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SHOT NOISE PROCESSES WITH RANDOMLY DELAYED CLUSTER
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Abstract

We study shot noise processes with cluster arrivals, in which entities in each cluster
may experience random delays (possibly correlated), and noises within each cluster may
be correlated. We prove functional limit theorems for the process in the large-intensity
asymptotic regime, where the arrival rate gets large while the shot shape function, clus-
ter sizes, delays, and noises are unscaled. In the functional central limit theorem, the
limit process is a continuous Gaussian process (assuming the arrival process satisfies a
functional central limit theorem with a Brownian motion limit). We discuss the impact
of the dependence among the random delays and among the noises within each clus-
ter using several examples of dependent structures. We also study infinite-server queues
with cluster/batch arrivals where customers in each batch may experience random delays
before receiving service, with similar dependence structures.
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1. Introduction

We consider the shot noise process X = {X(t) : t ≥ 0} defined by

X(t) :=
A(t)∑
i=1

Ki∑
j=1

H(t − τi − ξij)Zij, t ≥ 0. (1.1)

Here A = {A(t) : t ≥ 0} is a simple point process of clusters with event times {τi : i ≥ 1}; that is,
A(t) = max{k ≥ 1 : τk ≤ t} with τ0 ≡ 0. Ki represents the number of arrivals in cluster i. Entities
of cluster i may arrive at times subsequent to the cluster time τi, that is, at times τi + ξij,
j = 1, . . . ,Ki with ξij ≥ 0. For each cluster i, the random delays {ξij : j ∈N} can be correlated
and are allowed to be zero with a positive probability. The real-valued variables Zij represent
the noises, and for each cluster i, {Zij, j ∈N} may be correlated. For each cluster i, the variables
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Shot noise processes with randomly delayed cluster arrivals and dependent noises 1191

Ki, {ξij, j ∈N} and {Zij, j ∈N} are mutually independent, and they are also independent for
different clusters. In addition, the cluster variables (Ki, {ξij}j, {Zij}j) are independent of the
arrival process A(t) (and the event times {τi}). The function H : R+ →R is the shot shape
(response) function.

This model may be used to model financial markets with clustering events, insurance claims
with cluster arrivals, and noise processes in some electronic components. For example, insur-
ance claims may arrive in clusters possibly due to natural disasters or accidents, and the claims
in each of the clusters may arrive after random delays. The claim sizes may be also dependent
because of the clustering effect. Shot noise processes with cluster arrivals and various forms of
the shot shape functions have been studied in [1, 7, 31, 32]. In these papers, people have inves-
tigated the general formula for the characteristic functional [7, 31], long-range dependence
under certain structural conditions on the response function [31], and central limit theorem
results with normal limit distribution [32] and with stable limit distribution [1]. Similar results
for shot noise processes without cluster arrivals were established in [9, 20, 21, 33, 34].

In this paper we establish a functional law of large numbers (FLLN) and a functional central
limit theorem (FCLT) for the process X(t) in (1.1) in the large-intensity asymptotic regime, in
which the arrival rate is large while the response function and the delay and noise variables
are fixed (unscaled), and there is no scaling in time. Shot noise processes have been studied
in this asymptotic regime in [2, 8, 10, 27, 29, 30]. In this regime, the limit processes in the
FCLT are Gaussian processes of a particular structure (assuming the arrival process satisfies an
FCLT with a Brownian limit). This asymptotic regime is different from another commonly used
scaling regime, in which both time and space are scaled (noticing the scaling in time involves
both A(t) and H(t − ·)), and which results in self-similar Gaussian processes and fractional
Brownian motion limits [17, 18, 24] and stable motion limits [11–15, 19]. Among these scaling
results, models with renewal arrivals, referred to as random processes with immigration at
epochs of a renewal process, have been studied in [12, 14, 15, 22, 23], and models with an
arbitrary point process have also recently been studied in [6, 16].

In this asymptotic regime, we assume that the arrival process satisfies an FCLT as the arrival
rate gets large (possibly time-inhomogeneous), having a stochastic limit process with continu-
ous paths (including Brownian motion and other Gaussian processes). In the FLLN, we show
that the limit is a deterministic function, which is not affected by the dependences between the
random delay times, or by those between the noises, in each cluster. In the FCLT, we show that
the limit process is composed of four mutually independent processes, one being an integral
functional of the arrival limit process, and the other three being continuous Gaussian processes,
capturing the variabilities of random delays, noises, and clusters. We give a few examples to
illustrate how the covariance functions of these Gaussian processes depend on the correlations.
In the examples, we consider the random delays in the following scenarios: (a) independent
and identically distributed (i.i.d.), (b) as a sequence of the event times of a renewal counting
process, (c) symmetrically correlated among the arrivals in each cluster, and (d) a discrete
autoregressive process with order one (DAR(1)). We consider the noises in the scenarios (a),
(c), and (d) as the random delays.

We also study an infinite-server queueing model with cluster (batch) arrivals, where cus-
tomers in each batch may experience some random delay before receiving service. Using the
same notation as above (Zij ≥ 0 representing service times), we may express the number of
customers in service at time t as

X(t) :=
A(t)∑
i=1

Ki∑
j=1

1(0 ≤ t − τi − ξij < Zij), t ≥ 0. (1.2)
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In [25], heavy-traffic limits (FLLN and FCLT) were established for infinite-server queues with
batch arrivals where service times within each batch may be correlated, as a consequence
of infinite-server queues with weakly dependent service times in [26] (see also [28]). That
approach cannot include (dependent) random delays for customers in each batch. In this model,
we tackle the problem with random delays and allow dependence among random delays as well
as among service times. We illustrate the impact of the dependence among random delays as
well as that among the service times in the scenarios discussed above. When the arrival process
is stationary, we discuss the effect of the correlations upon the steady-state mean and variances
of the limit process. These results have implications in comparing batch delays and customer
delays in service systems (see, e.g., [37]).

1.1. Organization of the paper

We describe the model in detail and state the assumptions and main results in Section 2. We
then give some examples in Section 3, and discuss the impact of dependence among random
delays and among noises within each cluster. In Section 4, we state the results and examples
for infinite-server queues with batch arrivals. The proofs are given in Sections 5 and 6.

1.2. Notation

All random variables and processes are defined in a common complete probability space(
�,F , {Ft}t≥0, P

)
. Throughout the paper, N denotes the set of natural numbers, and R

(resp. R+) denotes the space of real (resp. nonnegative) numbers. For a, b ∈R, we write
a ∧ b = min{a, b} and a ∨ b = max{a, b}. Also, a+ = a ∨ 0. Let D=D(R+,R) denote the
R-valued function space of all càdlàg functions onR+. Let (D, J1) denote the spaceD equipped
with the Skorohod J1 topology (see [3, 38]), which is complete and separable. Let C be the
subset of D consisting of continuous functions. The symbols → and ⇒ indicate convergence of
real numbers and convergence in distribution, respectively. Let m ∈D be a function of locally
bounded variation. The Stieltjes integral with respect to dm is denoted by

∫ b

a
f (z)m(dz) =

∫
(a,b]

f (z)m(dz),

for every Borel measurable function f ; this is the integral of f on (a, b], and
∫ b

a m(dz) =
m(a, b] = m(b) − m(a) for any a< b. If the integral is on [a, b], we write

∫ b
a− f (z)m(dz). For

every g ∈D, the integral
∫

(a,b]
m(b − z)g(dz) is defined by formal integration by parts:

∫
(a,b]

m(b − z)g(dz) := g(b)m(0 − ) − g(a)m
(
(b − a) − )−

∫
(a,b]

g(z)m(b − dz),

= g(b)m(0) − g(a)m(b − a) −
∫

[a,b)
g(z)m(b − dz)

= g(b)m(0) − g(a)m(b − a) +
∫

(0,b−a]
g(b − z)m(dz).

(1.3)

See, e.g., [35, p. 206].
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2. Model and results

We consider a sequence of shot noise processes Xn indexed by n in the large-intensity
asymptotic regime, where the arrival rate of clusters gets large, of order O(n), while the
distributions of the cluster sizes, random delays, and noises, as well as the shot shape func-
tion, are fixed. Define the fluid-scaled process X̄n := n−1Xn and the diffusion-scaled process
X̂n := √

n(X̄n − X̄), where X̄ is the limit of X̄n.
We make the following assumptions on the input data.

Assumption 2.1. Assume that An(0) = 0. There exist a deterministic, continuous, and increas-
ing function � : R+ →R+ and a continuous stochastic process Â such that �(0) = 0 and

Ân := n1/2(Ān −�
)⇒ Â in (D, J1) as n → ∞,

where Ān = n−1An. This implies that Ān ⇒� in (D, J1) as n → ∞.

Assumption 2.2. Assume that the cluster variables (Ki, {ξij}j, {Zij}j)i are independent of the
arrival process An (and the associate event times {τ n

i }), and that the variables Ki, {ξij, j ∈N},
and {Zij, j ∈N} are mutually independent for each cluster i, and also mutually independent
across i. Assume the cluster sizes Ki are i.i.d. with finite mean mK and variance σ 2

K, and let
pk = P(Ki = k) for k ∈N, so that

∑
k pk = 1. For each cluster i, the random delays {ξij, j ∈N}

may be dependent with a marginal distribution Gj and ξij ≥ 0 (we allow ξij = 0 with a positive
probability), and the noises {Zij, j ∈N} are real-valued and may be also correlated with a
common marginal distribution F. Assume that the Zij have finite mean mZ and variance σ 2

Z . In
addition, assume that E[Z4

ij]<∞ and E[K4
i ]<∞. �

For notational brevity, we occasionally drop the index i for the variables Ki, {ξij, j ∈N}, and
{Zij, j ∈N}, since they have a common joint law for each i.

Assumption 2.3. Let H : R+ →R+ be a monotone function and H(u) = 0 for u< 0. For every
fixed T > 0, there exists γ > 1

4 such that

sup
0≤s<t≤T

|H(t) − H(s)|
(t − s)γ

<∞,

sup
0≤s<t≤T

(s,t]∩L1=∅
sup

j

P
(
ξj ∈ (s, t]

)
(t − s)2γ

<∞, and sup
0≤s<r<t≤T
(s,t]∩L2=∅

sup
j,j′

P
(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)
(t − s)4γ

<∞,

(2.1)
where L1 and L2 are two sets with no accumulation points on [0,∞), with L1 being the
collection of discontinuous points of the distribution function of the ξj. �
Remark 2.1. The fourth moments in Assumption 2.2 are needed in the proof of tightnesses
where the increments moments are estimated, while the second moments are used in the con-
vergence of the finite-dimensional distribution. In Assumption 2.3, the marginal distributions
of the ξj are assumed to be piecewise Hölder continuous on R+, but only a finite number of dis-
continuities in every finite interval is allowed. For the joint distributions of (ξj, ξj′ ), we impose
the regularity condition concerning P

(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)
over (s, r] and (r, t] for s< r< t in

the third display, which is applied in (5.2) for the tightness proof in Lemmas 5.1 and 5.8. The
set L2 is chosen such that the last inequality in (2.1) holds. We give an example to illustrate the
sets L1 and L2. If

(
ξj, ξj′

)
is discretely distributed on R2+ with support {(xkjj′, ykjj′), k ≥ 1}j,j′

for j, j′ ∈N, then L1 = {xkjj′ |k, j, j′ ≥ 1} and L2 = {xkjj′ |xkjj′ = ykjj′, k, j, j′ ≥ 1}.
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In addition, we have assumed Hölder continuity for the function H; however, our main
results, Theorems 2.1 and 2.2, also hold if H has finitely many jumps on every [0, T]. That
assumption requires much heavier notation in the proofs, which we omit for brevity.

For all u ∈R+, let

hj(u) := E
[
H(u − ξj)

]
and h(u) := E

[ K∑
j=1

H(u − ξj)

]
=
∑
j≥1

hj(u)P(K ≥ j). (2.2)

The second equality in h(u) is due to the independence between Ki and {ξij, j ∈N}.
Remark 2.2. By definition, hj(z) = h(z) = 0 for z< 0, and hj(0) = H(0)P(ξj = 0), h(0) =∑
j≥1

hj(0)P(K ≥ j), so hj, h may fail to be continuous at 0. Recall that we allow the random

delays to take zero values with a positive probability. Note that hj is independent of the cluster
i and h ∈D is monotone on [0,∞) under Assumption 2.3, which will be proved in Lemma 5.3.

Theorem 2.1. Under Assumptions 2.2 and 2.3, and assuming that Ān ⇒ Ā in D as n → ∞,

X̄n ⇒ X̄ in D as n → ∞, (2.3)

where the limit X̄ is a deterministic function given by

X̄(t) = mZ

∫ t

0
h(t − s)�(ds), t ≥ 0. (2.4)

We remark that the dependence among the noises {Zij}j and that among the random delays
{ξij}j do not affect the fluid limit, which only depend on the marginal distribution of ξij and the
mean of Zij.

We next state the FCLT for the diffusion-scaled process X̂n. We first introduce some
notation. Let

�ij := Zij −E[Zij], ςij(u) := H(u − ξij) − hj(u), ϑi(u) :=
Ki∑

j=1

(
hj(u) − h(u)

)
, u ∈R+.

Again, for notational convenience, we sometimes drop the index i in �ij and ςij. Define the
following quantities:

r2(t, s) =E

[ K∑
j,j′
ςj(t)ςj′(s)

]
and R2(t, s) =

∫ t∧s

0
r2(t − u, s − u)�(du),

r3(t, s) =E

[ K∑
j,j′

hj(t)hj′(s)

]
− h(t)h(s) and R3(t, s) =

∫ t∧s

0
r3(t − u, s − u)�(du),

r4(t, s) =E

[ K∑
j,j′
�j�j′H(t − ξj)H(s − ξj′)

]
and R4(t, s) =

∫ t∧s

0
r4(t − u, s − u)�(du).

(2.5)

https://doi.org/10.1017/apr.2021.16 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.16


Shot noise processes with randomly delayed cluster arrivals and dependent noises 1195

Theorem 2.2. Under Assumptions 2.1, 2.2, and 2.3,

X̂n ⇒ X̂ in (D, J1) as n → ∞, (2.6)

where the limit X̂ = mZ
(
X̂1(t) + X̂2(t) + X̂3(t)

)+ X̂4(t), a sum of four mutually independent
processes defined as follows:

X̂1(t) =
∫

(0,t]
h(t − s)Â(ds) = Â(t)h(0) −

∫
[0,t)

Â(s)h(t − ds), (2.7)

and the X̂� are continuous Gaussian processes with covariance functions R�, �= 2, 3, 4,
defined in (2.5).

Remark 2.3. If the limit of the diffusion-scaled process is a Brownian motion (BM)—that is,
Â =√

λc2
aBa where λ is the arrival rate (i.e., �(t) = λt for t ≥ 0), c2

a is a variability parameter,
and Ba is a standard BM—then

X̂1(t) = √
λca

∫ t

0
h(t − s)dBa(s), t ≥ 0.

In particular, if the arrival process A(t) is renewal with interarrival times of mean λ−1 and
variance σ 2

a , then c2
a = σ 2

a /(λ
−1)2 = λ2σ 2

a represents the squared coefficient of variation of the
interarrival times. In general, c2

a indicates the variabilities in the arrival process. With non-
stationary arrival rates, the limit can be Â(t) = caBa(�(t)), which gives

X̂1(t) = ca

∫ t

0
h(t − s)dBa(�(s)), t ≥ 0.

3. Examples

In this section, we discuss some special cases of the model, including several dependence
structures among the random delays as well as among the noises.

Assumption 3.1. The random delay times of each cluster, {ξij}j, satisfy one of the following
four conditions:

(a) The {ξij}j are i.i.d. with cumulative distribution function (CDF) G.

(b) For each cluster i, ξij =∑j
�=1 ζi� where {ζi� : � ∈N} are i.i.d. with CDF Gζ . Let G(l)

ζ be
the l-fold convolution of Gζ .

(c) For each cluster i, the sequence {ξij : j ∈N} is symmetrically correlated; that is, each
pair has a common joint distribution � whose correlation is equal to ρξ , and each ξij

has the marginal CDF G.

(d) For each cluster i, the sequence {ξij : j ∈N} is generated by a first-order discrete autore-
gressive process, referred to as a DAR(1) process. Specifically, let ξij = δi,j−1ξi,j−1 +
(1 − δi,j−1)ηij. Here {δij : j ∈N} is a sequence of i.i.d. Bernoulli random variables with
P(δij = 1) = α ∈ (0, 1), while {ηij : j ∈N}, independent of {δij : j ∈N} and ξi1 ∼ G, is a
sequence of i.i.d. random variables with CDF G. �
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We also consider the following two conditions, which are variations of (a) and (b) above:
(a′) For each cluster i, ξi1 = 0 and ξij for j ≥ 2 are i.i.d. with CDF G.

(b′) For each cluster i, ξi1 = 0 and ξij =∑j
�=2 ζi� for j ≥ 2, where {ζi� : � ∈N} are i.i.d. with

CDF Gζ . Let G(l)
ζ be the l-fold convolution of Gζ .

Notice that a special case of Assumption 3.1(c) is given by

�(u, v) = ρξG(u ∧ v) + (1 − ρξ )G(u)G(v) for all u, v ≥ 0 (3.1)

for the marginal G and correlation ρξ ∈ [0, 1] of �(u, v) (see [36]), under which

P
(
ξj ∈ du, ξj′ ∈ dv

)= ρξG(du)δ{u}(dv) + (1 − ρξ )G(du)G(dv),

and Corr(ξj, ξj′) = ρξ , where δ{u} is the Dirac measure at {u}. Moreover, under Assumption
3.1(d),

P
(
ξj ≤ u, ξj′ ≤ v

)= α|j−j′|G(u ∧ v) + (
1 − α|j−j′|)G(u)G(v), for all u, v ≥ 0.

Thus, Corr(ξj, ξj′) = α|j−j′| for all j, j′ ≥ 1; that is, the correlation between ξj and ξj′ decreases
geometrically in the distance |j − j′|. Note that under Assumption 3.1(d), the sequence {ξij : j ∈
N} satisfies the ρ-mixing and φ-mixing conditions.

We first discuss the limit X̄ under Assumption 3.1.
Under Assumption 3.1(a),

X̄(t) = mKmZ

∫ t

0

∫ t−s

0−
H(t − s − u)G(du)�(ds).

Under Assumption 3.1(a′),

X̄(t) = mZ

∫ t

0

(
H(t − s) + (mK − 1)

∫ t−s

0−
H(t − s − u)G(du)

)
�(ds).

Under Assumption 3.1(b),

X̄(t) = mZ

∞∑
k=1

pk

k∑
l=1

∫ t

0

∫ t−s

0−
H(t − s − u)G(l)

ζ (du)�(ds).

Under Assumption 3.1(b′),

X̄(t) = mZ

∫ t

0

(
H(t − s) +

∞∑
k=2

pk

k−1∑
l=1

∫ t−s

0−
H(t − s − u)G(l)

ζ (du)

)
�(ds).

We remark that in the cases (a′) and (b′), it can have an arbitrary number of arrivals (less
than the cluster size) at the event time of the cluster τ n

i . For example, if there are � entities
of the cluster without delay, assuming �≤ Ki almost surely, then similarly to the case under
Assumption 3.1(a′), we have

X̄(t) = mZ

∫ t

0

(
�H(t − s) + (mK − �)

∫ t−s

0−
H(t − s − u)G(du)

)
�(ds).
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In the extreme case where all entities of the cluster arrive at the same time as the cluster arrival
time (that is, without delay), we have

X̄(t) = mKmZ

∫ t

0
H(t − s)�(ds).

Now under Assumptions 3.1(c) and 3.1(d), we have the same formula as in the case (a); the
correlation does not affect the fluid limit, but it does affect the covariance function as we show
below.

We next give examples of the covariance functions in the various cases.

3.1. I.i.d. noises

Under Assumption 3.1(a), we have

r2(t, s) = mK

( ∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)
,

r3(t, s) = σ 2
Kh1(t)h1(s),

r4(t, s) = mKσ
2
ZE[H(t − ξ1)H(s − ξ1)] = mKσ

2
Z

∫ t∧s

0−
H(t − u)H(s − u)G(du),

where h1(t) = ∫ t
0− H(t − u)G(du). Under Assumption 3.1(a′), we have

r2(t, s) = (mK − 1)

(∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)
,

r3(t, s) = σ 2
Kh1(t)h1(s),

r4(t, s) = σ 2
Z H(t)H(s) + (mK − 1)σ 2

Z

∫ t∧s

0−
H(t − u)H(s − u)G(du).

As mentioned above in the fluid limit, we can also allow an arbitrary number of entities in the
cluster to arrive without delay. In the extreme case of all entities arriving without delay, we
have

r2(t, s) = 0, r3(t, s) = σ 2
Z H(t)H(s), and r4(t, s) = mKσ

2
Z H(t)H(s).

Under Assumption 3.1(b), we have

r2(t, s) =
∑
j≥1

∑
k≥j

pk

( ∫ t∧s

0−
H(s − u)H(t − u)G(j)

ζ (du) − hj(t)hj(s)

)

+
∑

j,j′≥1

∑
k≥j+j′

pk

(∫ t∧s

0−

∫ t−u

0−
H(s − u)H(t − u − v)G(j)

ζ (du)G(j′)
ζ (dv) − hj(s)hj+j′(t)

)

+
∑

j,j′≥1

∑
k≥j+j′

pk

(∫ t∧s

0−

∫ s−u

0−
H(t − u)H(s − u − v)G(j)

ζ (du)G(j′)
ζ (dv) − hj(t)hj+j′(s)

)
,

r3(t, s) =
∑

j,j′≥1

hj(t)hj′(s)P
(
K ≥ j ∨ j′

)− h(t)h(s),

r4(t, s) = σ 2
Z

∑
j≥1

∑
k≥j

pk

∫ t∧s

0
H(t − u)H(s − u)G(j)

ζ (du),

where hj(t) = ∫ t
0− H(t − u)G(j)

ζ (du).
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Under Assumption 3.1(b′), we have

r2(t, s) =
∑
j≥1

∑
k≥j

pk+1

( ∫ t∧s

0−
H(s − u)H(t − u)G(j)

ζ (du) − hj(s)hj(t)

)

+
∑

j,j′≥1

∑
k≥j+j′

pk+1

( ∫ t∧s

0−

∫ t−u

0−
H(s − u)H(t − u − v)

G(j)
ζ (du)G(j′)

ζ (dv) − hj(s)hj+j′(t)

)

+
∑

j,j′≥1

∑
k≥j+j′

pk+1

( ∫ t∧s

0−

∫ s−u

0−
H(t − u)H(s − u − v)

G(j)
ζ (du)G(j′)

ζ (dv) − hj(t)hj+j′(s)

)
,

r3(t, s) =
∑

j,j′≥1

hj(t)hj′(s)
(
P
(
K ≥ (j + 1) ∨ (j′ + 1)

)− P(K ≥ j + 1)P(K ≥ j′ + 1)
)
,

r4(t, s) = σ 2
Z H(t)H(s) + σ 2

Z

∑
j≥1

∑
k≥j

pk+1

∫ t∧s

0
H(t − u)H(s − u)G(j)

ζ (du).

We next consider the cases where the random delays are correlated in Parts (c) and (d) of
Assumption 3.1. The dependence affects only the function r2(t, s), while the functions r3(t, s)
and r4(t, s) are the same as in the case of Assumption 3.1(a), so we only present the formula
for r2(t, s).

Under Assumption 3.1(c), we have

r2(t, s) = mK

( ∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)

+E[K(K − 1)]
( ∫ t

0−

∫ s

0−
H(t − u)H(s − v)

(
�(du, dv) − G(du)G(dv)

))
.

If �(u, v) is approximated by �̃(u, v) defined in (3.1), we can approximate r2(t, s) by

r̃2(t, s) = (
mK(1 − ρξ ) + ρξE[K2]

)( ∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)
. (3.2)

This approximate function is linear in the correlation parameter ρξ .
Under Assumption 3.1(d), we have

E[ςj(t)ςj′(s)] = (
E
[
H(t − ξ1)H(s − ξ1)

]− h1(t)h1(s)
)
α|j−j′| for all j,j′.

Thus,

r2(t, s) =
( ∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)
E

[ K∑
j,j′
α|j−j′|

]

=
( ∫ t∧s

0−
H(t − u)H(s − u)G(du) − h1(t)h1(s)

)(mK(1 + α)

1 − α
+ 2α

(
E[αK] − 1

)
(1 − α)2

)
.
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It is clear that the function r2(t, s) is increasing (decreasing) nonlinearly in α if the quantity in
the first parenthesis is positive (negative).

3.2. Correlated noises

Assumption 3.2. For each cluster i, {Zij, j ∈N} satisfies one of the following conditions:

(a) {Zij, j ∈N} are symmetrically correlated with a common CDF F and a bivariate joint
distribution for each pair�.

(b) {Zij, j ∈N} is a DAR(1) sequence as in Assumption 3.1, with Bernoulli parameter β ∈
(0, 1) and marginal CDF F.

Note that the correlations in noises only affect the function r4(t, s). We present the formula
for it in the following cases.

Under Assumptions 3.1(a) and 3.2(a), we have

r4(t, s) = mKσ
2
Z

∫ t

0−
H(t − u)H(s − u)G(du) +E

[
K2 − K

]
Cov(Z1, Z2)h1(t)h1(s). (3.3)

Under Assumptions 3.1(a) and 3.2(b), we have

r4(t, s) = mKσ
2
Z

∫ t∧s

0−
H(t − u)H(s − u)G(du) + h1(t)h1(s)σ 2

Z

(
mK2β

1 − β
+ 2β

(
E[βK] − 1

)
(1 − β)2

)
.

(3.4)

Under Assumptions 3.1(c) and 3.2(a), we have

r4(t, s) = mKσ
2
Z

∫ t∧s

0−
H(t − u)H(s − u)G(du)

+E
[
K2 − K

]
Cov(Z1, Z2)

∫ t

0−

∫ s

0−
H(t − u)H(s − v)�(du, dv).

Similarly to (3.2), under Assumption 3.1(c), let ρZ be the correlation between Zj and Zj′ , and
let � be approximated by the following �̃:

�̃(z1, z2) = ρZF(z1 ∧ z2) − (1 − ρZ)F(z1)F(z2).

We can approximate r4 by r̃4 given by

r̃4(t, s) =
(

mK + ρξρZE[K2 − K]
)
σ 2

Z

∫ t∧s

0−
H(t − u)H(s − u)G(du)

+ (1 − ρξ )ρZE[K2 − K]σ 2
Z h1(t)h1(s).

(3.5)

It is clear that when ρξ = 0, this formula reduces to (3.3) under Assumptions 3.1(a) and 3.2(a).
Under Assumptions 3.1(d) and 3.2(b), we have

r4(t, s) = σ 2
Z

∫ t∧s

0−
H(t − u)H(s − u)G(du)

(
mK(1 + αβ)

1 − αβ
+ 2αβ

(
E[(αβ)K − 1]

)
(1 − αβ)2

)

+ σ 2
Z h1(t)h1(s)

(
2mKβ(1 − α)

(1 − β)(1 − αβ)
+ 2β

(
E[βK] − 1

)
(1 − β)2 − 2αβ

(
E[(αβ)K] − 1

)
(1 − αβ)2

)
.
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It is also clear that when α = 0, this formula reduces to (3.4) under Assumptions 3.1(a) and
3.2(b).

Remark 3.1. The process X in (1.1) can be used to model the total claims in insurance, where
A(t) is the arrival process of cluster claims, the Ki are the cluster sizes, the variables {Zij}j are
the claim sizes for each cluster, and {ξij}j are the delays for the claims to arrive in each clus-
ter. See, for example, the book by Daley and Vere-Jones [4] and the recent work in [1] and
references therein. When the arrival process A is Poisson, under the i.i.d. conditions on the
claim sizes and delays, the distribution of X can be characterized using the probability gen-
erating or characteristic functionals [4, 31]. In [1, 32], central limit theorems with Gaussian
and infinite-variance stable limits are proved and used to approximate the total claim distri-
butions as t → ∞. Our results provide distributional approximations for the total claim size
at each time t when the arrival rate of cluster claims is large; these approximations are valid
for any general non-stationary arrival processes, as well as for various scenarios of corre-
lated claims and delays discussed above. For instance, given that the arrival process results
in a BM limit as in Remark 2.3, the total claim X(t) at each time t can be approximated by
a Gaussian process with mean X̄(t) as in (2.4) and covariance functions

∑4
i=1 ri(t, s), where

r1(t, s) = c2
a

∫ t∧s
0 h(t − u)h(s − u)d�(u) and r2, r3, r4 are given as above in the various scenar-

ios. Then one can approximate the corresponding ruin probability (the first passage time or
hitting time of the total claim) by exploiting the computation of the hitting times for Gaussian
processes (see, e.g., [5]).

4. Infinite-server queues with cluster arrivals and random delays

We consider infinite-server queues with batch/cluster arrivals where the arrivals in each
cluster may experience random delays. Let A(t) be the arrival process of batches/clusters,
and let Ki be the batch/cluster size of the cluster i. For each cluster i, ξij, j = 1, . . . ,Ki, are
the random delays and Zij, j = 1, . . . ,Ki, are the corresponding service times. Note that in
Assumption 2.2, the noises can take any real values, but in the queueing setting, the service
times must be positive. Let X(t) be the number of customers in service at time t. Then it has
the representation in (1.2), that is,

Xn(t) =
An(t)∑
i=1

Ki∑
j=1

1(τ n
i + ξij ≤ t< τ n

i + ξij + Zij).

We make the following regularity conditions instead of Assumption 2.3, and impose the
same conditions in Assumptions 2.1 and 2.2.

Assumption 4.1 For every fixed T > 0, there exists γ > 1
4 such that

sup
0≤s<t<T

(s,t]∩L1=∅
sup

j

P
(
ξj ∈ (s, t]

)
(t − s)2γ

<∞ and sup
0≤s<r<t<T
(s,t]∩L2=∅

sup
j,j′

P
(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)
(t − s)4γ

<∞,

where L1 and L2 are the sets with no accumulation points on R+ as in Assumption 2.3. In
addition,

sup
0≤s<t≤T

sup
j

P(Zj ∈ (s, t])

(t − s)2γ
<∞,
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and for some L3 ⊂R+ with no accumulation points,

sup
0≤s<r<t≤T
(s,t]∩L3=∅

sup
j,j′

P
(
Zj + ξj ∈ (s, r], Zj′ + ξj′ ∈ (r, t]

)
(t − s)4γ <∞. (4.1)

�
Remark 4.1. In addition to the conditions on the ξj in Assumption 2.3, we further assume that
the marginal distributions of the Zj are locally Hölder continuous (and thus, the joint distribu-
tion of (Zj, Zj′) is continuous). The condition in (4.1) is the regularity condition imposed upon
the joint distributions of (Zj + ξj, Zj′ + ξj′ ) concerning P

(
Zj + ξj ∈ (s, r], Zj′ + ξj′ ∈ (r, t]

)
over

the intervals (s, r] and (r, t] for s< r< t, which is applied in (6.1) for the proof of tightness. If
the joint distribution (Zj, Zj′) is itself locally Hölder continuous, that is,

sup
0≤s<t≤T
0≤v<u≤T

sup
j �=j′

P
(
Zj ∈ (s, t], Zj′ ∈ (v, u]

)
(t − s)2γ (u − v)2γ <∞,

then L3 = ∅. Note that the joint distributions of (Zj, Zj′) and (Zj + ξj, Zj′ + ξj′ ) are continuous
on R2+. However, the second and third conditions do not imply the condition in (4.1). (It is
believable that the results in this section also hold for Zj having a discontinuous distribution
function, as for H in the cluster model, but proving this would require additional notation,
which we omit for brevity.)

We define for u ≥ 0,

H̃j(u) = P(Zj > u), h̃j(u) = P
(
0 ≤ u − ξj < Zj

)
, h̃(u) =E

[ K∑
j=1

h̃j(u)

]
, (4.2)

and H̃j(u) = h̃j(u) = h̃(u) = 0 for u< 0.

Theorem 4.1. Under Assumptions 2.2 and 4.1, and assuming that Ān ⇒ Ā in D as n → ∞,
(2.3) holds with the limit X̄(t) using h̃(u) in (4.2).

We next state the FCLT for the diffusion-scaled process X̂n. We first introduce some
notation. For u ∈R, let

ς̃ij(u) := H̃j(u − ξij) − h̃j(u), ϑ̃i(u) :=
Ki∑

j=1

h̃j(u) − h̃(u),

�̃ij(u) := 1
(
0 ≤ u − ξij < Zij

)− H̃j(u − ξij).

Again, for notational convenience, we occasionally drop the index i in �̃ij, ς̃ij, and ϑ̃i. Define
the following quantities:

r2(t, s) =E

[ K∑
j,j′
ς̃j(t)ς̃j′(s)

]
and R2(t, s) =

∫ t∧s

0
r2(t − u, s − u)�(du),

r3(t, s) =E

[ K∑
j,j′

h̃j(t)h̃j′(s)

]
− h̃(t)h̃(s) and R3(t, s) =

∫ t∧s

0
r3(t − u, s − u)�(du),

r4(t, s) =E

[ K∑
j,j′
�̃j(t)�̃j′ (s)

]
and R4(t, s) =

∫ t∧s

0
r4(t − u, s − u)�(du). (4.3)
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Theorem 4.2. Under Assumptions 2.1, 2.2, and 4.1, the convergence in (2.6) holds with the
limit X̂ =∑4

�=1 X̂�, a sum of mutually independent processes, where X̂1(t) is the same as in
Theorem 2.2, and X̂�, �= 2, 3, 4, are continuous Gaussian processes with covariance functions
R�, �= 2, 3, 4, defined in (4.3).

4.1. Examples

In this section we give explicit expressions for the fluid limit and the functions r� in the
covariance functions, under Assumptions 3.1 and 3.2. Note that except for the renewal random
delays in Assumption 3.1(b), all the combinations of the cases of random delays and service
times can be regarded as a tandem infinite-server queue with two service stations, where the
random delays {ξij}j are the service times in the first station and the service times {Zij}j are those
for the second station. These are interesting examples in themselves, since tandem G/G/∞ −
G/∞ queues with correlated service times in each service station have not been studied in the
literature.

Let Fc = 1 − F. With i.i.d. random delays, under Assumption 3.1(a),

X̄(t) = mK

∫ t

0

( ∫ t−s

0−
Fc(t − s − u)G(du)

)
�(ds),

and under Assumption 3.1(a′),

X̄(t) =
∫ t

0

(
Fc(t − s) + (mK − 1)

∫ t−s

0−
Fc(t − s − u)G(du)

)
�(ds).

With renewal random delays, under Assumption 3.1(b),

X̄(t) =
∫ t

0

∞∑
k=1

pk

k∑
l=1

∫ t−s

0−
Fc(t − s − u)G(l)(du)�(ds),

and under Assumption 3.1(b′),

X̄(t) =
∫ t

0

(
Fc(t − s) +

∞∑
k=2

pk

k−1∑
l=1

∫ t−s

0−
Fc(t − s − u)G(l)(du)

)
�(ds).

Again, under Assumptions 3.1(c) and 3.1(d), the fluid limit X̄ is the same as in the case (a).
The dependence among random delays does not affect the fluid limit.

We next give some examples of the covariance functions under Assumptions 3.1 and 3.2.

4.1.1. I.i.d. service times. Under Assumption 3.1(a), we have

r2(t, s) = mK

( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)
r3(t, s) = σ 2

Kh̃1(t)h̃1(s)

r4(t, s) = mK

∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du),

where

h̃1(u) =
∫ u

0−
Fc(u − v)G(dv). (4.4)
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Under Assumption 3.1(a′), we have the same r3(t, s) as above, and

r2(t, s) = (mK − 1)
( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)
,

r4(t, s) = (
Fc(t ∨ s) − Fc(t)Fc(s)

)+ (mK − 1)
∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du).

Under Assumption 3.1(b), we have

r2(t, s) =
∑
l≥1

∑
k≥l

pk

( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(l)(du) − h̃l(t)h̃l(s)

)

+
∑

l,l′≥1

∑
k≥l+l′

pk

( ∫ t∧s

0−

∫ s

0−
Fc(t − u)Fc(s − u − v)G(l)(du)G(l′)(dv) − h̃l(t)h̃l+l′(s)

)

+
∑

l,l′≥1

∑
k≥l+l′

pk

( ∫ t∧s

0−

∫ t

0−
Fc(s − u)Fc(t − u − v)G(l)(du)G(l′)(dv) − h̃l(s)h̃l+l′(t)

)
,

r3(t, s) =
∑

l,l′≥1

h̃l(t)h̃l′(s)
(
P(K ≥ l ∨ l′) − P(K ≥ l)P(K ≥ l′)

)
,

r4(t, s) =
∑
l≥1

∑
k≥l

pk

( ∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(l)(du)

)
,

where h̃l(u) = ∫ u
0− Fc(u − v)G(l)(dv).

Under Assumptions 3.1(c) and 3.1(d), the correlations in the random delays affect only
the function r2(t, s), while the functions r3(t, s) and r4(t, s) remain the same as those in the
i.i.d. case in Assumption 3.1(a). So we state the function r2(t, s) in these two scenarios. Under
Assumption 3.1(c), we have

r2(t, s) = mK

( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)

+E[K2 − K]
( ∫ t

0−

∫ s

0−
Fc(t − u)Fc(s − v)

(
�(du, dv) − G(du)G(dv)

))
,

where h̃1(u) is defined in (4.4). If �(u, v) = ρξG(u ∧ v) + (1 − ρξ )G(u)G(v), then

r2(t, s) = (
ρξE[K2] +E[K](1 − ρξ )

)( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)
.

Observe that the function r2(t, s) is approximately linear in the correlation parameter ρξ .
Under Assumption 3.1(d), we have

r2(t, s) =
( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)(
mK(1 + α)

1 − α
+ 2α

(
E[αK] − 1

)
(1 − α)2

)
,

where h̃1(u) is defined in (4.4). Note that the function r2(t, s) is increasing (decreasing)
nonlinearly in the correlation parameter α if the quantity in the first parenthesis is positive
(negative).
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4.1.2. Correlated service times. We consider the scenarios in Assumptions 3.1(c) and 3.2(a),
and in Assumptions 3.1(d) and 3.2(b). (The formulas in the scenarios in Assumptions 3.1(a)
and 3.2(a) and those in Assumptions 3.1(a) and 3.2(b) can respectively be obtained from these
as seen in Section 3.2.) Note that in both scenarios, we have r3(t, s) = σ 2

Kh̃1(t)h̃1(s), which is
not affected by the correlations in random delays and in service times. So we focus on the
functions r2(t, s) and r4(t, s).

Under Assumptions 3.1(c) and 3.2(a), we have

r2(t, s) = mK

( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)

+E[K2 − K]

( ∫ t

0−

∫ s

0−
Fc(t − u)Fc(s − v)

(
�(du, dv) − G(du)G(dv)

))
,

r4(t, s) = mK

( ∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du)

)

+E[K2 − K]

( ∫ t

0−

∫ s

0−
(
�c(t − u, s − v) − Fc(t − u)Fc(s − u)

)
�(du, dv)

)
,

where h̃1(u) is defined in (4.4) and

�c(u, v) := P
(
Z1 > u, Z2 > v

)
, for u, v ≥ 0. (4.5)

If we further assume relations similar to (3.5) and let ρZ be the correlation between Zj and Zj′ ,
then we can approximate r2 and r4 by r̃2 and r̃4, respectively:

r̃2(t, s) = (
ρξE

[
K2]+E[K](1 − ρξ )

)( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)
,

r̃4(t, s) = (
ρξρZE

[
K2]+E[K](1 − ρξρZ)

)( ∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du)

)

+ ρξ
(
1 − ρZ)E

[
K2 − K

]( ∫ t

0−

∫ s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du)G(dv)

)
.

Note that the function r2(t, s) is linear in ρξ , only affected by the correlations in the random
delays, and r4(t, s) is linear in both ρξ and ρZ . The formulas for r2 and r4 under Assumptions
3.1(a) and 3.2(a) are obtained from r̃2 and r̃4, respectively, by setting ρξ = 0.

Under Assumptions 3.1(d) and 3.2(b), we have

r2(t, s) =
( ∫ t∧s

0−
Fc(t − u)Fc(s − u)G(du) − h̃1(t)h̃1(s)

)(mK(1 + α)

1 − α
+ 2α

(
E[αK ] − 1

)
(1 − α)2

)
,

r4(t, s) =
( ∫ t∧s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du)

)

×
(

mK(1 + αβ)

1 − αβ
+ 2αβ

(
E[(αβ)K] − 1

)
(1 − αβ)2

)

+
( ∫ t

0−

∫ s

0−
(
Fc(t ∨ s − u) − Fc(t − u)Fc(s − u)

)
G(du)G(dv)

)

×
(

2mKβ(1 − α)

(1 − β)(1 − αβ)
+ 2β

(
E[βK] − 1

)
(1 − β)2 − 2αβ

(
E[(αβ)K] − 1

)
(1 − αβ)2

)
,
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where h̃1(u) is defined in (4.4). Observe that r2(t, s) is increasing (decreasing) nonlinearly
in α if the quantity in the first parenthesis is positive (negative), and is only affected by the
correlations in the random delays. On the other hand, the function r4(t, s) is not necessarily
monotone in either α or β, as indicated in the second term. The formulas under Assumptions
3.1(a) and 3.2(b) can be obtained from these by setting α = 0.

4.1.3. Steady state in the stationary case. We consider the stationary case with �(t) = λt for
t ≥ 0 and the arrival limit Â(t) =√

λc2
aBa(t) for ca > 0 and a standard BM Ba. In this case

we obtain the equilibrium point of the fluid limit X̄(t) and the steady-state distribution of the
stochastic limit X̂(t), which is a Gaussian process. We state the steady-state limit X̄(∞) =
limt→∞ X̄(t) and the variance Var(X̂(∞)) of the limiting Gaussian random variable X̂(∞) of
X̂(t) as t → ∞.

Recall that for infinite-server queues with batch arrivals and i.i.d. service times, it is shown
in [25] that

X̄(∞) = λmK

∫ ∞

0
Fc(s)ds = λmKmZ

and

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

) ∫ ∞

0

(
Fc(u)

)2
du, (4.6)

where c2
K = σ 2

K/m
2
K is the squared coefficient of variation of K.

For the steady state X̄(∞) of our model, we still have

X̄(∞) = λ

∫ ∞

0

∞∑
j=1

P(K ≥ j)P(ξj ≤ s< ξj + Zj) ds = λmKmZ,

if E[Zj] ≡ mZ for all j ∈N, where the second equality follows from Fubini’s theorem. We next
provide the steady-state variance formulas in various cases, which are new to the literature.

I.i.d. service times. For notational convenience, let

χ1 =
∫ ∞

0

(
Fc(u)

)2
du and χ2 =

∫ ∞

0

( ∫ u

0−
Fc(u − v)G(dv)

)2
du.

Under Assumption 3.1(a), we obtain

Var(X̂(∞)) = λmKmZ + λmK
(
mK

(
c2

a + c2
K

)− 1
)
χ2. (4.7)

This result is a direct generalization of the case of i.i.d. service times without random delays,
comparing (4.7) with (4.6). As we suggested earlier, this case can be regarded as a tandem
G/G/∞ − G/∞ queue with i.i.d. service times at both service stations. When counting the
number of customers in the second station, we count those that have completed service at the
first station and are still in service at the second station. Under Assumption 3.1(a′), we obtain

Var(X̂(∞)) = λmKmZ + λ(c2
a − 1)χ1 + λ(mK − 1)

(
(mK − 1)

(
c2

a + c2
K−1

)− 1
)
χ2

+ 2λc2
a(mK − 1)

∫ ∞

0
Fc(s)

∫ s

0−
Fc(s − u)G(du)ds.

Note that c2
K−1 = Var(K − 1)/(mK − 1)2 = σ 2

K/(mK − 1)2.
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Under Assumption 3.1(b), we obtain

Var(X̂(∞)) = λmKmZ + 2λ
∑

j,j′≥1

P(K ≥ j + j′)
∫ ∞

0−
G(j′)(dv)

∫ ∞

0
Fc(s)Fc(s + v)ds

+ λ(c2
a − 1)

∫ ∞

0

(∑
j≥1

P(K ≥ j)
∫ s

0−
G(j)(du)Fc(s − u)

)2
ds.

Under Assumption 3.1(c), we obtain

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

)
χ2

+ λmK
(
mK(1 + c2

K) − 1
) ∫ ∞

0

∫ s

0−

∫ s

0−
Fc(s − u)Fc(s − v)

(
�(du, dv) − G(du)G(dv)

)
ds.

Note that in the special case of i.i.d. random delays, �(du, dv) = G(du)G(dv); thus the identity
above is consistent with (4.7). Also, if �(u, v) = ρξG(u ∧ v) + (1 − ρξ )G(u)G(v), then

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

)
χ2 + λρξmK

(
mK(1 + c2

K) − 1
)(
χ1 − χ2

)
.

It is clear that when ρξ = 0, this reduces to the formula in (4.7).
Under Assumption 3.1(d), we obtain

Var(X̂(∞)) = λmKmZ + λ
(
mK(c2

a + c2
K) − 1

)
χ2 + λ

(
2mKα

1 − α
+ 2α

(
E[αK] − 1

)
(1 − α)2

)(
χ1 − χ2

)
.

Observe that if χ1 − χ2 > 0, then Var(X̂(∞)) is increasing in α nonlinearly.

Correlated service times. Let

χ3 :=
∫ ∞

0−
G(du)

∫ ∞

0−
G(dv)

∫ ∞

u∨v
Fc(s − u ∧ v)ds.

Under Assumptions 3.1(c) and 3.2(a), with �c defined as in (4.5), we obtain

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

)
χ2

+ λmK
(
mK(1 + c2

K) − 1
) ∫ ∞

0

∫ s

0−

∫ s

0−
(
�c(s − u, s − v) − Fc(s − u)Fc(s − v)

)
�(du, dv)ds

+ λmK
(
mK(1 + c2

K) − 1
) ∫ ∞

0

∫ s

0−

∫ s

0−
Fc(s − u)Fc(s − v)

(
�(du, dv) − G(du)G(dv)

)
ds.

(4.8)

If �(u, v) = ρξG(u ∧ v) + (1 − ρξ )G(u)G(v) and �(u, v) = ρZF(u ∧ v) + (1 − ρZ)F(u)F(v),
then

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

)
χ2

+ λρξρZmK
(
mK(1 + c2

K) − 1
)
(mZ − χ2)

+ λρξ (1 − ρZ)mK
(
mK(1 + c2

K) − 1
)
(χ1 − χ2)

+ λ(1 − ρξ )ρZmK
(
mK(1 + c2

K) − 1
)
(χ3 − χ2).

(4.9)
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Under Assumptions 3.1(d) and 3.2(b), we obtain

Var(X̂(∞)) = λmKmZ + λmK
(
mK(c2

a + c2
K) − 1

)
χ2

+ λ

(
mK2αβ

1 − αβ
+ 2αβ(E[(αβ)K − 1])

(1 − αβ)2

)(
mZ − χ2

)

+ λ

(
mK2α(1 − β)

(1 − α)(1 − αβ)
+ 2α(E[αK] − 1)

(1 − α)2 − 2αβ(E[(αβ)K − 1])

(1 − αβ)2

)(
χ1 − χ2

)
+ λ

(
mK2β(1 − α)

(1 − β)(1 − αβ)
+ 2β(E[βK] − 1)

(1 − β)2 − 2αβ(E[(αβ)K − 1])

(1 − αβ)2

)(
χ3 − χ2

)
.

(4.10)

Observe that the first two terms in these two scenarios in (4.8)–(4.10) are the same as the
steady-state variance in (4.7), and the other terms capture the effect of correlations among the
random delays, as well as among service times.

5. Proof of Theorem 2.2

This section is dedicated to the proof of Theorem 2.2. Since Theorem 2.1 follows directly
from Theorem 2.2, we omit its proof for brevity.

We first provide a decomposition of the process X̂n. Recall hj(u) and h(u) defined in (2.2).
We have

X̂n(t) =E[Z1]
(
X̂n

1(t) + X̂n
2(t) + X̂n

3(t)
)+ X̂n

4(t), (5.1)

where for every t> 0, the subprocesses are given by

X̂n
1(t) := √

n

(
1

n

An(t)∑
i=1

h(t − τ n
i ) −

∫ t

0
h(t − s)�(ds)

)
=
∫

(0,t]
h(t − s)Ân(ds)

= Ân(t)h(0) −
∫

[0,t)
Ân(s)h(t − ds) = Ân(t)h(0) +

∫
(0,t]

Ân(t − s)h(ds),

where the integration by parts in (1.3) and the fact that Ân(0) = 0 are applied, and

X̂n
2(t) := 1√

n

An(t)∑
i=1

Ki∑
j=1

(
H(t − τ n

i − ξij) − hj(t − τ n
i )
)

= 1√
n

An(t)∑
i=1

Ki∑
j=1

ςij(t − τ n
i ),

X̂n
3(t) := 1√

n

An(t)∑
j=1

( Ki∑
j=1

hj(t − τ n
i ) − h(t − τ n

i )
)

= 1√
n

An(t)∑
i=1

ϑi(t − τ n
i ),

X̂n
4(t) := 1√

n

An(t)∑
i=1

Ki∑
j=1

H(t − τ n
i − ξij)

(
Zij −E[Z]

)= 1√
n

An(t)∑
i=1

Ki∑
j=1

H(t − τ n
i − ξij)�ij.
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In the proofs below, we further assume without loss of generality that E[Z] = 1, to simplify
our notation. Moreover, by Assumption 2.3, for fixed T > 0, there exists c0 > 1 such that for
any s< t ≤ T with small t − s,

(
H(t) − H(s)

)2 ≤ c0

(
(t − s)2γ + 1

(
0 ∈ (s, t]

))
,

P
(
ξj ∈ (s, t]

)≤ c0

(
(t − s)2γ +

∞∑
k=0

1
(
qk ∈ (s, t]

))
,

P
(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)≤ c0

(
(t − s)4γ + (t − s)2γ

∞∑
k=0

1
(
qk ∈ (s, t]

))
,

(5.2)

where {qk, k ≥ 0} =L=L1 ∪L2 ∪ {0} with q0 = 0, and in the last inequality the indicators
are equal to 0 except for at most one term. For the last inequality above, we only consider the
nontrivial case where j �= j′, r ≥ 0, and s< r< t ≤ T with t − s small enough. Then there is at
most one possible point, say q, in (s, t] ∩L, and q = q0 = 0 if s< 0. We thus have, case by
case,

P
(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)
=1

(
s< 0

)
1
(
(0, t] ∩L= ∅)(P(ξj ∈ (0, r], ξj′ ∈ (r, t]

)+ P
(
ξj = 0, ξj′ ∈ (r, t]

))
+ 1

(
s ≥ 0

)
P
(
ξj ∈ (s, r], ξj′ ∈ (r, t]

)
×
(

1
(
(s, t] ∩L= ∅)+ 1

(
q ∈ (s, r]

)
1
(
(r, t] ∩L= ∅)+ 1

(
(s, r] ∩L= ∅)1(q ∈ (r, t]

))
≤c0(t − s)4γ + c0(t − r)2γ 1

(
q ∈ (s, r]

)+ c0(r − s)2γ 1
(
q ∈ (r, t]

)
≤c0(t − s)4γ + c0(t − s)2γ 1

(
q ∈ (s, t]

)
.

In the following proofs, we fix the constant c0 and {qk} in (5.2).

Lemma 5.1. Under Assumption 2.3, for all v<w< u ≤ T with small enough u − v, we have

E
[
H(u − ξj) − H(v − ξj)

]2 ≤ 2c2
0

(
(u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
, (5.3)

E
[
(H(u − ξj) − H(w − ξj))

2(H(w − ξj′) − H(v − ξj′ ))
2]

≤ 4c3
0

(
(u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

))
,

(5.4)

where c0 is the constant in (5.2).

Proof. Applying (5.2), we have

E
[
H(u − ξj) − H(v − ξj)

]2 ≤ c0

(
(u − v)2γ + P

(
ξj ∈ (v, u]

))
,

which gives (5.3) after a further application of (5.2).
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Similarly, we have from (5.2) that

E
[
(H(u − ξj) − H(w − ξj))

2(H(w − ξj′ ) − H(v − ξj′))
2]

≤ c2
0E

[(
(u − w)2γ + 1

(
ξj ∈ (w, u]

))(
(w − v)2γ + 1

(
ξj′ ∈ (v,w]

))]

≤ c2
0

(
(u − v)4γ + c0(u − w)2γ

(
(w − v)2γ +

∞∑
k=0

1
(
qk ∈ (v,w]

))

+ c0(w − v)2γ
(

(u − w)2γ +
∞∑

k=0

1
(
qk ∈ (w, u]

))

+ c0

(
(u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

)))
,

which gives (5.4). This finishes the proof. �

5.1. Convergence of X̂n
1

For the convergence of X̂n
1, we need the following lemma, which is a simplified version of

[27, Lemma 6.1], noticing that the Lebesgue–Stieltjes integral for ψg is defined on the interval
[0,t). We state it here for completeness and provide a proof in the appendix.

Lemma 5.2. Let g be a function in D with locally bounded variation. Define the mapping ψg

on D as follows:

ψg(z)(t) :=
∫

[0,t)
z(s)g(t − ds) = −

∫
(0,t]

z(t − s)g(ds) (5.5)

for z ∈D and t> 0. Then the following hold:

1. For any z ∈D, ψg(z) ∈D and ψg(z)(0) = 0.

2. If g ∈C or z ∈C and z(0) = 0, then ψg(z) ∈C.

3. If z ∈C, then ψg is continuous at z in (D, J1).

Lemma 5.3. Under Assumptions 2.2 and 2.3, the functions hj and h defined in (2.2) are
monotonic functions in D, which are piecewise Hölder continuous.

Proof. The fact that hj and h are monotonic and càdlàg follows from the corresponding
properties of H. For all s< t< T and j ∈N, we have from (5.3) that

(hj(t) − hj(s))2 ≤E
[
H(t − ξj) − H(s − ξj)

]2 ≤ 2c2
0

(
(t − s)2γ +

∞∑
k=0

1
(
qk ∈ (s, t]

))
. (5.6)

This proves the result. �
Lemma 5.4. Under Assumptions 2.1, 2.2, and 2.3, X̂n

1 ⇒ X̂1 in (D, J1) as n → ∞, where X̂1 is
the continuous process given in Theorem 2.2.

Proof. Firstly, the continuity of X̂1 is a consequence of (2.7), Lemma 5.2(ii), the continuity
of Â, and the fact that Â(0) = 0. Moreover, by definition

X̂n
1(t) = Ân(t)h(0) −

∫
[0,t)

Ân(s)h(t − ds),
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so the claim follows from Lemma 5.2(iii) and the continuous mapping theorem [3,
Theorem 2.7]. �

5.2. Convergence of X̂n
2, X̂n

3 , and X̂n
4 in D

This proof proceeds in the following steps:

Step 1: Proving the existence of the limit Gaussian process X̂k with sample paths in C (Lemma
5.5).

Step 2: Proving the convergence of finite-dimensional distributions of X̂n
k to those of X̂k

(Lemma 5.7).

Step 3: Verifying the convergence criterion with the modulus of continuity as in [3, Theorem
13.5] and completing the proof (Lemma 5.8).

Lemma 5.5. Under Assumptions 2.1, 2.2, and 2.3, there exist continuous modifications of the
Gaussian processes X̂k, k = 2, 3, 4, with mean zero and covariance functions as in (2.5).

Proof. Recalling the covariance functions (2.5) of the limit distribution X̂k, its existence
as a Gaussian process follows from the consistency condition for the Gaussian distributional
property. To prove X̂k ∈C, it is sufficient to check that each X̂k has continuous quadratic mean.

Let η(t) :=
K∑

j=1

H(t − ξj)Zj. For every v< u< T, by (5.3), we have

Var(η(u) − η(v)) ≤E

[
K

K∑
j=1

�2
j (H(u − ξj) − H(v − ξj))2

]

≤ 2c2
0E
[
K2]

E[�2]

(
(u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
.

It can be shown that

K∑
j=1

�jH(t − ξj) ∈ σ {K, ξ, Z},
K∑

j=1

ςj(t) ∈ σ {K, ξ}, and ϑ(t) ∈ σ {K},

are centered variables adapted to successively descending filtrations, where we use ξ, Z to
denote the sequence of the corresponding variables. Therefore, for 0 ≤ s< t< T,

E
[(

X̂2(t) − X̂2(s)
)2]+E

[(
X̂3(t) − X̂3(s)

)2]+E
[(

X̂4(t) − X̂4(s)
)2]

=
∫ t

0
Var

(
η(t − u) − η(s − u)

)
�(du)

≤ 2c2
0E
[
Z2]

E
[
K2]((t − s)2γ�(T) +

∞∑
k=0

(
�(t − qk) −�(s − qk)

))
.

Since � is continuous and there are only finitely many qk on [0, T], this finishes the proof. �

To prove the convergence of the finite-dimensional distributions of X̂n
k , k = 2, 3, 4, notic-

ing that the processes are essentially independent sums of centered random variables, we
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follow the idea of proving the central limit theorem under the Lindeberg condition used in
[35, Theorem.III.4.1], where we need the second moments for X̂n

k , k = 2, 3, 4. Let Fn
A(t) =

σ {An(s) : t ≥ s ≥ 0}.
Lemma 5.6. For 0< t< T, we have

E

[(
X̂n

2(t)
)2
∣∣∣Fn

A(t)
]
=
∫

(0,t]
r2(t − u, t − u)Ān(du),

E

[(
X̂n

3(t)
)2
∣∣∣Fn

A(t)
]
=
∫

(0,t]
r3(t − u, t − u)Ān(ds),

E

[(
X̂n

4(t)
)2
∣∣∣Fn

A(t)
]
=
∫

(0,t]
r4(t − u, t − u)Ān(du).

Proof. For fixed t> 0, notice that conditioning on Fn
A(t), X̂n

4(t) is a sum of independent and
centralized random variables. It is straightforward that

E
[(

X̂n
4(t))2

∣∣Fn
A(t)

]= 1

n

An(t)∑
i=1

E

[( K∑
j=1

H(ui − ξj)�j

)2]∣∣∣∣
ui=t−τ n

i

.

Thus, the formula for X̂n
4(t) follows. The conditional second moments of X̂n

2 and X̂n
3 are derived

similarly by conditioning. �
A direct application of Lemma 5.6 shows that for s, t ∈ [0, T],

E

[
X̂n

2(t)X̂n
2(s)

∣∣∣Fn
A(t)

]
=
∫

(0,t]
r2(t − u, s − u)Ān(du),

E

[
X̂n

3(t)X̂n
3(s)

∣∣∣Fn
A(t)

]
=
∫

(0,t]
r3(t − u, s − u)Ān(du),

E

[
X̂n

4(t)X̂n
4(s)

∣∣∣Fn
A(t)

]
=
∫

(0,t]
r4(t − u, s − u)Ān(du).

Lemma 5.7. Under Assumptions 2.1, 2.2, and 2.3, the finite-dimensional distributions of the
processes

(
X̂n

2, X̂n
3, X̂n

4

)
converge to those of (X̂2, X̂3, X̂4), in which X̂k, k = 2, 3, 4, are mutually

independent.

Proof. For fixed t> 0 and α, β, γ ∈R, we consider first the limit distribution of

Ŷn := αX̂n
2(t) + βX̂n

3(t) + γ X̂n
4(t) = 1√

n

An(t)∑
i=1

η̆i(s)
∣∣∣
s=t−τ n

i

,

η̆i(s) := 1√
n

(
α

Ki∑
j=1

ςij(s) + βϑi(s) + γ

Ki∑
j=1

H(s − ξij)�ij

)
,

(5.7)

where, by assumption, the η̆i(s) are independent for i with mark s, and η̆(s) = α(η(s) − h(s)),
comparing with η as defined in the proof of Lemma 5.5 if α = β = γ . Applying the continuity
theorem, it suffices to show that the characteristic function of Ŷn converges pointwise to that
of
(
αX̂2(t) + βX̂3(t) + γ X̂4(t)

)
, where X̂2, X̂3, and X̂4 are mutually independent.
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To this end, we examine the distribution of η̌(s) for s ≥ 0, making use of the following
inequalities:

∣∣eiu − (1 + iu)
∣∣≤ u2

2
,

∣∣eiu − (1 + iu − u2

2
)
∣∣≤ |u|3

6
, and

∣∣ ln (1 + v) − v
∣∣≤ |v|2,

where ln denotes the principal value of the logarithm. These are valid whenever u ∈R and v is
a complex number with |v| ≤ 1

2 . From the fact that E[η̆(s)] = 0, it follows that for every a> 0,

E

[
exp

( iz√
n
η̆(s)

)]
=E

[
exp

( iz√
n
η̆(s)

)
;|η̆(s)|> a

]
+E

[
exp

( iz√
n
η̆(s)

)
;|η̆(s)| ≤ a

]

= 1 + z2θ1

2n
E
[
η̆2(s);|η̆|> a

]− z2

2n
E
[
η̆2(s);|η̆| ≤ a

]+ z3θ2

6n3/2E
[|η̆(s)|3;|η̆| ≤ a

]
= 1 − z2

2n
E
[
η̆2(s)

]+ z2

n
Rs,

where θ1, θ2 are complex numbers with |θ1|, |θ2| ≤ 1,

|Rs| ≤E
[
η̆2(s);|η̆(s)|> a

]+ |z|a
6
√

n
E
[
η̆2(s)

]
, and

∣∣∣E[e iz√
n
η̌(s)]− 1

∣∣∣≤ z2

2n
E
[
η̌2(s)

]
.

Now, taking z ∈R such that z2
E[η̆2(s)] ≤ n, we have that for some |θ3| ≤ 1,

lnE
[

exp
( iz√

n
η̆(s)

)]
= −z2

2n
E
[
η̆2(s)

]+ z2

n
Rs + z4θ3

4n2 E
2[η̆2(s)]. (5.8)

By the same reasoning as in the proof of Lemma 5.5, we have

g(s) := E(η̆2(s)) = α2
E

[( K∑
j=1

ςj(s)
)2]+ β2

E
[
ϑ(s)2]+ γ 2

E

[( K∑
j=1

H(s − ξj)�j

)2]

= γ 2
(
E

[( K∑
j=1

H(s − ξj)Zj

)2]− h2(s)
)

+ (
α2 − γ 2)(

E

[( K∑
j=1

H(s − ξj)
)2
]
− h2(s)

)

+ (
β2 − α2 − γ 2)(

E

[( K∑
j=1

hj(s)
)2]− h2(s)

)
, (5.9)

which shows g ∈D has bounded variation. Applying the integration by parts in (1.3) and
Lemma 5.2,∫

(0,t]
g(t − u)Ān(du) = g(0)Ān(t) +

∫
[0,t)

Ān(u)g(t − du)

→ g(0)Ā(t) +
∫

[0,t)
Ā(u)g(t − du) =

∫
(0,t]

g(t − u)Ā(du)

in probability as n → ∞.
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Now, conditioning on Fn
A(t), plugging the limit above into the following, we

have

log
(
E
[

exp
(
izŶn)∣∣Fn

A(t)
])=

∫
(0,t]

logE
[

exp
( iz√

n
η̆(t − u)

)]
An(du)

= −z2

2

∫
(0,t]

g(t − u)Ān(du) + z2
∫

(0,t]
R(t − u)Ān(du) + z4

n

∫
(0,t]

θ3g2(t − u)Ān(du)

→ − z2

2

∫
(0,t]

g(t − u)�(du) = − z2

2

(
α2R2(t, t) + β2R3(t, t) + γ 2R4(t, t)

)

in probability for every z ∈R by passing n → ∞ and then a → ∞, where the boundedness in
(5.8) and the fact that sup

s∈[0,T]
E
[
η̌2(s)

]
<∞ are applied. This immediately yields the desired

limit distributions for the X̂n
k (t) at fixed t, as well as their mutual independence and their

independence with respect to X̂n
1.

The above convergence can be generalized to the joint Laplace of
(
X̂n

2, X̂n
3, X̂n

4

)
,

that is,
m∑

l=1

⎛
⎝ K∑

j=1

(
αl,jς(sl)

)+ βlϑ(sl) + γl,jH(sl − ξj)�j

⎞
⎠

for some αl,j, βl, γl,j ∈R and 0< s1 < · · ·< sm < T. Applying the same procedure will com-
plete the proof of the convergence of the finite-dimensional distributions of X̂n

k , k = 2, 3, 4, as
well as the mutual independence between the limit processes. We only remark that the second
moment of the random variable above, associated with g in (5.9), is an m-dimensional func-
tion which may fail to be a continuous function on the domain; however, we can always take
u → g(s1 − u, s2 − u, · · · , sm − u) as a càdlàg function with bounded variation, which induces
a signed measure on [0, T]. �

For the tightness of X̂n
k , k = 2, 3, 4, we obtain the following probability bound for the

increments of the prelimit processes X̂n
k , k = 2, 3, 4, where the idea for empirical processes

is applied.

Lemma 5.8. Under Assumptions 2.1, 2.2, and 2.3, for 0 ≤ s< r< t ≤ T,

max

{
P

(∣∣X̂n
2(t) − X̂n

2(r)
∣∣∧ ∣∣X̂n

2(r) − X̂n
2(s)

∣∣≥ λ∣∣∣Fn
A(t)

)
,

P

(∣∣X̂n
3(t) − X̂n

3(r)
∣∣∧ ∣∣X̂n

3(r) − X̂n
3(s)

∣∣≥ λ∣∣∣Fn
A(t)

)
,

P

(∣∣X̂n
4(t) − X̂n

4(r)
∣∣∧ ∣∣X̂n

4(r) − X̂n
4(s)

∣∣≥ λ∣∣∣Fn
A(t)

)}

≤ c
(
Ān(T) + 1

)2

λ4

(
(t − s)4γ +

( ∞∑
k=0

Ān(t − qk) −
∞∑

k=0

Ān(s − qk)

)2)

for some constant c> 0 independent of n and σ {An}.
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Proof. In the proof, for fixed 0 ≤ s< r< t ≤ T and every 1 ≤ i ≤ An(T), we always put
(ui,wi, vi) = (t − τ n

i , r − τ n
i , s − τ n

i ), which are constants less than T conditioning on An. And
we need the following expansion:

x2y2 =
(∑

k

xk

)2(∑
k

yk

)2

=
∑

i,j,l,m

xixjylym

=
∑

k

x2
ky2

k +
∑
i �=j

(
x2

i y2
j + 2xixjyiyj

)+ r(x, y), (5.10)

where r(x,y) collects those terms with at least one single subscript.
We first consider the increments of X̂n

4. For every v<w< u ≤ T, we take

x =
K∑

j=1

�j
(
H(u − ξj) − H(w − ξj)

)
and y =

K∑
j=1

�j
(
H(w − ξj) − H(v − ξj)

)
.

Applying Hölder’s inequality, we have

E
[
x2y2]≤ E

⎡
⎣K2

K∑
j,j′
�2

j �
2
j′
(
H(u − ξj) − H(w − ξj)

)2(
H(w − ξj′ ) − H(v − ξj′)

)2

⎤
⎦

≤ 4c3
0E[K4]E[�4]

(
(u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

))
, (5.11)

where (5.4) is applied in the last inequality. Similarly, one can check that

E
[
x2]≤ E

⎡
⎣K

K∑
j=1

�2
j

(
H(u − ξj) − H(w − ξj)

)2

⎤
⎦

≤ 2c2
0E
[
K2]

E
[
�2]((u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
, (5.12)

by (5.3), and the same inequality also holds for E
[
y2
]

and E[|xy|].
Then, for 1 ≤ i ≤ An(T), we take

xi =
Ki∑

j=1

�ij1
(
ξij ∈ (wi, ui]

)
and yi =

Ki∑
j=1

�ij1
(
ξij ∈ (vi,wi]

)
.

By the conditional independence for i and centralization, we have from the last identity in
(5.10) that

E

[(
X̂n

4(t) − X̂n
4(r)

)2(
X̂n

4(r) − X̂n
4(s)

)2
∣∣∣Fn

A(T)
]

= 1

n2

An(t)∑
i=1

E
[
x2

i y2
i

∣∣τ n
i

]+ 1

n2

An(t)∑
i �=i′

(
E
[
x2

i

∣∣τ n
i

]
E
[
y2

i′
∣∣τ n

i′
]+ 2E

[
xiyi

∣∣τ n
i

]
E
[
xi′yi′

∣∣τ n
i′
])

≤ 1

n2

An(t)∑
i=1

E
[
x2

i y2
i

∣∣τ n
i

]+ 1

n2

( An(t)∑
i=1

E
[
x2

i

∣∣τ n
i

])( An(t)∑
i=1

E
[
y2

i

∣∣τ n
i

])+ 2

n2

( An(t)∑
i=1

E
[
xiyi

∣∣τ n
i

])2

.
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Plugging (5.11) and (5.12) into the inequality above, and noticing that ui − vi ≡ (t − s) for
every i ∈N and that

1
(
qk ∈ (vi, ui]

)= 1
(
τ n

i ∈ (s − qk, t − qk)
)

for all k ≥ 0, we have almost surely

RHS ≤ 4c3
0E[K4]E[�4]

(
(t − s)4γ Ān(T) + (t − s)2γ

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))

+ 12c4
0E

2[K2]E2[�2]

(
(t − s)2γ Ān(T) +

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))2

≤ 28c4
0E[K4]E[�4]

(
Ān(T) + 1

)2
(

(t − s)4γ +
( ∞∑

k=0

(
Ān(t − qk) − Ān(s − qk)

))2)
,

which shows the inequality for X̂n
4.

For the second moments of increment of X̂n
2, for v<w< u< T, we define

xj = H(u − ξj) − H(w − ξj) and x =
K∑

j=1

(
ςj(u) − ςj(w)

)=
K∑

j=1

(
xj −E(xj)

)
,

yj = H(w − ξj) − H(v − ξj) and y =
K∑

j=1

(
ςj(w) − ςj(v)

)=
K∑

j=1

(
yj −E(yj)

)
.

Applying (5.3), (5.4), and the fact H(z) = 0 for z< 0, it can be checked that for all j, j′ ≥ 1,

max
{
E[x2

j y2
j′ ],E[x2

j ]E[y2
j′],E

2[xj]E[y2
j′],E[x2

j ]E2[yj′],E
2[xj]E2[yj′],

E
2[xjyj′ ],

∣∣E[xj]E[xjy
2
j′]
∣∣, ∣∣E[x2

j yj′]E[yj′]
∣∣}= max

{
E[x2

j y2
j′],E[x2

j ]E[y2
j′]
}

≤ 4c4
0

(
(u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

))
.

Therefore, by applying Hölder’s inequality, we have

E
[
x2y2]≤ E

⎡
⎣K2

K∑
j,j′

(
xj −E[xj]

)2(
yj′ −E[yj′]

)2

⎤
⎦

≤ 64c4
0E
[
K4]((u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

))

and an inequality similar to (5.12),

max{E[x2], |E[xy]|,E[y2]} ≤ 2c2
0E[K2]

(
(u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
.
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For the last, applying the last identity in (5.10), we have almost surely

E

[(
X̂n

2(t) − X̂n
2(r)

)2(
X̂n

2(r) − X̂n
2(s)

)2
∣∣∣Fn

A(T)
]

≤ 64c4
0E[K4]

(
(t − s)4γ Ān(T) + (t − s)2γ

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))

+ 12c4
0E

2[K2]

(
(t − s)2γ Ān(T) +

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))2

≤ (
88c4

0E[K4]
)
E[�4]

(
Ān(T) + 1

)2
(

(t − s)4γ +
( ∞∑

k=0

(
Ān(t − qk) − Ān(s − qk)

))2)
,

which proves the inequality for X̂n
2.

For the moment of X̂n
3, we define

x =
K∑

j=1

(
hj(u) − hj(w)

)
and y =

K∑
j=1

(
hj(w) − hj(v)

)
.

Then ϑ(u) − ϑ(w) = x −E[x]. Applying (5.6), we have almost surely

x2 ≤2c2
0K2

(
(u − w)2γ +

∞∑
k=0

1
(
qk ∈ (w, u]

))
,

y2 ≤2c2
0K2

(
(w − v)2γ +

∞∑
k=0

1
(
qk ∈ (v,w]

))
,

which shows for small u − v,

E
[
(x −E[x])2(y −E[y])2]≤ 64c4

0E[K4]

(
(u − v)4γ + (u − v)2γ

∞∑
k=0

1
(
qk ∈ (v, u]

))
,

max
{
E[x −E[x]]2,E[y −E[y]]2}≤ max

{
E[x2],E[y2]

}
≤ 2c2

0E[K2]

(
(u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
,

∣∣E[(x −E[x])(y −E[y])]
∣∣≤ 2c2

0E[K2]

(
(u − v)2γ +

∞∑
k=0

1
(
qk ∈ (v, u]

))
.

Therefore, by applying (5.10), we have

E

[(
X̂n

3(t) − X̂n
3(r)

)2(
X̂n

3(r) − X̂n
3(s)

)2
∣∣∣Fn

A(T)
]

≤ 64c4
0E[K4]

(
(t − s)4γ Ān(T) + (t − s)2γ

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))

+ 12c4
0E

2[K2]

(
(t − s)2γ Ān(T) +

∞∑
k=0

(
Ān(t − qk) − Ān(s − qk)

))2

.

This proves the last inequality for X̂n
3 and completes the proof. �
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6. Proof of Theorem 4.2

Recalling H̃j, h̃j, and h̃ defined in (4.2), we decompose the process X̂n(t) as follows:

X̂n(t) = X̂n
1(t) + X̂n

2(t) + X̂n
3(t) + X̂n

4(t),

where the subprocesses are defined by

X̂n
1(t) = √

n

⎛
⎝An(t)∑

i=1

h̃(t − τ n
i )

n
−
∫ t

0
h̃(t − s)�(ds)

⎞
⎠=

∫
(0,t]

h̃(t − s)Ân(ds),

X̂n
2(t) = 1√

n

An(t)∑
i=1

Ki∑
j=1

(
H̃j(t − τ n

i − ξij) − h̃j(t − τ n
i )
)

= 1√
n

An(t)∑
i=1

Ki∑
j=1

ς̃ij(t − τ n
i ),

X̂n
3(t) = 1√

n

An(t)∑
i=1

⎛
⎝ Ki∑

j=1

h̃j(t − τ n
i ) − h̃(t − τ n

i )

⎞
⎠= 1√

n

An(t)∑
i=1

ϑ̃i(t − τ n
i ),

X̂n
4(t) = 1√

n

An(t)∑
i=1

Ki∑
j=1

(
1
(
0 ≤ t − τ n

i − ξij < Zij
)− H̃j(t − τ n

i − ξij)
)

= 1√
n

An(t)∑
i=1

Ki∑
j=1

�̃ij(t − τ n
i ).

Noticing that 1(0 ≤ u< v) = 1(u ≥ 0) − 1(u ≥ v), X̂n
4 can further be written as

X̂n
4(t) = 1√

n

An(t)∑
i=1

Ki∑
j=1

(
Fj(t − τ n

i − ξij) − 1(τ n
i + ξij + Zij ≤ t)

)
for all t ≥ 0.

The convergence of the new X̂n
1 in (D, J1) is proved by making use of integration by

parts and the continuous mapping theorem. It is true that under Assumption 4.1, h̃ ∈D has
bounded variation and plays the same role as h does for the former X̂n

1. The discussion in
Subsection 5.1 and Lemma 5.2 can be applied directly, which proves the convergence. For
the proofs for X̂n

k , k = 2, 3, 4, we follow the same procedures as stated at the beginning of
Subsection 5.2.

Step 1. The existence of continuous modifications of the new Gaussian processes X̂k follows
from their continuous quadratic mean as in Lemma 5.5.

Step 2. Since the X̂n
k are still the random sums of independent variables with marks depend-

ing on An, the idea of Lemma 5.7 can be applied. The convergence of their
finite-dimensional distributions as well as their mutual independence are proved by
examining the second moments of joint distributions of the new processes.

Step 3. The tightness properties of the families of the law of X̂n
2 and X̂n

3 are proved by exam-
ining the probability bound of their increments. It is true that H̃j ∈C[0,∞) in this
model is decreasing on [0,∞) and vanishes on ( − ∞, 0); more importantly, it is uni-
formly Hölder continuous of order γ by Assumption 4.1. Therefore, the proof for the
former X̂n

2 and X̂n
3 in the proof of Lemma 5.8 can be applied.

Step 4. The proof of the tightness for X̂n
4 is slightly different, as it is the difference of two

indicator functions and related to two variables. Here, we only give a sketch of
the proof.
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To find the bound for the second moments of the increments

E

[(
X̂n

4(t) − X̂n
4(r)

)2(
X̂n

4(r) − X̂n
4(s)

)2
]
,

for every 0 ≤ s< r< t ≤ T, we define, for v<w< u ≤ T,

xj =
(
Fj(u − ξj) − Fj(w − ξj)

)− 1
(
ξj + Zj ∈ (w, u]

)
,

yj =
(
Fj(w − ξj) − Fj(v − ξj)

)− 1
(
ξj + Zj ∈ (v,w]

)
,

where (v,w,u) represents (s − τ n
i , r − τ n

i , t − τ n
i ), which are constants conditioning on Fn

A(t)
and possibly negative. By the boundedness of the variables, it is not hard to see that

E
[
x2

j

]≤ P
(
ξj + Zj ∈ (w, u]

)=
∫ u

0−
P(ξj ∈ dz)P

(
Zj ∈ (w − z, u − z]

)≤ c0(u − w)2γ ,

E
[
y2

j

]≤ P
(
ξj + Zj ∈ (v,w]

)≤ c0(w − v)2γ ,

from the Hölder continuity of Z under Assumption 4.1. Moreover,

x2
j ≤ 1(ξj + Zj ∈ (w, u]) + (

Fj(u − ξj) − Fj(w − ξj)
)2 ≤ 1(ξj + Zj ∈ (w, u]) + c0(u − w)2γ ,

y2
j ≤ 1(ξj + Zj ∈ (v,w]) + (

Fj(w − ξj) − Fj(v − ξj)
)2 ≤ 1(ξj + Zj ∈ (w, u]) + c0(u − w)2γ .

Therefore, we have from (4.1) in Assumption 4.1, for small u − v,

E
[
x2

j y2
j′
]≤ 3c2

0(u − v)4γ + P
(
ξj + Zj ∈ (w, u], ξj′ + Zj′ ∈ (v,w]

)
≤ 4c2

0(u − v)4γ + c0(u − v)2γ
∞∑

k=0

1
(
qk ∈ (v, u])

)
.

(6.1)

Applying the Hölder inequality and (5.10), similarly to the previous discussion, we have

E

[(
X̂n

4(t) − X̂n
4(r)

)2(
X̂n

4(r) − X̂n
4(s)

)2
∣∣∣Fn

A(T)
]

≤ cE[K4]
(
Ān(T) + 1

)2
(

(t − s)4γ +
( ∞∑

k=0

(
Ān(t − qk) − Ān(s − qk)

))2)

for some constant c> 0, which proves the tightness. This completes the proof.

Appendix A. Proof of Lemma 5.2

For completeness, we provide a proof of Lemma 5.2.

Proof of Lemma 5.2. Since every function of bounded variation can be expressed as the
difference of two increasing functions, it is sufficient to prove the result for the case in which
g is a decreasing function. Moreover, since the integral depends only on the value of g on
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(0,∞), we further assume without loss of generality that g(z) = g(0) for z ≤ 0. Then g(t − ds)
is a positive measure on R induced by the càglàd increasing function s → g(t − s), and∫

[a,b)
g(t − ds) = g(t − b) − g(t − a)

for all b> a.
For any ε > 0, by the separability of (D, J1), z is approximated by a simple function such

that
f (t) =

∑
i

f (ri)1
(
t ∈ [ri, ri+1)

)
and ||z − f ||∞ < ε,

where || · ||∞ represents the uniform norm on [0, T]. For any T > t> s ≥ 0, we have∣∣ψg(z)(t) −ψg(z)(s)
∣∣≤ 2||ψg(z) −ψg(f )||∞ + ∣∣ψg(f )(t) −ψg(f )(s)

∣∣
≤ 2ε(g(0) − g(t)) + ∣∣ψg(f )(t) −ψg(f )(s)

∣∣.
On the other hand, by the definition of f ,

ψg(f )(t) −ψg(f )(s) =
∫

[0,s)
f (r)

(
g(t − dr) − g(s − dr)

)+
∫

[s,t)
f (r)g(t − dr)

=
∑

i

f (ri)
((

g(t − ri+1) − g(s − ri+1)
)− (

g(t − ri) − g(s − ri)
))

+ θ · ||f ||∞
(
g(0) − g(t − s)

)
,

where θ is a number with |θ | ≤ 1 and ||f ||∞ = supu∈[0,T] |f (u)|.
For (i) and (ii), by the right-continuity of g, let t ↓ s = s0 ≥ 0 and then ε ↓ 0+; this proves

the right-continuity of ψg(z) at s0. Moreover, let t, s ↑ s0 > 0 for some s0 > 0 with t − s → 0+
and then ε ↓ 0+; from the left limit of g this also proves the existence of a left limit of ψg(z) at
s0. And ψg(z)(0) = 0 by definition. This also proves the continuity of ψg(z) if g is continuous
at s> 0. On the other hand, if z ∈C and z(0) = 0, by the second identity in the definition of ψg

in (5.5),

ψg(z)(s) −ψg(z)(t) =
∫

(0,s]

(
z(t − u) − z(s − u)

)
g(du) +

∫
(s,t]

z(t − u)g(du).

The continuity follows from the uniform continuity of z on [0, T] and the right-continuity of g.
For (iii), let zn → z in (D, J1); since z ∈C we have ||zn − z||∞ → 0. It suffices to prove that

||ψg(zn) −ψg(z)||∞ → 0 as n → ∞. By the monotonicity of g on [0, T], we have

||ψg(zn) −ψg(z)||∞ ≤ ||zn − z||∞
(
g(0) − g(T)

)
,

which converges to zero as n → ∞. �
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