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We theoretically prove the existence in granular fluids of a thermal convection that is
inherent in the sense that it is always present and has no thermal gradient threshold
(convection occurs for all finite values of the Rayleigh number). More specifically, we
study a gas of inelastic smooth hard disks enclosed in a rectangular region under a
constant gravity field. The vertical walls act as energy sinks (i.e. inelastic walls that
are parallel to gravity), whereas the other two walls are perpendicular to gravity and
act as energy sources. We show that this convection is due to the combined action
of dissipative lateral walls and a volume force (in this case, gravitation). Hence, we
call it dissipative lateral walls convection (DLWC). Our theory, which also describes
the limit case of elastic collisions, shows that inelastic particle collisions enhance the
DLWC. We perform our study via numerical solutions (volume-element method) of
the corresponding hydrodynamic equations in an extended Boussinesq approximation.
We show that our theory describes the essentials of the results for similar (but more
complex) laboratory experiments.
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1. Introduction
Fluid matter exhibits a remarkable tendency to build up patterns and organized

dynamical structures. Different stages can appear in a fluid system as it moves
further away from equilibrium (Gollup 1995; Kadanoff 2001): laminar convection
ends up developing turbulence (Batchelor 1982) that produces different characteristic
patterns (Hunt & Durbin 1999), such as plumes, swirls, eddies, vortices (the vortex
inside Saturn’s hexagon is a beautiful example of an atmospheric stable vortex, see for
instance the work by Godfrey (1990)) and, eventually, spatio-temporal chaos (Egolf
et al. 2000). Furthermore, extensive spatio-temporal chaos may render equilibrium-like
states back again at larger time/length scales (Egolf 2000).

Since the seminal works by Bénard (1900) and Lord Rayleigh (1916), the fluid flow
in closed circuits (convection), caused by the presence of temperature inhomogeneities,
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Inherent thermal convection in a granular gas inside a box 161

has likely been one of the most studied problems in science (the works by Cross
& Hohenberg (1993), Bodenschatz, Pesch & Ahlers (2000) and Mutabazi, Wesfreid
& Guyon (2006) are good reviews on the subject). The phenomenon is well known
to be ubiquitous in nature, including biological systems. However, let us describe
it again, at its simplest: we consider a real, experimental system where there is a
gravity force keeping a fluid layer at rest at temperature T and with two horizontal
and limiting surfaces. The upper one (in the sense of gravity) is either free or in
contact with a solid surface. Then, by means of some kind of temperature source at
higher temperature T0 > T , the fluid is heated from below. The difference T0 − T is
gradually increased, but the fluid remains static. However, when a critical temperature
gradient is reached, fluid motion is set up, shaping regular patterns in all of the fluid
volume (Bénard 1900). According to classical theory, the Rayleigh number is the
convection control parameter in this kind of problem. This dimensionless parameter
is usually defined as Ra ≡ α1Tgh3/κν, where α ≡ (1/V)(∂T/∂V)p is the fluid
expansion (V is the fluid volume and T and p are the temperature and hydrostatic
pressure, respectively) coefficient, 1T is the boundaries temperature difference, g is
gravity acceleration, h is the system width and κ and ν are the thermal conductivity
and kinematic viscosity transport coefficients, respectively. In fact, linear theory
predicts a critical value Rac = 657.5 and Rac = 1708 for the free surface and the
closed-on-top system cases, respectively (Mutabazi et al. 2006). The theoretical
treatment by Lord Rayleigh (1916) relied on the work by Boussinesq (1903) (see
also the book edited by Mutabazi et al. (2006) for a more recent review), who
defined the relevant contributions for this convection in the fluid balance equations.
These balance equations, as is known, were worked out by Navier and Stokes only a
few years before (Batchelor 1967).

Let us recall that a more generic concept of fluid also involves systems where
the particles are not necessarily microscopic, i.e. the particles can be macroscopic,
when their typical size is greater than 1 µm (Bagnold 1954). In fact, the dynamical
properties of a set of rigid macroscopic particles in a high state of agitation was
elucidated as a subject of the theory of fluids a long time ago by Reynolds (1885).
However, for macroscopic particles, the kinetic energy will be partially transferred,
upon collision, to the lower (smaller length scales) dynamics levels, never coming
back to the upper granular level. For instance, it may be transferred into thermal
movement of the molecules that are the constituents of the disk material (Andreotti,
Forterre & Pouliquen 2013). Thus, unless the system gets an energy input from some
kind of source, it will evolve by continuously decreasing its total kinetic energy,
i.e. lowering the system granular temperature (Kanatani 1979). This temperature
decay rate was calculated, for a homogeneous and low-density granular system (i.e. a
homogeneous granular gas), by Haff (1983).

Nevertheless, when excited by some persistent external action, stable granular gas
systems are found spontaneously in nature, for instance, in sand storms (Bagnold
1954), and also in laboratory experiments, where air flow (Losert et al. 2000) or
mechanical vibration (Olafsen & Urbach 1998; Puglisi et al. 2012) may be used as
energy inputs. Under these conditions, the granular gas can develop steady laminar
flows (Vega Reyes & Urbach 2009). Unfortunately, the hydrodynamics of granular
fluids is not in the same stage of development as it is for molecular fluids (Puglisi
2015). For instance, the corresponding hydrodynamic theory for thermal convection
in a granular gas was developed only very recently (see, for instance, the work by
Khain & Meerson (2003)) and only in the case of the academic problem of horizontal
(or inclined) infinite walls. However, real systems are obviously finite. In the case of
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a gas heated by two horizontal walls, the simplest finite configuration considered is
when the system is closed by adding vertical lateral walls. As is known, finite-size
effects have an impact on both the critical Rayleigh number and the convection
scenario in molecular fluid changes if a cold vertical wall is present (Daniels 1977;
Hall & Walton 1977; Mutabazi et al. 2006).

The lack of a theoretical analysis on the effects of finite-size systems in granular
convection theory (see, for instance, the works by Forterre & Pouliquen (2003),
Khain & Meerson (2003), Eshuis et al. (2007), Bougie (2010), Eshuis et al. (2010)
and others) may have hindered and/or rendered impossible a complete interpretation
of a part of the previous results on granular dynamics laboratory experiments.
Furthermore, as we will see in some experimental works, the observed granular
convection (Wildman, Huntley & Parker 2001a,b; Risso et al. 2005; Eshuis et al.
2010; Windows-Yule, Rivas & Parker 2013; Pontuale et al. 2016) should be either
exclusively or partly due to sidewall energy sink, and not of the Rayleigh–Bénard type.
Of course, although the no-sidewalls theoretical approach may be accurate when bulk
convection is present (Khain & Meerson 2003), in the cases where the convection is
caused only by the sidewalls energy sink, we may expect the convection properties to
be very different. Note that in an enclosed granular gas, the lateral energy sink should
always be present, since wall–particle collisions are inherently inelastic. This implies
that the present analysis should be relevant for many granular convection experiments.
Furthermore, as we will see, lateral-wall effects are also more substantial for the
granular gas than for the molecular fluid.

2. Description of the system and the problem
Let us consider a system consisting of a large set of circular particles (disks) in a

two-dimensional (2D) system. The particles are identical inelastic smooth hard disks
with mass m and diameter σ . The hard-collision model works reasonably well at an
experimental level for a variety of materials (Foerster et al. 1994). We use here this
model in the smooth particle approximation, i.e. we neglect the effects of sliding
and friction in the collision. Under the smooth hard particle model for collisions, the
fraction of kinetic energy loss after collision is characterized by a constant parameter
called the coefficient of normal restitution α, not to be confused with the expansion
coefficient, usually also denoted by α:

n · v′12 =−αn · v12, (2.1)

where v12, v′12 are the collision-pair contact velocities before and after collision,
respectively (Foerster et al. 1994).

The system is under the action of a constant gravitational field g=−gêy. We will
also assume that the system has low particle density (n) everywhere at all times.
Therefore, our fluid is a granular gas. Collisions are instantaneous (in the sense that
the contact time is very short compared with the average time between collisions,
Chapman & Cowling 1970) and occur only between two particles. Since particles are
inelastic, our theory should take into account the inelastic cooling term.

The system is provided with either two (top and bottom) or just one (bottom,
in the sense of gravity) horizontal walls (i.e. perpendicular to gravity), these being
provided with energy sources. In addition, our granular gas is caged in a finite
rectangular region by two inert vertical walls (we call them lateral walls or sidewalls).
Sidewalls–particle collisions are inherently inelastic, the degree of inelasticity of these
collisions being characterized by a coefficient of normal restitution αw that is, in
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FIGURE 1. (Colour online) Simple sketch of the system. The system is heated from the
horizontal walls (at y = ±h/2). If the lateral walls (at x = ±L/2) act as energy surface
sinks, bidimensional flow occurs.

general, different from the one for particle–particle collisions, α. See figure 1 for a
graphical description.

We denote the single-particle velocity distribution function as f (r, v|t) with r, v
being the particle position and velocity, respectively, functions of time (t). The first
three velocity moments of the distribution function, n(r, t) =

∫
dvf (r, v|t), u(r, t) =

(1/n)
∫

dvf (r, v|t)v and T(r, t) = (1/dn)
∫

dvf (r, v|t)mV2, define the average fields’
particle density (n), flow velocity (u) and temperature (T), respectively. Here, V =
v− u and d is the system dimension. In this work, we consider only d= 2 (and that
is why the particles are necessarily flat).

For a granular gas, molecular chaos (i.e. particle velocities are not statistically
correlated) also occurs in most practical situations (Prevost, Egolf & Urbach 2002;
Baxter & Olafsen 2007). Therefore, the kinetic Boltzmann equation (Chapman &
Cowling 1970), may also be used to describe granular gases (Brey et al. 1998;
Dufty 2001). The general balance equations that follow from the inelastic Boltzmann
equation have the same form as that for molecular fluid except for the additional
inelastic cooling term arising in the energy equation. They have the following form
(Brey et al. 1998; Sela & Goldhirsch 1998)

Dtn=−n∇ · u, Dtu=−
1

mn
∇ · P + g, DtT + ζT =−

2
dn
(P · ∇u+∇ · q).

(2.2a−c)

In the above equations, Dt ≡ ∂t + u · ∇ is the material derivative (Batchelor 1967),
and P, q are the moment and energy fluxes (stress tensor and heat flux), defined by
P =m

∫
dvVVf (v) and q= (m/2)

∫
dvV2Vf (v), respectively.

As stated previously, note the new term ζT in the energy equation of (2.2), where
ζ represents the rate of kinetic energy loss, and is usually called the inelastic cooling
rate. Accurate expressions of the cooling rate and the inelastic Boltzmann equation
are well known and may be found elsewhere (we use here that worked out by Brey
et al. (1998)).

Let us note also that the set of balanced equations (2.2) is exact and always valid.
However, to close the system of equations, we need to express the fluxes P, q and
the cooling rate ζ as functions of the average fields n, u, T . The hydrostatic pressure
field p is defined by the equation of state for an ideal gas: p = nT . Starting out of
the kinetic equation for the gas, this can only be done if the distribution function
spatio-temporal dependence can be expressed through a functional dependence on the
average fields, i.e. if the gas is in a normal state (Hilbert 1912), where this is only
true if the spatial gradients vary over distances greater than the mean free path (that is,
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the characteristic microscopic scale). In this case, it is usually said that there is scale
separation (Goldhirsch 2003). Henceforth, we assume this scale separation occurs at
all situations considered for this work (see Vega Reyes & Urbach (2009) for more
details about the conditions for accuracy of this assumption in steady granular gas
flows).

The boundary conditions come from the usual forms for temperature sources,
no-slip velocity (Vega Reyes, Santos & Garzó 2010) and controlled pressure at the
boundaries: T(y=+h/2)= T+, (substituted by [∂T/∂y= 0]y=+h/2, with h� L, in the
case of an open-on-top system), T(y=−h/2)= T−, u(x=±L/2)= u(y=±h/2)= 0,
p(y=−h/2)= p0. For an enclosed granular gas, we also necessarily need to consider
the dissipation at the lateral walls, as we explained previously. A condition for the
horizontal derivative of temperature would suffice to account for an energy sink at the
side walls (Hall & Walton 1977). However, taking into account that the energy sink
comes from wall–particle collision inelasticity, then it is more appropriate to assume
a horizontal heat flux that is proportional to lateral wall–disks collisions’ degree of
inelasticity, ∝ (1− α2

w) (Johnson & Jackson 1987),

qx(x=±L/2)=A(αw)[pT3/2
]x=±L/2, (2.3)

where A(αw) = (π/2)m(1 − α2
w) is given by the dilute limit of the corresponding

expression in the work by Nott et al. (1999). (In addition, condition p(x=−L/2)=
p(x = +L/2) is also used implicitly, since in this work, we only consider identical
lateral walls at both sides.) The detailed balance of fluxes across the boundaries is
beyond the scope of this work, but for a more detailed analysis on realistic boundary
conditions, the reader may refer to the work by Nott et al. (1999).

2.1. Navier–Stokes equations and transport coefficients
We assume that the spatial gradients are sufficiently small, which is true for steady
laminar flows near the elastic limit (Vega Reyes & Urbach 2009). Therefore, we
use the Navier–Stokes constitutive relations for the fluxes (Brey et al. 1998; Brey &
Cubero 2001)

P = pI − η

[
∇u+∇u†

−
2
d

I(∇ · u)
]
, (2.4)

q=−κ∇T −µ∇n. (2.5)

In (2.5) we can find the transport coefficients: η (viscosity), κ (thermal conductivity),
and µ (thermal diffusivity). Note that µ is a new coefficient that arises from inelastic
particle collisions (Brey et al. 1998). The transport coefficients for the granular gas
have been calculated by several authors, with some variations in the theoretical
approach. For instance, Sela & Goldhirsch (1998) performed a Chapman–Enskog-like
power series expansion in terms of both the spatial gradients and inelasticity up to
the Burnett order, but limited to quasi-elastic particles, whereas Brey et al. (1998)
perform the expansion only in the spatial gradients (and the theory is formally valid
for all values of inelasticity). Previous works, such as the work by Jenkins & Savage
(1983) and by Lun et al. (1984) obtain the granular gas transport coefficients only in
the quasi-elastic limit. These theories will actually yield indistinguishable values of
the Navier–Stokes transport coefficients for nearly elastic particles (the case of our
interest in the present work).
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The essential point to our problem is the scaling with temperature T and particle
density n. This scaling for hard particles is (Chapman & Cowling 1970; Brey et al.
1998)

η= η∗0T1/2, κ = κ∗0 T1/2, µ=µ∗0
T3/2

n
, ζ = ζ ∗0

p
T1/2

. (2.6a−d)

The values of the coefficients for disks are η∗0 ≡ η∗(α)
√

m/(2σ
√

π), κ∗0 ≡
2κ∗(α)/(

√
πmσ), µ∗0 ≡ 2µ∗(α)/(

√
πmσ), ζ ∗0 ≡ (2σ

√
π/m)ζ ∗(α) the expressions’

dimensionless functions that depend on the coefficient of restitution can be found in
the work by Brey & Cubero (2001). We write them here for completeness

η∗(α)=

[
ν∗1 (α)−

ζ ∗(α)

2

]−1

, (2.7a)

κ∗(α)=

[
ν∗2 (α)−

2d
d− 1

ζ ∗(α)

]
, (2.7b)

µ∗(α)= 2ζ ∗(α)
[
κ∗
(
α +

(d− 1)c∗(α)
2dζ ∗(α)

)]
, (2.7c)

ζ (α∗)=
2+ d

4d
(1− α2)

[
1+

3
32

c∗(α)
]
, (2.7d)

where

ν∗1 (α)=
(3− 3α + 2d)(1+ α)

4d

[
1−

1
64

c∗(α)
]
, (2.8a)

ν∗2 (α)=
1+ α
d− 1

[
d− 1

2
+

3(d+ 8)(1− α)
16

+
4+ 5d− 3(4− d)α

1024
c∗(α)

]
, (2.8b)

c∗(α)=
32(1− α)(1− 2α2)

9+ 24d+ (8d− 41)α + 30α2(1− α)
, (2.8c)

and in our system d= 2, since we deal with disks.

2.2. The heated granular gas: convective-base-state
First, we revisit the general argument which states that a hydrostatic state is
impossible when a temperature gradient is assumed in the horizontal (transverse
to gravity) direction, as it is in the case of dissipative lateral walls (DLW) Pontuale
et al. (2016), i.e. when T =T(x, y). Momentum balance in (2.2), supplemented by the
equation of state for the ideal gas, in the absence of macroscopic flow (hydrostatic)
states that

∂xp= ∂x(n(x, y)T(x, y))= 0, (2.9a)
∂yp= ∂y(n(x, y)T(x, y))=−mgn(x, y). (2.9b)

The first equation yields p(x, y) ≡ p(y), which, used in the second equation, sets
n(x, y)≡n(y) and, returning this into the first equation above, we obtain T(x, y)≡T(y),
i.e. ∂T/∂x = 0. This is in contradiction with the horizontal temperature gradient
assumed above. Therefore, the simple hydrostatic system of equations is not
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compatible with the condition ∂T/∂x 6= 0, originated by the energy sinks at the
side walls.

We must conclude that a hydrostatic state in the presence of DLW and gravity is not
possible. Thus, since u 6=0, a flow must always be present, even at infinitesimal values
of the Rayleigh number, i.e. there is no hydrostatic solution even if Ra→ 0. In the
terminology of the previous bibliography on molecular fluids enclosed by dissipative
sidewalls, a smooth transition occurs so that the concept of a critical Rayleigh number
is no longer tenable (Hall & Walton 1977).

3. Extended Boussinesq-like approximation for a granular gas
However, our previous analysis does not explain why a convection in the form

of that observed in the experiments appears. Indeed, our analysis only implies that
there is never a hydrostatic solution: it does not necessarily lead to a flow with one
convection cell next to each inelastic wall, nor to a convection-free region for points
sufficiently far away from the side walls, as seen in the experiments (Wildman et al.
2001a,b; Risso et al. 2005; Eshuis et al. 2010; Windows-Yule et al. 2013; Pontuale
et al. 2016). Furthermore, we also need to discard it if other properties, other than the
sidewalls’ inelasticity, that are present in the experimental system (such as particle–
bottom plate friction) are important for the appearance of dissipative lateral walls
convection (DLWC) in the granular gas.

Therefore, we need to analyse in § 3 the minimal system of differential equations
that derives from the general balance equations and that is able to reproduce a
convection with the characteristics of that observed in the experiments. Once it is
numerically solved, we will be able to describe in detail the main features of the
non-hydrostatic base state in our system.

According to both experiments and computer simulations (molecular dynamics
(MD)) results, this convection would only show one cell per inert wall, independent
of thermal gradients’ strength and system size (Pontuale et al. 2016). The flow in the
bulk of the fluid for wide systems appears to be zero or negligible. This is analogous
to the result for molecular fluids where the sidewalls’ effects are important (Hall &
Walton 1977). Moreover, the presence of sidewalls introduces two important effects
that differ in origin. The first arises from finite-size effects alone and it shows up in
a lower critical Rayleigh number for Bénard’s convection, even if the lateral walls
are perfectly insulating (i.e. even if they do not convey a lateral energy flux). It is
impossible to escape this effect both in molecular (as described in the work by Hall
& Walton 1977) and granular fluids when enclosed by lateral walls. The second effect
comes properly from energy dissipation at the lateral walls and as we saw produces
a non-hydrostatic steady state by default.

We are specifically interested in this second effect that arises only with DLW
and leave for future work the study of the first effect (that should eventually lead
to consider more appropriate theoretical criteria when comparing with experimental
results for the classical bulk-granular convection). Therefore, it is our aim to elucidate
the minimal theoretical framework that is able to take into account the important
experimental evidence of the DLWC in granular gases.

For our theoretical description, let us use the following reference units: particle
mass m for mass, particle diameter σ for length, thermal velocity at the base v0 =

(4πT0/m)1/2 for velocity, pressure at the base p0 = n0T0, and σ/v0 for time, where
T0, n0 are arbitrary values of temperature and particle density, respectively.

A common situation for thermal convection is that all density derivatives are
negligible except for the spatial dependence of density that is coming from gravity,
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which appears in the momentum balance equation. This happens when the variation
of mechanical energy is small compared to the variation of thermal energy (Gray &
Giorgini 1976) and leads to the Boussinesq equations (Busse 1978; Chandrasekhar
1981). This is always true in our system if the reduced gravitational acceleration
fulfils gσ/v2

0� 1. Thus, we restrict our analysis to small values of g. Taking this into
account in the mass balance equation in (2.2) immediately yields ∂ux/∂x+ ∂uy/∂y= 0.
Moreover, for weak convection (as it is the case of our experimental results), we
can neglect the advection (nonlinear) terms that emerge in the balance equations
(2.2) (Busse 1978).

Incorporating these approaches into the other balance equations in (2.2) and for our
system geometry (see figure 1) and with our reference units, we get the following
dimensionless Boussinesq equations for weak convection in the granular gas

η∗(α)
∂

∂y

[
√

T
(
∂ux

∂y
+
∂uy

∂x

)]
+ 2η∗(α)

∂

∂x

[
√

T
∂ux

∂x

]
−
∂(nT)
∂x
= 0, (3.1)

η∗(α)
∂

∂x

[
√

T
(
∂ux

∂y
+
∂uy

∂x

)]
+ 2η∗(α)

∂

∂y

[
√

T
∂uy

∂y

]
−
∂(nT)
∂y
− ng∗ = 0, (3.2)

n2T3/2ζ ∗(α)=
κ∗(α)

π

[
∂

∂x

(
√

T
∂T
∂x

)
+
∂

∂y

(
√

T
∂T
∂y

)]
, (3.3)

with g∗ = 4πg. In fact, our Boussinesq-extended approximation includes additional
terms with respect to the classical Boussinesq approximation used for thermal
convection, since we do not neglect the temperature dependence of the transport
coefficients, which results in

√
T factors inside the bracket terms in equations

(3.1)–(3.3). In a previous work, we noticed that these temperature factors are relevant
for important properties of the steady profiles of the granular temperature, such as the
curvature (Vega Reyes & Urbach 2009). Note that we also keep the density derivatives
in (3.1)–(3.2), since the granular gas is highly compressible. For this reason, we do
not strictly consider density to be constant in the mass balance equation; we neglect
density variations along the flow-field lines instead, while keeping density variations
in the momentum balance equation. The corresponding dimensionless forms of the
boundary conditions would be: T(y = +h/2) = T+/(mv2

0/2), ([∂T/∂y]y=+h/2 = 0 for
an open on top system), T(y = −h/2) = 1/

√
4π, u(x = ±L/2) = u(y = ±h/2) = 0,

p(y = −h/2) = 1, plus for the lateral walls dissipation condition qx(x = ±L/2) =
A(αw)[pT3/2

]x=±L/2.

3.1. Numerical solution and comparison with experiments
To numerically solve equations (3.1)–(3.3), we used the finite-volume method. For this,
we wrote a code using the SIMPLE algorithm (to avoid numerical decoupling of the
pressure field Ferziger & Perić 2002) and the FiPy differential equation package with
the PySparse solver (Guyer, Wheeler & Warren 2009). We have seen (see figure 3)
that the agreement with experiment and MD simulations is qualitatively very good.
In addition, all major properties of the flow are reproduced in the numerical solution
obtained from the Boussinesq approximation.

Figure 2, that correspond to systems provided with a top wall, clearly demonstrates
that wider systems do not display a greater number of convection cells. The number
of cells always remains one per dissipative wall. We also note that the flow is
upward in the outer part of the cells (toward the system centre) and downward next
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FIGURE 2. DLW convection for systems with a top wall and different widths: (a) L= h,
(b) L= 3h and (c) L= 5h. In our dimensionless units: system height h= 170. In each plot,
the thickest stream lines correspond to u0= (u2

x+u2
y)

1/2
=3.11×10−3 (in our dimensionless

units). The other relevant parameters in this figure are: T0= 3T+ and g= 0.002 g0, α= 0.9
(for both particle–particle and wall–particle collisions).

to the lateral walls. It is interesting to note also that, according to numerical results,
the convection speed u0 = (u2

x + u2
y)

1/2 reaches roughly the same maximum value
when varying the system thickness. Furthermore, if we define the cell size as the
horizontal distance between the upward and downward streams (see figure 2) points
with maximum convection speed, then we see that the size of the cells remains
constant. The exception is for systems thinner than twice the cell size, in which case
the cells squeeze each other (figure 2a). All of these results show the peculiarities of
the DLW convection with respect to Rayleigh–Bénard convection and coincide with
the experimental behaviour detected previously (Pontuale et al. 2016).

In figures 3 and 4, that correspond to open systems (i.e. without a top wall), we
see a comparison between theory and experimental results, for g = 0.016 g0 (with
g0 = 9.8 m s−2) in the cases of N = 300 and 1000 particles in the experimental
set-up, respectively. In all cases, we may consider the system as dilute, since the
local packing fraction ν = nπσ 2/4 is never greater than approximately ν = 0.5× 10−2.
As we can see, the agreement is good for the flow field, and more qualitative for the
temperature and density fields. In the case of figure 3, there is some disagreement
between theory and experiment for both temperature and density, which may be
partially explained by the fact that the Knudsen number is not small (Kn ∼ 10−1),
and therefore, there might be non-Newtonian effects in the experiments that are not
taken into account in our theory. However, it is clear in both cases that the cold
fluid regions next to the lateral walls are adjacent to the convective cell centres.
We also check that when dissipation at the lateral walls is switched off, no DLW
convection appears out of the theoretical solution. In this way, we may conclude
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FIGURE 3. (Colour online) Fields from experiments and theory (left and right panels,
respectively, for each pair of panels for the corresponding field), for a system without
a top wall (open system). Length unit: particles diameter (σ = 1 mm). Here g =
0.016 × 9.8 m s−2. (a,b) Flow field (u = 0). (c,d) The corresponding temperature T/m
for the experiment (c) and theory (d). (e, f ) Packing fraction fields ν = nπσ 2/4 for the
experiment (e) and theory ( f ). Black stands for lower and red for higher field values. Here
0< T 6 0.2mv2

0 , (v0= 370 mm s−1); 0.02× 10−2<ν6 0.15× 10−2, mean packing fraction
ν=0.049×10−2. Density colour bars are in percentage units. Experiments: with f =45 Hz,
A=1.85 mm, N=300 (total number of particles). Theory: coefficient of restitution α=0.9
(both for particle–particle and wall–particle collisions).

that the convection mechanism appears as a consequence of the combined action of
two perpendicular gradients: the density (and thermal) gradient due to the action of
gravity and the horizontal gradient due to energy dissipation by the lateral walls.

Let us point out that our theory does not take into account all of the ingredients
and details that are present in previous experiments on DLWC in granular systems
(Wildman et al. 2001a; Windows-Yule et al. 2013; Pontuale et al. 2016), such
as plate–particle friction and/or sliding or dynamical effects derived from particle
sphericity (just to give two examples), etc. Moreover, as noted in previous works,
there is a tendency for volume convection disappearance for not-so-small Knudsen
numbers (Ansari & Alam 2016; Pontuale et al. 2016). For all of this, a comparison
with our previous experimental results (Pontuale et al. 2016) and the experimental
results by others (Wildman et al. 2001a; Eshuis et al. 2010; Windows-Yule et al.
2013) should be regarded as qualitative, not quantitative. The advantage of this
procedure is that, because it is reduced to the essentials, we are finally able to
identify the key ingredients that produce the DLWC in the granular gas.

Furthermore, theoretical procedures (simulations, hydrodynamics) allow us to
separate the two sources of dissipation and make ‘ideal’ assumptions. For instance,
we can switch off internal dissipation (and reproduce the molecular fluid limit case)
while retaining dissipation at the walls.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.801


170 F. Vega Reyes, A. Puglisi, G. Pontuale and A. Gnoli

-80 -40 0 40 80

100

80

60

40

20

0
-60 -20 20 60

40

20

0

-20

-40

0.20

0.16

0.12

0.08

0.04

0

0.20

0.16

0.12

0.08

0.04

0

0.48

0.42

0.36

0.30

0.24

0.18

0.12

0.06

0

0.48

0.42

0.36

0.30

0.24

0.18

0.12

0.06

0

(a) (b)

(c) (d) (e) (f)

FIGURE 4. (Colour online) Fields from experiments and theory (left and right panels,
for each pair of panels for the corresponding field, respectively) for a system without
a top wall (open system). Length unit: particles diameter (σ = 1 mm). Here g =
0.016× 9.8 m s−2. (a,b) Flow field (u= 0). (c,d) The corresponding temperature T/m for
experiment and theory (d). (e, f ) Packing fraction ν= nπσ 2/4 fields for experiment (e) and
theory ( f ). Black denotes lower and red denotes higher field values. Here 0< T 6 0.2mv2

0 ,
(v0= 370 mm s−1); 0.02× 10−2<ν6 0.46× 10−2, mean packing fraction ν= 0.15× 10−2.
Density colour bars are in percentage units. Experiments: with f = 45 Hz, A= 1.85 mm,
N = 1000 (total number of particles). Theory: coefficient of restitution α = 0.9 (both for
particle–particle and wall–particle collisions).

4. Conclusions
In this work we have discussed the theory framework for a previously observed

experimental phenomenon of granular convection (Wildman et al. 2001a,b; Risso
et al. 2005; Eshuis et al. 2010; Windows-Yule et al. 2013; Pontuale et al. 2016).
This convection appears automatically, i.e. occurs at arbitrary Ra and, in close analogy
to the convection in molecular fluids induced by cold sidewalls (Hall & Walton 1977),
we conclude that the new granular convection is also induced by dissipative vertical
sidewalls and a gravity field. We have denoted it as a DLWC. We have built a
granular hydrodynamic theoretical framework that explains the physical origin of this
convection, in the context of the Boussinesq equations for the granular gas. To the
best of the authors’ knowledge, this is the first time that a Boussinesq-type approach
has been used for granular convection. We have found that our theory also explains
the main features of the experimental observations. That is, the DLW convection
displays, in all cases, only one convection cell per dissipative wall, the width of
this wall being increased when convection intensity increases. Moreover, the DLW
convection intensity is enhanced by increasing gravity acceleration, wall dissipation,
or both. Conversely, it is decreased by increasing bottom wall temperature (at fixed
gravity and wall dissipation).
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Note that sidewalls are inherently inelastic in granular fluid experimental systems.
Thus, the DLWC is always present at the experimental level and our results imply
that the classical volume thermal convection in granular gases does not appear in
experimental systems out of a hydrostatic state. Instead, it develops as a secondary
instability out of the DLWC state. Therefore, more theory work would be needed
in general to correctly describe the experimental instability criteria for the volume
thermal convection in granular gases. This also implies that the accuracy of previous
hydrodynamic theory for the volume thermal convection can be seemingly improved
if the prior existence of the DLW is taken into account.

Finally, our present work constitutes further strong evidence that steady granular
flows can be described correctly by a standard hydrodynamic theory (Puglisi 2015)
(see also the recent work by Vega Reyes & Lasanta (2017), with results in the same
line).
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