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Abstract

A fluid description is used to study the properties of two-stream instability due to interaction of a non-relativistic electron
beam with quantum magnetized plasma and transverse wiggler magnetic field. It is assumed that the background plasma
provides charge and current neutralization of the electron beam. The dispersion relation is obtained by solving and
linearizing fluid-Maxwell equations. The resulting dispersion equation is analyzed numerically over a wide range of
system parameters. The results of quantum and classical treatments are compared numerically, with including the
effects of wiggler on the dispersion relation. It is found that the transverse wiggler magnetic field can strongly improve
the instability of quantum plasma as well as classical plasma.
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1. INTRODUCTION

The interaction of electron beam with plasma plays a key role
in various fields of physics and the theoretical study of the
linear regime of beam-plasma instabilities has loomed large
within most plasma physics textbooks. When an electron
beam passes through a plasma, it quickly induces a return
current. This current which fully neutralizes the beam current
is carried by the plasma electrons. The resulting system un-
dergoes various instabilities, multi-stream, two-stream, fila-
menation, and Weibel, that can disrupt beam propagation
(Weibel, 1959; Fried, 1959; Davidson et al., 1975; Bret,
2009; Michno & Schlickeiser, 2010). The two-stream paral-
lel unstable mode is found when the wave vector becomes
aligned with the direction of beam propagation, while for
the filamentation and Weibel modes the wave vector aligned
perpendicular with the streams. In rather high density relati-
vistic beams, filamentation modes grow fastest. On the other
hand, for Maxwellian electron beam-plasma system in the
non-relativistic regime, two-stream modes grow faster than
any other unstable mode. These two instabilities are beam
based which means they need a beam to exist. Two-stream
instabilities are traditionally known to be important for the
electron heating in intense laser-plasma interaction exper-
iments (Thode & Sudan, 1973) as well as in astrophysical

relativistic shocks (Nakar et al., 2011), and could be impor-
tant for pulsar glitches (Andersson et al., 2003; Samuelsson
et al., 2010), where super fluid neutrons and super conduct-
ing protons co-exist with relativistic electrons (Andersson
et al., 2004).

On the other hand, the topic of quantum plasmas has re-
ceived considerable attention in the recent advances. The
main reason for this is that the quantum plasma has wide ran-
ging applications in solid state physics, nano-scale objects
such as nano-wires, quantum dots (Shpatakovskaya, 2006;
Wei et al., 2007; Ang et al., 2006), ultrasmall electronic de-
vices in microelectronics (Markowich et al., 1990), dense as-
trophysical plasmas (Chabrier et al., 2002; Opher et al.,
2001; Jung, 2001), laser fusion plasmas(Glenzer et al.,
2007), and in next-generation high intensity light sources
(Marklund & Shukla, 2007; Mourou et al., 2006). It is well
known that the quantum plasmas are characterized by their
low temperatures and high densities in sharp contrast to the
high temperatures and low densities of the classical plasmas
(Shukla, 2006; Shukla et al., 2006; Haas et al., 2003a). The
quantum fluid equations have been further used to describe
the properties of the instabilities associated with the three-
stream quantum plasmas (Haas et al., 2003b), the quantum
dusty plasmas (Ali & Shukla, 2007), the electron-positron-ion
quantum plasmas (Mushtaq & Khan, 2008), and the magne-
tized quantum multi-stream (Ren et al., 2008). The hydrodyn-
amic formalism has also been used to investigate the quantum
filamentation instability in field configurations with and
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without axial guide magnetic field (Bret, 2008; 2007; Hasan-
beigi et al., 2012; 2014; Mehdian et al., 2013a; 2013b).
Although, many researcher have asseassed the electron

beam plasma instability, to the author’s knowledge the ef-
fects of the transverse helical magnetic field on the quantum
two-stream instability have not been considered yet. The
main purpose of this paper is to show how the quantum two-
stream instability can be affected by external helical wiggler
magnetic field. Due to importance of wiggler magnetic field,
especially in free electron lasers and accelerators, we devote
the present research to the evaluation of quantum effects
on the two-stream instability in the presence of helical wig-
gler. The wiggler is used to induce a perpendicular wave
motion in the electron beams. Here the direction of the wig-
gler magnetic field is perpendicular to the beam propagation
direction. A cold fluid model for a cold electron beam pas-
sing through a cold quantum magnetized plasma, accounting
for a wiggler magnetic field and a return electronic current.
The plasma is assumed to be cold so that before the passage
of the electron beam, the plasma electrons are at rest and the
magnetic field does not affect them. Collisions as well as
thermal motion of the beam and plasma electrons are also
neglected. The layout of this paper is organized as follows.
A description of the physical model and the equilibrium con-
figuration are presented in Section 2. The system of equations
that govern the motion of a non-relativistic electron beam
through a background plasma and external magnetic field
are also derived in this section. The full three-dimensional
dispersion relation of two-stream instability is obtained in
Section 3. Finally, Section 4 is devoted to the numerical re-
sults and discussion.

2. EQUILIBRIUM CONFIGURATION OF SYSTEM
AND FIRST EQUATIONS

The equilibrium configuration illustrated in Figure 1 corre-
sponds to a cold non-relativistic electron beam of density
nb0 and velocity vb propagating through background magne-
tized plasma in a configuration which consists of a helical
wiggler, Bw = Bw(êx cos kwz+ êy sin kwz), and a uniform
axial solenoidal field, B0ez. Here Bw and kw are the magnitude

of the helical magnetic field and wave number, respectively.
When the beam enters the magnetized plasma, it is deflected
by Bw. The solutions of the electron orbits for this configur-
ation can be obtained as

v0b = vbΩw

Ω0 − kwvb
( cos (kwz)ex + sin (kwz)ey)+ vbez, (1)

where Ω0,w≡ q B0,w/mc, and the symbol q and m are used to
denote the magnitude of electron charge and electron rest
mass, respectively. The beam density and current are assumed
to be sufficiently low, so that the effects of equilibrium self-
electric and self-magnetic fields can be neglected (Davidson,
2001). On the other hand, a sufficiently dense plasma can also
neutralize the injected current. Due to the changing magnetic
flux of a propagating bunch, return current is induced in the
plasma. Therefore, the current carried by the injected beam
electrons is neutralized by a return current in the plasma.
The plasma electrons have the density and drift velocity np0
and vp0, respectively, so that nb0 vb0=−np0 vp0. The ions
form a motionless neutralizing background represented by a
positive charge density ni= (np0+ nb0)/Z, where np0, vp0,
and Z are plasma electron density, plasma electron velocity
and ion charge, respectively. The above imposed relations
imply that the plasma system is both charge and current
neutralized.

3. DISPERSION EQUATION

To study the propagation of wave in this system, the Maxwell
equations will be used along with the the cold electron mo-
mentum transfer equation,

∂vj
∂t

= − q

m
(E+ vj × B

c
)+ h− 2

2m2
∇(

∇2 ��
nj

√
��
nj

√ ), (2)

and equation of continuity,

∂nj
∂t

+∇.(njvj) = 0, (3)

where the index j for the beam and plasma component is b
and p, respectively. Quantum corrections are clearly con-
tained within the so-called Bohm potential by means of the

h− 2
term in the above equation, which can be obtained from

the momentums of the non-relativistic Wigner function. In
order to develop a first order perturbation theory, the electron
number density nj, the electron velocity vj, the electric field
E, and the magnetic field B will be expressed in the form

n = n j0 + n j1,

vj = v j0 + v j1,

E = E1,

B = B0 + B1,

(4)

Fig. 1. (Color online) Schematic diagram of a beam plasma system to be
adopted in the present paper.
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where the unperturbed magnetic field B0 = B0 êz +Bw con-
sists of the transverse helical wiggler and the axial field of
magnitude B0. We express the axial and time dependence
of all perturbed parameters by application of Floquet’s
theorem (Sadegzadeh et al., 2012; Hwang et al., 2002; Jha
& Kumar, 1998) for periodic systems in the general form
F = ∑+∞

n=−∞ fnei(knz−ωt) , where kn and ω are the wave num-
bers and frequency of wave and kn= k+ nkw. As a conse-
quence, the linearized continuity and momentum transverse
equations yeild

v jxn =− ei

mΩ jn
(− Bw(vzn+1 − vzn−1)

2ci
+ B0v jyn

c

+ Exn(1− β0ckn
ω

)), (5)

v jyn =− ei

mΩ jn
(− B0v jxn

c
+ Bw(vzn−1 + vzn+1)

2c

+ Eyn(1− β0ckn
ω

)), (6)

v jzn = − ei

mΩ jn
[
Bw(vxn+1 − vxn−1)

2ci
− Bw(vyn−1 + vyn+1)

2c

+ Sj(kn+1Eyn+1 − kn−1Eyn−1)
2iω

+ Sj(kn−1Exn−1 + kn+1Exn+1)
2ω

]+ h− 2n jnk3n

4m2n0jΩ jn
,

(7)

n1j = n0jkn
ω− v jz0kn

v jzn (8)

where

Sj = v jz0Ωw

Ω0 − kwv jz0
, Ω jn = ω− v jz0kn, (9)

and B1 has been eliminated in momentum transverse
equations by use of B1= c/ωk × E1. Making use of Eqs.
(5)–(8), the linearized current density, ∑j(n1j vj0+ nj0 vj1),
component amplitudes are given by

Jxn = −e[nj0v jxn + 1
2
n0Sj

kn−1v jzn−1

Ω jn−1
+ kn+1v jzn+1

Ω jn+1

( )
],

Jyn = −e[
n0Sj

kn+1v jzn+1

Ω jn+1
− kn−1v jzn−1

Ω jn−1

( )
2i

+ nj0v jny],

Jzn = −ev jznnj0
v0jzkn
Ω jn

+ 1

( )
.

(10)

Substituting Eqs. (5)–(10) into the wave equation, ∇ × (∇ ×
E1)+ c−2∂2 E1/∂t

2+ 4πc−2∂J1/∂t= 0, then gives a dis-

persion equation with the form det D
↔ = 0 with

D
↔

=
D11 D12 0
D12∗ D22 0
0 0 D33

⎛
⎝

⎞
⎠, (11)

where the superscript ∗ refers to the complex conjugate

and the elements of the dispersion tensor D
↔

are complicated
functions of the system parameters. The dispersion
equation is a polynomial in x and can be simplified to the
form

∑20
n=0 anxn = 0, where the coefficients an are very

complicated, x= ω/ωp and ωp = (4πnp0q2

m )1/2. It should be
noted that in the limit of zero magnetic field, Ω0,w→ 0, the
dispersion equation is the same as the one found by Hass
et al. (2000; 2009). The dispersion properties of cold quan-
tum magnetized plasma in the presence of the transverse wig-
gler magnetic field can be described by analyzing the 20°
polynomial in ω. Owning to complicated nature of the dis-
persion relation, we will only treat it numerically.

4. NUMERICAL RESULTS AND DISCUSSIONS

A numerical study has been made to illustrate two-stream in-
stability of quantum magnetized plasma with transverse wig-
gler magnetic field. Results of numerical solutions of the 20°
polynomial dispersion equation for the complex normalized
wave frequency, x, are described below. Classical and quan-
tum limit correspond to the case Θ = ( h− ωp

2mc2 )
2 = 0 and Θ=

9 × 10−6, respectively. First the results of quantum and clas-
sical treatments will be compared numerically, including the

Fig. 2. (Color online) Plot of normalized growth rate in term of normalized
wavenumber Kn for (a) quantum magnetized plasma, (b) classical magne-
tized plasma, and (c) classical non-magnetized plasma. The parameters are
α= 0.1, β= 0.1, Ω=Ω w= 3.51 × 1011 Hz, Θ= 9 × 10−6.
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effects of wiggler on the dispersion relation. The normalized
growth rate Im(x) as a function of the normalized wave
number K = knvb

ωp
is shown in Figure 2 for (a) quantum mag-

netized plasma, (b) classical magnetized plasma, and (c) clas-
sical plasma. Here Ωw ,α= nb0 /np0,kw ,Ω, and β= vb /c
were taken to be 3.51 × 1011 Hz, 0.1, 2π/3 cm−1, 3.51 ×
1011 Hz, and 0.1, respectively. It is easy to see that the in-
creasing the wave number of classical plasma, Θ=Ω= 0,
results in a higher wave growth rate until it reaches a satur-
ation value. The behavior of magnetized plasma is comple-
tely different compared to the non-magnetized plasma case.
This is evident in the figure since, for example, the growth
rate increases with increasing K, achieves a maximum
value at K= Kmax and then decreases to zero with K for its
values within a higher range, K> Kmax. It is also seen from
this figure that there is no saturation for classical magnetized
plasma and its growth rate is grater than that of for quantum
magnetized plasma. The basic differences between the
growth rate of a quantum and a classical magnetized
plasma are illustrated in Figure 3. The dashed and solid

curves in this figure correspond to the classical and quantum
magnetized plasma, respectively. For quantum magnetized
plasma, two peaks are observed. The larger peak is occurring
in long wave lengths whereas the smaller peak corresponding
to short wave lengths. The smaller peak is not seen in the
classical regimes (Bret & Hass, 2010). Figure 4 shows the
variation of the growth rate with K in a quantum plasma in

Fig. 3. (Color online) Graph of normalized growth rate versus normalized
wavenumber Kn for quantum limit (the solid curve) and classical limit (the
dash curve). The parameters are: α= 0.15, β= 0.15,. The other parameters
are the same as in Figure 2.

Fig. 4. (Color online) Graph of normalized growth rate as a function of nor-
malized wavenumber for quantum plasma with and without axial magnetic
field. Parameters are the same as in Figure 2.

Fig. 5. (Color online) Effect of external periodic magnetic field on the
growth rate of magnetized plasma for (a) quantum limit, (b) classical limit
and (c) classical non-magnetized plasma. The curves 1, 2, and 3 correspond
to the case where Ωw= 8.7 × 101 1 Hz, 7.02 × 101 1 Hz, and 0.8 × 101 1 Hz.
The parameters are α= 0.5, β = 0.5. The other parameters are the same as in
Figure 2.
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the presence of the wiggler magnetic field. When Ωw, α, Θ,
and β are assumed to be constant, Figure 4 shows the effect of
axial magnetic field on the growth rate of quantum plasma. It
is obvious from this figure that the growth rate and the in-
stability bandwidth are increased due to a decrease in the
axial magnetic field.
To further understand the effects of wiggler on properties

of the growth rate, we compare in Figure 5 the growth rate of
instability in the presence of wiggler for different values of
wiggler frequency. Shown in Figure 5 are plots of the
growth rate versus K for three cases corresponding to Ωw=
8.7 × 1011 Hz (curve 1), 7.02 × 1011 Hz (curve 2), and
Ωw= 0.8 × 1011 (curve 3). It is evident from the Figure 5
that the growth rate is improved substantially by the presence
of the wiggler magnetic field and the instability bandwidth
becomes wider. The growth rate of instability can be affected
significantly by the ratio of electron beam density to the
plasma density, α. This is illustrated in Figure 6 where the
normalized maximum growth rate of quantum plasma,
Im(x), is plotted versus the density ration α. Each curve cor-
responds to a fixed value of α. Note from the figure that the
increased density ration, α, will increase the growth rate of
instability and cut-off wave number. Therefore, the band-
width of the instability is quite broad at large values of α.
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