between two non-concentric
cylinders. Solutions are based on large Λ expansions of the Reynolds equation (2.8)
and are therefore valid at most pressures and temperatures in the single-phase regime
and for all Navier–Stokes fluids; the primary exception is the neighbourhood of the
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FIGURE 18. Attitude angle versus δ at V(0)= 3Vc. The speed numbers Λ= 20, 30, 40
and 50 and the reference temperature Tref = 1.15Tc. The scaled attitude angle is defined as
ψ ≡π− ϕ, i.e. the angle between the direction of the load and the negative x′ axis seen
in figure 2. Symbols represent the exact scaled attitude angle computed from (2.13) and
(2.14). Lines denote the approximation of the scaled attitude angle obtained from (3.19).
Results for Λ= 50 are denoted by@ and – – – –, results for Λ= 40 are denoted byE and
— · —, results for Λ= 30 are denoted by 6 and — · · — and results for Λ= 20 are
denoted byA and - - - -.

thermodynamic critical point where (2.8) breaks down. In appendix A we have given
the connection between the friction loss and the net heat flux so that the heat transfer
is determined once the friction loss is.

In the limit of ideal gases, the work of Gross et al. (1980) suggests that the first
corrections to the load and loss are O(Λ−2). The present study demonstrates that this
ordering holds for general fluids, i.e. for both low- and high-pressure gases, as well.

The effects of pressurization and non-ideal gas behaviour have been illustrated
primarily through the use of the lowest-order theory. Pressurization affects the load
through the bulk modulus and it affects the loss through the density dependence of
the shear viscosity. We found that the load scales with the reference bulk modulus
κT |ref so that the non-monotone variations of the bulk modulus can result in a
non-monotone variation of the load. Isothermal pressurization is seen to result in
significant increases in the load.

At moderate pressures, inspection of figures 7 and 10 suggests that Λ|F| and (1+ δ)
|P| can be regarded as nearly constant for reference specific volumes of V(0) > 6Vc.
At higher pressures, the dependence of the density on the bulk modulus and viscosity
becomes more noticeable. As a result, the strong decrease in the loss and the increase
in the load will require the use of pure numerical solutions or the approximations
given here.

The second-order approximations for load and loss are compared to the exact values
obtained based on the solutions to the Reynolds equation (2.8) for a range of δ in
figures 14–16. These examples illustrate the dependence of the load and loss on the
eccentricity parameter (2.2) and the speed number.
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The lowest-order attitude angle (ψ ≡ π − ϕ) has been computed and is found to
decrease with increasing Λ. At constant Λ and a fixed reference thermodynamic
state, the attitude angle is seen to approximately increase linearly with δ, at least for
the cases shown. The values of ψ at δ = 0 are given by (4.3) and are seen to be
independent of thermodynamic state.

In order to focus on the physical effects of pressurization and the structure of the
approximation scheme, we have restricted attention to the relatively simple flow model
of Chien et al. (2017a); this model has been validated against numerical solutions
to the full Navier–Stokes solutions in Chien et al. (2017a,b). Many of the observed
features here are due to the density dependence of the material functions and will be
present, to greater or lesser degrees, in more complex flows, including those involving
turbulent and three-dimensional flows.

Appendix A. Relation of loss to heat transfer
In this appendix, we derive the relation between the heat transfer at the solid

surfaces located at y= 0 and y= h(x) in figure 3. The result is exact in the context of
the approximations leading to (2.8). Chien et al. (2017a) have shown that the energy
equation corresponding to (2.8) can be written

∂qy

∂y
= PrEc

[
µ

(
∂u
∂y

)2

+ (βT − 1)u
dp
dx
+ u

dp
dx

]
, (A 1)

where

qy ≡−k
∂T
∂y
, (A 2)

is the scaled version of the y-component of the heat flux qy and

k≡
k

kref
, (A 3)

Pr≡
µref cp|ref

kref
, (A 4)

Ec≡
U2

cp|ref1T
(A 5)

are the scaled thermal conductivity k(ρ, Tref ) > 0, Prandtl number and Eckert number.
The quantity

β = β(ρ, T)≡−
1
ρ

∂ρ

∂T

∣∣∣∣
p

(A 6)

is the thermal expansivity and cp|ref is the specific heat at constant pressure evaluated
at the reference state. As discussed by Chien et al. (2017a), 1T is determined by the
flow details yielding Pr Ec= 1 when one of the walls is adiabatic.

Because the flow is isothermal to lowest order and ρ ≈ ρ(x) only, the variables µ,
βT and dp/dx can be regarded as independent of y. The only y dependence will arise
from the scaled velocity u=vx/U, where vx is the x-component of the particle velocity.
This scaled velocity component satisfies the approximate momentum equation

dp
dx
≈
∂

∂y

(
µ
∂u
∂y

)
. (A 7)
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By combining (A 7) with (A 1) and noting that u= 1 at y= 0 and u= 0 at y= h we
obtain the integral

qy|y=h − qy|y=0 + PrEc
(
µ
∂u
∂y

)∣∣∣∣
y=0

= PrEc(βT − 1)
dp
dx

∫ h

0
u dy. (A 8)

To evaluate the last integral of (A 8) we use the solution to (A 7) subject to the no-slip
conditions u= 1 at y= 0 and u= 0 at y= h which can be written

u= 1− (1+ Ah
2
)

y
h
+ Ah

2 y2

h
2 , (A 9)

where
A≡

1
2µ

dp
dx
=

3
Λ

κTe

ρ

dρ
dx
. (A 10)

Substitution of (A 9) and (A 10), integration and straightforward manipulation yields

qy|y=h − qy|y=0 + PrEc
(
µ
∂u
∂y

)∣∣∣∣
y=0

= PrEc(βT − 1)
µA
ρ

[
hρ −

h
3
κTe

Λ

dρ
dx

]
. (A 11)

Use of (2.11) yields

qy|y=h − qy|y=0 + PrEc
(
µ
∂u
∂y

)∣∣∣∣
y=0

= PrEc(βT − 1)
µA
ρ

[
1−

1
Λ

dρ
dx
(0)
]
. (A 12)

We now integrate with respect to x from 0 to 1 and reuse (A 10) to obtain∫ 1

0
[qy|y=h − qy|y=0] dx+ PrEcP=

3PrEc
Λ

[
1−

1
Λ

dρ
dx
(0)
] ∫ 1

0

κT

ρ2

dρ
dx

dx, (A 13)

where the definition (2.18) has been used. Because κT seen in the integral on the
right-hand side is a function of ρ only and our periodicity conditions require that
ρ(0)= ρ(1)= 1, the fundamental theorem of calculus requires that the integral is zero
yielding

P=
1

PrEc

∫ 1

0
[qy|y=0 − qy|y=h] dx. (A 14)

Result (A 14) gives a direct relation between the work done by fluid friction to the
heat which must be transferred out of the channel. If friction results in a loss of
mechanical energy, P< 0 and the net flow of heat energy will be out of the channel.
We also note that the net heat transfer out of the fluid can be obtained once the loss
is computed either numerically or the approximations derived in the § 3.

Chien & Cramer (2019) have shown that the variation of the thermal expansion
coefficient (A 6) and therefore the flow work play an important role in the variation of
the local heat fluxes. However, it should be clear from (A 14) that the net heat transfer
is unaffected by the value of βT and therefore the flow work. The physical reason
behind this observation is that the flow work is a reversible contribution. Therefore
its net effect is zero when the total energy transfer is computed. The heat transfer is
due solely to the irreversible work done by the viscous dissipation.
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