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The theoretical study and experimental investigation of the reflection of asymmetric
shock waves in steady flows reported by Li et al. (1999) are complemented by a
numerical simulation. All the findings reported in both the theoretical study and the
experimental investigation were also evident in the numerical simulation. In addition
to weak regular reflection and Mach reflection wave configurations, strong regular
reflection and inverse-Mach reflection wave configurations were recorded numerically.
The hysteresis phenomenon, which was hypothesized in the course of the theoretical
study and then verified in the experimental investigation, was also observed in the
numerical simulation.

1. Introduction
Since in most of the realistic supersonic flow situations, e.g. intake flows, nozzle

flows, external flows, etc., interactions of asymmetric rather than symmetric shock
waves are more likely to occur, Chpoun & Lengrand (1997) initiated an experimental
study on the reflection of asymmetric shock waves. Their experimental study re-
vealed that, similarly to the reflection of symmetric shock waves (see Chpoun et al.
1995), a hysteresis in the RR→MR→ RR transition also exists in the reflection of
asymmetric shock waves.

Li, Chpoun & Ben-Dor (1999) provided a detailed analysis of the two-dimensional
reflection of asymmetric shock waves in steady flows. Because some new features
discovered in the course of Li et al.’s (1999) analytical study were missed in the
course of Chpoun & Lengrand’s (1997) experimental study, Li et al. (1999) also
conducted a complementary experimental investigation, in order to verify these new
features.

Similarly to the interaction of symmetric shock waves in steady flows, the interaction
of asymmetric shock waves also leads to two types of overall wave configurations,
namely an overall regular reflection (oRR) and an overall Mach reflection (oMR).
These two overall wave configurations are shown, schematically, in figures 1(a) and
1(b), respectively. An overall RR wave configuration consists of two incident shock
waves (i1 and i2), two reflected shock waves (r1 and r2), and one slipstream (s).
These five discontinuities meet at a single point (R). The slipstream results from the
flow streamlines passing through unequal shock wave structures, i.e. i1, r1 and i2, r2.
The flow deflection angles are θ1, θ2, θ3 and θ4 through the i1, i2, r1 and r2 shock
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Figure 1. Schematic illustration of two general overall wave configurations which can result from the
reflection of two asymmetric shock waves in steady flows and definition of the relevant parameters.
(a) An overall regular reflection (oRR), and (b) an overall Mach reflection (oMR).

waves, respectively. Oriented angles are used throughout this study, i.e. the angles are
positive in the counter-clockwise direction and negative in the clockwise direction.
The boundary condition for an overall RR is θ1 + θ3 = θ2 + θ4 = δ. (For a symmetric
reflection θ1 = −θ2 and δ = 0.) In addition to the incident and reflected shock waves
(i1, i2, r1 and r2) a Mach stem (m) appears in an overall MR wave configuration
(figure 1b). The Mach stem bridges two triple points (T1 and T2) from which two
slipstreams (s1 and s2) emanate. The boundary conditions for an overall MR are
θ1 + θ3 = δ1 and θ2 + θ4 = δ2. (For a symmetric reflection θ1 = −θ2 and δ1 = −δ2.)

The classic two- and three-shock theories of von Neumann (1963) that were
found to accurately predict the RR↔MR transition criterion in the reflection of
symmetric shock waves, were employed by Li et al. (1999), in order to investigate
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the oRR↔ oMR transition in the reflection of asymmetric shock waves. Since the
boundary conditions for the oRR and the oMR wave configurations in the reflection
of asymmetric shock waves are different from those in the reflection of symmetric
shock waves, new features were discovered in the reflection of asymmetric shock
waves.

Figure 2 is a combined reproduction of parts of figures 3 and 6 of Li et al. (1999).
The loci of all the flow states that could be obtained from the initial flow by passing
through any shock wave are described by the I-polar. Similarly, the loci of all the flow
states that could be obtained from the flow that was obtained behind the incident
shock wave, i, by passing through any shock wave are described by the R1- and the
R2-polars. The intersection of the R1- and the R2-polars results in a regular reflection,
RR, and the intersection of either the R1- or the R2-polars with the I-polar results in
a Mach reflection, MR.† If the interaction of the R-polar with the I-polar is on the
same side as that on which the R-polar originates from the I-polar (i.e. δ has the
same sign as θ, θδ > 0) then the MR is a direct-Mach reflection, DiMR (see e.g.
the DiMR2 in figure 2a); if the interaction of the R-polar with the I-polar is on the
opposite side to that on which the R-polar originates from the I-polar (i.e. δ and θ
have opposite signs, θδ < 0) then the MR is an inverse-Mach reflection, InMR (see
e.g. the InMR2 in figure 2e); and if the R-polar intersects the I-polar exactly at the
p-axis (i.e. δ = 0) then the MR is a stationary-Mach reflection, StMR (see e.g. the
StMR2 in figure 2d ). Note that figures 2(a) to 2( f ) illustrate a sequence for which θ1

is kept constant and θ2 is gradually decreased, and figure 2(g) illustrates a condition
with a different θ1. Based on figure 2 it can be seen that:

(i) The overall Mach reflection (oMR) wave configuration can consist of either
two direct-Mach reflections DiMR (figure 2a) or one direct-Mach reflection and one
stationary-Mach reflection StMR (figure 2d ) or one direct-Mach reflection and one
inverse-Mach reflection InMR (figure 2e). These three different wave configurations
will be labelled in the following as oMR[DiMR+DiMR], oMR[DiMR+StMR] and
oMR[DiMR + InMR], respectively.

(ii) The overall regular reflection (oRR) wave configuration can consist of either
two weak regular reflections (figure 2c) or one weak regular reflection and one strong
regular reflection (figure 2g). These two different wave configurations will be labelled
in the following as oRR[wRR + wRR] and oRR[wRR + sRR], respectively.

(iii) There is a shock–polar combination (figure 2b) that is analogous to the de-
tachment condition in the reflection over a single wedge or the reflection of symmetric
shock waves (see § 1.5.1 in Ben-Dor 1991).

(iv) There is a shock–polar combination (figure 2f ) that is analogous to the von
Neumann condition in the reflection over a single wedge or the reflection of symmetric
shock waves (see § 1.5.2 in Ben-Dor 1991).

(v) Configurations 2(b) and 2( f ) represent two extreme situations between which
both an oRR and an oMR wave configuration are theoretically possible. Hence, they
are, in fact, the upper and the lower bounds of the dual-solution domain, inside which
both oRR and oMR wave configurations are theoretically possible.

Schematic illustrations of an oMR[DiMR+DiMR], an oMR[DiMR+StMR] and
an oMR[DiMR + InMR] wave configuration are shown in figure 3(a), 3(b) and 3(c),

† It is noted here that the shock polar analysis assumed that all the discontinuities (i.e. shock
waves and slipstreams) are straight and that the flow states bounded by them are uniform.
Consequently, since the Mach stems are not straight but curved shocks, the shock polar analysis is
accurate only in the vicinity of the triple point where the shock waves and the slipstream meet.
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Figure 2. For caption see facing page.
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(a) (b)

(c)

Figure 3. Schematic illustration of the wave configurations of various overall Mach reflections
(oMRs). (a) Two direct-Mach reflections (DiMR), i.e. an oMR[DiMR+DiMR]. (b) One direct-Mach
reflection (DiMR) and one stationary-Mach reflection (StMR), i.e. an oMR[DiMR + StMR].
(c) One direct-Mach reflection (DiMR) and one inverse-Mach reflection (InMR), i.e. an
oMR[DiMR+InMR]. Note that in all the wave configurations the slipstreams first form a diverging
stream tube. The flow inside this stream tube accelerates from its subsonic condition immediately
behind the Mach stem (which is almost normal to the oncoming flow), first to sonic conditions at
the throat formed by the two slipstreams further downstream (not shown in the figure), and then
to supersonic conditions beyond the throat where the slipstreams diverge (also not shown in the
figure).

respectively. In all the drawings the lower wave configuration is a DiMR. Note that
although the orientation of the slipstreams associated with the upper wave configura-
tions, i.e. the DiMR, the StMR or the InMR, is different, the two slipstreams in each
of the above-described wave configurations always form a converging stream tube.
The flow inside this stream tube accelerates from its subsonic condition immediately
behind the Mach stem (which is almost normal to the oncoming flow), first to sonic
conditions at the throat formed by the two slipstreams further downstream, and

Figure 2. Pressure–deflection polar combinations illustrating various theoretically possible solutions
in the reflection of two asymmetric shock waves for a fixed flow Mach number M0 = 4.96. (a) An
oMR that consists of two DiMRs, i.e. an oMR[DiMR + DiMR], for θ1 = −25◦ and θ2 = 35◦. (b)
An oRR that consists of two weak RRs, i.e. an oRR[wRR + wRR], or an oMR that consists of
two DiMRs, i.e. an oMR[DiMR + DiMR], for θ1 = −25◦ and θ2 = 29.97◦. Note that this situation
is analogous to the detachment condition. (c) An oRR that consists of two weak RRs, i.e. an
oRR[wRR + wRR] or an oMR that consists of two DiMRs, i.e. an oMR[DiMR + DiMR], for
θ1 = −25◦ and θ2 = 28.5◦. (d ) An oRR that consists of two weak RRs, an oRR[wRR+wRR], or an
oMR that consists of one DiMR and one StMR, i.e. an oMR[DiMR + StMR], for θ1 = −25◦ and
θ2 = 20.87◦. (e) An oRR that consists of two weak RRs, an oRR[wRR + wRR], or an oMR that
consists of one DiMR and one InMR, i.e. an oMR[DiMR + InMR], for θ1 = −25◦ and θ2 = 19◦.
( f ) An oRR that consists of two weak RRs, i.e. an oRR[wRR + wRR], or an oMR that consists of
one DiMR and one InMR, i.e. an oMR[DiMR + InMR], for θ1 = −25◦ and θ2 = 16.89◦. Note that
this situation is analogous to the von Neumann condition. (g) Pressure–deflection polar combinations
illustrating an oRR that consists of one wRR and one sRR, i.e. an oRR[wRR + sRR], and an
oMR that consists of one DiMR and one InMR, i.e. an oMR[DiMR + InMR], for θ1 = −35◦ and
θ2 = 15.983◦.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

17
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002001799


76 M. S. Ivanov and others

40

35

30

25

20

15

10

5

0 5 10 15 20 25 30 35 40

3 + 1 13

3 + 2

3 + 1

1

2

θN
1

θE
2

θN
2

θT
2

1  oMR [DiMR + InMR]
2  oMR [DiMR + DiMR]
3  oRR

–θ1 (deg.)

θ
2 

(d
eg

.)

Figure 4. The dual-solution-domain in the (θ1, θ2)-plane for M0 = 4.96.

then to supersonic conditions beyond the throat where the slipstreams diverge (see
figure 8).

1.1. The dual-solution-domain

The dual-solution domain is shown in figure 4 which is a reproduction of figure 7
in Lie et al. (1999). The transition lines corresponding to the ‘detachment’ and the
‘von Neumann’ criteria, which are labelled θE

2 and θT
2 , respectively, are drawn as solid

lines in the (θ1, θ2)-plane for M0 = 4.96 (note the symmetry between the wedge angles
θ1 and θ2). The dual-solution-domain mentioned earlier, in which the overall wave
configuration can be either an oRR or an oMR, extends between these two transition
lines. The two dashed lines, marked θN

1 and θN
2 , indicate the von Neumann condition

for the reflection over a single wedge or for a symmetric reflection. On one side of
the dashed line the Mach reflection is direct, i.e. DiMR, and on its other side it is
inverse, i.e. InMR, on the line itself it is stationary, i.e. StMR.

Based on figure 4 the dual-solution domain can be divided into two parts. In
one part, labelled ‘3 + 2’ the overall wave configuration can be either an oRR or
an oMR, which consists of two DiMRs, i.e. an oMR[DiMR + DiMR], as shown
in figure 3(a). In the other part, labelled ‘3 + 1’ the overall wave configuration can
be either an oRR or an oMR, which consists of one DiMR and one InMR, i.e. an
oMR[DiMR + InMR], as shown in figure 3(c).

1.2. The hysteresis phenomenon

Consider figure 4 and note that one can start with an oRR wave configuration with
a value of θ2 smaller than θT

2 and then increase θ2 until the detachment transition
line (θE

2 ), above which an oRR wave configureation is theoretically impossible, will
be reached. At this line the oRR wave configuration must change to an oMR
wave configuration. If the direction of the change in θ2 is now reversed and θ2 is
decreased, the oMR wave configuration can continue to exist until the von Neumann
line (θT

2 ), below which an oMR wave configuration is theoretically impossible, will
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be reached. At this line the oMR wave configuration must change back to an oRR
wave configuration.

Based on figure 4 which is drawn for M0 = 4.96 it is evident that, depending
on whether θ1 is smaller or larger than θN

1 , two different sequences of transition
of the overall reflection wave configurations are possible during the process of first
increasing θ2 and then decreasing it back to its initial value.

For |θ1| < |θN
1 | = 20.87◦ the following sequence of wave configurations is encoun-

tered. The process starts with an oRR which is maintained until the detachment
transition line, (θE

2 ), is reached. At this point a transition takes place and the oRR
changes to an oMR[DiMR + InMR], i.e. an oMR which consists of one DiMR and
one InMR. On the reverse path the oMR[DiMR + InMR] is maintained until the
von Neumann transition line, (θT

2 ), is reached. At this point the reversed transitoin
takes place and the oMR changes back to an oRR. This sequence can be written

oRR
at θE

2−−−−→ oMR[DiMR + InMR]
at θT

2−−−−→ oRR.

For |θ1| > |θN
1 | = 20.87◦ the following sequence of wave configurations is encoun-

tered. The process starts with an oRR which is maintained until the detachment
transition line, (θE

2 ), is reached. At this point a transition takes place and the oRR
changes to an oMR[DiMR + DiMR], i.e. an oMR which consists of two DiMRs. On
the reverse path the oMR[DiMR + DiMR] is maintained until the line θN

2 is reached.
Exactly on this line the reflection becomes an oMR[DiMR + StMR]. Then it changes
to an oMR[DiMR + InMR] which is maintained until the von Neumann transition
line, (θT

2 ), is reached. At this point the reversed transition takes place and the oMR
changes back to an oRR. This sequence can be written

oRR
at θE

2−−−−→ oMR[DiMR + DiMR]
on θN

2−−−−→ oMR[DiMR + StMR]

at θN
2−−−−→ oMR[DiMR + InMR]

at θT
2−−−−→ oRR.

As mentioned earlier, in an attempt to verify their major theoretical findings, Li et al.
(1999) also conducted an experimental investigation. In addition to the verification of
the existence of an overall Mach reflection consisting of one DiMR and one InMR,
the existence of a hysteresis in the oRR↔ oMR transition was also verified. However,
owing to technical limitations of their experimental capabilities, the above-described
two theoretically possible sequences of events in the oRR↔ oMR transition were
not observed in the course of their experimental investigation. Furthermore, owing
to these technical limitations they did not attempt to verify the existence of a strong
RR.

2. Numerical study
Since Li et al. (1999) were not able to verify all their theoretical findings ex-

perimentally, it was decided to complement their study by performing a numerical
simulation of the reflection phenomena of asymmetric shock waves. The numerical
study was mainly aimed at verifying the theoretical findings that were not verified in
experimental investigation.

2.1. Numerical techniques

To simulate the reflection of asymmetric shock waves, the two-dimensional unsteady
Euler equations were solved numerically using a multi-block shock-capturing TVD
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Figure 5. Schematic illustration of the computational domain.

(total variation diminishing) Euler code. A perfect-gas model with γ = 1.4 was used.
The fourth-order formula developed by Yamamoto & Daiguji (1993) was used to
reconstruct the cell face values of the primitive variables (e.g. the density, the pressure
and the velocity components) from cell-averaged ones. Numerical fluxes were cal-
culated by the HLLE (Harten–Lax–van Leer–Einfeldt) approximate Riemann solver
(Einfeldt et al. 1991), which is very robust for modelling high-speed flows. The time
integration was accomplished by the third-order explicit TVD Runge–Kutta scheme
of Shu & Osher (1988).

The flow around two wedges immersed in a uniform supersonic stream was com-
puted. The wedges, which were shaped as right-angle triangles, had an angle of 15◦
at their leading edges. The computational domain (see figure 5) was divided into
four zones; the total number of quadrilateral cells in the four zones, in most of the
computations, was approximately 80 000. A uniform flow with a given Mach number
was specified on the left (inflow) boundary. The right (outflow) boundary was situated
far enough downstream of the wedges so that the flow was supersonic on it. The
flow variables were extrapolated from within the domain on the outflow as well as
on the bottom and top boundaries. The use of the extrapolation on the bottom and
top boundaries is similar to imposing a non-reflective-type condition and it results
in only a very weak artificial reflection from these boundaries. Inviscid solid wall
(non-permeable) conditions were imposed on the wedge surface.

During the course of each series of computations the angle of attack of one wedge
was fixed while the other wedge was rotated around its trailing edge. The distance
between the trailing edges of the two wedges, 2g, was kept constant and, in most
of the computations, it was equal to 0.84w (where w is the length of the wedge
hypotenuse). The first computation of each series started from a uniform flow filling
the entire computational domain. In each subsequent computation, the initial data
were taken from a converged flow field of the preceding computation using the
following procedure. The wedge angle was changed by a small value (1◦) compared
to its previous position. The computational grid was re-built for the new orientation
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of the wedge with the same number of grid cells in the whole computational domain
and in each grid block. The initial flow field for a new computation was obtained
by assigning to the flow variables in each grid cell the converged values of the
preceding computation in the corresponding cell. This quasi-stationary technique
of angle variation by small instantaneous steps had been used earlier in numerical
simulations of the hysteresis phenomenon in the interaction of symmetric shock waves
(see, for example, Ivanov et al. 1998). The investigation performed by Khotyanovsky,
Kudryavtsev & Ivanov (1999) with a moving-grid Euler code showed that the quasi-
stationary procedure gave results entirely consistent with the case when the wedge
was rotated continuously, provided that the continuous rotation was sufficiently slow.

The computed flow field was considered as converged to a steady state when the
positions of all the shock waves remained unchanged during several non-dimensional
time units. The non-dimensional time unit was defined as t = w/a∞, where w is the
length of the wedge and a∞ is the free-stream speed of sound. It should be noted
that it is impossible to obtain convergence of the flow field in any mathematical
norm because the obtained solution is not actually stationary. There are unsteady
phenomena connected with the physical instability (the Kelvin–Helmholtz instability)
of the slip lines. In fact, the solution should be considered as quasi-steady. The
shock wave configuration is stationary but unsteady motions exist in the thin shear
layers that originate from the triple points and in the wake behind the reflecting
wedges.† It was not feasible to decrease the residuals to machine zero and reach
point-wise convergence. The most likely reason, as just mentioned, is the Kelvin–
Helmholtz instability of the slipstreams, which can be seen in some of the figures
presented below. Nevertheless, no substantial influence of the unsteady phenomena
in a neighbourhood of the slipstreams on the rest of the flow and shock wave
configuration of interest was observed. The grid refinement study confirmed that the
solution was virtually grid-independent except for the regions near the slipstreams,
where structures of smaller and smaller scale were observed as the grid cell size
decreased. The lack of grid convergence of the solutions of the Euler equations due to
the roll-up of the vortex sheets has been mentioned in previous studies, for discussion
of this phenomenon, see Samtaney & Pullin (1996). The problem of grid convergence
of the solution is even more complicated near the von Neumann transition condition.
In this case, the Mach stem height asymptotically tends to zero as the angles of
incident shock waves approach the von Neumann value. A grid refinement study
shows that the oMR→ oRR transition in computations depends on the grid cell size,
and the angles of the transition tend to the theoretical von Neumann criterion as the
cell size is decreased.

2.2. Numerical results

Numerical simulations of the two different sequences of events discussed in § 1.2 are
shown in figures 6 and 7 for M0 = 4.96, and θ1 = −18◦, i.e. |θ1| < |θN

1 | = 20.87◦, and
θ1 = −28◦, i.e. |θ1| > |θN

1 | = 20.87◦, respectively. Each of these figures consists of two
parts: frames displaying constant-density lines on the right and the corresponding
shock polar solutions on the left. The calculation of each case starts at the top frame
and then goes around in a counter-clockwise direction. Each of the horizontal pairs

† The fully stationary solution could probably be obtained with a numerical scheme that has
more numerical dissipation (e.g. a first-order scheme or an implicit time-stepping scheme). However,
such a stationary state would be a false one because only the numerical viscosity stabilized it. Real
free shear and wake flows are unstable and manifest an unsteady vortex motion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

17
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002001799


80 M. S. Ivanov and others

RR

θ2 = 22°θ1 = –18°

100

10

1
0–20–40 20 40

p

p0

–60 60

RR

θ2 = 28°θ1 = –18°

100

10

1
0–20–40 20 40

p

p0

–60 60

θ2 = 36°θ1 = –18°

100

10

1
0–20–40 20 40

p

p0

–60 60

DiMR
InMR

DiMRInMR

θ2 = 36°

θ2 = 28° θ2 = 28°

θ2 = 22°

θ

Figure 6. Numerical plots with density contours illustrating the hysteresis loop for M0 = 4.96 and
θ1 = −18◦ on the right and the appropriate shock polar solutions on the left.

of the frames has the same flow conditions. Hence, the above-mentioned hysteresis is
clearly seen in these figures.

The sequence that is shown in figure 6 starts with an oRR at θ2 = 22◦. When θ2

is increased the oRR still exists at θ2 = 28◦. At θ2 = 36◦, that is above θE
2 , regular

reflection can no longer exist (see the corresponding shock polar) and the overall
reflection is an oMR. The lower wave configuration is a DiMR and the upper one
is an InMR, i.e. it is an oMR[DiMR + InMR]. When θ2 is decreased from θ2 = 36◦
back to its initial value, i.e. θ2 = 22◦, the oMR[DiMR + InMR] wave configuration is
maintained in the dual solution domain. Thus, for example, at θ2 = 28◦ (see figure 6)
both an oRR and an oMR[DiMR + InMR] shock wave configurations are actually
observed in the numerical simulation, as predicted by shock polar analysis.

The sequence that is shown in figure 7 starts with an oRR at θ2 = 12◦. When θ2 is
increased the oRR still exists at θ2 = 24◦. At θ2 = 30◦ > θE

2 the overall reflection is an
oMR in which both the upper and the lower wave configurations are DiMRs, i.e. it is
an oMR[DiMR+DiMR]. When θ2 is decreased from θ2 = 30◦ back to its initial value,
i.e. θ2 = 12◦, the orientation of the slipstream of the lower Mach reflection changes
continuously. As a result at θ2 = 21◦, which is very close to the above-mentioned
analytical value θN

2 = 20.87◦, the upper wave configuration is close to an StMR (i.e.
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Figure 7. Numerical plots with density contours illustrating the hysteresis loop for M0 = 4.96 and
θ1 = −28◦ on the right and the appropriate shock polar solutions on the left.
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its slipstream is almost parallel to the oncoming flow at the triple point). Upon a
further decrease in θ2 the lower wave configuration changes to an InMR, and the
oMR now consists of a DiMR and an InMR, i.e. it is an oMR[DiMR + InMR], as
shown for θ2 = 18◦.

Thus, as is shown in figures 6 and 7, all the particular shock wave configurations
predicted by the shock polar analysis are entirely reproduced in the computations.
However, the angles where the oRR→ oMR and the reversed oMR→ oRR transi-
tions take place in the numerical computations slightly differ from the theoretically
predicted values. The oRR → oMR transition in the computations took place near
the detachment criterion θE

2 . For example, at θ1 = −28◦ the oRR→ oMR transition
occurred when the lower wedge angle θ2 was changed from 27◦ to 28◦. This agrees
well with the upper theoretical limit for the existence of regular reflection, which is
θE

2 = 27.4◦ in this case. The reverse oMR → oRR transition occurred at θ2 = 16◦,
which is somewhat higher than the lower theoretical limit for the oMR existence
θT

2 = 14.2◦. When the wedge angle θ2 approached the lower theoretical limit θT
2 of

oMR existence, the Mach stem height decreased and became comparable with the size
of the grid cell. As a result, the earlier transition to regular reflection was observed.
The dependence of the angle of the oMR → oRR transition on the grid resolution
was recognized in previous numerical studies (see Ivanov et al. 1998).

It is important to note here that in spite the fact that the shear layers are seen
to exit the right computational boundary in figures 6 and 7, the use of supersonic
outflow boundary conditions is justified since the streams on both sides of the shear
layer are supersonic. In fact, as can be seen in figure 8, where the subsonic zones of
a typical oMR wave configuration are coloured in grey, the flow is subsonic only in
closed pockets behind the reflecting wedges (this is also the case in an oRR) and the
Mach stem up to the section where the maximum contraction of the stream tube,
which is formed by the two shear layers, occurs. In order to further justify the use of
supersonic boundary conditions, a comparison of the results of a calculation in which
the right boundary was put further away from that shown in figure 7 for θ1 = −28◦
and θ2 = 30◦ was performed. The distributions of the Mach number in the section
x/w = 0.9 (that corresponds to the right boundary in the computation shown in
figure 7) coincided almost perfectly in the two calculations. The Mach number was
supersonic everywhere in the cross-section.

2.3. Strong regular reflection wave configuration

As mentioned earlier, Li et al. (1999) hypothesized, in the course of their analytical
study, that an oRR wave configuration that consists of one weak regular reflection
and one strong regular reflection, i.e. oRR[wRR + sRR], can be obtained in the
reflection of asymmetric shock waves (see figure 6 in their paper).

The enlarged part of the pressure-deflection diagram given in figure 9 shows the
shock polars of the upper and lower reflected shock waves for M0 = 4.96, θ1 = −35◦
and a few values of θ2. In this figure, S and D are the sonic point and the maximum
deflection point of the R1 shock polar of the upper reflected shock wave, respectively,
and E is the point of tangency of two polars that corresponds to the detachment
criterion for the reflection of asymmetric shock waves. If the R2-polar of the lower
reflected shock wave, intersects the R1-polar below point S (e.g. the A-polar in
figure 9 then the resulting shock wave configuration is an oRR[wRR + wRR] with
a supersonic flow behind the two reflected shock waves. If the intersection point lies
between points S and D (e.g. the B-polar), the shock wave configuration is again
an oRR[wRR + wRR] but, unlike in the previous case, the flow behind the upper
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Figure 8. A flow Mach number map of an oMR wave configuration (M0 = 4.96, θ1 = −28◦ and
θ2 = 30◦). The subsonic zones are shown in grey; the flow is subsonic only in closed pockets behind
the wedges and behind the Mach stem up to the section where the maximum contraction of the
stream tube occurs.
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Figure 9. Enlarged view of the reflected shock polar intersection near the point of tangency.
θ1 = −35◦ and θ2 = 14.58◦ for the A-polar, θ2 = 15.98◦ for the A′-polar, θ2 = 15.07◦ for the B-polar,
θ2 = 15.90◦ for the B′-polar.

reflected shock wave is subsonic. It should be mentioned that in both of these cases
the polars intersect the R1-polar at two points; the second one (which is not shown
in the figure) corresponds to an oRR[wRR + sRR]. In practice however, the solution
with the lower pressure, i.e. oRR[wRR + wRR], actually occurs.

The most interesting situation occurs when both the intersection points lie on the
strong branch of the R1-polar: the first point is between D and E, and the second
point is above E (e.g. the B′-polar). Even if it is assumed, as earlier, that the solution
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Figure 10 (a, b). For caption see facing page.

with the lower pressure is the one that actually materializes, it corresponds now to an
oRR[wRR + sRR] wave configuration. Thus, there is a range of θ2 in which regular
reflection with one of the reflected shocks belonging to the strong family should exist.

It is evident from figure 9 that, for given θ1 and flow deflection δ, there are two
shock wave configurations (e.g. corresponding to the intersections of the R1-polar
with the A and A′-polars or with the B- and B′-polars), which differ in θ2 and in the
pressure behind the reflected shocks. In the first of these configurations, the upper
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Figure 10. Results of the numerical simulation of strong regular reflection for M0 = 4.96 and
θ1 = −35◦. (a) Numerical schlieren picture (density gradient) for an oRR wave configuration that
consists of one weak and one strong regular reflections at θ2 = 15.98◦. (b) Enlarged view for an
oRR wave configuration that consists of one weak and one strong regular reflections at θ2 = 15.98◦,
Mach number contours. The white lines correspond to the analytically predicted angles of the
discontinuities (c) Enlarged view for an oRR wave configuration that consists of two weak regular
reflections at θ2 = 14.58◦, Mach number contours. The white lines correspond to the analytically
predicted angles of the discontinuities.

reflected shock wave belongs to the weak family, and in the second one it belongs to
the strong family.

Our attempts to reproduce this unique situation numerically have succeeded. In
contrast to other computations of this study, the number of grid points was increased
to approximately 660 000 in this case in order to improve the resolution near the
reflection point. The distance between the wedges 2g in this calculation was 0.6w.
An oRR[wRR + sRR] was obtained in our simulations for M0 = 4.96, θ1 = −35◦
and θ2 = −15.98◦ (see figure 10a), which exactly corresponds to the A′-polar in
figure 9. An enlarged view of this configuration is given in figure 10(b). An oRR
wave configuration that corresponds to polar A and consists of two weak regular
reflections, i.e. oRR[wRR+wRR], across which the flow deflection was identical to the
above-mentioned oRR[wRR+sRR] case was obtained for M0 = 4.96, θ1 = −35◦ and
θ2 = 14.58◦ (see figure 10c). Therefore, the numerical simulation indeed resulted in two
different oRR wave configurations, an oRR[wRR+sRR] and an oRR[wRR+wRR],
behind which the flow deflections, are the same but the pressures are different:
plow/p0 = 40.7 for the oRR[wRR+wRR] case, and phigh/p0 = 46.0 for the oRR[wRR+
sRR] case). Furthermore, while the flow was supersonic in the oRR[wRR + wRR]
case, it was subsonic behind the strong shock wave in the oRR[wRR + sRR] case.
This is illustrated in figure 10(b), where the existence of the subsonic region behind
the upper reflected shock wave is evident. Further downstream the flow accelerates to
a supersonic velocity due to the influence of the expansion fan emanating from the
trailing edge of the wedge. It should be noted that the above-mentioned pressure rise
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phigh/p0 = 46.0 in the oRR[wRR + sRR] case is somewhat lower than the analytically
predicted value for this case (i.e. 46.8). This discrepancy is probably associated with
the upstream influence of the expansion fan through the subsonic zone, which cannot
be accounted for in an analysis based on the shock polar technique.

The numerical simulations were also performed for the conditions that match the
R1–B and R1–B′ shock polar combinations in figure 9. The difference of this case from
the one considered above is that in addition to the subsonic flow behind the strong
reflected shock wave of the oRR[wRR + sRR] wave configuration, the flow is also
subsonic behind one of the weak reflected shock waves of the oRR[wRR+wRR] wave
configuration. The computations revealed closed (bounded) subsonic zones similar to
that shown in figure 10(b), for both the strong and the weak regular reflections.

The surprising possibility of the existence of the strong solution, which was realized
in the course of the present computations, is a unique feature of the reflection
of asymmetric shock wave. As explained by Li et al. (1999), the presence of a
complementary weak regular reflection provides the mechanism to maintain the
pressure behind the reflected shocks high enough to support the strong reflected
shock wave.

3. Conclusions
A numerical simulation complementing the analytical study and experimental

investigation by Li et al. (1999) of the reflection phenomenon of asymmetric shock
waves in steady flows was conducted using a high-resolution shock-capturing Euler
code.

All the findings of the analytical study were reproduced in the numerical simulation.
The existence of an overall Mach reflection wave configuration which consisted of
a direct-Mach and an inverse-Mach reflections, i.e. oMR[DiMR + InMR], and the
existence of an overall regular reflection wave configuration, which consisted of a weak
and a strong regular reflection, i.e. oRR[wRR + sRR], were verified numerically. To
the best of our knowledge, this is the first time that the strong solution has been
observed in the numerical simulation of steady shock wave reflections. In addition,
the two different sequences of events analytically predicted, which can occur in the
course of the hysteresis process, were also simulated.

Whenever a comparison could be made between the analytical predictions and the
numerical results, good to excellent agreement was obtained.

The present findings together with those of the analytical study and the experimental
investigation of Li et al. (1999) indicate that a hysteresis exists in the reflection
phenomenon of asymmetric shock waves. This in turn implies that different flow
patterns could be obtained for identical conditions, i.e. flow Mach number and
geometry. Consequently, the results of these studies will become very important when
flights at Mach numbers higher than those existing nowadays become routine, since
they should be accounted for in the design of intakes for example.

The Russian co-authors would like to express their gratitude to the Russian Foun-
dation for Basic Research (RFBR) for its support of this study under Research Grant
Numbers 00-01-00824 and 01-01-06253. This research was also partially supported
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