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Abstract
Higher-order networks aim at improving the classical network representation of trajectories data as
memory-less order 1 Markov models. To do so, locations are associated with different representations
or “memory nodes” representing indirect dependencies between visited places as direct relations. One
promising area of investigation in this context is variable-order network models as it was suggested by
Xu et al. that random walk-based mining tools can be directly applied on such networks. In this paper,
we focus on clustering algorithms and show that doing so leads to biases due to the number of nodes
representing each location. To address them, we introduce a representation aggregation algorithm that
produces smaller yet still accurate network models of the input sequences. We empirically compare the
clustering found with multiple network representations of real-world mobility datasets. As our model is
limited to a maximum order of 2, we discuss further generalizations of our method to higher orders.

Keywords: network analysis; higher-order networks; clustering; random walk; sequential data

1. Introduction
Networks are powerful tools to represent relations between entities. They can, for example, be used
in the context of trajectory andmobility analysis to encode the amount of movements between dif-
ferent locations. Thesemovements can correspond to sequences of locations (Figure 1(a)) tracking
the order in which a traveler (ship, car, etc.) visited these places. Classic approaches only look
at pairwise interactions obtained from input sequences, and this results in a first-order network
(Figure 1(c)) where weighted edges represent transition probabilities between locations. The cor-
responding model is a memory-less first-order Markov model where the probability for a random
walker to visit a given place depends only on its current location.

Recent works (Xu et al., 2016; Scholtes, 2017) suggest that this representation cannot cap-
ture the spatial dependencies existing in the input sequences (Figure 1(b)). Indeed, they show
that random walks on first-order networks are often poor approximations of the behavior of
travelers. “Higher-order” networks have been proposed in order to improve the network repre-
sentation and go beyond the classic dyadic relation (Eliassi-Rad et al., 2021). In this paper, we use
this term to refer specifically to network models designed to represent indirect dependencies in
sequential data. In such a model, different representations of locations (sometimes called “mem-
ory nodes”) are used as nodes to encode these dependencies. In this context, most of the studies
focused on a first type of higher-order networks: the fixed-order networks of order k (FONk),
where the probability to visit a location depends on the last k visited places (Rosvall et al., 2014;
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Figure 1. Example of inputs and variable-order networks representing dependencies when visiting locations A=
{a, b, c, d, e, f }. When looking at successive pairwise interaction of set S in (a) a natural representation is the first-order net-
work (c). However, we can identify second-order dependencies in (b). For instance, when coming from a the flow tends to
either return to a or go to b after visiting e. The VON2 network in (d) only includes relevant dependencies. Subsequence de is
not relevant extension of the sequence e since knowing we visited d before e does not impact the prediction of next visited
location. Second-order nodes are displayed as gray rectangles. The set V(e)= {ae, be, ce, e} of nodes are representations of
the location e. In our aggregated model (e), multiple representations can be merged if they correspond to similar distribu-
tions. Here, the probability distribution Pae is close enough to Pbe to justify using this smaller model. Node (a∪ b)e encodes
the event “the traveler came either from a or b before visiting e.”

Scholtes, 2017). Other authors (Xu et al., 2016; Saebi et al., 2020a) proposed the use of a sec-
ond type of higher-order networks: VON that only include statistically relevant dependencies
(Figure 1(d)).

The motivation behind the design of these models is to improve the relevance of random walk-
based mining methods such as PageRank ranking (Brin & Page, 1998) and Infomap clustering
(Rosvall et al., 2009). For example, the Infomap algorithm was applied to VON built from a mar-
itime transportation dataset (Xu et al., 2016). Since ports may have many representations as nodes
in the network, the partition of nodes found actually corresponds to overlapping clustering of
the ports. A possible application is the prediction of invasion of an ecosystem by non-indigenous
aquatic species (Saebi et al., 2020b).

One important argument (Xu et al., 2016; Saebi et al., 2020a) for the use of VON was that
algorithms such as Infomap can be used directly on VON since these are defined as a weighted
graph. This paper aims to investigate this claim with a focus on clustering algorithms. Several
higher-order networks can be built from the same input dataset; for instance, we can imagine
smaller VONmodels that can also accurately predict travelers’ movements (see Figure 1(e)). Even
though they contain similar features, we show that, even if trajectories aremodeled using a second-
order Markov process, the difference in the number of representations of locations has important
effects on the results. Our results support the idea that, even if higher-order dynamics can be
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encoded in a classic weighted graph, mining tools designed for memory-less networks may not
be adapted to capture these dynamics. Rather, future network algorithms should be specifically
designed to take the multiplicity of higher-order network representations into account.

The contributions of this paper are as follows:

• Analysis of the impact of multiple representations of locations on the Infomap algorithm
(Rosvall et al., 2009).

• New model of aggregated VON (limited to a maximum order of 2) that produces a more
parsimonious representation of the input sequences.

The paper is organized as follows. We discuss the semantic of “higher-order networks” and
works related to their clustering in Section 2. Notations and the construction of VON, FON, and
Agg-VONmodels are given in Section 3, and then, three potential effects of the existence of mem-
ory nodes in the context of the Infomap clustering algorithm are presented. In Section 4, we show
the effect of aggregation on synthetic benchmark networks, and in the context of real sequences
datasets, we show that our model is still accurate and that there are important differences in the
clusterings found with it. As our model is limited to a maximum order of 2, the generalization of
our aggregation procedure to any order as well as other possible adaptations of network analysis
tools are discussed in Section 5.

2. Related Works
The terms “high-order” or “higher-order”might be confusing as they are used to describe different
concepts in data mining and network analysis. Eliassi-Rad et al. (2021) broadly define “higher-
order networks” as generalizations of graph representations designed to “capture more than dyadic
interactions.” Examples include subset dependencies found in co-authorship data, spatial depen-
dencies found in transportation’s networks or indirect dependencies found in sequential data.
The first example corresponds to “higher-order interactions” as discussed in Battiston et al.
(2020). A good survey of these different representations can be found in Torres et al. (2021).
Following the terminology used in this survey, we refer here to “higher-order” as models of
indirect dependencies extracted from sequential data.

Indeed, this term directly refers to higher-order Markov models. They are used in sequence
prediction for compression algorithms (Begleiter et al. 2004) or sequences classification (Ching
et al., 2004; Chen et al., 2021). For the latter, the distance between a sequence and a cluster of
sequences is defined as the likelihood of this sequence in a model built from the sequences in the
cluster. The number of previous steps used can be fixed to a given k or inferred statistically. We
will refer to this subset of higher-order models as fixed-order models. An important drawback is
that the number of parameters of the models grows exponentially with k. Chen et al. (2021) use
a more general form of models called variable-order Markov models. In these models, a set of
contexts of various lengths is used instead (Ron et al., 1994).

Accordingly, we shall refer in this paper to fixed-order networks of order k and variable-
order networks denoted as FONk and VON, respectively. Both are special cases of higher-order
networks and include “memory nodes” in order to encode the transition probabilities of the
corresponding higher-order Markov models. As the underlying model is a better predictor of
sequences, a random walk performed on these networks should better represent the system that
produces those sequences. In this context, most studies were dedicated to the class of FONk.
Finding the k that leads to the best representation was addressed in Scholtes (2017). In a recent
perspective article, Lambiotte et al. (2019) highlight the importance of model selection and the
need for alternatives such as VON.

A VON model was introduced in Xu et al. (2016), although the authors use the broader term
“higher-order networks” or HON to name their model. The main idea is to only keep memory
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nodes that actually add information about a random walker behavior. The authors implement
this idea in an algorithm that recursively searches for contexts that correspond to significantly
different transition probabilities when compared to shorter contexts already found (we precisely
described the procedure in the following section). The implementation of this algorithm was fur-
ther improved in Krieg et al. (2020). The concept of significance of “contexts” is also used in
sequence classification although significance is here defined as the number of times a given con-
text is found in the input data (Chen et al., 2021). In this case, even a small difference in transition
probabilities can be deemed important. Saebi et al. (2020a) then further developed the model of
Xu et al. (2016) by introducing a threshold function to assess the significance of the difference
between transition probabilities making the generation of VON parameter-free.

Clustering of FON2 networks was discussed in Rosvall et al. (2014). The authors introduced a
generalization of the Infomap algorithm (Rosvall et al., 2009) in order to find overlapping cluster-
ing of the locations. The Infomap algorithm is also used by Xu et al. (2016); however, the algorithm
was, in this case, directly applied on the VON representations. In this paper, we investigate the
choice of higher-order model selection on the clustering results of the Infomap algorithm. In par-
ticular, we investigate the effect of using sparser model achieved by merging memory nodes with
similar transition probabilities. A similar idea was previously suggested in Jääskinen et al. (2014)
resulting in a model called Sparse Markov Chains. The goal of the authors was to improve the rate
of compression and the classification of DNA sequences and protein data. However, their contri-
bution is based on mixed-order models (a combination of fixed-order model of order lesser or
equal to k).

In the context of VON, the effect of multiple representations on PageRank values was investi-
gated in Coquidé et al. (2022). In this context, the PageRank of locations was defined as the sum of
the PageRank values of its representations. It was shown that the non-uniformity of the number
of representations per locations leads to a bias.

3. Definitions andmethods
We describe here the notations used in this paper and the construction of VON. The application
of the Infomap clustering algorithm to VON is then discussed. We highlight the influence of the
number of location per location. A more parsimonious network (Agg-VON2) is then introduced.

3.1 VON representation
Let A be the set of locations (itemset). An input dataset corresponds to a set S = {s1, s2, . . .} of
sequences si = σ1σ2σ3 . . .where all σj ∈A. For a sequence s of symbols inA, the order of s denoted
|s| is the length of s and the count (or flow) of s denoted c(s) is the number of occurrences of s in
dataset S . We will also use Cs = (c(sσ1), c(sσ1), . . . , c(sσm)) to denote the occurrences of every
possible location σi following the sequence s. Let s= s1s2 be a sequence resulting in the concate-
nation of sequences s1 and s2. We say that s2 is a suffix of s and s1 is a prefix of s. The interactions
and dependencies within the system that produced the sample S may loosely be called the flow
dynamic. In this context, we are interested in inferring the possible locations visited by a traveler
after a given set of locations.

Definition 1. Transition probability. For a sequence s, the transition probability from s (context)
to σ ∈A (target) is defined as

p(σ | s)= c(sσ )∑
σ
′∈A c(sσ ′)

(1)

where sσ is the concatenation of symbols in s followed by σ . Also, the probability distribution of
locations σi visited after context s is denoted as Ps = (p(σ1 | s), p(σ2 | s), . . . , p(σm | s)).
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The probability in Equation (1) is the maximum likelihood estimate given a sample S .
However, we will not use special notation to distinguish it from an unknown true distribution.
The main difference between the compared models here is going to depend on the set of contexts
s for which transition probabilities are defined.

Fixed-order models usually rely on taking all possible contexts of order k. Obviously, the size of
the model is O(|A|k). The VON model studied here aims at finding a subset of relevant contexts.
They can be expressed as extension of each other.

Definition 2. Relevant extension (Saebi et al. (2020a)). For a sequence s′ and s one suffix of s′, we
say that s′ is a relevant extension of s if

DKL
(
Ps′ ||Ps

)
>

α|s′|
log2 (1+ c(s′))

(2)

where DKL is the Kullback-Leibler divergence (in bits) and α ≥ 1 is the threshold multiplier.

In Figure 1(d), the knowledge that we came from a before visiting e is relevant as we can better
predict the next visited location. Therefore, ae is a relevant extension of e. However, de is not since
knowing that we came from d does not add significantly more information (as expressed by DKL)
that we already had. In general, it is possible to have a 3rd or higher-order extension s= σ1σ2σ3 . . .

identified as relevant while some of the suffixes of s are not. We can see from the right part of
Equation (2) that it is increasingly harder for high order and sparsely observed subsequences to
be relevant. Saebi et al. (2020a) use a value of α = 1.We can use a higher α value to construct more
parsimonious networks. In the experiments, we use this parameter to evaluate the accuracy of the
aggregated model described in Section 5.1.

The VON constructed with dataset S using the method of Saebi et al. (2020a) with threshold
multiplier α is denoted VON(α)= (V , E ,w). In the rest of the paper, we will just call it VONwhen
we assume α = 1. The general idea is to build a graph where each location σ ∈A is represented
by multiple nodes corresponding to its extensions. We say that these nodes are the representations
of σ . We use the sequences as node labels and we refer in this case to the terms “nodes” and
“sequences” interchangeably.

The construction of VON is done in two phases. First, we extract the set of relevant extensions.
Starting from the set A, the relevant extensions are found using a recursive procedure (order 1
sequences {σ ∈A} are always considered as relevant). An upper-bound of DKL can be used to
stop the recursion and the algorithm does not require a maximum order parameter to stop the
search. The set of nodes V will include all detected relevant extensions. Also for each extension
s= σ1σ2σ3 . . . ∈ V , all of its prefixes are added to V even if they are not relevant extensions in
order to guarantee that the node s is reachable (see Proposition 1 below).

Second, the edge set E and the weights w are defined as follows. Let s ∈ V and σ ∈A such that
p(σ |s)> 0, VON contains a link s→ s∗σ of weight w(s→ s∗σ )= p(σ |s) where

s∗ = arg max
s′σ∈V

{|s′|, s′ is a suffix of s} (3)

For example, let s= abc and s∗σ = bcσ be relevant extensions of c and σ respectively then there
will be a link s→ s∗σ if abcσ is not a relevant extension of bcσ and p(σ |s)> 0. In Figure 1(d),
links x→ e in the first-order network are replaced by links x→ xe if x ∈ {a, b, c}. Note that this
definition of the edge set is a shorter reformulation of the idea given by Saebi et al. (2020a) which
only provides a procedure to construct the set E involving edge rewiring.

Property 1. Random walk as variable-order Markov model simulation Let VON= (V , E ,w) and
s= σ1σ2 . . . σm ∈ V be a representation of σm, there exists a path σ1 → σ1σ2 → . . . → s followed
by a random walker starting in σ1 with probability

∏m
i=2 p(σi|σ1 . . . σi−1)> 0.
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Proof. By definition, each (σ1, σ1σ2, . . . , s) is a labeled node of V as prefix of the relevant extension
s. Let s′i be the prefix of order i<m of s. Since s′iσi+1 is also a prefix of s, we have c(s′iσi+1)> 0 so
there is an edge e= (s′i → s′iσi+1) ∈ E with w(e)= p(σi+1|s′i)> 0 by definition since s′i is the largest
suffix of s′i (Equation (3)). �

The above property shows that a random walk on VON corresponds to a simulation of the
variable-order Markov model composed of the selected subsequences of V . A random walker can
follow the higher-order dependencies detected in the input dataset. When restricted to a maximal
order of k (i.e. when stopping the recursive extraction of extension at order k), the returned net-
work is called VONk. For a higher-order network, the set of kth-order nodes is Vk ⊆ V . Moreover,
the set of the k-order nodes corresponding to representations of a location v ∈A is denoted Vk(v).
Note that VONk can still be viewed (even with k= 2) as a variable-order model since not all
extensions of order k are kept as relevant.

The fixed-order network FONk = (VF , EF ,wF) is built by taking all subsequences of length k in
S as the set of nodes VF while EF and wF definition is similar to VON. As such, FONk corresponds
to a subgraph of the De Bruijn graph of length k over alphabetA.

3.2 Clustering of VON using Infomap
Node partitioning aims at identifying well-connected subgraphs that are sparsely connected to the
rest of the network. Several contributions in this domain gave different formal definitions to this
idea in the form of quality measures to optimize. Dao et al. (2020) give a comprehensive review
and comparison of the most commonly used strategies. The Map Equation (Rosvall et al., 2009)
denoted L(C) can be viewed as a description length metric of the partition C = {C1, C2, . . . , Cm}.
For a graph G = (V , E ,w), the best partition of V corresponds to the best two-level encoding of
random walks in G.

Let πv be the steady-state probability that a random walk visits node v ∈ V . In a one-level
encoding, an optimal binary code for node v (called codeword) would be of length log2 (πv)
and the expected usage of the codeword per step of a random walk is πv. The average number
of bits encoding a random walk using a one-level encoding is therefore given by H({πv}v∈V )=∑

v∈V πv log2 (πv), that is, the entropy of the visit probabilities for nodes in G.
Using a two-level encoding, it is possible to achieve a lower code length. Indeed, the second

level of encoding assigns enter and exit codewords to clusters. A random walk leaving cluster C1
and entering cluster C2 would use the exit codeword of C1 and the enter codeword of C2. This
allows for a codeword to be reused for nodes belonging to different clusters. If clusters are well
separated, the increase in length due to enter/exit codewords will be compensated by the reuse of
nodes’ codewords.

The algorithm called Infomap aims at minimizing the objective function L using a fast greedy
multi-level procedure. Note that the algorithm does not actually find the best two-level encoding.
Rather, the Map Equation L(C) is defined as the theoretical minimum average number of bits per
step of the random surfer.

The application of Infomap to higher-order networks is natural. Indeed, different represen-
tations can be clustered into different groups. This corresponds to the idea that representations
of a same location encode different behaviors. Considering the example given in Figure 2(b), the
different representations of location v perfectly capture the flow dynamic (i.e. a traveler can never
leave a given clique). A clustering algorithm should return the node partition corresponding to
the three colors. From this partition, we can construct more general clustering by assigning to
each location the set of clusters where at least one of its representations was found, resulting in an
overlapping clustering of the locations (Lancichinetti et al., 2008).

As said previously, it was suggested that we could directly apply Infomap algorithm on VON
(Xu et al., 2016) without any adaptation, that is, we can consider VON as a “simple” first-order
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(a) (b)

(c)

Figure 2. 2 Cliques example. Assume a graph (a) made of two cliques {v, a, b, c} and {v, d, e}. The sequences S are con-
structed as follows: a traveler picks any outgoing edge at random. However, if it reaches v, it will return to another node
of the clique it came from. The network VON2(S) (b) then includes one representation of v for each other node, and all
edges leaving the same node have the same weight. In MIN-VON2(S) (b) the representations of v are merged according to
the known flow dynamic and include only two representations of v. The color indicates the partition that should be found by
the clustering algorithm. When projecting on the locations, v will be found in 3 clusters (1 is trivial).

network in this context. However, the multiplicity of representations may have important effects
on the algorithm. In the example above, another network can be built with fewer representations
(see Figure 2(c)). Notice it also splits vertices into two strongly connected components. We refer
to this alternative higher-order model as minimal and call it MIN-VON2. In the simple case of
Figure 2, one could expect the result of an algorithm to correspond to the same overlapping clus-
tering. In the general case, we argue that the number of “additional” representations of VONwhen
compared to an idealminimalmodel has three potential effects discussed next.

Effect on the number of codewords per cluster. When Infomap is applied to VON, two
representations of the same location belonging to the same clusters are given different
codewords. This may make the detection of clusters containing many representations of
the same location harder. This issue has already been identified by Rosvall et al. (2014)
for FON2 networks. They suggested a modification of Infomap in order to give the same
codeword to representations of the same location. Indeed, the more a location is repre-
sented in a cluster the larger the contribution of this cluster to the Map Equation will be.
For example, in the VON2 network in Figure 2(b), we use three codewords for each of the
nodes {av, bc, cv}. The code length achieved for the clustering would therefore be higher
than the one achieved for the MIN-VON2 network in Figure 2(c) where there is only one
representation of a location per cluster.
Effect on rate of codewords usage. Remember that steady-state probabilities of a random
walker are used to compute the rate at which codewords are used in the Map Equation. In
order to guarantee the uniqueness of π ’s values, a random walk must be turned into a ran-
dom surfer with a positive probability τ to teleport to any given node at each step. Infomap
uses the usual τ = 0.15. The π values therefore correspond to the PageRank metric (Brin
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Algorithm 1:Merge second-order representations of v

and Page 1998). The values associated with each node are computed at the beginning of
the algorithm. The teleportation mechanism creates discrepancies between the VON2 and
MIN-VON2 models (Coquidé et al., 2022) even assuming the first effect is corrected, that
is, we use a similar codeword for representations of a location that belongs to the same
clusters. In the example of Figure 2, assuming we are correcting for the first effect, the
probability for a random surfer to use the codeword associated with nodes (av, bc, cv) after
a teleportation is 3

10 for VON2 and 1
8 (less than half) for MIN-VON2.

This second effect can therefore also make the identification of larger clusters difficult.
Indeed, the more a cluster contains representations the more its enter, exit, and nodes
codewords are used. In the minimal model, the π rates are also biased due to the dif-
ferent number of representations but to a lesser degree. Even though a random surfer is
more likely to visit a representation of location belonging to different clusters, there is, by
definition, only one representation per cluster.
Effect on the solution space exploration. The Infomap algorithm follows a hierarchical
greedy procedure, starting with a partition where each representation is assigned to a single
cluster. As such, regrouping the representations of a location in the same clusters requires
as many modifications as the number of representations in each cluster. The chance of
running into local minima is therefore higher.

We conclude that there are several reasons why we should try to compare clustering achieved
by VON and those achieved on a more parsimonious network model. The fact that the Map
Equation L is affected by the number of representations used does not means that the results
of Infomap will be worse. However, the experiments detailed in Section 4.1 show that it is the case
even when considering only second-order dynamics.

3.3 Aggregated VON2 model
In the previous section, the minimal VON model is built from an underlying known clustering.
In order to access the relevance of parsimonious models in real case studies, we define here our
aggregated model of VON2 called AGG-VON2. The underlying hypothesis we use to get closer to
a minimal model is that representations having similar output transition probabilities will belong
to the same clusters. This is clear when looking at the example in Figure 2. As for the previous
case study, we assume that the flow dynamic is captured at a maximum order of 2. We will clarify
this assumption in Section 5.1. We first define the concept of merging representations and then
introduce the criteria that we use to obtain an aggregated model. This leads to the definition of
the Algorithm 1.
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Definition 3. Merged representation. For v ∈A a location, we call merged representation a subset
X ⊆ V2(v) and for σ ∈A we define c(Xσ )= ∑

x1x2∈X c(xσ ) as the merged flows of X and

p(σ |X)= c(Xσ )∑
σ
′∈A c(Xσ ′)

(4)

as the transition probabilities of X to σ . As with Def. 1, PX (CX) shall denote the probability (flow)
distribution associated with symbols following any sequence in X.

This generalized form of transition probability can be interpreted as the probability of arriving
at location σ given the fact that we are in location v having visited one of the locations x such that
xv ∈ X.

Definition 4. Possible Merge. Let X, Y be two disjoint merged representations of v. We say that
(X, Y) can be merged or X� Y if the following inequalities hold

DKL (PX||PX∪Y) <
2

log2 (c(X)+ 1)
(5)

DKL (PY ||PX∪Y) <
2

log2 (c(Y)+ 1)
(6)

DKL (PX∪Y ||Pv) >
2

log2 (c(X ∪ Y)+ 1)
(7)

An example of possible merge is given in Figure 1(e) with the merging of representations ae
and be into a single representation (a∪ b)e. The idea behind the above conditions is to reuse the
criterion for relevant extension in Definition 2 with a threshold multiplier α = 1. Indeed, we have
ae� be when knowing that the traveler came from a or b is relevant (Condition 7); however, the
additional information “it actually came from a (or b)” is not (Conditions 5 and 6).

Property 2. Non-Transitivity. Let X, Y , Z be disjoint merged representations of v then
(X� Y)∧ (Y � Z)� (X� (Y ∪ Z))

Proof. Let CX = (n, 0, 0, . . . , 0), CY = (n, n, 0, . . . , 0), CZ = (0, n, 0, . . . , 0) and Cv =
(2n, 2n,N, 0, . . . , 0) where n�N. Due to the last assumption, we can assume the condi-
tion Equation (7) always holds. We have DKL(PX , PX∪Y∪Z)= 1 so for any n> 2 we have
¬(X� (Y ∪ Z)). However, DKL(PX , PX∪Y )=DKL(PZ , PY∪Z)= log2 (3)− 1. Therefore, for
2< n≤ 9, (X� Y)∧ (Y � Z) is true while (X� (Y ∪ Z)) is false. �

A consequence of Property 2 is that a minimum set of merged representations cannot be found
by iteratively performing all possible merges since the results may be arbitrary. We therefore use
a hierarchical aggregation procedure that will prioritize the merges of representations that are the
most similar (in terms of distance to their union distribution). However, since not all represen-
tations can be merged, the aggregation procedure does not need a stopping condition and the
number of merged representations returned depends on the thresholds of Definition 4. This oper-
ation is therefore parameter-free. The drawback for it is similar to the one related to the building
of VON networks: it relies on the definition of relevance according to Saebi et al. (2020a).

The outline of the procedure can be found in Algorithm 1. For simplicity sake, it corresponds
to a direct approach of the problem. This problem is similar to a hierarchical clustering (Manning
et al., 2008) with two main differences. First, testing x� y and computing the similarity between
x and y is done in O(|A|). Assuming N = |V2(v)| and given that N ≤ |A|, the time complexity of
Algorithm 1 is thereforeO(N2|A|). Second, as not all merges are possible, the setMmay be sparse
and requires O(N2) space. The procedure space complexity therefore corresponds to the O(N|A|)
required to store values of c. Computation times for real datasets are discussed in Section 4.

https://doi.org/10.1017/nws.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.36


390 F. Queiros et al.

The third condition in Equation (7) guarantees that merged representations are still relevant
extensions of first-order sequences. Having identified all merged representations of each loca-
tion using Algorithm 1, we construct AGG-VON2 by merging the second-order nodes of VON2
that belong to the same group as shown in Figure 1(e). Merged nodes transition probabilities are
defined using Equation (4). The node fusion preserves Proposition 1 albeit a random walker will
use the latter estimation of transition probabilities. Indeed, for a merged representation X of v
and σ ∈A, the longest suffix s∗ in Equation (3) is similar for every xv ∈ X as s∗σ is either σ or vσ .
Moreover, for xv ∈ X and yv ∈ X there is no s ∈ V such that (s→ xv) ∈ E and (s→ yv) ∈ E since it
would mean that s is a representation of both x and y.

There are several tests we have to perform in other to assess the relevance of AGG-VON2. First,
the produced aggregated network should be significantly smaller in terms of number of nodes.
Second, it should represent flow dynamics almost as well as the VON2 network. This condition
is crucial since the point of using random walk-based clustering on higher-order networks was to
take advantage of their capacity to reproduce observed sequences. Third, if the first hypothesis is
verified, we expect the clusterings found on the aggregated network to be different than the one
obtained on the VON2 network for the reasons described in the previous section.

4. Experiments and results
We report in this section the experiments made to test the various hypothesis made in previous
section. First, in Section 4.1, we demonstrate on synthetic datasets that a VON with a minimal
number of representation is more efficient for the identification for known clusters. Next, in
Section 4.2, we show that the AGG-VON2 model produces a smaller and accurate model. We
also discuss the differences obtained with the Infomap clustering on three real-world sequences
dataset1.

4.1 Effect of aggregation on synthetic benchmarks
Reading: (third line) There is a median of 1,944 nodes in the VON2 network for parameters
Overlap, Mixing, and Clust Range of 15%, 30% and 20− 50 respectively. There are however 1,293
nodes in theMIN-VON2 network (a difference of−651). This line corresponds to the first column
in the top-right panel of Figure 3.

We focus on the impact of the number of codewords per cluster on clusters extracted with
Infomap. Considering synthetic networks, we measure the efficiency of reducing the number of
representations in the clustering.

These test experiments are made using graphs with more complex clusters and node degree
distributions than the ones in Figure 2(a). We use the LFR benchmark (Lancichinetti et al., 2008)
to generate directed graphs along with a ground-truth overlapping clustering of the nodes. In this
benchmark, the “Mixing” parameter corresponds to the percentage of outgoing edges that are
inter-clusters edges. The “Overlap” is the percentage of nodes in more than one cluster. Clusters
size range gives the minimum and maximum sizes of clusters. The rest of the parameters take
the following values found in the literature (Xie et al., 2013): N=1,000 (number of nodes), om=
2 number of different clusters that overlapping nodes are members of, k̄= 10 (average degree),
max (k)= 50 (maximum degree), τ1 = 2 (exponent of degree distribution), τ2 = 1 (exponent for
clusters size distribution).

We use a flow dynamic similar to the example of Figure 2: if a traveler coming from a cluster
Ci arrives at an overlapping node v in Ci, it will return to a random non-overlapping neighbor
of v in Ci. Otherwise, it will follow an outgoing edge at random. In this situation, the traveler is
able to move from a cluster to another by following inter-cluster edges. Knowing the graph, the
ground-truth clustering and the flow dynamic we can directly construct the networks and try to
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Figure 3. NMI between Infomap clustering found for each test case and the ground-truth clustering as generated by the LFR
benchmark. A value of 1 indicates a perfect identification of the real clusters (). Each boxplot corresponds to the distribution
over 50 tests.

recover the original clustering using Infomap. To test the impact of the effects described at the
end of Section 3.3, we compare four different Infomap inputs:

• Network VON2 when not correcting for the first effect described in Section 3.2, that is,
using different code words for all representations of locations

• Network VON2 when correcting for the first effect, that is, using the same code word for
representations of a location that belong to the same clusters

• Network MIN-VON2 where representations are merged according to the clusters they
should belong to (as in Figure 2c). We also correct for the first effect

• Network FON2 (Rosvall et al., 2014) correcting for the first effect

The number of nodes found for VON2 and MIN-VON2 networks is reported in Table 1 for
the various parameters used. Since the number of communities of overlapping locations is 2, each
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Table 1.Difference in number of representations in the LFRbenchmark for networks VON2 and
MIN-VON2

Overlap/Mixing Clust size range Median Nb. Nodes (VON2/ MIN-VON2/ Diff)

15%/15% 20-50 2248/ 1295/ - 953
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50-100 2113/ 1297/ - 816
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15%/30% 20-50 1944/ 1293/ - 651
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50-100 1916/ 1292/ - 624
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30%/15% 20-50 2928/ 1575/ - 1353
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50-100 2886/ 1574/ - 1312
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30%/30% 20-50 2579/ 1592/ - 1017
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50-100 2501/ 1555/ - 946

overlapping location should have 3 representations inMIN-VON2, for example, taking an overlap
of 15% and 1,000 locations (first four lines in Table 1), MIN-VON2 should contain 1,300 nodes.
The discrepancies with the reported results come from the LFR algorithm that may need to relax
some constraints, that is, the number of overlapping nodes may vary. Notice that the number of
nodes in VON2 is, however, lower with higher mixing values. Indeed, the inter-cluster neighbors
of an overlapping location do not generate additional memory nodes.

The difference between clusterings found and the ground-truth are reported in Figure 3. The
distributions of NMI (McDaid et al., 2011) values suggest that correcting for the first effect is
important as it greatly improves the detection of the real clustering in all situations. The improve-
ment when using the MIN-VON2 is not as large. We can however notice an important gap when
the difference in number of representations between VON2 and MIN-VON2 is the largest (15%
mixing ratio and 30% of overlapping nodes). In this situation, it seems that too many clusters are
identified overall. It also appears that the VON always perform better than the FON2 networks.
This shows that correcting for the first effect as suggested by Rosvall et al. (2014) is not enough.

4.2 Comparison of spatial trajectories datasets
Even if the last case study is revealing, the flow dynamic used is rather simple and the LFR bench-
mark may not reflect real-world systems where the observed sequences occur. Moreover, the
networks constructed here correspond to ideal scenario where the transition probabilities are not
estimated and the relevant extensions are not extracted from a set of sequences. It is indeed pos-
sible that the choice of model does not impact the clusterings of location found for real datasets.
It is therefore important to compare results of clustering on real datasets. In this context, we use
AGG-VON2 model instead of MIN-VON2.

We first show that our aggregated model is more parsimonious and maintains a good repre-
sentative power. Moreover, such accuracy is not achieved when building smaller VON2(α) with
different threshold values. We then show that spatial trajectories can lead to relatively similar
Infomap clusterings in one case (US flight itineraries). For the two other cases (Taxi itineraries
and Shipping records), the clusterings found contain noticeable variations. When using the model
AGG-VON2, clustering tends to contain less clusters and overlapping locations.
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4.2.1 Experimental settings
The three datasets correspond to trajectories or movements observation. Spatial sequences are
indeed a major source of applications for higher-order network analysis. The datasets studied
are however different in terms of nature, number of locations, number of the sequences, etc..
Moreover, they were all used previously as applications of higher-order network mining. For each
one, we removed consecutive repetitions of locations in each sequence.

• Airports dataset (Rosvall et al., 2014; Scholtes, 2017): US flight itineraries extracted from
the RITA TransStat 2014 database2. A sequence corresponds to passenger itineraries (as
sequences of airports stops) that took place during the first trimester of 2011. We have
|A| = 446 and |S| = 2751K.

• Maritime dataset (Xu et al., 2016): Sequences of ports visited by shipping vessels extracted
from the Lloyd’s Maritime Intelligence Unit. The sample corresponds to observations that
took place between April 1 and July 31, 2009. We have |A| = 909 and |S| = 4K.

• Taxis dataset (Saebi et al., 2020a): Sequences of neighborhoods (represented by the closest
police station) visited by taxis in Porto city between July 1, 2013, and June 30, 2014. The
original dataset, consisting of GPS trajectories, was part of the ECML/PKDD challenge
20153. The trajectories are mapped to neighborhoods as described by Saebi et al. (2020a).
We have |A| = 41 and |S| = 1514K.

For each constructed network, we report the number of nodes (total number of representa-
tions) and the number of representations by location NV :A→N

+.
To evaluate the networks ability to model the flow dynamics, relevant extensions are extracted

using a training set of 90% of the sequences. For each constructed network, an accuracy score
Acc (Equation (8)) is computed on the remaining sequences S test . The score corresponds to the
average probability to correctly identify the next location starting with the third entry in each
sequence given the two previous entries.

Acc(p)= 1
|S test|

∑

S∈S test

1
|S| − 2

|S|∑

i=3
p(si|si−2si−1) (8)

Since VON networks are variable-order models, if a context s= s0s1 ∈A×A is not a relevant
extension, then the probability p(σ |s0s1) will be estimated using p(σ |s1). Moreover, for the aggre-
gated VON2 model, p(σ |s0s1)= p(σ |X) where X is the merged representation s0s1 belongs to.
As explained in Section 5.1, we can use a value of α > 1 in Equation (2) in order to construct
more parsimonious VON. By doing so, we simply make harder for contexts to be qualified as rel-
evant. For each dataset, we find the parameter α∗ such that the total number of representations
in VON2(α∗) is as close as possible to AGG−VON2’s. We therefore compare four networks, for
each dataset: VON2(1), VON2(α∗), AGG−VON2 and FON2. VON2(α∗) networks are used to
compare the changes in representative power of AGG−VON2. For each dataset and each model,
the test was done 50 times and we report the mean Acc value and the standard deviation sd(Acc).

Since Infomap is a non-deterministic algorithm, we applied it 50 times on each network and
keep the clustering C associated with the smallest code length. We report the number of clusters
NC :A→N

+ for each location. We also report the decrease in code length �L when compared
with the absence of clustering. A �L value close to 0 would suggest that the clustering is not
a good summary of the flow dynamics. Note this measure (as well as the absolute values of L)
cannot be used to directly compare the network models between them since the code length will
mechanically be higher with the number of nodes, which can vary. We however report the NMI
(McDaid et al., 2011) between the clusterings found.

We used the Infomap python library developed by the authors4. Experiments were done using
Intel i7-8650U processors at 1.90GHz with 30Gio of RAM, running Ubuntu 18.04 and Python
3.6.9.
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Table 2. Network’s model accuracy comparison

Dataset Network Time Const. |V| avg NV max NV Acc±2sd

Airports VON2(1) 24.07s 10456 23.34 183 19.8%± 0.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VON2(3.6) 15.52s 6440 13.4 149 19.2%± 0.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 81.02s 6404 14.30 135 19.5%± 0.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 16.98s 12036 26.87 183 19.8%± 0.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maritime VON2(1) 0.58s 8005 8.85 136 33.1%± 1.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VON2(2.8) 0.29 s 4534 4.22 115 29.8%± 1.40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 3.33s 4397 4.86 66 32.0%± 1.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 0.41s 8755 9.68 141 33.0%± 1.33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taxis VON2(1) 12.63s 574 14.00 29 39.4%± 0.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VON2(4.4) 7.65s 364 7.65 22 33.0%± 0.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 12.76s 363 8.85 19 39.3%± 0.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 5.95s 798 19.46 36 39.8%± 0.10

4.2.2 Results discussion
We start by addressing the first two questions at the end of Section 3.3: is the aggregated network
more parsimonious and, if so, does it represent flow dynamics well enough?Datasets and networks
statistics are given in the top part of Table 2. Cumulative distributions of NV values are shown in
the left panels of Figure 4.

We can first notice that the total number of nodes in the aggregated VON2 is significantly
smaller than with the VON2 or FON2 networks. In the top row of Figure 4, we can see that, not
surprisingly, the drop in NV values mostly impacts highly represented locations. For the taxis
dataset (Figure 4e), NV values are more uniformly distributed. Next, we can see that VON2 and
FON2 models have close accuracy scores. These results are consistent with those of Xu et al. (2016)
albeit the authors used a different definition of accuracy. Lower accuracy values are observed with
the AGG-VON2 model. The loss seems however negligible when compared to the differences in
NV values. Moreover, accuracy results are significantly worse forVON2(α∗), even if the difference
is not necessarily large, as it is with the Airport dataset for instance. We can conclude that our
aggregation strategy is efficient in this regard and that our first two hypothesis are verified on
these datasets.

We now discuss the clusterings obtained with the Infomap algorithm using the different
models. The relevant statistics are reported in the bottom part of Table 3, and the cumulative
distributions for NC are given in the right panels of Figure 4. The similarity (according to the
NMI) between the clusterings can be found in Table 4.

The clusterings found for AGG-VON2 and VON2 networks are almost identical for the
Airports dataset. The reported NMI between these networks is smaller in the case of the Maritime
dataset. In this case, the NC are lower for most of the locations with the aggregated VON2 model
(see. Figure 4d). This means there are less overlaps between the clusters. The biggest difference
in clustering results between AGG-VON2 and the rest appears with the Taxi dataset where the
VON2 clustering is closer to the FON2 clustering. In this case, the number of cluster per location
is significantly lower with AGG-VON2. Also, the relevance of the clusterings quantified with �L
values is lower overall. This seems consistent with the results of the case study of Section 4.1 since
it means that the clusterings are less well defined.
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Figure 4. Cumulative distribution of the number of representations NV (left column) and clusters NC (right column) for loca-
tions. For each panel, y(x) gives the ratio of location having at most x representations/found in at most x clusters. Note that
the y-axis range varies among the panels.
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Table 3. Clustering results comparison

Dataset Network Time Clust.(avg) |C| avg NC max NC �L

Airports VON2(1) 5.59 s 22 1.29 12 51.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 2.93 s 24 1.30 12 49.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 5.98 s 56 1.42 20 51.8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maritime VON2(1) 1.41 s 8 1.28 5 55.8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 0.56 s 7 1.15 4 52.4%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 1.25 s 43 1.43 7 57.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taxis VON2(1) 0.08 s 64 6.22 16 46.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 0.02 s 33 3.90 11 44.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FON2 0.05 s 82 6.85 14 48.4%

Table 4. NMI between clusterings found with VON2, agg VON2,
and FON2

Dataset Networks AGG-VON2 FON2

Airports VON2(1) 0.88 0.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 − 0.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maritime VON2(1) 0.66 0.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 − 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taxis VON2(1) 0.45 0.69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VON2 − 0.39

Even if those real-world datasets do not include a ground-truth clustering, we can conclude
that using AGG-VON2 model can lead to significantly different clusterings. This suggests that the
impact of the number of representations on random walk-based algorithms is not marginal.

We report in Tables 2 and 3 the computation times for the construction of each network and
the average time taken by the Infomap algorithm to produce one clustering. We can see that the
aggregation of representations significantly slows down the network construction. The additional
time required is obviously dependent on the number of nodes in the VON2 network. However,
an important speedup is achieved when using Infomap. Remember that, since the algorithm is
non-deterministic, it should be run multiple times and only the average time for a single run is
reported here.

5. Discussion and future works
5.1 Extension of the aggregatedmodel to any order
The results presented in this paper are valid in the limited case where the maximum order of
representation is 2. The AGG-VON2 model shows that we can achieve very different clustering
results by using a smaller networkmodel that captures the flow dynamics almost as well. However,
for the different datasets considered here, previous studies suggest that strong dependencies exist
at higher-order. Indeed, general VON networks contain significantly more representations of
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Figure 5. Example of ambiguous case when trying to build the aggregated network when representations of order greater
than 2 exist. We assume distributions Pdb and Pab are similar. In this context, merging the corresponding nodes together will
break the relation ab→ abc that is required to encode this third-order representation of c.

each location than VON2 networks. We can expect the effects on random walk-based cluster-
ing described in Section 3.2 to be, not only still relevant, but strengthened. For instance, the VON
networks for the Airports, Maritime, and Taxis datasets contain around 443K, 18K, and 4K nodes,
respectively. These observations illustrate the need to generalize our aggregated model.

One important issue is the fact that merging nodes in a VONk with k> 2 may introduce ambi-
guities in the encoded sequential dependencies. Indeed, relations between higher-order nodes are
a way to force a random walker into specific destinations as expressed in Proposition 1. In the
example given in Figure 5, two representations of order 2 are similar in terms of the next vis-
ited location but they should not be merged, since doing so would break those constraints. This
situation never occurs with a maximum order of 2, as shown in Section 3.3.

This issue seriously limits the gain obtained by merging groups of representations into a single
node. This transformation is useful for VON2 as it addresses the second and third effects discussed
in Section 3.2. Indeed, for the network in Figure 2(b), the probability for a random surfer to tele-
port to any of {av, bc, cv} or {dv, ev} is 3

10 or 2
10 , respectively, while it is

1
8 for both in Figure 2(c).

This mitigates the second effect as the probability to use the code word for a representation of v
is reduced. Moreover, merging those nodes in Figure 2(c) corresponds to the constraint of always
considering them as being part of the same clusters. This cancels the third effect.

A possible solution for Infomap clustering of VONnetworks (at any order) is to still use a priori
computed PageRank values but now using non-uniform teleportation rates corresponding to the
merged representations. For example, the probability to teleport to any of the {av, bc, cv}would be
1
3
1
8 . Additionally, groups of representations should be moved together from a cluster to another

while searching for the best partition. This last constraint would require important changes to the
Infomap algorithm. Notice that in this study we only changed the input of the algorithm and used
already available options.

5.2 Others networkmining tools
The results presented in this paper are in agreement with the idea that Infomap cannot be directly
applied to higher-order networks. As locations’ clusters are built from a partition of its repre-
sentations, the number and distribution of the representations have an important impact. These
arguments point toward the importance of adapting classic network mining tools to VON. A sim-
ilar conclusion was reached when looking at the PageRank metric Coquidé et al. (2022) as the
more a location is represented in the higher-order network the higher its PageRank is. It is our
opinion that multiple network representations of the same datasets are possible and that VON
can successfully capture flow dynamics of the input sequences. However, efficient network min-
ing tools should take the variability of these possible networkmodels into account. This represents
a challenge for researchers working in this domain.

This paper focused on random walk-based clustering methods where we demonstrated that
important divergence can be achieved with the Infomap algorithm using our aggregated VON
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model. There are different clustering algorithms that also rely on random walks. We can men-
tion the Walktrap algorithm (Pons and Latapy 2006). It is based on the comparison of the set of
reachable nodes using short random walks and therefore does not use a teleportation mechanism.
Thus, it will be interesting to adapt it to VON networks.

Competing interests. None.

Notes
1 The source code and datasets used for the experiments are available at https://github.com/fqueyroi/von2network-clust
2 https://www.transtats.bts.gov/
3 https://www.kaggle.com/crailtap/taxi-trajectory
4 www.mapequation.org/infomap/ (version 1.3.0).
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Notations

Table 5. Summary table for notations

Related to sequences

A Set of locations (itemset)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ Generic element of A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S Set of sequences (dataset)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s= σ1σ2σ3 . . . A sequence of locations
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c(sσ ) : A→N
+ Occurrences of sequence sσ in S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(σ |s) : A→ [0, 1] Transition probability from context s to σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cs = (c(sσ1), . . . , c(sσ|A|)) Occurrences of each σi following context s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ps = (p(σ1|s), . . . , p(σ|A||s)) Distribution of each σi following context s

Related to networks

FONk Fixed-order k network
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VONk(α) Variable-order network with max order k using
threshold multiplier α ∈R

+ (Eq. 2)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MIN-VONk Minimal VON with max order k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AGG-VONk Aggregated VON with max order k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V Set of nodes (location representations)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vk Set of representations of order k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V(σ ) Set of representations of location σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NV = (|V(σ1)|, . . . , |V(σ|A|)|) Number of representations of each location
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C= {C1, . . . , Cm} Partition of V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πv PageRank of node v
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(C) Map Equation (Infomap computation)

Cite this article: Queiros J., Coquidé C. and Queyroi F. (2022). Toward random walk-based clustering of variable-order
networks. Network Science. 10, 381–399. https://doi.org/10.1017/nws.2022.36

https://doi.org/10.1017/nws.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.36
https://doi.org/10.1017/nws.2022.36

	
	Introduction
	Related Works
	Definitions and methods
	VON representation
	Clustering of VON using Infomap
	Aggregated VON_2 model

	Experiments and results
	Effect of aggregation on synthetic benchmarks
	Comparison of spatial trajectories datasets
	Experimental settings
	Results discussion
	Discussion and future works
	Extension of the aggregated model to any order
	Others network mining tools
	

