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The stability properties of selected flow configurations, usually denoted as base flows,
can be significantly altered by small modifications of the flow, which can be caused,
for instance, by a non-intrusive passive control. This aspect is amply demonstrated in
the literature by ad hoc sensitivity studies which, however, focus on configurations
characterised by a steady base flow. Nevertheless, several flow configurations of
interest are characterised by a time-periodic base flow. To this purpose, we propose
here an original theoretical framework suitable to quantify the effects of base-flow
variations in the stability properties of saturated time-periodic limit cycles. In
particular, starting from a Floquet analysis of the linearised Navier–Stokes equations
and using adjoint methods, it is possible to estimate the variation of a selected Floquet
exponent caused by a generic structural perturbation of the base-flow equations. This
link is expressed concisely using the adjoint operators coming from the analysis, and
the final result, when applied to spatially localised disturbances, is used to build
spatial sensitivity and control maps. These maps identify the regions of the flow
where the placement of a infinitesimal small object produces the largest effect on the
Floquet exponent and may also provide a quantification of this effect. Such analysis
brings useful insights both for passive control strategies and for further characterising
the investigated instability. As an example of application, the proposed analysis is
applied here to the three-dimensional flow instabilities in the wake past a circular
cylinder. This is a classical problem which has been widely studied in the literature.
Nevertheless, by applying the proposed analysis we derive original results comprising
a further characterisation of the instability and related control maps. We finally
show that the control maps obtained here are in very good agreement with control
experiments documented in the literature.

Key words: instability control, wakes

1. Introduction
Stability and sensitivity analysis of a flow configuration (base flow) is important

both for investigating the path followed by the flow to depart from the selected
configuration when this is unstable and for the identification of possible controls of
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an identified instability. Passive controls generally lead to ad hoc modifications of
the base flow which change its stability properties in a desired way. In particular,
the dynamics of small disturbances superimposed onto the reference state is modified
by passive control in two ways: (i) by a modification of the base flow, and (ii) by
a direct action of the control on the dynamics itself. This aspect is well illustrated
for instance in Marquet, Sipp & Jacquin (2008) and Luchini, Giannetti & Pralits
(2009), where stability and sensitivity analysis is applied to investigate the passive
control of the vortex shedding instability in the wake past a circular cylinder exerted
by using a small control rod positioned in the wake. In Marquet et al. (2008) it is
shown that the two contributions of the control, i.e. the modification of the base flow
and its direct action on the disturbance dynamics, both play an important role in
the modification of the instability. Moreover, a strategy is proposed so as to derive
control maps predicting the effect of the control rod for a generic position of its
centre using adjoint methods. The same idea and methods have been successively
applied in the literature to a wide variety of flow instabilities (see, for instance, the
review in Camarri (2015)).

A key ingredient in the method proposed in Marquet et al. (2008) is the sensitivity
analysis of a selected global instability to a variation of the base flow which can be
induced by a generic forcing of the momentum equations. This aspect alone, even
without the implications it may have for control purposes, plays a significant role in
the characterisation of the instability, as also underlined in Sipp et al. (2010), Luchini
& Bottaro (2014) and Camarri (2015).

The first sensitivity analysis to a base-flow modification is documented in
Bottaro, Corbett & Luchini (2003), where the authors assessed the sensitivity of the
Orr–Sommerfeld spectrum to a generic modification of the base flow for plane Couette
flow. They used variational techniques to determine the mean-flow modification of
prescribed magnitude having the largest effect on a selected eigenmode. Small
base-flow variations were found to be sufficient to destabilise the flow that is
otherwise unconditionally stable according to linear stability analysis, this last aspect
being in contrast to experimental evidence. Gavarini, Bottaro & Nieuwstadt (2004)
studied the effect of base-flow distortions in the transition process of cylindrical
pipe flows. The sensitivity of the singular values of the resolvent operator of the
linearised flow dynamics with respect to base-flow modifications was studied by
Brandt et al. (2011), who derived the analytical expression for the gradient of the
resolvent norm of the system with respect to the base-flow modifications. However,
sensitivity analysis to base-flow modifications is also relevant for configurations
in which the base flow is periodic in time. Almost all the studies documented in
the literature on sensitivity analysis to base-flow perturbations, and in particular all
the references cited above, consider steady base flows. There are, however, a few
examples of sensitivity-based controls for time-periodic base flows. For instance, in
Meliga et al. (2014) a sensitivity analysis of the time-averaged drag coefficient for
the periodic flow past a square cylinder at Reynolds number Re = 100 is carried
out by integrating backwards in time an adjoint problem depending on the time
history of the flow. The resulting theoretical framework allows one to predict the
effect on the mean drag of a small control wire generically positioned in the flow.
A less CPU-demanding approach for the same control maps is proposed in Meliga,
Boujo & Gallaire (2016) and analysed in detail in Meliga (2017). This last method
consists of an adjoint-based analysis of the self-consistent model for vortex shedding
proposed in Mantič-Lugo, Arratia & Gallaire (2014), which results in solving a steady
nonlinear adjoint problem. The results provided are shown to be accurate and less
CPU-demanding than the time-stepping analysis proposed in Meliga et al. (2014).
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Sensitivity and control of secondary instability in a cylinder wake 47

Besides sensitivity-based controls of the limit cycle in a time-periodic base flow,
it is also interesting to consider controls of the instabilities that can arise in such
a base flow. Indeed, several important flow instabilities can arise in this case, as
for instance the secondary instability occurring in plane wakes past bluff bodies
leading the flow from a two- (2D) to a three-dimensional (3D) state. A partial result
in this respect is documented in Giannetti, Camarri & Luchini (2010), where the
sensitivity of the 3D secondary instability of the wake of a circular cylinder to a
structural perturbation of the linearised Navier–Stokes equations is investigated by
adjoint methods. To this purpose, the work in Giannetti et al. (2010) generalises the
approach originally proposed by Giannetti & Luchini (2007) to investigate the first
instability of the cylinder wake so as to include the case of time-periodic base flows.
In particular, the authors identify a localised region of maximum coupling among the
velocity components by using the direct and adjoint Floquet mode associated with the
selected 3D instability. The resulting sensitivity field takes into account the feedback
which is at the origin of the self-excited oscillation and is therefore useful to locate
the region where the instability mechanism acts. However, the theoretical approach
proposed in Giannetti et al. (2010) investigates only one of the two ways in which
the dynamics of small perturbations on a time-periodic base flow can be affected by a
passive control, i.e. by a direct action of a control on the disturbance dynamics. The
second way in which the control can interfere with the instability is by a modification
of the base flow, and this aspect, which is the main objective of the present work, has
not been investigated in the literature before. In this respect the work in Giannetti
et al. (2010) and the theory which is proposed here are complementary and both
necessary to estimate the effect of a passive control of an instability developing on
a time-periodic base flow. Since we work here in a linearised framework, the results
provided by the theory in Giannetti et al. (2010) can be summed directly to the ones
provided by the theory proposed here, so as to overlap the two effects of a flow
control just mentioned in order to derive control maps for an identified instability. As
a result the framework proposed here provides a tool to design passive controls for
instabilities developing on a time-periodic base flow.

As an example of application of the proposed theory, we consider the well-known
3D instability of the wake past a circular cylinder, which is an important paradigmatic
instability and, for this reason, is widely investigated in the literature. Concisely,
Noack, König & Eckelmann (1993) and Noak & Eckelmann (1994) found that the
flow past a circular cylinder is unstable to 3D perturbations when the flow Reynolds
number exceeds a given threshold. Successively, accurate numerical simulations
carried out by Barkley & Henderson (1996) confirmed the existence of two separate
bands of synchronous unstable modes: mode A (ReA

cr = 189), which is characterised
by a spanwise wavelength of approximately four cylinder diameters, and mode B
(ReB

cr = 259), which has a spanwise wavelength of approximately one diameter. Direct
numerical simulations (DNS) and experimental investigations confirm the existence
of these instabilities (Williamson 1988). In such a context, the sensitivity analysis
carried out here, besides being an example of application of the proposed theory, also
provides new and important information pertaining to the nature and the control of
the secondary instability in the wake past a circular cylinder. Moreover, control maps
are derived and validated, and they are shown to be in excellent agreement with the
experiments documented in Zhang, Fey & Noack (1995).

Despite the particular application detailed here, the formulation proposed is general
and can be used without any conceptual difficulty to analyse generic base flows that
are periodic in time.
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After having introduced the problem of the secondary instability in the wake
past a circular cylinder and concisely recalled the Floquet stability analysis in § 2,
we present the original method proposed here in § 3. In § 4 we merge the results
obtained here with those in Giannetti et al. (2010) and, as a result, we provide the
tools for estimating the effect of a local force–velocity feedback, which may mimic,
for instance, the effect of a control wire as used in Zhang et al. (1995), on the
secondary instability. Using the numerical methods described in § 5, we show the
original results obtained for the cylinder wake in § 6.

2. Flow configuration and Floquet analysis
In this section, after having introduced the considered flow configuration, we

concisely describe the tools for investigating the stability analysis of a time-periodic
base flow by a Floquet analysis.

2.1. Flow configuration
The incompressible flow around a nominally 2D circular cylinder is considered
here and the theory is presented focusing on this specific case, as discussed in the
introduction. The flow is described using a Cartesian coordinate system with the
z-axis coinciding with the cylinder axis and with the x-axis aligned with the direction
of the incoming uniform flow. The flow is governed by the unsteady incompressible
Navier–Stokes equations, which are made dimensionless using the cylinder diameter
D∗ as the characteristic length scale, the velocity of the incoming stream U∗

∞
as the

reference velocity, and the (constant) fluid density ρ∗:

∂U
∂t
+U · ∇U=−∇P+

1
Re
1U, (2.1a)

∇ ·U= 0, (2.1b)

where U is the normalised velocity vector with components U= (U, V,W), P is the
reduced pressure and Re=U∗

∞
D∗/ν∗ is the Reynolds number (ν∗ being the kinematic

viscosity of the fluid). As for the boundary conditions of the continuous problem, no-
slip and no-penetration conditions are applied on the cylinder surface Γc and the flow
is assumed to asymptotically approach the incoming uniform stream in the far field.

2.2. Floquet analysis
The considered flow becomes periodic in time when the Reynolds number exceeds
a critical value Rec1 ≈ 47, as widely investigated in the literature. The 3D instability
occurring in the resulting time-periodic wake can be investigated using Floquet theory
(see e.g. Drazin 2002), which is now concisely described.

The Floquet analysis is carried out in order to investigate the stability properties of
a time-periodic solution of (2.1), Qb = (Ub, Pb) of period T . In the specific case of
the considered wake, Qb is also a planar 2D flow in the x–y plane. Thus we have
Qb(x, y, t+ T)=Qb(x, y, t) and Ub · ez= 0, ez begin the versor of the z-direction. It is
assumed that a generic unsteady and 3D perturbation is superimposed onto the base
flow Qb, thus leading to the total flow field Q= {U, P}:

U(x, y, z, t)=Ub(x, y, t)+ ε
1
√

2π

∫
∞

−∞

u(x, y, k, t) exp(ikz) dk, (2.2a)
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Sensitivity and control of secondary instability in a cylinder wake 49

P(x, y, z, t)= Pb(x, y, t)+ ε
1
√

2π

∫
∞

−∞

p(x, y, k, t) exp(ikz) dk, (2.2b)

where ε is the disturbance amplitude and u and p are the velocity and pressure
disturbances Fourier-transformed in the spanwise direction (a homogeneous direction
for the base flow). Introducing (2.2) in (2.1) and linearising in ε, we obtain two
problems describing, respectively, the evolution of the 2D periodic base flow and the
dynamics of the 3D perturbations. In particular, the base flow is governed by the 2D
version of (2.1), while the perturbation field is described by the 3D unsteady linearised
Navier–Stokes equations (LNSE). When the Fourier transform in the z-direction is
applied to the LNSE, for each wavenumber k the following set of equations is
obtained:

∂u
∂t
+ Lk{Ub, Re}u+∇kp= 0, (2.3a)

∇k · u= 0, (2.3b)

where ∇k≡ (∂/∂x, ∂/∂y, ik) is the Fourier-transformed gradient operator, Lk stands for
the Fourier-transformed linearised Navier–Stokes operator,

Lk{Ub, Re}u=Ub · ∇ku+ u · ∇kUb −
1

Re
1ku, (2.4)

and 1k≡∇k · ∇k is the Fourier-transformed Laplacian operator. In the Floquet stability
analysis, the linearised flow field q= {u, p} is further assumed to have the following
modal form:

q(x, y, k, t)= q̂(x, y, k, t) exp (σ t), (2.5)

where σ is the Floquet exponent while q̂= {û, p̂} is a non-trivial periodic field, with
the same period T as the base flow, i.e. q̂(x, y, k, t+ T)= q̂(x, y, k, t).

Substituting the modal form of the disturbance, equation (2.5), in (2.3), it is found
that q̂ satisfies the following set of equations:

∂û
∂t
+ σ û+ Lk{Ub, Re}û+∇kp̂= 0, (2.6a)

∇k · û= 0, (2.6b)

along with homogeneous boundary conditions on the cylinder surface and appropriate
far-field radiation conditions. This implies that, far enough from the cylinder, the
perturbation behaves locally as an outgoing plane wave. While this last requirement
enforces the correct causality relation, it does not generally imply that the disturbance
vanishes at infinity. For the cylinder case, however, the spreading of the wake with
the resulting attenuation of the vorticity and the rapid decay of the outer potential
field produce a reduction of the perturbation amplitude with the radial distance.
Consequently, the far-field conditions may be formulated as

q̂= {û, p̂}→ {0, 0} as r→∞. (2.7)

The system of equations (2.6) along with the above boundary conditions and the
periodicity requirement for the solution q̂ is an eigenvalue problem for σ . Although
it is unusual to have a time derivative in the referenced eigenvalue problem, we
remind the reader that it arises as a consequence of having considered q̂ as being
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time-periodic with the same period as the base flow. The Floquet multipliers µ,
which are the eigenvalues of the Floquet transition operator, are related to the
Floquet exponents σ by the expression µ= exp(σT). By inspecting the modal form
in (2.5), it is clear that the base flow becomes unstable whenever there exists a
Floquet multiplier such that Re(µ) > 1 (Re(·) indicating the real part of a complex
number) or, equivalently, a Floquet exponent, such that Re(σ )> 0. Finally, considering
that q̂ has the same period as the base flow, if µ is real and positive, the resulting
eigenmode is synchronous with the vortex shedding period; if it is negative, it is
subharmonic; and if it is complex, the mode is periodic but asynchronous.

3. Sensitivity to a localised perturbation of the base flow
We start by considering the unperturbed stability problem, which is composed of

two sets of equations: (i) those governing the base flow, which is 2D and periodic in
time,

∂Ub

∂t
+Ub · ∇Ub +∇Pb −

1
Re
1Ub = 0, (3.1a)

∇ ·Ub = 0, (3.1b)

and (ii) equations (2.6) which are the eigenvalue problem resulting from the Floquet
stability analysis of the time-periodic base flow. Differently from the analysis
considered in Giannetti et al. (2010) and briefly recalled in § 4, where the effect
of a generic perturbation acting on the disturbance equations is investigated, we now
study the sensitivity of a selected Floquet exponent when a perturbation is applied to
the base-flow equations. In particular, let us consider a generic 2D linear structural
perturbation {δH, δR} acting on the base-flow equations. As a consequence, the
base-flow field {Ub, Pb} changes into {Ub + δub, Pb + δpb} as shown in the following
equations:

∂Ub + δub

∂t
+ (Ub + δub) · ∇(Ub + δub)+∇(δpb + Pb)−

1
Re
1(Ub + δub)= δH,

(3.2a)
∇ · (Ub + δub)= δR. (3.2b)

Besides directly changing the base flow, such a perturbation also affects the stability
equations through a modification of the linearised Navier–Stokes (LNS) operator Lk
induced by the variation δub of the base-flow velocity. In the following analysis, we
assume that the perturbations are weak enough to produce only a small change of the
base flow and the stability equations, so that a linearised analysis can be carried out.
Consequently, we expand the results around the unperturbed state {Ub, Pb} and the
unperturbed modal disturbance {û, p̂} (see (2.5)) by considering a small perturbation
of the base flow ({δub, δpb}) and the induced perturbation of the disturbance ({δû, δp̂}).
In order to avoid secular growth in the perturbation analysis, i.e. an unbounded growth
for long times resulting from an artefact in the perturbation analysis, it is convenient
to introduce a rescaled time τ = t/T , T being the period of the unperturbed base flow.
Note that, as a consequence of the perturbation of the base flow, the period T also
changes by an amount δT . Linearising (3.2) around the reference state {Ub, Pb} and
using the rescaled time τ , we obtain the following linearised equations for the base-
flow perturbation:

1
T
∂δub

∂τ
+ L0{UbRe}δub +∇0δpb =

δT
T2

∂Ub

∂τ
+ δH(Ub, Pb), (3.3a)
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∇0 · δub = δR(Ub, Pb), (3.3b)

where L0 is the LNS operator computed for k=0. The Floquet stability equations (2.6)
are modified as a consequence of the base-flow perturbation such that the perturbations
δû, δp̂ and δσ are related to one another by the following linearised equations:

1
T
∂δû
∂τ
+ σδû+ Lk{Ub, Re}δû+

∂Lk

∂Ub
{δub}û+∇kδp̂=

δT
T2

∂û
∂τ
− δσ û, (3.4a)

∇k · δû= 0. (3.4b)

Here the operator formally indicated by the term ∂Lk/∂Ub represents the change of
the LNS operator Lk due to a small change of the base flow and is defined as

∂Lk{Ub, Re}
∂Ub

{δub}û= δub · ∇kû+ û · ∇kδub. (3.5)

Equations (3.4) are a set of forced equations with periodic coefficients. We thus have
to enforce compatibility conditions in order to guarantee the existence of periodic
solutions which are those of interest here. In order to derive the compatibility
conditions and express both the variation of the period T and of the Floquet exponent
σ induced by the considered perturbation, we derive a generalised Lagrange identity
for the system of equations describing the perturbation problem, i.e. (3.3) and (3.4).

We start by scalar multiplication of (3.3) and (3.4) by a set of as-yet-unspecified
functions ( f+b , m+b ) and ( f+, m+) (the adjoint fields), respectively, summing together
the result and integrating both in space and time. The following identity is obtained
as a result:∫ 1

0

∫
D

[(
δT
T2

∂Ub

∂τ
+ δH(Ub, Pb)

)
· f+b + δR(Ub, Pb)m+b

]
dD dτ

+

∫ 1

0

∫
D

[(
δT
T2

∂û
∂τ
− δσ û

)
· f̂
+

]
dD dτ

=

∫ 1

0

∫
D

[(
1
T
∂δub

∂τ
+ L0{Ub, Re}δub +∇0δpb

)
· f+b + (∇0 · δub)m+b

]
dD dτ

+

∫ 1

0

∫
D

[(
1
T
∂δû
∂t
+ σδû+ Lk{Ub, Re}δû+

∂Lk

∂Ub
{δub}û+∇kδp̂

)
· f̂
+

+ (∇k · δû)m̂+
]

dD dτ . (3.6)

As standard, integration by parts and the divergence theorem are used to shift the
action of the differential operators in (3.6) from the flow fields to the adjoint fields f+b ,
m+b , f+ and m+. As a result we have a different identity which is equivalent to (3.6)
and also contains boundary integrals. The new version of the identity may be written
as ∫ 1

0

∫
D

[(
δT
T2

∂Ub

∂τ
+ δH(Ub, Pb)

)
· f+b + δR(Ub, Pb)m+b

]
dD dτ

+

∫ 1

0

∫
D

[(
δT
T2

∂û
∂τ
− δσ û

)
· f̂
+

]
dD dτ
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=−

∫ 1

0

∫
D

[
δub ·

(
1
T
∂f+b
∂τ
+ L+0 {Ub, Re} f+b +∇0m+b +∇kû · f̂

+

− û · ∇k f̂
+

)
+ pb(∇0 · f+b )

]
dD dτ︸ ︷︷ ︸

(A)

−

∫ 1

0

∫
D

[
δû ·

(
1
T
∂ f̂
+

∂τ
− σ f̂

+

+ L+k {Ub, Re} f̂
+

+∇km̂+
)
+ δp̂(∇k · f̂

+

)

]
dD dτ︸ ︷︷ ︸

(B)

+
1
T

∫
D

[
δub · f+b

]τ=1

τ=0 dD + 1
T

∫
D
[δû · f̂

+

]
τ=1
τ=0dD︸ ︷︷ ︸

(C)

+

∫ 1

0

∮
D

J(δqb, g+b ) · n ds dτ︸ ︷︷ ︸
(D)

+

∫ 1

0

∮
D

J(δq̂, ĝ+) · n ds dτ︸ ︷︷ ︸
(E)

+

∫ 1

0

∮
D
[(δub · f̂

+

)û] · n ds dτ︸ ︷︷ ︸
(F)

. (3.7)

In this expression J(q, g+) is the ‘bilinear concomitant’, which is defined for two
generic fields q= {u, p} and g+ = { f+,m+} as

J(q, g+)=Ub(u · f+)+
1

Re

(
∇k f+ · u−∇ku · f+

)
+m+u+ pf+ (3.8)

and L+k is the adjoint linearised Navier–Stokes operator with wavenumber k defined
as

L+k {Ub, Re} f+ =Ub · ∇k f+ −∇kUb · f+ +
1

Re
1k f+. (3.9)

As for the LNS operator, the subscript 0 in L+k indicates the contribution from the
zeroth-wavenumber component. In order to further simplify the identity (3.7), we
assume that the field ( f+b , m+b ), which is the adjoint base-flow field, is a periodic
solution of the following forced adjoint equations:

1
T
∂f+b
∂τ
+ L+0 {Ub, Re} f+b +∇0m+b =−∇kû · f̂

+

+ û · ∇k f̂
+

, (3.10a)

∇0 · f+b = 0. (3.10b)

In this way, term (A) in (3.7) vanishes. Analogously, term (B) also vanishes if
we assume that the fields ( f̂

+

, m̂+), which indicate the adjoint stability mode
corresponding to the Floquet exponent σ , satisfy the following equations:

1
T
∂ f̂
+

∂τ
+ L+k {Ub, Re} f̂

+

+∇km̂+ − σ f̂
+

= 0, (3.11a)

∇k · f̂
+

= 0. (3.11b)

Assuming that the solutions of (3.10) and (3.11) are periodic in time with the same
period T as the unperturbed base flow, term (C) also vanishes. Finally, boundary
conditions for the adjoint flow fields can be found so as to make terms (D), (E)
and (F) vanish. In the continuous problem, these conditions imply that the adjoint
flow fields vanish on the cylinder surface and decay at infinity. When the problem
is discretised by a numerical method, numerical boundary conditions can be imposed
so that terms (D), (E) and (F) vanish at discrete level. However, we will see that,
with the selected numerical approach described in § 5, the boundary conditions for
the adjoint problems are automatically taken into account at the discrete level.
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After the assumptions described above, (3.7) finally becomes∫ 1

0

∫
D

[(
δT
T2

∂Ub

∂τ
+ δH(Ub, Pb)

)
· f+b + δR(Ub, Pb)m+b

]
dD dτ

+

∫ 1

0

∫
D

[(
δT
T2

∂û
∂τ
− δσ û

)
· f̂
+

]
dD dτ = 0. (3.12)

Note that in (3.12) all the perturbation terms have disappeared with the exception of
δT and δσ . Solving for δσ we obtain

δσ =

∫ 1

0

∫
D
[δH(Ub, Pb) · f+b + δR(Ub, Pb)m+b ] dD dτ +

∫ 1

0

∫
D

δT
T2

[
∂Ub

∂τ
· f+b +

∂û
∂τ
· f̂
+

]
dD dτ∫ 1

0

∫
D

û · f̂
+

dD dτ
.

(3.13)

Equation (3.13) is still not usable in practice to estimate δσ as a function of the
generic perturbations δH and δR because the variation δT of the base-flow period is
still unknown. Another problem in its practical use seems to arise from the fact that
the solution of the forced system in (3.10), ( f̂ b, m̂b), is not unique but nevertheless is
used in (3.13) so as to estimate δσ . Indeed, we can always add to a particular solution
of (3.10) a solution of the associated homogeneous system and the resulting sum is
still a solution of the forced problem. In order to solve this ambiguity, let us define
the field ({ f+bh,m+bf }) as a solution of the homogeneous system associated with (3.10):

1
T
∂f+bh

∂τ
+ L+0 {Ub, Re} f+bh +∇0 m+bh = 0, (3.14a)

∇0 · f+bh = 0, (3.14b)

and let us write the general solution of the forced problem as a superposition of a
particular solution (bp) and of the homogeneous (bh) solution as

f+b = f+bp + η f+bh, (3.15a)

m+b =m+bp + ηm+bh, (3.15b)

with η being an undetermined coefficient. Substituting equation (3.15) into (3.13) we
obtain the following expression for δσ :

δσ =

∫ 1

0

∫
D

[
δH(Ub, Pb) · ( f+bp + η f+bh)+ δR(Ub, Pb)(m+bp + ηm+bh)

]
dD dτ∫ 1

0

∫
D

û · f̂
+

dD dτ

+

∫ 1

0

∫
D

δT
T2

[
∂Ub

∂τ
· ( f+bp + η f+bh)+

∂u
∂τ
· f+
]

dD dτ∫ 1

0

∫
D

û · f̂
+

dD dτ
. (3.16)
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Note that in this equation the variation of the period δT is still undetermined.
Furthermore, written in this way, it might seem that the variation δσ of the considered
Floquet exponent depends on the particular choice of the coefficient η. Recall,
however, that (3.3), which governs the evolution of the 2D perturbation induced by
the localised perturbation, is a forced equation with periodic coefficients. In particular,
the forcing terms are those on the right-hand side of (3.3a) and (3.3b). The solution
to this system of equations is also periodic provided that a compatibility condition is
imposed, which can be derived by writing a related Green identity or by imposing
the Fredholm alternative. The Fredholm alternative requires the forcing term to be
orthogonal to the homogeneous solution of the adjoint equations:∫ 1

0

∫
D

[[
δT
T2

∂Ub

∂τ
+ δH(Ub, Pb)

]
· f+bh + δR(Ub, Pb)m+bh

]
dD dτ = 0. (3.17)

The condition in (3.17) has two important implications. Firstly, that the solution for
δσ given in (3.16) is independent of the value of η. Secondly, equation (3.17) can be
solved for δT/T2 giving the following result:

δT
T2
=−δSt=−

∫ 1

0

∫
D
[δH(Ub, Pb) · f+bh + δR(Ub, Pb)m+bh] dD dτ∫ 1

0

∫
D

∂Ub

∂τ
· f+bh dD dτ

, (3.18)

where St is the Strouhal number associated with vortex shedding, i.e. its normalised
frequency (St = 1/T , where T has been made non-dimensional using U∗

∞
and D∗).

Since all quantities on the right-hand side are known, equation (3.18) allows the
estimation of δT as a function of the generic perturbations δH and δR of the base
flow. If we reintroduce time t in (3.18) we finally obtain the following equivalent
expression for the variation δT:

δT
T
=−

∫ T

0

∫
D
[δH(Ub, Pb) · f+bh + δR(Ub, Pb)m+bh] dD dt∫ T

0

∫
D

∂Ub

∂t
· f+bh dD dt

. (3.19)

Once it has been shown that the arbitrary constant η does not affect δσ , it is possible
to properly choose its value so as to further simplify (3.16), which is now usable for
estimating δσ since δT is now known from (3.18) or, equivalently, from (3.19). In
particular, it is possible to choose a particular value of η in order to make the second
integral in (3.16) null as follows:

η=

∫ 1

0

∫
D

[
∂Ub

∂τ
· f+bp +

∂u
∂τ
· f+
]

dD dτ∫ 1

0

∫
D

∂Ub

∂τ
· f+bh dD dτ

. (3.20)

If we rewrite (3.16) with η given by (3.20) and we reintroduce the unscaled time t, we
finally obtain the following equation, which allows the estimation of δσ as a function
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of the generic perturbations δH and δR:

δσ =

∫ T

0

∫
D
[δH(Ub, Pb) · f+b + δR(Ub, Pb)m+b ] dD dt∫ T

0

∫
D

û · f̂
+

dD dt
. (3.21)

Note that when the Floquet exponent σ is real-valued (either positive or negative), the
associated eigenmode is real, too. In this case δσ is also real, indicating that only the
growth rate of the mode is affected by the structural perturbation. On the other hand,
when σ is complex-valued, δσ generally has an imaginary part different from zero
and the structural perturbation affects both the real and the imaginary parts of σ .

If we further assume δR(Ub,Pb)= 0, i.e. we do not perturb the continuity equation
mimicking a local addition/subtraction of mass, but we only perturb the momentum
equation with δH, equation (3.21) further simplifies to

δσ =

∫ 1

0

∫
D
δH(Ub, Pb) · f+b dD dτ∫ 1

0

∫
D

û · f̂
+

dD dτ
. (3.22)

Summarising, the analysis carried out in this section allows the estimation of the
variation of (i) the vortex shedding period (or, equivalently, of the associated Strouhal
number) and (ii) the Floquet exponent associated with an identified instability, induced
by a generic distributed perturbation of the momentum and continuity equations
governing the dynamics of time-periodic base flow.

4. Sensitivity analysis to a localised force–velocity feedback
The synthetic results obtained in the previous section, in particular (3.18) and (3.22),

are used here in order to quantify the effects on the vortex shedding frequency and
on the Floquet exponent related to either mode A or mode B instabilities that are
induced by a particular perturbation, i.e. a localised force–velocity feedback acting on
the momentum equations. This particular perturbation is significant because a localised
force–velocity feedback can model the presence of a small control body in the flow,
as often done in the literature (see for instance Camarri (2015) for a review). In the
case of the 3D wake past a circular cylinder, for instance, it is an appropriate model
to represent the control exerted by a small wire, with the axis parallel to the cylinder
axis, positioned in the wake, as done in the experiments documented in Zhang et al.
(1995). Thus, appropriately built sensitivity maps for the considered force–velocity
perturbation can be used as control maps so as to predict the effect of a small control
wire on the 3D stability characteristics of the wake. In this second case, however, it
is necessary to take into account the action of the perturbation when this acts both on
the base flow, as investigated in § 3, and on the linearised flow equations, as already
done in Giannetti et al. (2010).

When a localised force–velocity feedback acting on the sole base flow is considered,
the generic perturbation δH assumes the form of a local reaction force proportional
to the local velocity field:

δH(Ub, Pb)= δ(x− x0, y− y0)C1 ·Ub, (4.1)
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where C1 is a generic constant feedback matrix, (x0, y0) are the coordinates of the
point where the feedback acts and δ(x− x0, y− y0) is the Dirac delta function.

Substituting (4.1) in (3.18) it is possible to estimate the effect of the considered
perturbation on the Strouhal number:

δSt=

∫ 1

0

∫
D
δ(x− x0, y− y0)C1 ·Ub · f+bh dD dτ∫ 1

0

∫
D

∂Ub

∂τ
· f+bh dD dτ

= C1 : Ss(x0, y0), (4.2)

where Ss is the sensitivity tensor field of the vortex shedding frequency (Strouhal
number) with respect to the localised perturbation in (4.1), and it is defined as

Ss(x, y)=

∫ T

0
Ub(x, y, t) f+bh(x, y, t) dt∫ 1

0

∫
D

∂Ub

∂τ
· f+bh dD dτ

. (4.3)

An analogous result can be obtained for the Floquet exponent of the instability by
substituting (4.1) in (3.22):

δσ =

∫ T

0

∫
D
δ(x− x0, y− y0) C1 ·Ub · f+b dS dt∫ T

0

∫
D

û · f̂
+

dS dt
= C1 : Sb(x0, y0, k). (4.4)

In this case the tensor Sb is the sensitivity tensor field of the Floquet exponent σ with
respect to the localised perturbation in (4.1), and it is defined as

Sb(x, y, k)=

∫ T

0
Ub(x, y, k, t) f b(x, y, k, t) dt∫ T

0

∫
D

û · f̂
+

dS dt
. (4.5)

As already stated above, if a localised force–velocity feedback of the same type
as (4.1) is applied to the total velocity field and not only to the base flow, another
additional sensitivity tensor arises (Sl) for quantifying the variation of the Floquet
exponent, whose effect must be summed to that of Sb. This tensor arises from the
sensitivity analysis of the sole linearised stability equations, which is proposed and
carried out in Giannetti et al. (2010). Summarising the results of that paper, we
consider a perturbation of the same type as (4.1) but acting only on the linearised
flow equations:

δHL(u, p)= δ(x− x0, y− y0)C1 · u. (4.6)

The effect of such a perturbation on the Floquet exponent can be quantified as follows:

δσ =

∫ t+T

t

∫
D

f+ · δ(x− x0, y− y0) C1 · u dS dt∫ t+T

t

∫
D

f+ · u dS dt
= C1 : Sl(x0, y0, k), (4.7)
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where Sl is the structural sensitivity tensor of the Floquet mode, defined as

Sl(x, y, k)=

∫ t+T

t
f+(x, y, k, t)u(x, y, k, t) dt∫ t+T

t

∫
D

f+ · u dS dt
. (4.8)

Since the analysis carried out here is linear, if we consider a localised force–velocity
feedback acting on the whole velocity field U,

δHT = δ(x− x0, y− y0)C1 ·U, (4.9)

the effect of such a perturbation on the Floquet exponent of an identified instability
is given as the sum of the two contributions, i.e. one coming from perturbation (4.1)
and one from perturbation (4.6):

δσ = C1 : Stot, (4.10)

where the total sensitivity tensor field Stot is given as

Stot = Sl + Sb. (4.11)

We stress that the two components of the total sensitivity tensor serve different
purposes: the sensitivity Sl is appropriate to identify the driving mechanism of the
global instability (the wavemaker), while both Sb and Sl are useful to develop passive
control strategies for the secondary instability.

Finally, since the perturbation (4.6) on the linearised equations cannot have an
influence on the vortex shedding frequency, the variation of frequency induced by
perturbation (4.9) is the same as that induced by perturbation (4.1) and is given
in (4.2).

5. Numerical approach
In the present work, the numerical simulation of the base flow, of the direct and

adjoint Floquet problems and of the problem adjoint to the time-periodic base flow
are all solved using an ad hoc finite-difference code. The finite-difference code used
here is the same as that of Giannetti et al. (2010). Its description is concisely given
in this section, referring to the reference cited above for further details.

The spatial discretisation of the equations is carried out on a staggered grid
using a classical second-order centred finite-difference scheme built starting from
the conservative form of the equations. A non-uniform Cartesian grid is used on a
rectangular computational domain. Since the grid is non-conformal with the cylinder,
on which a no-slip boundary condition is applied, a second-order immersed-boundary
(IBM) technique is used. The time discretisation is carried out using the Rai &
Moin (1991) scheme, i.e. a hybrid third-order Runge–Kutta/Crank–Nicolson scheme.
This choice implies an explicit discretisation of the convective terms while the
remaining terms are implicitly discretised. Pressure is solved implicitly in a coupled
way together with the velocity field. Linear systems arising at each time step are
solved by the sparse LU algorithm implemented in the UMFPACK library (Davis
2004). The linearised Navier–Stokes equations are solved by linearising the nonlinear
solver described above at the discrete level and by imposing appropriate homogeneous
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boundary conditions. Adjoint solvers are also obtained at the discrete level starting
from the direct solvers (discrete adjoint) so that the combined properties of direct and
adjoint modes are verified to machine accuracy and the correct boundary conditions
for the adjoint problems are automatically taken into account.

Concerning the simulation of the base flow, the 2D Navier–Stokes equations are
advanced in time until a periodic solution is obtained. For the direct and adjoint
Floquet stability analysis, a power method is used so as to identify the dominant
Floquet modes and the associated multipliers, and at each step of the power method
the linearised Navier–Stokes equations are solved over one vortex shedding period.
The forced adjoint base-flow problem is solved with the same numerics as the direct
stability problem.

In the present work we use the same size of computational domain as adopted by
Giannetti et al. (2010) for the same problem. In order to obtain the base flow, we use
a uniform velocity profile (U = 1, V = 0) at the inlet and on the lateral boundaries
of the computational domain, and a convective outflow condition (∂V/∂x= 0, −P+
Re−12∂U/∂x= 0) is imposed on the outlet. The boundary conditions for the linearised
problem are simply derived from those adopted for the base-flow computations. Thus,
homogeneous Dirichlet conditions (U= 0,V = 0) are imposed on the inlet and on the
lateral boundaries, while the same convective condition is imposed on the outflow.

As concerns discretisation in time, the time step is chosen in order to have
approximately 500 points per shedding cycle. Both the computational domain and
the spatio-temporal resolution are the same as those previously used in Giannetti
et al. (2010). We refer to that paper for details concerning the validation of the code
against the literature and for details on the grid-convergence tests and resolution.

For a complete validation of the results obtained by the sensitivity analysis, we
have decided to use full 3D DNS simulations carried out with a completely different
code. In this way it is possible to validate at the same time (i) the ad hoc solvers that
we have implemented, (ii) the numerical resolution adopted and (iii) the derivation of
the sensitivity maps as concerns both the theory and the numerical implementation.
To this purpose we used the open-source code Nek5000 (https://nek5000.mcs.anl.gov),
which is a massively parallel code based on a spectral-element method (SEM), where
the spatial discretisation of the domain is carried out using hexahedral elements. The
code employs Lagrangian finite elements based on Gauss–Lobatto–Legendre (GLL)
quadrature points. The discretisation in time is carried out by a third-order backward
differentiation formula (BDF3). In particular, the diffusive terms are treated implicitly
in time, while a third-order explicit extrapolation formula (EXT3) is considered for
the convective terms. The computational domain for the present simulation is the
same as that validated and used in Camarri, Fallenius & Fransson (2013) for the
DNS of the flow past a circular cylinder up to a Reynolds number equal to 400.
With reference to the Cartesian system introduced previously (see the definition
above), the inlet boundary is at xinlet2 = −15D, the lateral boundaries are located
at ylat2 = ±15D and the outflow is located at xoutlet2 = 35D. Dirichlet boundary
conditions are imposed on the inlet and lateral boundaries, forcing the undisturbed
velocity field, while stress-free outflow conditions are imposed at the outlet boundary.
Since 3D simulations are carried out with focus on mode A, the domain extension
Lz in the homogeneous direction z is taken approximately equal to Lz ' 3.964D,
corresponding to a fundamental wavenumber kz approximately equal to k = 1.585,
and periodic boundary conditions are then applied along z. The 3D grid is built by
extruding a 2D grid made of approximately 1500 spectral elements in the z-direction.
Two 3D grids have been built, one using 16 spectral elements in the spanwise
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direction (globally 24 000 elements for the 3D grid), and one using five elements
(globally 7500 elements). It was observed that, for what concerns the vortex shedding
frequency and the Floquet exponent computed by 3D DNS, the results obtained with
the two different grids were almost identical, differences being not meaningful for
the objectives of the present work. For instance, at Re= 220 the relative differences
were less than 0.2 % for the estimated Floquet exponent, while the Strouhal numbers
were identical up to the fourth decimal digit. For this reason the results presented
here are obtained on the coarser grid unless otherwise specified. The simulations
have been carried out with a PN–PN−2 formulation for the stabilisation of spurious
pressure modes, and the polynomial degree N used is N = 6. Dealiasing is applied
to the convective nonlinear term, which is thus computed with N = 9. The time step
for advancing the simulation in time is fixed to 1t = 5 × 10−3, corresponding to a
Courant–Friedrichs–Lewy (CFL) number approximately equal to 0.35, which implies
the use of approximately 1000 time steps for each shedding cycle.

As will be clear in the following, for the validity of the DNS tests carried out
here, it is not important that we have a perfect matching between the results obtained
with our finite-difference code and those obtained by Nek5000. Nevertheless, we have
carried out a cross-comparison at Re= 190 so as to appreciate the accuracy of the 3D
DNS simulations carried out by Nek5000. The Strouhal numbers obtained with the
two codes, St = 0.1971 and St = 0.1962 (Nek5000), compare well, differences being
of the order of 0.4 % and compare well with the literature, for instance St = 0.1954
in Barkley & Henderson (1996). Concerning the Floquet multiplier for k= 1.585, the
stability analysis obtained by the finite-difference code predicts µ' 1.002 while the
same value estimated by 3D DNS is µ ' 1.009, differences being of the order of
0.7 %. In terms of estimated critical Reynolds number RecrA for the onset of mode A,
stability analysis estimates RecrA ' 189.77 while with 3D DNS (k= 1.585) we obtain
RecrA' 189.71, the two values being in excellent agreement with each other and with
RecrA ' 188.5 reported in Barkley & Henderson (1996).

6. Results
6.1. Sensitivity analysis

In the present section, we apply the proposed theoretical formalism in order to
compute the sensitivity tensor fields defined in § 4 and to investigate their properties
for the secondary instability of the cylinder wake. As shown in Barkley & Henderson
(1996), the critical Reynolds number and the wavenumber associated with mode A are
ReA

cr≈ 189 and kA' 1.585, while for mode B we have ReB
cr≈ 259 and kB' 7.640. The

stability analysis carried out here confirms these findings with a very good accuracy,
as documented in Giannetti et al. (2010) and partially reported in § 5. In order to
focus attention on modes A and B, two nearly marginally unstable configurations
have been considered here for carrying out the sensitivity analysis and for the
derivation of the control maps. These two configurations are (ReA

= 190, kA = 1.585)
for mode A and (ReB

= 260, kB = 7.640) for mode B. The same two configurations
were considered in Giannetti et al. (2010), where the structural sensitivity analysis
of the linearised stability equations is detailed, leading to the computation and the
analysis of the tensor field Sl by the numerical evaluation of (4.8). In the present
work, we have computed the tensor field Sb by evaluating numerically (4.5) and the
tensor Ss in (4.3). Both tensor fields Sb and Sl contribute to the flow sensitivity with
respect to a generic perturbation in the form of a local force–velocity feedback acting
on the total velocity field, in agreement with (4.10). In order to provide a synthetic
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FIGURE 1. (Colour online) Contour plot of the spectral norm of the base flow sensitivity
tensor Sb: (a) mode A (Re= 190, k= 1.585) and (b) mode B (Re= 260, k= 7.64).

view of the sensitivity tensor fields, we plot their spectral norm, which provides maps
related to the maximum effect that a local force–velocity feedback can have on the
Floquet exponent as shown by the following inequalities:

|δσ | = ‖C1 : Stot‖6 ‖C1‖‖Stot‖ = ‖C1‖‖Sb + Sl‖6 ‖C1‖(‖Sb‖ + ‖Sl‖). (6.1)

Note that the above inequality is valid for a generic norm. Thus a generic norm can
be used to identify the relative importance of the different regions of the flow field in
influencing the identified instability; to this purpose we have chosen here to use the
spectral norm.

We report in figure 1 the spectral norm of the tensor Sb obtained for modes A
and B and in figure 2 the spectral norm of the tensor Sl obtained in Giannetti et al.
(2010) for the same two configurations. From these figures we note that the region
where the spectral norm of Sb is significantly different from zero is localised in
space in a region comprising the shear layers originating on the lateral sides of the
cylinder and the recirculation region in the wake. A similar behaviour was observed
by Luchini et al. (2009) for the sensitivity of the nonlinearly saturated limit cycle.
By comparison between the spatial distribution of Sb and that of Sl it is possible to
note that the regions in the wake where both are non-negligible are approximately the
same; however, differently from Sl, tensor Sb is also important on the shear layers
in a region extending up to |y| ' 1. Moreover, in the case of mode B (see figure 1b),
Sb is significant also upstream of the cylinder at least up to x=−2, as also observed
for the primary wake instability in Marquet et al. (2008). Figure 3 shows the sum of
the spectral norms of Sb (figure 1) and of Sl (figure 2) for modes A and B. Despite
analysing regions where the spectral norms are non-negligible, it is also interesting
to compare tensors Sb and Sl from a quantitative viewpoint. This can be done by
comparing the values of the spectral norm of Sb in figure 1 to that of Sl in figure 2.
This comparison shows that for mode A (see panels a) the variation of the Floquet
exponent induced by the localised force–velocity feedback due to a change of the
base flow, represented by Sb, is of the same order of magnitude as those induced
by the direct action of the perturbation on the dynamics of the 3D perturbations,
represented by Sl. Conversely, as concerns mode B, variations induced by a change
of the base flow are dominant, and they are one order of magnitude larger than those
related to Sl. In both cases the contribution of the variations of the base flow is very
important and must be taken into account if we want to use the present analysis for
a quantitative prediction of possible passive controls of the secondary instability.
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FIGURE 2. (Colour online) Spatial distribution of the spectral norm of the sensitivity
tensor field Sl, computed and reported in Giannetti et al. (2010): (a) mode A (Re= 190,
k= 1.585) and (b) mode B (Re= 260, k= 7.64).
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FIGURE 3. (Colour online) Field resulting from the sum of the spectral norms of the
sensitivity tensor fields Sb and Sl: (a) mode A (Re = 190, k = 1.585) and (b) mode B
(Re= 260, k= 7.64).

6.2. Control maps
In this subsection we focus on the idea of providing control maps, derived on the basis
of the theoretical work illustrated in § 4 so as to provide quantitative information on
the possible control that can be exerted by introducing in the flow a small wire whose
axis is parallel to the cylinder axis. An example of this kind of passive control is
illustrated in the experiments documented in Zhang et al. (1995). In the referenced
experiments, a small wire was observed to interfere with the secondary instability
of the wake past a circular cylinder so that, if placed in precise positions, it could
stabilise the wake otherwise unstable to 3D instabilities. The diameter of the control
wire was in a ratio of 1:160 with the diameter of the circular cylinder.

As a first step, we can model such a localised control as a linear local force–velocity
feedback as in (4.10). In particular, following several similar works described in the
literature (see for instance Camarri (2015) for a review), we can model the presence
of the small wire as a local pure drag force proportional to the local velocity field.
This leads to a tensor field C1 in (4.9) which is diagonal and equal to C1 = −c I ,
where c is a proportionality constant relating the local velocity with the drag and I is
the identity tensor. If we substitute this particular control tensor in (4.10), we obtain
the following result quantifying the action of such a control on the Floquet exponent:

δσ =−c Tr(Stot)=−c(Tr(Sb)+ Tr(Sl)). (6.2)
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FIGURE 4. (Colour online) Mode A (Re= 190, k = 1.585): scalar fields (a) Tr(Sb) and
(b) Tr(Sl).

As highlighted in (6.2), the control is proportional by means of −c to the trace of the
sensitivity tensors Sb and Sl, and their sum, which corresponds to Tr(Stot), provides
a control map indicating the quantitative action of the local placement of a control
wire on the Floquet exponent. In order to analyse the contributions to the control map
deriving from the base-flow modifications and from the direct action of the control on
the linearised dynamics of the 3D disturbances, we plot both scalar fields Tr(Sb) and
Tr(Sl) for mode A in figure 4. Confirming what was already observed in § 6.1, the
two contributions are equally important for the quantitative evaluation of the control
effect. The total control map, which is the sum of the two maps reported in figure 4, is
reported in figure 5(a); note that the map is real-valued because the instability mode A
remains synchronous with the vortex shedding when the control is applied. The value
in the map expresses the quantitative variation δσ/c, which in this case is a pure
growth rate. The applied control can be stabilising (δσ < 0) or destabilising (δσ > 0)
depending on the sign of δσ . In particular, since c>0 as the small control wire always
exerts a drag, the effect of control is destabilising when the control map in figure 5(a)
is positive-valued and destabilising when negative-valued. For example, according to
figure 5(a), a control wire positioned at the point (1.05, 0.0) is stabilising for mode A
while a wire in (1.68, 0.0) is destabilising.

Analogous comments can be made for the control of mode B. To this purpose we
report in figure 6(a) the scalar field Tr(Sb), and in figure 6(b) Tr(Sl) for mode B.
In this case, as already highlighted by the sensitivity analysis reported in § 6.1, the
contribution of the control to the variation of δσ induced by a variation of the base
flow can be one order of magnitude larger than that obtained by the direct action
on the linearised dynamics. However, this second contribution (derived from Sl) is
important since it is localised in a region where it is of the same order of magnitude
as the contribution coming from Sb. The total control map obtained by the sum of the
two contributions is plotted in figure 5(b). As for mode A, mode B is synchronous and
it remains synchronous in the controlled case, so that δσ is real-valued. If we compare
the total control maps for modes A and B, i.e. figures 5(a) and 5(b), it is possible
to note that mode B is definitely more sensitive to control. Note, however, that the
two maps are pictures taken at two different values of Re. Lastly, while control for
mode A is equally effective if applied in the shear layers and in the wake, mode B
is definitely more sensitive to control if this is applied in the shear layers detaching
from the body.

Finally, as shown in § 4, a necessary step for the estimation of δσ is the evaluation
of the control action on the vortex shedding frequency. This estimation, which is
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FIGURE 5. (Colour online) Total control map Tr(Stot): (a) mode A (Re= 190, k= 1.585)
and (b) mode B (Re= 260, k= 7.640).
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FIGURE 6. (Colour online) Mode B (Re = 260, k = 7.640): scalar fields (a) Tr(Sb) and
(b) Tr(Sl).

implicitly taken into account in (4.10), is an important side output of the analysis
for control purposes, as it provides a synthetic control map like those reported in
figure 5 illustrating the effect of a control wire generically positioned in the flow
on the nonlinearly saturated vortex shedding frequency. In particular, if we model the
control wire as proposed above and we substitute the model in (4.2) we obtain

δSt=−c I : Ss(x0, y0)=−c Tr(Ss)(x0, y0). (6.3)

In this case the only contribution to the variation of the vortex shedding is obviously
due to the action of the control on the base flow, as indeed vortex shedding is a
property of the base flow. The resulting control map, the scalar field Tr(Ss), is plotted
in figures 7(a) and 7(b) for modes A and B, respectively. Note that, even if it is
not immediately clear from the figure, the map comprises also negative values in
very localised regions just downstream of the separation points of the shear layers.
However, except for these very limited regions, the map is positive-valued, implying
a decrease of the vortex shedding frequency or, equivalently, an increase of its period
when the control is applied. Moreover, differently from δσ , the effect of the control
on δSt is qualitatively and quantitatively similar for modes A and B, that for mode B
being larger by a factor that is roughly equal to 1.6. In both cases the region where
control mostly affects the vortex shedding frequency is localised on the boundaries of
the mean recirculation region of the wake. For instance, if we constrain the control
wire to be on the symmetry line y = 0, the position of maximum effect of control
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FIGURE 7. (Colour online) Spatial distribution of the scalar field Tr(Ss): (a) mode A
(Re= 190, k= 1.585) and (b) mode B (Re= 260, k= 7.64).

for mode A is at x= 1.69 (δSt = 6.43× 10−2 c) and for mode B at x= 1.51 (δSt =
9.44× 10−2 c).

6.3. Validation of the control maps by direct numerical simulation
In this section we provide a validation of the control maps reported and discussed in
§ 6.2. The validation has been carried out for both modes A and B. Here, for the sake
of brevity, we just report results concerning mode A.

We have used the code Nek5000 and 3D simulations whose numerical details are
provided in § 5. In order to properly discretise a localised drag force without the need
for ad hoc mesh refinements, which might be difficult with a structured grid, and
considering that we are using a spectral element method, which may be inaccurate
if the forcing applied to the equations is not sufficiently regular, we have chosen to
replace the Dirac delta in (4.9) by a more regular but still quite localised function δN

in the x–y planes. In particular, the drag force applied to the momentum equation in
the DNS is the following:

δHN(x, y, z)=−cN

[
1

πγ 2
exp

(
−
(x− x0)

2
+ (y− y0)

2

γ 2

)]
︸ ︷︷ ︸

δN (x−x0)

U(x, y, z), (6.4)

where cN is the free proportionality constant of the control and γ is a free parameter
determining the sharpness of the resulting function δN . Note that the function δN is
normalised such that

∫
∞

−∞

∫
∞

−∞
δN(x, y, x0, y0) dx dy= 1. In the simulations documented

here, we have fixed γ = 0.3 after having verified that the resulting function δHN is
represented very well by the numerical discretisation used in the DNS, at least for the
considered points (x0, y0) listed in the following. In particular, the numerical integral
of δN carried out using the same spectral basis as used for the DNS differs from the
exact result by a quantity of the order of 10−6. For this selected value of γ , the force
distribution drops to 1 % of its peak at a distance from its application centre equal
to 0.64 D.

When the forcing in (6.4) is substituted in the general equations (4.4) and (4.7),
introducing also the sensitivity tensors defined in § 4, we finally obtain the following
result for δσ :

δσ =−cN

∫
D
δN(x− x0, y− y0)[Sb(x, y)+ Sl(x, y)] dD, (6.5)
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FIGURE 8. Mode A (Re= 190, k = 1.585), control point P2. (a) Ratio [(Stc − Stn)/cN]/
(δSt/cN), where Stc and Stn are the Strouhal numbers of vortex shedding obtained by DNS
in the uncontrolled case (Stn) and using an intensity control equal to cN(Stc), and δSt/cN
is the value estimated by (6.6). (b) Ratio [(σc − σn)/cN]/(δσ/cN), where σc and σn are the
Floquet exponents obtained by DNS in the uncontrolled case (σn) and using an intensity
control equal to cN(σc), and δσ/cN is the value estimated by (6.5). The dashed line in
both panels is plotted only for simplifying visualisation of the trend given by the points.

where the forcing is centred around a selected point (x0, y0). A similar result is
obtained from (4.2) for the variation induced on the Strouhal number:

δSt=−cN

∫
D
δN(x− x0, y− y0)Ss(x, y) dD. (6.6)

In the validation proposed here, we have selected a few points which are of interest
for the control. For each of them we have computed the estimated values of δSt/cN
and δσ/cN provided by (6.6) and (6.5) and we have compared estimations with
the values of the same quantities computed by DNS. The value of cN in the DNS
simulations is progressively decreased in order to check convergence towards the
theoretically estimated values.

On the basis of the experiments in Zhang et al. (1995), one point of interest for
the control is point P2, with coordinates (x0, y0) = (1.05, 0.0). The results of the
validation test described above, which implies a set of DNS simulations, are reported
in figure 8(a,b) for the Strouhal number and the Floquet exponent of mode A,
respectively. In particular, in figure 8(a) we plot the ratio between the quantity
(Stc − Stn)/cN , where Stc and Stn are the Strouhal numbers of vortex shedding in the
controlled and uncontrolled cases, respectively, computed by DNS using cN , and the
value δSt/cN estimated by (6.6). The ratio must tend approximately to 1 when the
value of cN is progressively decreased if the provided maps are correct. The limit
can be slightly different than 1 since the validation by DNS is carried out with a
numerics which is completely different from that used in deriving the control maps.
Moreover, variations for very small values of cN can be difficult to obtain accurately
by DNS. Nevertheless, Figure 8(a), where we report the resulting convergence curve,
clearly shows convergence of the results. Moreover, the final number obtained for the
lowest value of CN (CN = 5× 10−3) is equal to 1 to the accuracy of the calculations,
indicating an excellent convergence, which validates not only the related control map
but also the implementation of the solvers and the numerical resolution used both for
the maps and for DNS.
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FIGURE 9. Mode A (Re= 190, k = 1.585), control point P1. (a) Ratio [(Stc − Stn)/cN]/
(δSt/cN) and (b) ratio [(σc − σn)/cN]/(δσ/cN). For details see the caption of figure 8.

In figure 8(b) we carry out the same analysis but focusing on the ratio between
(σc− σn)/cN , where σc and σn are the Floquet exponents of mode A in the controlled
and uncontrolled case, respectively, computed by DNS using cN , and the value δσ/cN

estimated by (6.5). The reported curves again show clear convergence. Moreover, the
final values of δσ/cN and δSt/cN obtained by DNS and those estimated by the control
maps are reported together in table 1, showing that δSt/cN is predicted without errors
while the discrepancies on δσ/cN are of the order of 0.3 %. This last result is plausible
since the estimation of σ by DNS is delicate and in general more difficult than that
of the Strouhal number. The control effect has been estimated also for two other
points, P1 (0.75, 0.75) and P3 (0.00, 1.68). In particular, point P1 is not placed on the
symmetry axis of the flow. Although it is shown in the literature that an asymmetric
forcing may excite a new 3D mode, mode C, it has been verified that, for the low
control intensities applied here, mode C is absent. As concerns the effect of a control
placed at point P1 on mode A, we report in figure 9 the same convergence curves as
shown in figure 8 for point P2. Figure 9 shows convergence between the estimations
provided by the control maps and the DNS results as for point P2, with the difference
that now convergence curves are not monotonic.

Finally, we report in table 1 the control estimations for the three control points
together with the corresponding asymptotic values estimated by DNS. As concerns
the control estimations, in table 1 we also split the contributions related to the two
sensitivity tensors, Sb and Sl, so as to highlight the relative contributions to the final
result coming from the modification of the base flow and from the direct action of the
control on the perturbation dynamics. As already pointed out, the two contributions for
mode A are of the same order of magnitude, and thus both of them must be taken into
account for a proper estimation of the effects of control on the instability. Moreover,
table 1 also shows that, while the control is stabilising when positioned at points P1
and P2, it is destabilising at P3. In particular, point P3 is interesting because the effect
on δσ coming from Sb and Sl is opposite in sign, i.e. the first is destabilising and
the second is stabilising. In the sum of the two, the destabilising contribution coming
from Sb is dominant. This is an example in which a control map solely based on
Sl is not only quantitatively but also qualitatively wrong. As concerns the Strouhal
number, controls applied on all points P1, P2 and P3 all lead to a decrease of the
vortex shedding frequency.
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FIGURE 10. Mode A (Re= 220, k= 1.585), DNS. (a) Instantaneous z-component of the
velocity field at the point (0.6, 0.8, 0) showing the very stages of development of mode A
in the uncontrolled case (dashed line) and in the controlled case when control in (6.4) is
applied to points P1, P2 and P3. (b) A zoomed view of panel (a).

Point Tr(Sb) Tr(Sl) Tr(Stot)= δσ/cN Tr(Ss)= δSt/cN δσ/cN (DNS) δSt/cN (DNS)

P1 0.323 0.123 0.446 0.140 0.448 0.140
P2 0.550 1.019 1.569 0.050 1.574 0.050
P3 −0.995 0.627 −0.368 0.214 −0.360 0.210

TABLE 1. Mode A (Re= 190, k= 1.585). Effect of the control in (6.4) on δσ , separating
the two contributions coming from Sb and Sl, and on δSt, for three different points of
application of the control. Values estimated by DNS are also reported for validation.

As an overall qualitative and comparative inspection of the effect of the mentioned
controls, they have been applied to the flow at Re= 220 starting from the same initial
conditions, in which mode A is at the very first stage of development. A slightly larger
value of Re instead of Re=190 has been chosen in order to have larger growth factors
for mode A, thus simplifying the DNS analysis of the behaviour of the three different
controls. The intensity of the control applied in the DNS is cN = 2.5 × 10−3, which
is sufficiently small so that the control maps provide a reasonable estimation of its
effect and, at the same time, it is sufficiently strong to highlight the effect of the
control by a visual inspection of the results (see figure 10). We remind the reader that
the control applied in this test is intentionally not enough strong to stabilise the flow
when applied at P1 or at P2 (P3 is a destabilising position) since the objective of the
test is only to put in evidence qualitatively the comparative effect of a slight control
when applied in the three different positions considered. The resulting z-component
of the velocity on a point in the wake (coordinates (0.6, 0.8, 0)) is reported together
with the uncontrolled case (dashed line) in figure 10. Inspecting figure 10(b) and the
zoomed view reported in figure 10(b), it is possible to verify that control at P3 is
destabilising, while at P1 and P2 it is stabilising. Moreover, as predicted by the maps,
control at P2 is more stabilising than that at P1. Finally, in all cases the period of
vortex shedding increases with respect to the uncontrolled one, the effect being less
important when control is applied on P2.
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6.4. Estimating experimental results in Zhang et al. (1995) by control maps
In this section we provide a partial validation of the control maps derived in § 6.2 by
comparing their estimations against the experimental results in Zhang et al. (1995),
where passive control of the secondary instability is attempted by placing a small
wire in the wake past a circular cylinder. In the experiments, the cylinder generating
the wake has a diameter equal to D = 4 mm while the control wire is significantly
smaller, with a diameter d equal to d = 25 µm (D/d = 160.0). Experiments show
that the control wire, placed in proper positions, can suppress the 3D instability of
the wake leading the flow to a 2D regime even at supercritical values of the flow
Reynolds numbers. In particular, we consider two cases. In the first one the wire is
placed at point P2 (1.05, 0) and in the second one at point P1 (already defined in
§ 6.3, the coordinates being (0.75, 0.75)). When the wire is at position P2, instability
is suppressed at Re= 219 and starts again when Re> 230. When the wire is at point
P1, the flow remains 2D for Re= 260 and becomes 3D at Re= 270.

The control maps provided in § 6.2 can be used to predict the two experimental
cases described above. To this purpose it is necessary to estimate, for each case, the
Floquet exponent in the uncontrolled case and its variation due to the control. This
information allows one to predict a possible stabilisation of the instability and to
compare with the experimental evidence. In order to estimate the effect of control
on the basis of the control maps, it is necessary to model the action that the control
wire exerts on the flow as a pointwise linear force–velocity feedback. Focusing for the
moment on the first experimental case (point P2, Re = 219), we have simulated the
velocity field at Re = 220 when the flow is 2D and we have extracted the velocity
at the point where the control wire is positioned in the experiments. The velocity
at that point is periodic in time due to vortex shedding and its maximum norm is
approximately equal to 0.79U∞, which corresponds to a maximum local Reynolds
number, based on the wire diameter d and on the local velocity, equal to Red,max'1.08.
The diameter of the control wire is definitely smaller than the local inhomogeneity
characteristic length of the flow, which scales with D, and thus it is possible to assume
that the force exerted by the control wire on the flow is a pure drag which depends on
the local flow conditions. Moreover, the advection time scale near the control wire is
much smaller than the vortex shedding period, thus we can assume that the drag of the
control wire adjusts instantaneously to the local flow conditions with negligible inertial
effects (quasi-static assumption). Assuming a quasi-static behaviour of the drag exerted
by the flow on the control wire and considering the value of Red,max, we use Lamb’s
law (see e.g. Landau & Lifshitz 1987) for the estimation of the drag coefficient, which,
once normalised with d and with the local velocity norm, is given by the following
equation:

Cd,wire(Red)=
8π

Red

(
log

8
Red
− γ +

1
2

)−1

, (6.7)

where γ is the Euler constant (γ ' 0.577216). The same approximation for a similar
control application has been followed for instance in Meliga et al. (2014, 2016). The
Cartesian components of the resulting force in one shedding period are computed
using the local velocity history simulated at point P2 and the Lamb law in (6.7)
and, once normalised using U∞ and D, are reported in figure 11 with a continuous
line. In order to straightforwardly use the control maps proposed in § 6.2, the forces
reported in figure 11 are approximated by a linear force–velocity feedback. To this
purpose the coefficient of proportionality c in (6.2) is tuned so as to fit the true forces
reported in figure 11 in a least-squares sense. The resulting value, c ' 2.68 × 10−2,
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FIGURE 11. Cartesian components of the force acting on the control wire at Re = 220:
quasi-static model based on Lamb’s equation in continuous lines and tuned linear model
in dashed lines.

leads to the estimated force components plotted as a dashed line in figure 11. By the
comparison between the true (continuous) and the approximate force (dashed) lines, it
is possible to see that the fit provided by the tuned linear model can be considered
satisfactory. Once the constant c has been estimated, by multiplying its value with
the value of the control map at the point P2 (see figure 5a), as indicated in (6.2),
we obtain the estimated variation of the Floquet exponent due to control, which in
this case is equal to δσ = −0.057. The value of the Floquet exponent at Re = 220
in the uncontrolled case has been computed by DNS and it is equal to σ220 = 0.047.
The resulting controlled Floquet exponent is thus negative, i.e. σ220 + δσ < 0. This
means that the control map, used in the way detailed above, predicts a stabilisation
of the flow for Re = 220 when the wire is positioned at P2, in agreement with the
experiments in Zhang et al. (1995). Repeating the same procedure for Re = 230 we
find that σ230 + δσ > 0, where σ230 = 0.0625 is again estimated by DNS and δσ is
approximately the same as that evaluated at Re= 220. Thus, according to the control
maps, the wire does not stabilise the 3D wake instability in this case, and this is
again in agreement with the experiments. Note that in the calculations detailed above
we have assumed for simplicity that the control map for mode A at Re= 220 is not
significantly different from that at Re= 190 reported in figure 5(a), thus avoiding the
need to recompute a new control map. This assumption has been verified by DNS,
showing that quantitative variation of the control map at point P2 for mode A at
Re= 220 is of the order of 15 % with respect to the case at Re= 190, which makes
our approximation acceptable considering the type of comparison that we are carrying
out with the experiments and the type of information we can extract from Zhang et al.
(1995). In this respect we also recall that the analysis carried out here is the result of
a linearisation of the problem, which is inherently nonlinear, around the uncontrolled
flow state.

The procedure illustrated above has been repeated for the second experimental case,
i.e. when the control wire is positioned at point P1. In this case we can estimate
on the basis of the control maps that a wire of the same size as that used in the
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experiments leads to δσ =−0.0845 in the controlled case. Since σ230= 0.0625 we can
deduce that the flow is stabilised, according to our theoretical estimation since σ230+

δσ <0. Moreover, considering that the Floquet exponent for Re=260 is approximately
equal to σ260 = 0.0910 and assuming a linear variation of σ with Re in the range
2306Re6 260, we can deduce, again on the basis of the control maps, that the wire
at position P1 leads to a stabilisation of mode A up to Re' 254, which is in fairly
good agreement with Zhang et al. (1995), where it is shown that stabilisation is active
up to Re= 260.

7. Conclusions

In this paper we have presented a general theoretical methodology for conducting
sensitivity analysis with respect to a generic forcing acting on the base flow for cases
in which the base flow is periodic in time. Differently from the analysis considered
previously by Giannetti et al. (2010), where the effects of a perturbation acting solely
on the disturbance equations is investigated, we now study the sensitivity of the
Floquet exponent when a structural perturbation is acting on the base-flow equations.
The effect of such a perturbation is able to generate a change of the base flow which,
in turn, affects the stability equations through a change of the coefficients of the
linearised Navier–Stokes operator. Here we derive the expression of the sensitivity
tensor for the Floquet exponent of a given instability and for the frequency of the
saturated limit cycle of the base flow with respect to a generic forcing of the base
flow itself. In this respect the present work and that in Giannetti et al. (2010) can be
considered an extension of the seminal work by Marquet et al. (2008) and Luchini
et al. (2009) to the case of base flows which are periodic in time.

Although the theory proposed here is general, it has been particularised since the
beginning so as to study the second bifurcation of the flow past a circular cylinder.
Sensitivity results for two nearly marginally unstable flow conditions are discussed:
Reynolds number Re= 190 is selected to study mode A while Re= 260 is adopted to
investigate mode B.

Firstly we started to discuss the differences between the spectral norm of the
structural sensitivity tensors computed in Giannetti et al. (2010) and of the tensors
representing the sensitivity to a base-flow variation, which are derived here for the
first time. The resulting sensitivity maps are highly localised in the flow region
immediately past the bluff body. The control maps derived on the basis of the
sensitivity tensors have been validated here using dedicated 3D DNS simulations.

The analysis presented is successively used to estimate the control on the 3D
instability that might be obtained by placing a small wire in the flow. Assuming
that the control wire experiences a quasi-static drag force, we can build control
maps predicting the variation of the vortex shedding frequency and of the Floquet
exponent for a given instability mode (A or B) versus a generic position of the wire.
Besides being interesting by itself, this kind of control has already been applied in the
experiments carried out by Zhang et al. (1995). It is shown here that the quantitative
agreement between the experiments in Zhang et al. (1995) and the proposed theory
is definitely satisfactory.

Summarising, there are two main outputs of the present work. On one side, we
propose a general theory for the design of passive controls of instabilities developing
on time-periodic base flows. On the other side, by applying this methodology, we
provide original results on a classical but still actively studied problem in the literature,
which is the secondary instability of the wake past a circular cylinder.
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