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Receiver Autonomous Integrity Monitoring (RAIM) is a method implemented within the
receiver to protect users against satellite navigation system failures. For a receiver to execute
a RAIM calculation, two conditions must be met: a minimum number of satellites and

adequate satellite geometry. The non-existence of the minimum number of satellites (five)
is referred to as a RAIM hole. Current regional and global RAIM availability studies use
spatial (grid-based) and temporal sampling intervals driven by a trade-off between accuracy

and computation workload. The implication of minimising computational load is that
accuracy is compromised and potential RAIM holes remain un-sampled, with potential risk
to safety. This paper proposes a direct and computationally efficient method (as opposed
to the grid-based search approach) to predict RAIM holes. The method is based on the

precise computation of satellite coverage (footprint) boundaries, the intersection points and
analysis of the topology of the regions of intersection. Test results show that the proposed
method is highly accurate and requires minimal computational load compared to the current

approach.
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1. INTRODUCTION. Receiver Autonomous Integrity Monitoring (RAIM)
is a receiver-based scheme to provide timely and valid warnings to users if a Global
Navigation Satellite System (GNSS) is not able to meet the required navigation
performance (RNP). RAIM algorithms are based on statistical consistency checks
using redundant measurements. Consistency checks require that at least five satel-
lites are visible, while in the case of Failure Detection and Exclusion (FDE), at least
six visible satellites are required. A RAIM hole occurs for the period of time that
there are insufficient navigation satellites in view to provide an integrity check at a
given location. It is defined to be the time during which less than five GNSS sat-
ellites are in view above a mask angle of 7.5 degrees [1]. RAIM holes are the result
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of information shortage causing the RAIM algorithm to be unable to perform its
function. Similarly, we can define the FDE hole to be the time that less than six
GNSS satellites are in view above a mask angle of 7.5 degrees.

Theoretically, RAIM holes are predictable because they are the result of the
relative motion of the navigation satellites with respect to the Earth. For a single
point on the Earth, it is straightforward to predict the RAIM holes by assessing
the number of visible satellites in the time domain. For an aircraft trajectory,
the prediction is based on trajectory space-time points, with an aircraft only at one
space point on the trajectory at any given time. In the case of performance assess-
ment over an area, the prediction of RAIM holes is more complicated because
of both the spatial and temporal variations. The requirement to sample all ge-
ometries to provide a high accuracy performance assessment could result in a very
large number of space-time points. The method commonly used is to overlay a grid
over an area of interest and to search at the nodes over time. Example spatial
and temporal intervals that have been used in RAIM availability assessment
include: 5 degrees and 5 minutes [2], 3 degrees and 5 minutes [3, 4], while
Eurocontrol employs 0.25 degrees and 2.5 minutes in the AUGUR software [5].
These sampling intervals are relatively large and are therefore susceptible to RAIM
holes. Hence, if the spatial and temporal intervals are too large, then some RAIM
holes could pass undetected if they lie either between the spatial or temporal
sampling points. However, smaller intervals result in a large number of sample
points requiring increased computational resources. The grid-based search method
is therefore always dependent upon a trade-off between accuracy and computational
load.

This paper proposes a pure computation method to predict RAIM holes. The exact
coverage boundaries and intersection points of the boundaries of each satellite are
calculated by extrapolating from the Earth’s spherical model to the ellipsoidal model.
A topology analysis of the regions formed by the intersection of the satellite coverage
boundaries is then carried out. The paper is organised as follows. Section 2 presents
the problem investigated. The algorithms and procedure are presented in Sections 3
and 4 respectively. Test results are presented in Section 5 followed by a discussion
in Section 6. The paper is concluded in Section 7.

2. PROBLEM DESCRIPTION. Looking down towards the Earth, each
navigation satellite covers a certain area of the Earth’s surface. For a given mask
angle, the coverage region on the Earth is a closed surface with a coverage boundary.
The points that comprise the region are individually characterised as either lying
entirely within the region or its boundary. Thus, this set of points denoted by R can
be divided into two subsets RI and RB, where RI is the subset of points in
the interior of a region and RB is the subset of points on its boundary. This can be
written as:

R=[RI RB] (1)

For a modelled surface, such as the surface of a sphere or ellipsoid, a region can be
completely described by the boundary RB because the interior of the region RI can
be determined by the surface model. Hence, the boundary can be exploited positively
in a RAIM hole prediction process.
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The overlap of n satellite coverage areas (or footprints) forms a region where
there must be n satellites in view. This region can be expressed as:

RN=[RN
I RN

B ]= \
n

i=1
Ri (2)

The region RN is a closed surface, bounded by the segments of m (2fmfn) coverage
boundaries. Figure 1 shows the intersection region for m=3. Each segment has a
start point and an end point. These points are an exact subset of boundary inter-
section points. Therefore, the coverage boundary of each satellite and the boundary
intersection points form the boundary of the region RN

B .
The determination of the coverage boundaries and the intersection points is

not straightforward. The coverage boundary, in fact, is the intersection of two
surfaces, one is the Earth surface, and the other is a cone-like surface. There are
several methods to compute the intersection of two surfaces [6]. Generally, a
physical surface can be represented by meshes of bi-cubic patches. The procedure
for finding surface intersections is decomposed into three distinct phases : the mesh
grid hunting phase, the tracking phase, and the sorting phase. The hunting
phase locates discrete starting points at each mesh required for the curve-tracking
operation. The tracking phase creates strings of points lying on the intersection. In
the sorting phase the point strings are ordered and separated into segments or loops.
Figure 2 shows the difference between mesh hunting points and grid-based search
points. It also demonstrates how the grid-based search method oversimplifies the
problem, which may lead to a RAIM hole not being detected even if it covers several
grid areas.

The problem investigated here has an additional complication compared to the
conventional surface intersection determination methods in that the two surfaces
concerned are correlated by the mask angle. Although the ellipsoid model is a more
accurate approximation of the Earth than the spherical model, with the constraints of
a constant mask angle, the coverage boundary does not always describe the exact
shape of an ellipse.

3. THE PINPOINT COMPUTATION ALGORITHM. The basic idea
of determining RAIM holes is to find the precise coverage boundary of each
satellite for a given mask angle (i.e. 7.5 degrees), and then to determine all the inter-
section points. Possible RAIM holes can then be determined by a topology analysis
of the intersecting regions.

3.1. Determination of satellite coverage boundary. The Earth is initially con-
sidered to be a sphere, and therefore the region between the satellite and its footprint
boundary on the sphere has the exact shape of a cone. This enables an initial
(approximate) satellite coverage boundary to be calculated. This is followed by an
iterative transformation from the spherical model to the ellipsoidal model of the
Earth, generating a precise satellite coverage boundary. For the spherical model,
the basic relationships between satellite coverage and various angles are shown
in Figure 3a. The nadir, central and elevation angles are denoted by a, b, and h
respectively. s is the slant distance, rsat is the distance between the satellite and the
Earth’s centre, re is the radius of the Earth, and T is the orthogonal angle between
the radius of the sphere and a plane tangent to the sphere surface at point P.
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The fundamental relationships between these angles and distances are given by:

a= arcsin
re
rsat

cos (h)

� �
(3)

a+b+h=90� (4)

b= arcsin
rsat
re

sin (a)

� �
xa (5)

The position of a satellite can be determined from the satellite’s almanac, broadcast
ephemeris, or precise ephemeris. Furthermore, the satellite foot point on the Earth’s
surface and the distance between the satellite and the Earth’s centre rsat can be
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Figure 2. Mesh hunting points and grid search points.
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Figure 1. Intersection of coverage and boundary segments.

108 SHAOJUN FENG AND OTHERS VOL. 59

https://doi.org/10.1017/S037346330500353X Published online by Cambridge University Press

https://doi.org/10.1017/S037346330500353X


calculated. Since the elevation angle h and the radius of the Earth re are known,
the nadir angle a, and the central angle b can be calculated directly using
equations (3–5). The coverage boundary is a small circle with its centre point at the
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Figure 3a. Relationships between satellite coverage and various angles.

Mθ
Mθ

Foot point

Satellite

O

1θ

ββ

2θ

rs
at

r1
r2

Earth
centrere

α α

1α
2α

ellipsoidal
model

Local
horizon

Spherical
model

Figure 3b. Differences between spherical and ellipsoidal model.
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satellite foot point and a radius equal to the central angle b in units of angular arc
length.

For a given mask angle hM, the central angle b0 can be calculated directly using
expression (3) and (5). The position of a point on the small circle can therefore
be calculated from the position of satellite foot point, central angle, and a given
direction by:

w0= sinx1 ( sinwf cos b0+ coswf sin b0 cosy) (6)

l0=mod lfx tanx1 siny sin b0 coswf

cos b0x sinw0 coswf

 !
+p

 !
, 2p

 !
xp (7)

where w0, l0 are the latitude and longitude of the point on the boundary in the
spherical model. wf, lf are the latitude and longitude of the satellite foot point.
y is the azimuth from satellite foot point to the point on boundary, and
p=3.1415926535898.

In the ellipsoidal model, the coverage boundary is not necessarily a small circle
and the central angle b is no longer a constant but a function of (wf, lf), y and
hM. To transform to the ellipsoidal model, the coordinates (w0, l0) of the point
above are used directly to calculate the elevation angle by assuming the point is on
the surface of the ellipsoid. The resulting error between the calculated elevation
angle and the mask angle is due to the differences in the radii and local horizons.
Figure 3b demonstrates the scenario where the local horizons and the radii are
different, r1lre, r2lre, r1lr2, and h1lhM, h2lhM, h1lh2 even with the same
central angle b. The difference between the calculated elevation angle and mask
angle together with central angle b0, can be taken as initial values for an iterative
transformation from the spherical model to the ellipsoidal model. The elevation
angle algorithm plays the role of transformation because the final decision whether
a satellite is visible is based on the calculated elevation angle. The purpose is to
find the points on the surface of ellipsoid whose elevation angles equal the mask
angle.

For a point on the boundary, the error in the elevation angle can be expressed as:

Dhi=hixhM (8)

where Dhi, hi denote the errors in the elevation angle and the calculated elevation
angle respectively in the (ix1)th iteration. The corrected central angle can be
expressed as:

bi=bix1+Dhix1 (9)

where bi is the central angle for the ith iteration for the precise position of the point
on coverage boundary.

The central angle bi is fed back to expressions (6) and (7) by replacing b0. The point
position (wi, li) and corresponding hi can then be calculated. The iteration process
stops when Dhi is small enough to meet a specified accuracy requirement. After a few
iterations, the precise ellipsoidal coordinates of the point on coverage boundary
can be determined. What should be highlighted is that the angle T in Figure 3a is
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not necessarily an orthogonal angle and expression (4) does not hold in the iterative
process.

3.2. Determination of boundary intersection points. The intersection points are
determined using the same procedure as for the coverage boundary determination.
The initial intersection points are based on the Earth’s spherical model. In a second
step, they are extrapolated to the ellipsoidal model using the same iterative method as
described in section 3.1.

Consider two satellites shown in Figure 4, with foot points B and C on the
Earth surface, and the centre of the Earth at O. If the two boundaries intersect,
generally there are two intersection points (D and Dk). Tangency of two coverage
boundaries is a special case where points D and Dk coincide with each other.
The central angles bB and bC can be calculated from the mask angle. For the
spherical model, bB, bkB, bC and bkC have the same value (bB=bkB=bC=bkC) for
the same mask angle value. The great circle distance (d) can also be determined from
the location of the two foot points B and C. According to the laws of spherical
triangles,

ffD= arccos
cos (d)x cos (bB) cos (bC)

sin (bB) sin (bC)

� �
(10)

ffB= arcsin
sin (ffD) sin (bB)

sin (d)

� �
(11)

where —D, —B are the angles in the spherical triangle shown in Figure 4.
The azimuth from point B to C, yBC can be calculated based on the location of

points B and C ; and the azimuths from point B toD andDk, i.e. yBD and yBDk, can be
calculated from:

yBD=yBC+ffB (12)

yBD0=yBCxffB (13)

From point B, along the directions given by yBD and yBDk, and distance equal to bC,
the location of points D and Dk can be found by expressions (6) and (7) and the
following iteration process.

Checking the elevation angle at the intersection points D (Dk), we find that it is
not the same as the mask angle. This is due to the same reason as in the coverage
boundary determination. However, we take these points as the initial location for
the iteration from the Earth’s spherical model to the ellipsoidal model. At either
point D or Dk, there are two elevation angles to the satellites B and C. The error in
these two elevation angles can be expressed as:

DhiB=hiBxhM

DhiC=hiCxhM
(14)

where DhiB and DhiC are the error in the elevation angle for satellites B and C
respectively. hiB and hiC are the actual elevation angles with the initial value with
respect to bB, bC determined from the spherical model. hM is the mask angle. The
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corrected central angles can then be expressed as:

biB=bix1
B +Dhix1

B

biC=bix1
C +Dhix1

C

(15)

where biB and biC are the central angles at the ith iteration. The initial values b0
B and

b0
C (i=0) are taken as the central angles (bB and bC) determined from the spherical
Earth model. The central angles biB and biC are then fed back to expression (10) and
(11) by replacing bB and bC. The iteration process stops when Dhi is small enough to
meet a specified accuracy requirement. After a few iterations, the precise intersection
points can be determined. What should be highlighted is that the central angles
biB and biC (and other combinations) do not necessarily have the same value in the
iterative process.

3.3. Topology of intersecting regions. A RAIM hole does not necessarily occur
around the intersection points. Whether there is a RAIM hole depends on the number
of visible satellites at the intersection points and the topology of the intersection
regions around them.

There are four regions around each intersection point of two satellite coverage
boundaries. If an intersection point falls within the footprint of n satellites, the
intersection region formed by the two satellites and delimited by nearby footprints

n
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Figure 5. (a) Topology of two boundary intersection regions. (b) Topology of regions around the

tangent point.
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Figure 4. Intersection of two satellite coverage borders.
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has n satellites in view. The two adjacent regions to the intersection region are areas
with (nx1) satellites in view. The region on the opposite side to the intersection
region is the area with (nx2) satellites in view. The number of visible satellites on
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Figure 6. (a) and (b) Topology of three boundary intersection regions. (c) Topology of regions

around tangent and intersection point.
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Figure 7. (a) and (b). Topology of multiple regions.
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the coverage boundary is the larger number of visible satellites of the two adjacent
regions. Figure 5a shows the topology of a two boundary of intersection delimited
by a nearby footprint. One special case is the existence of a tangent between two
boundaries where only the tangent point has the maximum number of visible sat-
ellites. Figure 5b shows the topology of regions around the tangent point between
two boundaries.

Figures 6a, 6b, and 6c show the topology of regions for different scenarios con-
sidering an intersection point in the three boundary case. Figures 7a and 7b show the
topology of multiple regions.

If an intersection point has six satellites (n=6) in view, according to the topology,
there must be at least one region with only four satellites in view, i.e. a RAIM hole,
and two regions with only five satellites in view, i.e. an FDE hole. In some special
cases, such as shown in Figures 6a and 6c, RAIM holes could occur even with more
than six satellites in view at an intersection point. However, because both the Earth
and the satellite coverage area on the Earth are closed surfaces, there must be at
least one other intersection point with six satellites in view (i.e. two boundaries
intersect) because the intersection region is also a closed surface as shown in
Figure 7a. The extreme case rarely occurs where a RAIM hole is formed by all the
intersection points of the three boundaries and segments of adjacent boundaries as
shown in Figure 7b.

4. RAIM HOLE DETERMINATION PROCEDURE. Given the algor-
ithms described in the preceding sections, the process for the determination of
RAIM holes consists of a number of steps as given below.

’ Determination of the positions of all satellites
’ Determination of the foot points of all satellites in ellipsoidal model
’ Determination of the rough intersection points of all satellites in ellipsoidal

model
’ Iterative determination of the precise intersection points of all satellites
’ Checking the visible satellite number at each intersection point. If the

visible satellite number is less than six (nf6) record the location of
the intersection point and the identification (ID) numbers of the satellites in-
volved.

’ Sorting the recorded intersection points to form a closed region from the
recorded satellite IDs.

’ Iterate to determine the segments of the boundaries from the recorded satellite
IDs and the intersection points which form the closed region.

As described in section 2, a region on a modelled surface can be completely
described by the regional boundary. Therefore, the region enclosed by the segments
of boundaries determines the precise location of the RAIM hole.

5. RESULTS. A global RAIM hole calculation was carried out to verify the
pinpoint algorithm. The optimised 24 Global Positioning System (GPS) constel-
lation [4] was used to determine the positions of satellites. The Earth’s ellipsoidal
model was taken as WGS-84.
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The RAIM holes at 403500th, 403700th and 403900th seconds of week are
shown in Figures 8a, 8b, and 8c respectively. The RAIM holes and the coloured
areas in the diagrams are bounded by the satellite footprint boundaries. The
numbers beside the intersection points are the numbers of visible satellites at those
points. These figures also show how the shape and size of RAIM holes change
over time. A further example is shown in Figure 9 where the RAIM hole covers
part of the land.

6. DISCUSSION. The proposed algorithm is able to find the satellite cover-
age boundaries and intersection points with high precision. The elevation angle
errors relative to the mask angle at the determined points are at the level of
1r10x4 degrees after one iteration, and 1r10x10 degrees after six iterations. With
this accuracy, unless three or more satellite boundaries intersect at exactly one point,
(see Figures 6a, 6c, 7a and 7b the probability of this happening is significantly
low), the probability of detecting the closed region bounded by the intersecting
boundaries is extremely high. Even in the rare cases where more than two footprint
boundaries intersect at the same point, any potential RAIM holes are still detect-
able because at least one other intersection point will have six satellites in view.
If the algorithm finds that the intersection points with six satellites in view are
not able to form a closed region, a very short temporal shift of say, 0.001 seconds is
sufficient for the satellites to move to reveal a RAIM hole.

The accuracy of the results depends on the accuracy of the satellite and 3-D
user position information and the actual height of the user above the ellipsoidal
model surface. The computation workload of the proposed method is significantly
smaller than that of the grid-based search method. For example, considering
two satellite foot print boundary intersections for a 24 satellite constellation at a
time, generates 276 combinations, equivalent to a maximum number of intersec-
tion points equal to 552. Considering six iterations for both bB and bC, there are
a maximum of 6624 points. In addition, there are 100 points for each regional
segment, which need six iterations. Assuming there are 5 segments, an additional
3000 points are obtained. Combining these, a total calculation of 9624 points
is needed, which for example, is less than the number of points in a 2.5xr2.5x
global spatial grid. Furthermore, the accuracy of the method presented in this paper
is much higher than the grid-based search method, even with a 0.25xr0.25x grid
resolution.

7. CONCLUSION. In this paper, a method to compute precise satellite
coverage boundaries and the intersection points determined by a given mask angle
was developed. The RAIM holes were found in two ways: one by using the
direct computation instead of the grid-based search method, and the other by using
bounded regions to express RAIM holes instead of the points-based approxi-
mation. The advantages of the method presented in this paper are accuracy with
less computational load. There is no possibility of even the smallest RAIM holes
passing undetected. The method can be used for GPS, or Galileo integrity perform-
ance assessments, and can also be used for RAIM hole predictions especially for
regional (such as General Aviation) or global applications.
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Figure 8. (a). RAIM hole at the 403500th second. (b). RAIM hole at the 403700th second.

(c). RAIM hole at the 403900th second.
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