Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2006), 20, 297-311. Printed in the USA.

Copyright © 2006 Cambridge University Press 0890-0604/06 $16.00
DOI: 10.1017/S0890060406060227

Partially defined constraints in constraint-based design

ARNAUD LALLOUET anp ANDREI LEGTCHENKO

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, Orléans, France

(RECEIVED October 17, 2005; AccepTED July 6, 2006)

Abstract

In constraint-based design, components are modeled by variables describing their properties and subject to physical or
mechanical constraints. However, some other constraints are difficult to represent, like comfort or user satisfaction.
Partially defined constraints can be used to model the incomplete knowledge of a concept or a relation. Instead of only
computing with the known part of the constraint, we propose to complete its definition by using machine-learning
techniques. Because constraints are actively used during solving for pruning domains, building a classifier for instances
is not enough: we need a solver able to reduce variable domains. Our technique is composed of two steps: first we learn
a classifier for the constraint’s projections and then we transform the classifier into a propagator. We show that our
technique not only has good learning performances but also yields a very efficient solver for the learned constraint.

Keywords: Computer-Aided Design; Constraint Programming; Machine Learning

1. INTRODUCTION

The success of constraint programming takes its roots in its
unique combination of modeling facilities and solving effi-
ciency. However, the use of constraint programming is often
limited by the knowledge of the constraints that may be
appropriate to represent a given problem. It can happen that
a model involves a constraint that is only partially known,
like, for example, if the constraint represents a concept we
do not know, or do not want to define in extension. It can be
the set of mammals in a description of animals, solar sys-
tems inside astronomical data, a preference between possi-
bilities in a configuration problem, the notion of “good”
wine, or a habit such as the usually free time slots in
somebody’s diary. It may also happen that the user does not
know which constraint can be used to model the problem
because of lack of knowledge in constraint programming,
but can easily express examples or counterexamples for it.
This situation appears in design (Chandrasekaran, 1999;
O’Sullivan, 2002) when a requirement is difficult or is impos-
sible to model. For example, when designing a bicycle, the
angle « of the fork (see Fig. 1) has an impact on measurable
concepts like the turning circle but also on less well-

Reprint requests to: Arnaud Lallouet, Laboratoire d’Informatique Fon-
damentale d’Orléans, BP 6759, F-45067, Université d’Orléans, Orléans,
France. E-mail: arnaud.lallouet@univ-orleans.fr

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

297

defined concepts like the ability to go straight when driving
hands up or the feeling of comfort of the user. Some of
these properties are mutually exclusive and need to be
adjusted according to the use of the bicycle. For example,
for a mountain bike, a greater importance will be given to
maneuverability than to comfort, resulting in a small « value.

Such a constraint can be modeled by examples and coun-
terexamples and impose requirements on the shape of the
item when designing a new fork. In addition, other con-
cepts like consumer satisfaction can be modeled alike by
giving examples for already built objects.

In this paper, we propose to use partially defined finite
domain constraints. In a partially defined constraint, some
tuples are known to be true, some other are known to be
false, and some are just unknown. We make use of this
partial knowledge for learning the concept that is behind
the partially defined constraint. Given positive and nega-
tive examples of the concept, the task consists in complet-
ing the definition in such a way that new examples never
met by the system will be correctly classified. This frame-
work has been extensively studied in machine learning
(Mitchell, 1997) under the name of supervised classifica-
tion. In the context studied in this paper, we assume that the
full constraint is not available to the system, even by asking
other agents or the environment. Hence, there is not a sin-
gle way to complete a partially defined constraint, just like
different people may agree on a set of examples but may

https://doi.org/10.1017/S0890060406060227

298

Fig. 1. The angle of a bicycle fork. [A color version of this figure can be
viewed online at www.journals.cambridge.org|

have different concepts in mind. In addition, the definition
may be revised when the system gets more experience or
knowledge. In this paper, we are only concerned by the
acquisition of a single constraint. However, its arity may be
large.

Partially defined constraints can be learned whenever
examples and counterexamples of the relation are avail-
able. For example, complex physical systems are often very
difficult to model, even if each component is well described
and understood. Interactions and uncertainty on some com-
ponents may cause changes in the behavior of the system.
In this case, examples can be provided by a limited number
of experimentations or simulations. Then, the approxi-
mated subsystem can be used as part of bigger system.
Another example comes from the field of sensorial analysis
where a set of products with known characteristics is pre-
sented to a panel of users. The users rate the products accord-
ing to different factors, and the set of observations can be
used to model global preferences of potential customers.
This kind of analysis is often used for designing products
by the agrofood industry, but can be applied to any product.
Sensorial information can be of various kind, like taste,
comfort, ergonomy, and so forth. By treating this informa-
tion as a constraint, it could be possible to handle it from
the early stages of design of a product, thus limiting the
impact of changes at later stages. Let us take an example in
which partially defined constraints occur naturally:

ExaMPLE 1. The design of a car dashboard is of critical
importance for several reason. It must be clear and readable
for safety, not tiring. But it is known that these criteria are
only one aspect of the problem. Other characteristics like
the position, the color, or the size of the counters are major
issues in the perception the driver has of his car, and of

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

A. Lallouet and A. Legtchenko

himself as a driver. For example, it is hardly possible for a
sports car to have a small speedometer and no rpm counter.
Hence, producing a good design for a dashboard is a clever
mixture between functionality, design, and anticipation of
consumer taste. In order to integrate these features in the
design procedure, we can assume that there is some degree
of freedom in the characteristics of the dashboard compo-
nents, like position, color, or size of the counters. A data-
base of customer tastes has been created by presenting
examples of dashboards to a panel of drivers and asking
them to select the “good” ones. However, because the num-
ber of possible dashboards is very large, it would be impos-
sible to rank each possible one individually. Hence, it is
better to ask the users only on a few examples and to model
the concept of “good dashboard” as a partially defined
constraint.

For the example we propose to use throughout this paper,
we have built a database of dashboard (using our own taste,
which should not be considered as potentially representa-
tive of the common taste of the average driver). The data-
base is composed of the following fields:

e the shape of the speedometer: circle, ellipsoid, half-
circle, quarter-circle;

size of the speedometer: small, medium, large;
position of the speedometer: left, center, right;

size of the rpm counter: small, medium, large;
position of the rpm counter: left, center, right;
instantaneous gas consumption: yes/no;

all indicators in one group: yes/no;

the mileage counter: mechanical, LCD;

light color: white, blue, red;

type of fuel gauge: linear, circular;

the position of the fuel gauge: left, center, right;

type of water temperature indicator: linear, circular;
position of the water temperature indicator: left, cen-
ter, right;

type of turn signal indicator: light arrow, thick arrow;
position of the turn signal indicator: high, middle, low;
character font: Arial, Lucid-Sans, Helvetica, Impact;
overall color: white, black, grey, brown;

icon color: black, white, red, orange;

frame color: black, white, chrome;

counter face color: black, white, grey;

text color: black, white, red, orange;

color of needles: white, red, orange;

driver’s opinion: positive, negative.

The positioning of items is relative to their respective size.
For example, the speedometer and the rpm counter are
approximately the same size, which means that they cannot
be both in the same place. The same does not hold for the
fuel gauge and the temperature indicator because they are
small items. However, it is possible to have both the rpm
counter and the water temperature indicator on the left.
We can consider this database as a partially defined 22-ary
constraint (by using the first 22 fields of the database). The

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

modeling of customer preferences as a partially defined
constraint allows the system to “invent” new dashboards
that are acceptable within the learned concept. One inter-
esting point that justifies the use of constraints in design is
that the design of a dashboard for a given car does not obey
only to readability and customer preference constraints.
There is also other requirements that come, for example,
from consistency constraints. For example, the speedom-
eter and the rpm counter cannot be both in the central posi-
tion (physical constraint) and the fuel gauge and water
temperature indicator should be the same color (readability
constraint). Finding a dashboard meeting all requirements
and following customer preferences is a constraint satisfac-
tion problem. In addition, the dashboard has to fit into a
space that is different for every car. By adding information
on the surface occupied by each item, we can, for example,
find the best dashboard that has the minimum item surface.
This is a constraint optimization problem. [

The idea of the technique we use for learning comes
directly from the classical constraint solver model comput-
ing a chaotic iteration of reduction operators (Apt, 1999).
We begin by learning the constraint. However, instead of
learning it by a classifier that takes as input all its variables
and answers “yes” if the tuple belongs to the constraint and
“no” otherwise, we choose to learn the support function of
the constraint for each value of its variables’ domains. A
tuple is part of the constraint if accepted by all classifiers
for each of its values and rejected as soon as it gets rejected
by one. This method is nonstandard in machine learning,
but we show in Section 4 that it can achieve a low error
ratio— comparable to well-established learning methods—
when new tuples are submitted, which proves its validity
experimentally.

As is, a classifier is only able to perform satisfiability
checks for a partially defined constraint. If added to a con-
straint satisfied problem (CSP), this constraint would not
contribute to the reduction of variables domains and it would
yield a “generate and test” behavior that could quickly ruin
the performances of the system. Hence, it is needed that
partially defined constraints should have a solver and not
only a satisfiability test in order to meet the standards of
efficiency of constraint programming. The classifiers we
learn are expressed by functions and we turn them into
propagators by taking their extension to intervals. This for-
mal transformation does not involve any more learning tech-
niques, thus preserving the properties of the first part. Then
the classifiers can be used with variable domains as input.
We also show that the consistency they enforce, although
weaker than arc consistency, is nevertheless interesting and
yields a strong pruning along the search space.

2. PRELIMINARIES: BUILDING
CONSISTENCIES

We first recall the basic notion of consistency in order to
present the approximation scheme we use for learning. For

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

299

a set E, we denote by P(E) its powerset and by |E| its
cardinality. Let V be a set of variables and D = (Dy)yey be
their family of (finite) domains. For W C V, we denote by
DV the set of tuples on W, namely [[yewDyx. Projection
of a tuple or a set of tuples on a set of variables is denoted
by |. A constraint c is a couple (W, T') where W C V are the
variables of ¢ (denoted by var(c)) and T C DV is the set of
solutions of ¢ (denoted by sol(c)). Given a set of variables
and their respective domains, a CSP is a set of constraints.
A solution is a tuple that satisfies all constraints. In this
paper, we use the common framework combining search
and domain reduction by propagation. This propagation com-
putes a property called consistency.

A search state is a set of yet possible values for each
variable: for W C V, it is a family s = (sy)yew such that
VX € W, sy C Dy. The corresponding search space is Sy =
[IxewP(Dx). The set Sy, ordered by pointwise inclusion
C is a complete lattice. Some search states we call single-
tonic represent a single tuple and play a special role as
representant of possible solutions. A singletonic search state
s is such that [[Is| = 1.

A consistency can be modeled as the greatest fixpoint of a
set of so-called propagators and is computed by a chaotic
iteration (Apt, 1999). For a constraint ¢ = (W, T), a propa-
gatoris an operator fon Sy having the following properties:

e monotonicity:

Vs, s'ESy, sCs' =f(s) Cf(s).

e contractance:
Vs € Sy, f(s)Cs.

e singleton equivalence: let s € Sy, be a singletonic state,
then

I1s Csol(c) & f(s) =s.

Singleton equivalence means that the operator is also a
satisfiability test for a single tuple embedded in a single-
tonic state. Correctness is also a major property of propa-
gators and it means that a solution tuple never gets rejected
across the search space:

PROPOSITION 1. Let ¢ = (W, T) be a constraint and f be
a propagator for c. Then fis correct for ¢: Vs € Sy, [Is N
sol(c) CIIf(s) N sol(c).]

Proof: Suppose that f is not correct. Then s € § and
t € sol(c) such that t € [[s and ¢ & [If(s). We note
st = ({tx})xew € Sw the singletonic state corresponding to
t. Thus, we have st € f(s). Because r € sol(c) and f is

"When iterating operators for constraints on different sets of variables,
a classical cylindrification on V is applied.

https://doi.org/10.1017/S0890060406060227

300

singleton equivalent, we have st = f(st). Hence, we have st
C s and f(st) € f(s), which contradicts the fact that f is
monotonic. u

When search begins, the initial search state s, is initial-
ized to the entire set of values: sy = (Dy)xey.

Let us now define some consistencies associated to a
constraint ¢ = (W, T'). The well-known arc-consistency oper-
ator (ac,) is defined by

Vs €Sy, ac.(s)=s" with VXEW, s,’(:(HsﬁT)|X.

If we suppose that each variable domain Dy is equipped
with a total ordering =, we denote by [a - - - b] the interval
{e € Dx|a = e = b}. For A C Dy, we denote by [A] the set
[min(A) - -- max(A)]. By extension to Cartesian products,
for s = (sx)xew € Sw, we denote by [s] the family ([sx |)xew
in which each variable domain is extended to its smallest
enclosing interval. The bound-consistency operator (bc,) is
defined by

Vs €Sy, bc.(s)=s" with VXEW,

si=sx N[(Tlsn 1)l |-

Bound consistency only enforces consistency for the bounds
of the domain by shifting them to the next consistent value
in the suitable direction. Consistencies are partially ordered
according to their pruning power and we have f C f' if
Vs € Sw. f(s) Cf'(s).

Because only variables domains are reduced, a consis-
tency operator f for a constraint ¢ = (W, T') can be split into
|W| projection operators (fy)xew according to each vari-
able of the constraint. By confluence of chaotic iterations
(Apt, 1999), these operators can be scheduled indepen-
dently as long as they follow the three first properties of
consistency operators. In order to represent the same con-
straint, they have to be singleton complete collectively. It is
worth noticing that there is a disymmetry between reject
and acceptance and that for satisfiability, a nonsolution tuple
must be rejected (at least) by one of these operators while
correctness imposes that a solution tuple is accepted by all
operators.

The role of a consistency operator fy is to eliminate from
the domain of its target variable X some values that are
unsupported by the constraint. Arc consistency eliminates
all inconsistent values. Thus, it has to find a support for
each considered value a (a solution tuple whose projection
on the target variable is a) in order to allow the value to
remain in the variable’s domain. This task has been proved
to be NP-complete in general (Bessiere, Coletta, et al., 2004)
for n-ary constraints. While many useful constraints have
polynomial-time arc-consistency propagators, some exist
for which this task is intractable. Because we are dealing
here with constraints expressed by examples, this case must

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

A. Lallouet and A. Legtchenko

be taken into account seriously and motivates an approxi-
mation scheme.

At a finer level of granularity, the way a support is
computed has motivated a constant improvement in arc-
consistency algorithms. The first technique consists in keep-
ing a table that records every tuple of the constraint and
sweeping this table every time a support is needed. This
technique has been the most optimized, and optimal algo-
rithms only check each value once and keep minimal data
structures like the general arc-consistency (GAC) schema
(instantiated by a table; Bessiere & Régin, 1997). These
techniques are well suited to highly irregular constraints.
In Figure 2 are depicted the projections of a ternary con-
straint ¢(X, Y, Z) on the three values of Xs domain for
different types of constraints. On each projection black
squares denote allowed tuples. Figure 2a illustrates on which
type of constraint table-based techniques are well suited,
but the problem is that their space requirements grow
according to domain size and constraint arity.

domain of X @ @

4 Z Z
2EE -.
|
|) mm
0 v 0

0 Y

z ZE ZE
J 0 0|
0 Yy O Yy 0 Y

Y<Z

domain of X @

zZ Z Vi
0 Y 0 7 vy 0 Y

L=X+Y

Y {a)

Y=X or Z=X [Y-Z| <3 (b)

{c)

Fig. 2. A granularity analysis of consistencies. In this schema, a black dot
represents a tuple of the constraint. All axes are labeled horizontally by Y
and vertically by Z. Each square represents the projection of some con-
straint on the plane orthogonal to one of the values of X. [A color version
of this figure can be viewed online at www.journals.cambridge.org]

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

Conversely, if the relation is very regular, it can happen
that a single expression in a given language can capture the
notion of support for every value of the domain. This oppor-
tunity is exploited by the indexical language (van Henten-
ryck et al., 1991). For example, in Figure 2c, all supports
for the variable X of the constraint Z = X + Y can be com-
puted using the same language expression [in this case, X in
dom(Z) — dom(Y)]. The “regularity” of the constraint can
be measured as the length of the shortest expression for an
operator in a given language. Although indexicals are pow-
erful enough to represent any constraint operator, this can
be done in some cases at the price of an expression propor-
tional to the length of the table itself. Indexicals are thus
best suited for operators that enjoy a short expression.
Another advantage of the indexicals language is that it allows
to express easily weaker consistencies such as bound con-
sistency by associating an expression directly to the bounds
of the variable. The issue of computing an approximation
of a consistency using indexicals has been tackled in Lal-
louet et al. (2003).

However, there exists an intermediate situation depicted
in Figure 2b where it is possible to find a compact repre-
sentation for finding supports, but this representation is dif-
ferent for every value of the domain of the variable to be
reduced. In other words, in order to represent an operator
fx, a Boolean function is associated to each value a of X’s
domain. This function evaluates to false if the value has no
support and to true if one is found or if an incomplete
search is not able to decide. We call this function an ele-
mentary reduction function (ERF) and denote it by fx—,. By
combining elementary reduction functions, we are able to
build an operator for the target variable: all we have to do is
to collect the answers of the functions and intersect the
produced domain with the variable’s current domain. Hence,
for a search state s, if we assume that we have a set of ERFs
{fx=ala € sx}, we build the operator fy as fx(s) = s’, where
sx = sy N {a| fy=.(s)}. For bound consistency, instead of
sweeping the entire domain, an upward while loop can be
used to move the minimum bound to its next supported
value (respectively downward for the max bound).

Compared to the first technique (Fig. 2a), this represen-
tation is likely to take less space because we can bound the
size of each ERF. Then, the space requirement grows only
according to the domain sizes. However, it puts some limits
to the expressivity of the functions that can be used and arc
consistency may not be representable for some constraints.
Compared to the second technique (Fig. 2c¢), it is more
versatile because different functions can be used to com-
pute the support of different values.

By using ERFs, we are able to give each value its own sup-
portfunction. A function fy—_, takes as input the current domain
of the constraint’s other variables. However, it may make full
use of this information or just use it partially. For example, it
can only use the bounds of the domains. From these combi-
nations, we get four consistencies: two are classical and two
are intermediate, denoted by ac™ and bc* (see Table 1).

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

301

Table 1. ERFs and consistencies

ERF Uses
Domain
Reduction All Bounds
of X Values Only
All values ac ac~
Bounds only be™ be

In other words, if we give each domain value an ERF but
if we assume that this ERF takes as input only the bounds
of the other variables’ domains, we get an intermediate con-
sistency we call ac™:

Vs € Sy, ac. (s)=1s" with

VXEW, si=s5 N (TI[s1NT)lx.

It does not have the full power of arc consistency because it
makes use of less input information but may reduce more
than bound consistency because not only the bounds can be
reduced. The counterpart, bc*, is when bounds can be
reduced by a function taking as input all information avail-
able in the whole domain of the other variables:

Vs € Sy, with VX €E W,

sy =sx N [(HsﬂT)b(:I.

bel(s) =5’

PROPOSITION 2. ac C bect C bc and ac C ac™ C bc. m

PROPOSITION 3. ac™ and bc™* are uncomparable. [

3. PARTIALLY DEFINED CONSTRAINTS

In this section, we give the definition of partially defined
constraints and introduce the notion of extension, which
provides a closure of the constraint.

A classical constraint ¢ = (W, T') is supposed to be known
in totality. The underlying closed world assumption (CWA)
states that what is not explicitly declared as true is false.
Hence, the complementary T is the set of tuples that do not
belong to c. In the following, we call ordinary constraints
under CWA closed or classical constraints. When dealing
with incomplete information, it may happen that some parts
of the constraint are unknown (see Fig. 3):

DEFINITION 1 (partially defined constraint). A partially
defined constraint is a triple ¢ = (W, ¢, ¢~) where ¢* C
DWV.ec-CDW,andc™ Nc™ =]

In a partially defined constraint ¢ = (W, ¢¥, ¢7), ¢* rep-
resents the allowed tuples and ¢~ the forbidden ones. The
remaining tuples, c* U ¢~, are simply unknown. Note that

https://doi.org/10.1017/S0890060406060227

302

Fig. 3. A partially defined constraint. [A color version of this figure can
be viewed online at www.journals.cambridge.org]

a classical constraint ¢ = (W, T) is a particular partially
defined constraint ¢ = (W, T, T) for which the negative part
is the complement of the positive part.

Partially defined constraints need a special treatment in
order to be used in a CSP because little propagation can be
done without knowing the integrality of the constraint.
Hence, a partially defined constraint needs to be closed to
be usable in a constraint solving environment. The closure
of a partially defined constraint ¢ is done by choosing a
class (it belongs or does not belong to the constraint) for all
unknown tuples. We call the resulting classical constraint
an extension of the partially defined constraint.

DEFINITION 2 (extension). Let ¢ = (W, ¢¥, ¢7) be a
partially defined constraint. A (classical) constraint ¢’ =
(W, T) is an extension of cif c* C Tand ¢~ C T. (]

In other terms, an extension is a classical constraint
compatible with the known part (positive and negative) of
the partially defined constraint. A partially defined con-
straint allows us to catch a glimpse of a hidden reality and
one of its extensions corresponds to the genuine relation
of the world. In most cases, the knowledge of this con-
straint is impossible to get and all that can be done is
computing an approximation of it. In general, many exten-
sions can be considered, and let us introduce three of them.
Let ¢ = (W, ¢*, ¢7) be a partially defined constraint. We
denote an extension of ¢ by [c].

e Cautious extension: [c].= (W,c¢~). All unknown
tuples are assumed to be true (Fig. 4b). A solver gen-
erated according to this extension is cautious in the
sense that it will not prune the search space for any
unknown tuple. Thus, the consequence of a bad choice
for this tuple will not compromise the correctness of
a solution. The counterpart is that if the unknown
part of the constraint is large, it will yield weak prun-
ing and the user will be provided with many unwanted
false solutions.

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

A. Lallouet and A. Legtchenko

— .
@B
_ﬁ (b}

!
(e} [CH]

Fig. 4. (a) A partially defined constraint and its (b) cautious, (c) brave,
and (d) algorithmic extensions. [A color version of this figure can be
viewed online at www.journals.cambridge.org]

e Brave? extension: [c], = (W, ¢*). All unknown tuples
are assumed to be false (Fig. 4¢) as in the classical
CWA. A solver generated according to this extension
is brave because it will prune the search space as soon
as possible. If the tuple was incorrectly classified as
false, correctness is lost and a nonmonotonic restora-
tion mechanism is needed, like in dynamic CSPs (Ver-
faillie & Jussien, 2003).

e Algorithmic extension [c]4: let A:DY — {0, 1} be
a tuple classification algorithm such that t € ¢* =
A(t) =1 and t € ¢~ = A(r) = 0. Then [c]4 =
(W, {r € DV|A(r) = 1}) (Fig. 4d).

We are mostly interested in the last extension in which
the unknown part is completed by a learning algorithm.

This kind of extension is obtained by supervised classi-
fication: it consists in the induction of a function that asso-
ciates to all tuples a class from a set of examples given with
their respective class. Machine learning puts strong require-
ments on what is called a good algorithmic extension. The
initial and perhaps most important step is that, the correct
class for unknown tuples should be forecast with the high-
est possible accuracy. The ratio between the number of cor-
rectly classified tuples and the number of presented tuples
defines the correctness ratio of the generalization. Most
techniques used in machine learning provide much better
performances than random classification, and more than
90% of success in prediction is not unusual. In order to
achieve this, we assume that the known part of the partially
defined constraint should be representative of the whole
underlying constraint and that the underlying constraint has
some regularities that can be approximated. Then, the rep-
resentation of the classification function is searched in a
space of possible functions called hypothesis space. A learn-
ing algorithm finds the best possible function in this space
by optimizing some criteria, like accuracy, simplicity, or
generalization, and so forth.

2Note that we choose the terminology of cautious and brave with respect
to the solver and not to the constraint. Indeed, making all unknown tuples
true can be considered as brave with respect to the constraint.

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design
4. CONSTRAINT ACQUISITION

At first, we address the problem of constructing a good
extension for a partially defined constraint. In order to rep-
resent a relation, the first idea is to build a classifier taking
as input an instantiation of all variables of the relation and
returning a Boolean stating if the tuple belongs or not to the
relation. However, unfortunately, although learning is effec-
tive with this technique (see Rossi & Sperduti, 2004), it
would be difficult to extract a solver from this representa-
tion. Motivated by the equivalence between a constraint
and a correct and singleton complete solver, we propose to
acquire a partially defined constraint ¢ = (W, ¢¥, ¢7) by
learning the support function for all values of domain vari-
ables. More precisely, we propose to build an independent
classifier for each value a of the domain of each variable
X € W in the spirit of ERFs introduced in Section 2. This
classifier computes a Boolean function stating if the value a
should remain in the current domain (output value 1) or if it
can be removed (value 0). We call it an elementary classi-
fier. It takes as input the value of every other variable in
w—{X}.

We propose to use as representation an artificial neural
network (ANN) with an intermediate hidden layer. This
representation has been chosen for its good properties in
learning and the possibility of a further transformation into
a solver. Other kinds of classifiers can be used but we can-
not describe them for lack of space. For W C V, a neuron is
a function n(W):R!"l — R computing the weighted sum of
its inputs followed by a threshold unit. A dummy input is
added to tune the threshold. This one is assigned to 1. The
sigmoid function is often chosen for the threshold unit
because derivability is an important property for the learn-
ing algorithm. Let (wy)yew be the weights associated to
each input variable and w be the adjustment weight for the
dummy input. Hence, the function computed by a neuron
taking as input @ = (ay)xew is

1

1+ exp(wo - Z wx-ax>.

xew

n(a) =

For a constraint ¢ = (W, ¢*, ¢ ™), the classifier we build for
X = ais a tree of neurons with one hidden layer as depicted
in Figure 5. Let (n;);e; be the intermediary nodes and out be
the output node. All neurons of the hidden layer have as
input a value for each variable in W — {X} and are con-
nected to the output node.

Let us call n—,y the network concerning X = a. Because
neurons are continuous by nature, we use an analog cod-
ing of the domains. Let D be a finite domain and < a total
order on D (natural or arbitrary), then we can write D as

{ag, ...,a,} with Vi €[l --- n],a,_; < a;. According to
this order, we can map D onto [0 --- 1] by coding a; by
i/n. In a similar way, the output is in the interval [0 --- 1]

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

303
n'I
X1 - o)
X2 ¢ n: oul e
xS} o.~-'>0.5
o - |
X4 ")

Fig. 5. The structure of the artificial neural network. [A color version of
this figure can be viewed online at www.journals.cambridge.org|

yes

=0

nd

and we choose as convention that the value a should be
removed from the domain of X if out = 0.5. This threshold
is the last level of the network depicted in Figure 5.

The global classifier for the partially defined constraint
is composed of all of these elementary classifiers for all
values in the domain of all variables {ny—-.,|X € W, a €
Dy}. Following the intuition of ERFs for solving, we can
use these elementary classifiers to decide if a tuple belongs
to the extension of the constraint or not by checking if the
tuple gets rejected or not by one of the classifiers. Let t €
D" be a candidate tuple and let (nx—,,(¢|w—ix}))xew be
the family of 0/1 answers of the elementary classifiers for
all values. We can interpret the answers according two points
of view:

e vote with veto: the tuple is accepted if and only if it is
accepted by all elementary classifiers;

e majority vote: the tuple is accepted if accepted by a
majority of elementary classifiers.

In order to produce the extension of the partially defined
constraint, these classifiers are trained on examples and
counterexamples selected from the projection of the known
part of the constraint on the subspace orthogonal to a
variable’s value. For E C DV, X € W and a € Dy, we
denote by Ex—, the selection of tuples of DW having a as
value on X: Exy_,, = {t € E |t|x = a}. Thus, in order to
build the classifier nix—,, we take the following sets of
examples and counterexamples:

+ _ .+
€ x=a) = c(X:a)|W—{X}’

€x=ay = Clx=aylw—ix}-

For example, for a partially defined constraint defined by
W={X,Y,Z}, c* ={(1,1,0),(1,0, D} and ¢~ ={(1, 1, 1)},
we get

e&:n = {(17 0)’ (0’ 1)}

ex—1y =11, D}.

https://doi.org/10.1017/S0890060406060227

304

Table 2. Learning results

A. Lallouet and A. Legtchenko

Database Dashboard Mushroom Cancer Votes-84
Arity 22 22 9 16
Size of

DB 334 8124 699 435

Domain 2-4 2-12 10 3
Number of

Neurons in HL 3 3 5 5

Classifiers 64 116 90 48
Learning time 55 min 2.5h 85h 45h
General ratio

SOLAR veto (SD) 88.08 (3.66) 93.06 (1.91) 95.36 (1.80) 74.07 (3.82)

SoLAR major (SD) 96.36 (3.51) 99.29 (0.99) 96.52 (2.15) 96.23 (3.26)

C5.0 (SD) 90.14 (6.87) 99.19 (1.21) 94.54 (2.44) 96.29 (3.39)

C5.0 boost (SD) 95.17 (3.42) 99.80 (0.61) 96.33 (2.26) 95.63 (3.63)

The networks are trained by the classical backpropaga-
tion algorithm (Rumelhart et al., 1986), which finds a value
for the weights using gradient descent. The algorithm is
stopped when all examples and counterexamples are cor-
rectly classified. This requirement comes from the need of
correctness of constraint programming but it may be adjusted
according to the application and to how noisy the training
set is. In general, the choice of the architecture of a neural
network is a complex problem that does not have a theoret-
ical solution. In a similar way, the number of examples
required to learn a relation with sufficient accuracy depends
on the learning technique and the difficulty of the concept.
It is nevertheless known that a multilayer perceptron with
only one hidden layer is a universal approximator (Hornik
et al., 1989). But the theory does not make it possible to
determine how many neurons in the hidden layer are nec-
essary to approximate a given function. Thus, this number
is found in an empirical way starting from a relatively small
value. This is done in order to minimize the complexity of
the classifier and to improve the quality of generalization.
In many cases, it is better to keep a small network size in
order to preserve its generalization capabilities.

Because the technique we propose for learning relations
is not classical in machine learning, we present validation
results to show that the concept lying behind the partially
defined constraint is actually learned. This framework has
been implemented in a system called SOLAR and tested on
the dashboard example presented in the introduction and
on various machine learning databases?® used as constraint
descriptions. This is in contrast with classical constraint
programming experiments, for example on random CSPs,
because we need to be sure that there is an actual concept
behind the partially defined constraint for the learning to
make sense. With random constraints, no learning is possi-

3The databases are taken from the UCI Machine Learning repository
(http://www.ics.uci.edu/~mlearn).

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

ble. The results are summarized in Table 2. The database
mushroom gives attributes to recognize edible candidates,
breast-cancer-wisconsin to recognize benign and malig-
nant forms of disease, and house-votes-84 to classify dem-
ocrats and republicans. For the dashboard and mushroom
constraints, we have three neurons in the hidden layer
whereas we have five for breast-cancer-wisconsin and
house-votes-84.

We compare the generalization performance of our tech-
nique to the popular decision tree learning system C5.0
(RuleQuest Research, 2004). For each base, we have per-
formed a cross-validation by using the following method:
we cut the base in 10 parts, we use 9 of them for learning
and the 10th for validation. This process is repeated 10
times, each part of the base being used in turn for valida-
tion. The cutoff is identical for the test with all methods.
Then, the whole test is repeated on five sessions with dif-
ferent cutoffs, yielding 50 tests for each technique. The
generalization ratio is the percentage of correctly classified
tuples.

Table 2 contains three parts. The first one contains a
description of the data: database name, arity, size, and size
of the variables” domains. Then follows some information
about the learned classifiers: the number of neurons in the
hidden layer, the number of individual classifiers learned,
and the learning time. In comparison, the learning time for
C5.0is very low, typically a few seconds, but the interest of
our technique is not only for classification, as described in
the next section. The last part presents the generalization
results: the generalization ratio and standard deviation (SD)
for SoLAR with veto vote, for SOLAR with majority vote,
and for C5.0 and for C5.0 with boosting (with number of
trials equal to the arity of the constraint in order to balance
our number of classifiers). The mushroom database is very
easy to learn. Hence, we only used 500 examples out of
8124 for all techniques; otherwise, they all would have
reached 100%. Let us note that the techniques of machine
learning such as decision trees and ANNs require a rela-

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

tively large set of examples to be effective. More generally,
it is the case for any statistical approach of learning. Unfor-
tunately, in certain real cases it can be difficult (expensive
or just impossible) to obtain a large database of examples.
In these cases the use of our technique could be ineffective,
in terms of the quality of learning and generalization. Nev-
ertheless, the approach is well adapted for the situations
where enough data are provided by simulation or when suf-
ficient experimental data are available.

The technique we propose challenges powerful tech-
niques such as boosting (Freund & Shapire, 1999), both in
generalization performance and scattering of results as mea-
sured by SD and error. Nevertheless, the vote of elementary
classifiers cannot be viewed as a variant of boosting. An
important difference is that we partition the set of exam-
ples. In veto mode, the learned concept is more focused on
the core of the real concept as we impose more elementary
classifiers to agree on a tuple. Thus, it is not surprising that
veto mode performs less satisfactorily than majority mode.
The tuples that are accepted at unanimity are in some sense
the most “pure” ones with respect to the real concept
and the error depicted in Table 2 corresponds to rejected
positive tuples and never to accepted negative ones. For
optimization purposes, this could even be an advantage
because the solution space is smaller and the correctness of
the answer is better preserved.

5. FROM CLASSIFIERS TO SOLVERS

When added in a CSP, a constraint will have an active behav-
ior; it should contribute to the domain reduction. This is
why simply keeping the classifier as a definition of the
constraint is not an interesting option. The induced “gener-
ate and test” behavior would not prune the search space at
all. Another idea could be to first generate offline the solu-
tions of the extension of the constraint and use them for
solving with a standard but efficient arc-consistency prop-
agation algorithm like the GAC schema (Bessiere & Régin,
1997). However, unfortunately, this method suffers from
two major drawbacks. First, the generation time is prohib-
itive because some constraints have a huge number of solu-
tions. For example, 3 h of “generate and test” computation
on the mushroom database could hardly produce 76,835
solutions out of 1.5 X 107 tries. Second, a problem comes
from the representation size of the relation. The extension
of the 22-ary constraint mushroom contains more than 4E6
solutions and would thus need more than 88 MB of mem-
ory to be stored. In contrast, the representation we have is
rather economic. For a constraint of arity n, if we assume
that the hidden layer contains m neurons and the size of the
domains is d, it requires n(n + 1)dm + 1 floats (10 bytes)
to store the weights. For the dashboard constraint (n = 22,
m = 3,d = 4), we attain a size of 60 kb, for mushroom
(n=22,m=3,d=12), 180 kb.

We propose to use the learned classifiers also for solving.
In order to do this, let us recall some notions on interval

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

305

analysis (Moore, 1966). We call Inty the interval lattice
built on the set R of real numbers. All functions have exten-
sions to intervals.

DEFINITION 3 (extension to intervals). Let f:R — R be
a function. A function F:Inty — Intp is an extension to
intervals of fif VI € Intp,Vx € I, f(x) € F(I).]

An extension F is monotonic if A C B = F(A) C F(B).
Between all extensions to intervals of f, there is a smallest
one, called canonical extension to intervals: f(I) =
[{f(x)|x € I}]. The canonical extension is monotonic.
Here are the canonical extensions to intervals of the oper-
ators we use in classifiers:

[a,b]+[c.d] = [a+c. b +d],
[a.b]—[c.d]=[a—d.b—c].
[a. b] X [¢, d] = [min(P), max (P)],
where P = {ac, ad, bc, bd}

[a, b]/[c,d] =[a,b] - [1/d,1/c] if0€& [c, d],

exp([a, b]) = [exp(a), exp(b)].

Division is not a problem in our setting because no interval
contains 0 (see the sigmoid denominator). If ¢ is an expres-
sion using these operators and E the same expression
obtained by replacing each operator by a monotonic exten-
sion, then VI € Inty, Vx € I, e(x) € E(I). This property of
monotonic extensions is called “the fundamental theorem
of interval arithmetic” (Moore, 1966). It also holds when
domains are replaced by Cartesian products of intervals. By
taking the canonical extension of all basic operators in an
expression e, we do not always obtain an extension E that is
canonical. We instead call it the natural extension. Multi-
plication is only subdistributive in interval arithmetic
(Moore, 1966), that is, A X (B + C) C (A X B) + (A X C).
Hence, the natural extension is canonical only for expres-
sions with single variable occurrences (single occurrence
theorem, Moore, 1966).

An elementary classifier ny—,y defines naturally a Bool-
ean function of its input variables. Let Ny, be its natural
interval extension, defined by taking the canonical exten-
sion of each basic operator +, —, X, /, exp. Then, by using
as input the current domain of the variables, we can obtain
a range for its output. In order to do this, we compute the
interval range of every neuron of the hidden layer and we
use these results to feed the output neuron and compute its
domain. Because we put a 0.5 threshold after the output
neuron, we can reject the value a for X if the maximum of
the output range is less than 0.5, which means that all tuples
are rejected in the current domain intervals. Otherwise, the
value remains in the domain.

https://doi.org/10.1017/S0890060406060227

306

PROPOSITION 4. N(x—, is an ERF. [

Proof: It is only needed to check the correctness of the
function applied to a search state s with respect to the par-
tially defined constraint’s accepted tuples. If a tuple ¢ such
that 7|y = a belongs to the solutions of the learned con-
straint, then ny—,,((t|y)yew—ix;) = 1. Hence, if t € []s, we
have max (Ny—(s|w—ix;)) = 1 because N is a monotonic
extension. [

By doing this for every value of every variable’s domain,
we are able to define a consistency operator fy that gathers
the results of the ERFs. For s € Sy, fx(s) = s’ where sy =
sx N {a € Dy|max(Ny—u(slw—gxy)) = 1} and sy = sy for
Y#X.

PROPOSITION 5. The operators (fx)xew define a consis-
tency for c. [|

Proof: Each operator fy is monotonic, contractant and cor-
rect (by the fundamental theorem of interval arithmetic).
They are together singleton complete (because the exten-
sion of the partially defined constraint is defined by them).

[

We call learned consistency (lc) the consistency defined
by the learned propagators. Because we use multiple occur-
rences of the same variable, the /c computes an approxima-
tion of ac ™.

PROPOSITION 6. ac™ C lc. [}

Proof: Because multiple occurrences of variables yield a
less precise interval, it follows that the maximum of the
output interval of the last neuron of an ERF Niy_,, may
exceed 0.5 even if there is no support for X = a. Thus, the
value is not suppressed as it would be by ac™.]

Note that if we had used single-layer perceptrons, the
extension would have been exact and we would have been
closer to ac . However, single-layer perceptrons have severe
limitations in learning (Mitchell, 1997). The propagators
for each variable are independent; thus, the generalization
obtained when using the solver is the one obtained with
veto vote. This is due to the independent scheduling of the
consistency operators for each variable in the fixpoint com-
puted by chaotic iteration (Apt, 1999). The exact ac™ con-
sistency could be reached only if all elementary classifiers
agree on each value, which is not the case in general. On
the one hand, this allows us to strengthen the learning power
as examplified in the preceding section; but on the other
hand, it weakens the propagation a little bit.

The SoLAR system takes a partially defined constraint as
input and outputs a set of consistency operators that can be
adapted to any solver. In our experiments, we used a custom-
made solver. We made two sets of experiments in order to
evaluate the learned consistency.

The first one is summarized in Table 3 and describes the
search for all solutions using the /c. It is done by taking a
CSP containing the partially defined constraint alone. The

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

A. Lallouet and A. Legtchenko

Table 3. Results for solutions and failure

Database Dashboard Mushroom Cancer Votes-84
Avg. number of

Solutions 7.4E5 =4.1E6 1.27E5 1.27E5

Failures [c¢ 1.34E6 =3.1E6 1.28E5 3.47ES
Average

Ratio Ic 1.8 0.75 0.99 2.86

Time ¢ 5.25h =2h 3h 7.5h

results are averages on 10 runs for dashboard, breast-cancer-
wisconsin, and house-votes-84 databases. Only one run was
done for mushroom database. Each run consists of learning
a constraint followed by the resolution. Indeed, two runs of
backpropagation algorithm with a different random initial-
ization of weights provide slightly different results. For every
partially defined constraint, we use our system to count the
number of solutions (#Sol). Because we do not have arc
consistency, we record the number of failures /c makes while
finding these solutions (#Fail /c). Then we compute the
ratio /c = #Fail lc/#Sol. If we had arc consistency, there
would not be any backtracks. The purpose of this experi-
ment is to compare /c to what ac could have done if ac was
available for partially defined constraints. In terms of fail-
ure, the average ratio on all experiments is of 1.6 failures
per solution. This result should be put into balance with the
huge number of failures “generate and test” would have
done. We also report the time /c needs to find these solu-
tions (only the time of the resolution; see Table 2 for the
learning time). The mushroom constraint has a very large
space and a medium tightness and we could not obtain its
full extension. However, for the other constraints, this is the
only method to get all solutions since the Cartesian prod-
ucts of the domains are so large that this prevents the use of
generate and test with the classifier.

Our second set of experiment is a random sampling of
the reductions made by the different consistencies on ran-
dom search states (the domain of each variable are arbitrary
sets, not intervals). These results are depicted in Tables 4-7.

For each constraint, we give the number of tuples of the
initial search state (|]]s|) and the number of tuples after an
application of each of the operators Ic, bc, be™, ac™, and
ac. The data are the average of 1000 experiments with the
same average size of search state. In order to compute exactly
the consistencies bc, bc™, ac™, and ac, we have first com-
puted all solutions included in s in a table with the help of
lc. In a second step, we have computed all needed projec-
tions from the solution table. For example, the last column
of Table 4 for the dashboard example shows that, starting
from a search space containing 166,563 tuples (in its Car-
tesian product), the learned consistency reduces it to a search
space of 9037 tuple whereas arc consistency reduces it to
1326 tuples (all these values are average). This shows that
the learned consistency is weaker than more classical con-
sistencies but still reduces notably the search space. Fig-

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

Table 4. Consistency tests for dashboard

307

5] 29.881 127.406 561.79 2381.654 6721.499 24929.11 64928.5 166563.9
le 0.003 0.106 0.31 4.094 104220 1138.65 2440.9 9037.4
bc 0.001 0.005 0.04 0.256 31.889 473.99 280.5 23159
be* 0.001 0.005 0.04 0.260 31.888 473.15 275.8 1998.2
ac” 0.001 0.005 0.03 0.237 22.210 257.37 186.3 1533.7
ac 0.001 0.005 0.03 0.233 22.209 256.63 185.0 1326.5
Table 5. Consistency tests for mushroom ures 6-9 depict a graphical view of /c compared to the
other consistencies for all examples (using data of
e i3 asie 0wz tozed Tables 4-7).
be 074 1942 4516 4078.4 In addition, the 22—ar?f pa.rtlally defn?ed. copstramt dash-
bet 0.69 1478 430.1 3933.2 board has been tested in different optimization problems
ac~ 055 1264 275.6 2148.4 as described in Example 1. As expected, the best solu-
ac 0.52 96.0 261.4 2084.1 tion found is a disposal of the different items invented by
the system and that was not in the database. Every prob-
lem comprises the set of 22 variables describing a dash-
board, the dashboard constraint, and some constraints
Table 6. Consistency tests for breast cancer specific to each problem. The optimization criterion con-
sists in minimizing the overall surface, subject to physical
s~ 11663 5470 3666 997.5 32247 8003.6 32014.0 and preference constraints. The computed surface corre-
le 1.166 831 104.6 3515 1483.4 4350.8 22142.7 nds to the elobal surf f th tual items and not
be 0111 117 505 1278 10126 19072 94237 Sponds tothe global surtace of the actua’ iems and no
bet 0108 093 37.1 1013 9555 15500 7727.8 of the dashboard they define, which is larger. For this
ac™ 0085 078 336 849 8380 15287 65002 purpose, an elementary surface is associated to each
ac 0083 072 220 694 6864 12607 49980 jtem, as well as to some particular combinations that take
into account a reasonable separating space. Hence, the
Dashboard
1000000 -
100000
10000
1000
100
10
1 T 1
5,9165 20,8806 561 3 2381,6539 6721,4994 249201076 649284724
0,1 ol
0,01 /
0,001 -
|+Fc - bc bc+ -ac- =¥#=ac =#-id

Fig. 6. Tests on the dashboard database. [A color version of this figure can be viewed online at www.journals.cambridge.org]

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060227

308

Table 7. Consistency tests for votes-84

A. Lallouet and A. Legtchenko

5] 4.5207 18.408 68.62 229.5
le 0.1256 1.352 11.98 53.6
be 0.0334 0.225 3.45 14.0
be*t 0.0330 0.217 3.28 12.7
ac™ 0.0326 0.219 3.43 13.9
ac 0.0322 0.211 3.26 12.6

766.9 2096.6 4159.5 137529 251474
231.4 858.9 1670.5 7787.2 12597.4
82.0 456.0 850.6 3990.5 6792.2
774 441.1 796.9 3450.0 6038.1
81.9 453.3 850.1 3984.5 6777.4
713 438.5 796.4 3444.0 6027.4

objective function is more complex than just a sum of the
individual surfaces. For every problem, a classical branch
and bound search has been used. We have compared the
time needed to solve the optimization problem in three
contexts.

1. Learned: The learned constraint and its propagators
are used as described in this paper.

2. GAC: All solutions of the constraint have been pro-
duced using our technique and have been put in a
table. The table is processed during search by using
an hyperarc-consistency algorithm.

3. Classifier: Only the classifier has been used for the
partially defined constraint during search. This means
that most of the time, a dashboard is generated and
refused at the very last time by the classifier (generate
and test behavior).

The results follow.

Problem 1. The CSP is composed of four constraints: the
learned dashboard constraint, position of speedometer #
position of rpm counter, text color # face color, and icons
color # face color.

e learned: 2.23 s.
e GAC: 31.34 s.
e classifier: 2 h, 55 min, 46 s.

Minimal surface = 158 cm?2

Problem 2. The CSP is composed of three constraints:
the learned dashboard constraint, rpm counter size = large,
and rpm counter position = center.

e [earned: 2.94 s.
o GAC: 25.67 s.
e classifier: >4 h (time out).

Minimal surface = 217 cm?2. An artistic view of the solu-
tion of this example is depicted in Figure 10.

Mushroom

100000 -
10000
1000
100
10

1 - : {
24% 500,1952 3711,186 23249,356
0,1 -
]—O—Ic il DO DCH it A0~ mmifim A0 i]

Fig. 7. Tests on the mushroom database. [A color version of this figure can be viewed online at www.journals.cambridge.org]

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

Breast-Cancer

100000 -

10000

100

11.%‘%56 366,5728 997 479 3224, 8003,586 32014,03
0,1 -,

g8

0,01 4

I—o—lc == b DCH i A0~ i 3G il i}

Fig. 8. Tests on the breast cancer database. [A color version of this figure can be viewed online at www.journals.cambridge.org]

Problem 3. The CSP is composed of six constraints: e learned: 0.21 s.
the learned dashboard constraint, rpm counter size = e GAC: 5.61s.
large, rpm counter position = center, fuel indicator = cir- e classifier: 1 h, 53 min, 23 s.
cular, temperature indicator = circular, and frame color =
chrome. Minimal surface = 233 cm?
House-Votes-84
100000 -
10000
1000
100
10
45207 18.40 68,6265 229,505 766,895 2096,656 4159529 13752885 25147409
0,1 5,/
0,01

|—O—lc = bC DOt i GC- mmifim BC il i

Fig. 9. Tests on the votes-84 database. [A color version of this figure can be viewed online at www.journals.cambridge.org]

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060227

310

Fig. 10. An artist’s view of an invented dashboard. [A color version of
this figure can be viewed online at www.journals.cambridge.org]

As expected, the use of a generated propagator improves
the resolution time. The observed improvement is of an
order of magnitude over arc consistency computed on a
table and more over generate and test. However, it should
be noted that the generation of the table itself requires a
propagator in order to be obtained in reasonable time (by
avoiding sweeping the whole Cartesian product). In addi-
tion, some constraints are too large to be stored in extension
in memory, which is a point in favor of our approach.

6. RELATED WORK AND CONCLUSION

Partially defined constraints were introduced in Lallouet
et al. (2004). In Faltings and Macho-Gonzalez (2002), the
comparable concept of open constraint was proposed in the
context of distributed reasoning but with the goal of mini-
mizing the number of requests needed to complete the def-
inition. They were similarly used in the framework of
interactive constraint satisfaction (Alberti et al., in press).
Solver learning was introduced in Apt and Monfroy (1999)
with a special rule system, but the generation algorithm was
a bottleneck to handle large constraints. This work was
extended by Abdennadher and Rigotti (2004) and Lallouet
et al. (2003), but still in the context of closed constraints.
None of these methods can combine generalization and
solver efficiency. Partially defined constraints are also related
to uncertainty because an uncertain constraint (Yorke-
Smith & Gervet, 2003) can be viewed as a limited form of
partially defined constraint for which it is assumed that
only a few tuples are missing. The idea of learning con-
straints, extended to the learning of a preference instead of
just a Boolean for a tuple, was used in Rossi and Sperduti
(2004) in the context of soft constraints. They use an ad hoc
neural network to represent the constraint. Although the
learning is effective, the problem of building a solver for
the constraint was not tackled in this work. In Coletta et al.
(2003) and Bessiere, Hebrard, et al. (2004), a CSP com-
posed of predefined constraints like = or = was learned.
The constraints were discovered by a version-space algo-

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

A. Lallouet and A. Legtchenko

rithm that reduces the possible constraints during the learn-
ing process. ANNs were considered for solving CSPs in the
GENET system (Davenport et al., 1994) but with a com-
pletely different approach.

SUMMARY

Partially defined constraints allow the use of constraints
partially defined by examples and counterexamples in deci-
sion and optimization problems. In this work, we propose a
new technique for learning partially defined constraints by
using classifiers. Not only does the generalization we obtain
have remarkable properties from a machine learning point
of view, but it can also be turned into a very efficient solver
that gives an active behavior to the learned constraint. In a
design perspective, partially defined constraints can be used
to represent complex requirements for which a precise def-
inition is either too complex or impossible to get.

ACKNOWLEDGMENTS

The authors thank Patrick Sebastian for suggesting the link to
sensorial analysis.

REFERENCES

Abdennadher, S. & Rigotti, C. (2004). Automatic generation of rule-based
constraint solvers over finite domains. Transactions on Computational
Logic 5(2).

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., & Milano, M. (in press).
A chr-based implementation of known arc-consistency. Theory and
Practice of Logic Programming.

Apt, K.R. (1999). The essence of constraint propagation. Theoretical Com-
puter Science 221(1-2), 179-210.

Apt, K.R. & Monfroy, E. (1999). Automatic generation of constraint prop-
agation algorithms for small finite domains. In Int. Conf. Principles
and Practice of Constraint Programming, Lecture Notes in Computer
Science (Joxan, J., Ed.), Vol. 1713, pp. 58-72, Alexandria, VA. New
York: Springer.

Bessiere, C., Coletta, R., Freuder, E.C., & O’Sullivan, B. (2004). Lever-
aging the learning power of examples in automated constraint acqui-
sition. In Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science (Wallace, M., Ed.), Vol. 3258, pp. 123—
137, Toronto. New York: Springer.

Bessiere, C., Hebrard, E., Hnich, B., & Walsh, T. (2004). The complexity
of global constraints. In National Conf. Artificial Intelligence (Mc-
Guiness, D.L., & Ferguson, G., Eds.), pp. 112-117. San Jose, CA, July
25-29, 2004. Menlo Park, CA: AAAI Press/MIT Press.

Bessiere, C. & Régin, J.-C. (1997). Arc-consistency for general constraint
networks: preliminary results. In IJCAI, pp. 398—404, Nagoya, San
Francisco, CA: Morgan Kaufmann.

Chandrasekaran, B. (1999). Design problem solving: a task analysis. Al
Magazine 11(4), 59-71.

Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., &
Quinqueton, J. (2003). Semi-automatic modeling by constraint acqui-
sition. In Int. Conf. Principles and Practice of Constraint Program-
ming, Lecture Notes in Computer Science (Rossi, F., Ed.), Vol. 2833,
pp. 812-816, Kinsale, Ireland. New York: Springer.

Davenport, A., Tsang, E., Wang, C., & Zhu, K. (1994). GENET: a connec-
tionist architecture for solving constraint satisfaction problems by iter-
ative improvement. In National Conf. Artificial Intelligence, pp. 325—
330, Seattle, WA. Menlo Park, CA: AAAI Press.

Faltings, B. & Macho-Gonzalez, S. (2002). Open constraint satisfaction.
In Int. Conf. Principles and Practice of Constraint Programming, Lec-

https://doi.org/10.1017/S0890060406060227

Partially defined constraints in constraint-based design

ture Notes in Computer Science (van Hentenryck, P., Ed.), Vol. 2470,
pp. 356-370, Ithaca, NY, September 7-13, 2002. New York: Springer.

Freund, Y. & Shapire, R. (1999). A short introduction to boosting. Journal
of the Japanese Society for Artificial Intelligence 14(5), 771-780.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks 2(5), 359-366.

Lallouet, A., Dao, T.B.H., Legtchenko, A., & Ed-Dbali, A. (2003). Finite
domain constraint solver learning. In Int. Joint Conf. Artificial Intelli-
gence (Gottlob, G., Ed.), pp. 1379-1380, Acapulco, Mexico. Menlo
Park, CA: AAAI Press.

Lallouet, A., Legtchenko, A., Monfroy, E., & Ed-Dbali, A. (2004). Solver
learning for predicting changes in dynamic constraint satisfaction prob-
lems. In Changes’04, Int. Workshop on Constraint Solving Under
Change and Uncertainty (Brown, K., Beck, C., & Verfaillie, G., Eds.),
Toronto.

Mitchell, T.M. (1997). Machine Learning. New York: McGraw-Hill.

Moore, R.E. (1966). Interval Analysis. Englewood Cliffs, NJ: Prentice
Hall.

O’Sullivan, B. (2002). Constraint-Aided Conceptual Design. London: Pro-
fessional Engineering Publishing.

Rossi, F. & Sperduti, A. (2004). Acquiring both constraint and solution
preferences in interactive constraint system. Constraints 9(4).

RuleQuest Research. (2004). See5: An informal tutorial. Available on-line
at http://www.rulequest.com/see5-win.html

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal
representations by error propagation. Parallel Distributed Processing
1,318-362.

https://doi.org/10.1017/50890060406060227 Published online by Cambridge University Press

311

van Hentenryck, P., Saraswat, V., & Deville, Y. (1991). Constraint pro-
cessing in cc(fd). Unpublished manuscript.

Verfaillie, G. & Jussien, N. (2003). Dynamic constraint solving. CP’2003
Tutorial. Unpublished manuscript.

Yorke-Smith, N. & Gervet, C. (2003). Certainty closure: A framework for
reliable constraint reasoning with uncertainty. In 9th Int. Conf. Prin-
ciples and Practice of Constraint Programming, Lecture Notes in Com-
puter Science (Rossi, F., Ed.), Vol. 2833, pp. 769-783, Cork, Ireland.
New York: Springer.

Arnaud Lallouet is an Assistant Professor at the Labora-
toire d’Informatique Fondamentale d’Orléans (LIFO), Uni-
versity of Orléans. Dr. Lallouet’s main interest concerns
artificial intelligence and more specifically the relationship
between constraint programming and machine learning.

Andrei Legtchenko is a temporary Assistant at LIFO, Uni-
versity of Orléans, where he is a member of the Constraints
and Machine Learning Team. Dr. Legtchenko is working on
machine learning techniques for building propagators for
constraint solvers.

https://doi.org/10.1017/S0890060406060227

