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Abstract

In this work, the effect of γ-radiation on the decomposition of adenine dissolved in distilled
water, saline solutions and artificial seawater was studied. As the composition of the major
cations and anions of artificial seawater probably better resembles the composition of seawater
on the Earth 4.0 billion years ago, this seawater was named artificial seawater 4.0 Ga. The
main finding in this work is that artificial seawater 4.0 Ga demonstrated a better protective
effect of adenine against γ-radiation. In addition, artificial seawater 4.0 Ga showed that aden-
ine had no changes in pH after radiation exposure and the minor radiation-chemical yield G.
The radiolysis of adenine promoted modifications in Fourier-transform infrared spectra. The
deconvolution of some bands demonstrated the formation of a new frequency at 1713 cm−1.
High performance liquid chromatography-mass detected a product of decomposition with
151 atomic units. Using the geometry optimization and simulated vibrational spectra it was
possible to show that the main species formed are hydroxyl and oxide modified adenine.
The data point to the formation of hydroxyl-adenine and adenine Nx-oxide. These products
have biological relevance and could be available for chemical evolution.

Introduction

From an astrobiology perspective, adenine (Fig. 1) is a purine, one of the nucleic acid bases of
the deoxyribonucleic acid/ribonucleic acid, and is an important biomolecule; its abiotic syn-
thesis has been demonstrated under prebiotic chemistry conditions (Oró and Kimball, 1961;
Basile et al., 1984; Vergne et al., 2000; Saladino et al., 2001; Roy et al., 2007; Cleaves, 2018).
In addition, adenine has been found in meteorites (Hayatsu et al., 1975; Martins et al.,
2009; Cleaves, 2018). Thus, it is plausible to suppose that adenine was present in the prebiotic
Earth.

In the prebiotic Earth, several energy sources existed such as: UV-radiation, heating from
hydrothermal vents or impact meteors or volcanic activity, electric discharge, cosmic rays and
radioactivity (Kobayashi et al., 2001). γ-Radiation resulted from the radioactive decay effect
from certain radioisotopes (40K, 232Th, 235U, 238U and 244Po); this radiation is classified as ion-
izing radiation because of its high energy, capable of ionizing (Allen, 1961). To simulate the
effects of γ-radiation on prebiotic chemistry experiments, 40K and 60Co are used as sources
(Negrón-Mendoza et al., 2016 ). Since ionizing radiation and adenine existed in the prebiotic
Earth, the interaction between them is an important issue for prebiotic chemistry.

It should be noted that the majority of prebiotic chemistry experiments are performed in
distilled water or NaCl solutions (Zaia, 2012). Naturally, neither NaCl solutions nor distilled
water are representative of the complex seas of the primitive Earth. Based on the work of Izawa
et al. (2010), who performed an experiment through leaching of meteorite samples in Tagish
Lake, Zaia (2012) suggested a model of artificial seawater. For several years our group has been
working with this artificial seawater model, which probably better resembles the major ions of
the ocean of the prebiotic Earth (Anizelli et al., 2014, 2015, 2016; Canhisares-Filho et al., 2015;
Carneiro et al., 2017; Villafañe-Barajas et al., 2018; Zaia et al., 2018; Baú et al., 2019). Unlike
the seawater in the oceans today that have a high concentration of Na+ and Cl− (Bearman,
2004), this artificial seawater contains high concentrations of Mg2+ and SO4

2− (Zaia, 2012).
The radiolysis of adenine has been the subject of earlier investigations (Conlay, 1963;

Ponnamperuma et al., 1963; van Hemmen and Bleichrodt, 1971; Yamamoto, 1980;
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Yamamoto and Fuji, 1986; Hartmann et al., 2007; Su et al., 2011).
It has been reported that adenine is not easily decomposed by
γ-radiation. There are several adenine decomposition products
reported in the literature, among them adenine Nx-oxides,
hydroxyl-adenine, xanthine and hypoxanthine and species with
open rings. In addition, the effects of exposure to ionizing radi-
ation on seawater are not yet fully understood (Draganić, 2005).
The radiolysis of seawater is a matter of importance for radiation
chemistry, since it may change the number of products from radi-
olysis of water (Kumagai et al., 2013; Hata et al., 2016a, 2016b ).

Therefore, the aim of this research is to quantify and character-
ize adenine radiolysis products in distilled water, saline solutions
and artificial seawater 4.0 Ga, in order to provide a better perspec-
tive of the role of salts in radiolysis of this organic molecule.
Adenine was measured by spectrophotometric (UV/vis) and high-
performance liquid chromatography (HPLC). The products of
radiolysis were characterized by high performance liquid chroma-
tography used in combination with mass spectrometry
(HPLC-Mass) and infrared spectroscopy (FT-IR). Theoretical cal-
culations were performed to elucidate the possible products of
decomposition, through optimization of geometry, simulated
vibrational frequencies and relative energy comparison.

Materials and methods

Materials

Adenine
Adenine (Fig. 1), with the highest purity available (≥99%),
purchased from Sigma Aldrich®, was used as received.

Glassware
All the glassware for irradiation was cleaned, according to chemical
radiation procedures, with a hot mixture of HNO3 and H2SO4 for
4 h, followed by washing with double distilled water and Milli-Q
purified water. The glassware was wrapped in aluminium foil and
heated at 300 °C overnight for full elimination of organic matter.

Sample preparation
Three different sets of samples were prepared. Adenine
(500 µg ml−1) was dissolved in distilled water, different saline
waters or artificial seawater 4.0 Ga. The solutions were de-aired
by bubbling with argon (Ar), sealed and irradiated in a 60Co source.

Seawater and saline solutions
The artificial seawater 4.0 Ga was prepared as described by Zaia
(2012). In 1 l of Milli-Q water, several salts were dissolved in
the following order: Na2SO4 (0.271 g), MgCl2·6H2O (0.500 g),
CaCl2·2H2O (2.500 g), KBr (0.050 g), K2SO4 (0.400 g) and
MgSO4 (15.00 g). The following salt solutions (0.129 mol l−1)
were prepared separately: (1) KCl, (2) K2SO4, (3) MgCl2·6H2O,
(4) MgSO4 and (5) a saline solution containing MgCl2·6H2O
plus MgSO4.

Methods

Radiolysis
The samples were irradiated in a γ ray source (Gammabean
651-PT) at room temperature (298 K). The irradiation dose was
determined using a ferrous sulphate-copper sulphate dosimeter.
The dose rate used was 197 Gy min−1 and the irradiation dose
from 0.0 to 94.52 kGy.

UV/vis spectrophotometry
The quantity of adenine was determined by reading the absorb-
ance at 260 nm with a spectrophotometer UV/vis Varian,
model Cary 100 Scan (Fig. 2).

HPLC analysis
Adenine was quantified using a Varian 9005 equipped with a UV/
vis detector and a column C-18. The liquid used in the mobile
phase contained a mixture of 77% A (ammonium acetate
0.1 mol l−1 at pH 4.5) and 23% B (250 ml of acetonitrile,
250 ml of methanol and 4 ml of tetrahydrofuran), adopting a
flow rate of 0.3 ml min−1. The detection was carried out at
260 nm.

Infrared spectroscopy (FT-IR)
FT-IR spectra were obtained using a reflectance accessory in a
spectrometer (PerkinElmer spectrum 400, USA). The spectra
were recorded at transmittance modes from 4000 to 650 cm−1

and a resolution of 4 cm−1 over 10 scans.

Statistical analysis
The Turkey test was performed to analyse the absorption differ-
ences, adopting a significance level of p < 0.05.

Computational details
The molecular geometries were optimized, and the frequencies
and relative energy (Erel) determined using the density functional
theory method with B3LYP functional (Becke, 1988, 1993; Lee
et al., 1988 ), basis set aug-cc-pVDZ level (Dunning, 1989),
using the Gaussian 03 program (Frisch et al., 2004). The
aug-cc-pVDZ basis set was chosen for the correct description of
oxygen and nitrogen atoms. This basis set includes additional dif-
fuse functions (prefix aug-), which were used to take into account
the relatively diffuse nature of the lone pairs.

Results

Aqueous adenine exposure to γ-irradiation

Several experiments were performed to better understand the
behaviour of adenine exposed to γ-irradiation at different doses.
Solutions of adenine dissolved in distilled water, with and without
O2, were γ irradiated. In addition, adenine dissolved in salt

Fig. 1. Molecular structure of adenine.
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solutions (KCl, K2SO4, MgCl2 and MgSO4), in a salt mixture
(MgCl2·6H2O plus MgSO4) and in artificial seawater 4.0 Ga was
also γ irradiated; in all these latter cases the solutions were oxygen
free as O2 was removed by bubbling Ar into the sample.

OH● is the main oxidizing substance formed after water radi-
olysis through ionizing radiation (Equations (1–3)) (Samuel and
Magee, 1953; Allen, 1961; Draganić and Draganić, 1971).
Dissolved oxygen (O2) should be withdrawn from the solution
since it can switch the main oxidizing species formed by remov-
ing the hydrated electron (e−aq) (Equation (4)) (Draganić and
Draganić, 1971).

H2O −�g− ray
H2O

∗ (1)

H2O
∗ −� 1/2 H2 + 1/2 H2O2 (2)

H2O
∗ −� H†+OH†+ e−aq (3)

O2 + e−aq −� O−
2 (4)

The pH of the samples increased after irradiation, with two
exceptions, adenine dissolved in MgSO4 and adenine dissolved
in artificial seawater 4.0 Ga (Fig. 3). Changes in pH are an indica-
tion of the occurrence of chemical reactions. In addition, the irra-
diated solutions showed a yellowish colour, another indication of

Fig. 2. UV/Vis spectra of adenine in: (a) distilled water and (b) seawater. Spectra of patterns not irradiated (solid line) and irradiated samples (dashed line). For all
experiments, the adenine concentration was 500 µg ml−1. Seawater was prepared as described by Zaia (2012). The following irradiation doses were used: 23.71,
47.26, 71.12 and 94.52 kGy.

Fig. 3. pH values of the solutions of adenine after irradiation. For all experiments, the adenine concentration was 500 µg ml−1. Seawater was prepared as described
by Zaia (2012). The concentration of all saline solutions was 0.129 mol l−1.
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a chemical reaction (Fig. 2). The UV/vis spectra of samples
showed that as the dose increased, the absorption of the charac-
teristic band of adenine at 260 nm (Fig. 2) decreased. In general,
the decomposition was minor in the case of the system containing
the adenine dissolved in artificial seawater 4.0 Ga.

After irradiation, for the salt and artificial seawater solutions,
the quantity of adenine was quantified by HPLC, the cations
were first removed using a cation exchange resin before injection.
Figure 4 shows the decomposition pattern of adenine as a func-
tion of dose. As dose increased, decomposition also increased in
all the experiments. Solutions containing different cations and
anions were prepared in order to understand the contribution
of each species to decompositions. However, this effect could
not be fully tracked, since the behaviour did not show a clear ten-
dency. Nonetheless, some points should be highlighted. The
decomposition at 23.71 kGy of adenine was very likely for all sam-
ples. However, as irradiation continued, differences were more
evident. For example, at 47.26 kGy the sample of adenine

dissolved in KCl solution presented the highest degradation
(64.38%), while both the sample of adenine dissolved in MgSO4

solution and the one dissolved in artificial seawater 4.0 Ga showed
the lowest degradation, 47.27 and 48.33% respectively. At
71.12 kGy, decomposition was higher for adenine dissolved in
distilled water (70.31%) and lower for adenine dissolved in sea-
water solution (50.52%). Finally, at the highest radiation dose,
the distilled water system presented the highest decomposition
(85%) and the seawater solution showed the lowest decomposition
(64%). Even though the degradation of adenine at the highest
dose was not statistically different in the solutions (Table 1), a ten-
dency for better protection of adenine was observed in the case of
the seawater model experiment.

Vibrational analysis

For the samples of adenine dissolved in distilled water, the FT-IR
spectra demonstrated that an increase in irradiation doses

Fig. 4. Residual adenine% at different irradiation doses.

Table 1. Survival of adenine by dose of γ-radiation

Dose
(kGy)

Distilled water
(O2)

Distilled water
(Ar)

Seawater
solution (Ar)

KCl solution
(Ar)

K2SO4 solution
(Ar)

MgCl2 solution
(Ar)

MgSO4 solution
(Ar)

Saline mixture
(Ar)

0 506.00 ± 9.17
a, A

506.33 ± 4.72
a, A

506.00 ± 9.17
a, A

505.33 ± 1.15
a, A

502.00 ± 10.58
a, A

505.33 ± 2.31
a, A

497.33 ± 0.58
a, A

–

23.71 339.68 ± 26.11
a, B

335.39 ± 33.86
a, B

328.13 ± 9.26
a, B

338.71 ± 26.44
a, B

326.24 ± 30.59
a, B

329.94 ± 56.59
a, B

299.13 ± 16.45
a, B

–

47.26 206.43 ± 19.42
a,b, C

236.47 ± 59.17
a,b, C

261.46 ± 11.63
a, C

180.02 ± 16.33
b, C

209.07 ± 16.91
a,b, C

230.84 ± 2.49
a,b, C

262.26 ± 22.34
a, B,C

–

71.12 180.96 ± 18.12
b,c, C

150.32 ± 27.94
c, D

250.36 ± 15.27
a, C

172.38 ± 21.46
b,c, C

143.97 ± 1.20
c, D

167.38 ± 22.28
b,c, D

214.87 ± 24.56
a,b, C

–

94.52 93.77 ± 38.11
b, D

73.27 ± 14.22
b, E

180.67 ± 15.79
a, D

87.70 ± 32.10
b, D

128.44 ± 1.67
a,b, D

111.71 ± 1.91
a,b, D

114.54 ± 34.62
a,b, D

103.29 ± 8.11
b

The results are present as mean ± standard error. The number of sets was one with three samples each set. It was irradiated 5 mL of adenine solution at a concentration of 500 µg ml−1, at
different doses of γ-radiation exposure. Capital letters in columns were statistically different from each other by Tukey’s test ( p < 0.05). Lowercase letters in lines were statistically different
from each other by Tukey’s test ( p < 0.05). For all saline solutions 0.129 mol l−1 of each salt was used. Saline mixture contained MgCl2·6H2O and MgSO4 (1/1). Artificial seawater 4.0 Ga were
prepared as described by Zaia (2012).
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increased adenine decomposition (Fig. 5). The major changes in
the FT-IR spectra occurred at 1598 and 1668 cm−1 and these
bands are attributed to the ν(C = C) stretching and β(NH2)
in-plane bending, respectively (Fig. 4) (Matholouthi et al., 1984;
Bertoluzza et al., 1987; Mohamed et al., 2009; Anizelli et al.,
2014). In addition, in this region, shifts occurred in the bands
and a new band appeared. The intensity of the bands at 911,
938, 1019, 1123, 1251 and 1415 cm−1 decreased (Fig. 4); these
bands are attributed to δ(C–N–C)py deformation of the pyrimi-
dine ring, δ(N–C = N)im deformation of the imidazole ring, ρ
(NH2) rocking, δ(C–H)im deformation, ν(C–NH2) stretching
and ν(C = N)py stretching, respectively (Matholouthi et al., 1984;
Bertoluzza et al., 1987; Mohamed et al., 2009; Anizelli et al.,
2014). Thus, it can be inferred that irradiation has an effect on
the pyrimidine and imidazole rings of adenine.

To better understand these band shifts and new band forma-
tion, in the region from 1550 to 1750 cm−1, a deconvolution of
the FT-IR spectra was performed (Fig. 6). The deconvolution of
adenine control bands showed four bands at 1572/1603, 1650
and 1674 cm−1 (Fig. 6(a)). These bands could be attributed to ν
(C = C) stretching, ν(C = N) stretching and β(NH2) in-plane
bending, respectively (Matholouthi et al., 1984; Bertoluzza et al.,
1987; Mohamed et al., 2009; Anizelli et al., 2014). For the adenine
irradiated sample (71.12 kGy) the bands shifted from 1572/1603,
1650 and 1674 cm−1 to 1600/1602, 1640 and 1668 cm−1 (Fig. 5
(b)). In addition, Fig. 5(b) presents a new band at 1713 cm−1,
which could be due to the formation of a new compound. For
adenine dissolved in KCl and MgCl2 solutions, the FT-IR spectra
of irradiated samples demonstrated the same behaviour as in dis-
tilled water (figure not shown). However, for the samples of aden-
ine dissolved in artificial seawater 4.0 Ga, K2SO4 and MgSO4

solutions, the FT-IR spectra of the irradiated samples only
demonstrated bands due to SO4

2− (figure not shown).

Characterization of the product

The FT-IR spectra of irradiated adenine samples showed a new
band at 1713 cm−1, which may be due to the production of a
new compound (Figs. 5 and 6(b)). This compound could be xan-
thine or hypoxanthine (similar bases to adenine). However, HPLC
chromatograms of standards showed that xanthine and hypoxan-
thine had different retention times to the unknown compound
(figure not shown). The peak of the unknown compound, for
both irradiated samples of adenine (distilled water and artificial
seawater 4.0 Ga), appears close to the adenine peak, with a differ-
ence of less than 0.5 min (Fig. 7). This behaviour suggests that the
unknown compound has a similar structure to adenine. The
quantity of the unidentified compound formed increased until
71.12 kGy dose and decreased at 94.52 kGy dose (Fig. 7).

After irradiation of the samples in distilled water and artificial
seawater 4.0 Ga, using HPLC-MS, the peaks at 136 m/z and
137 m/z showed a retention time of 1.83 min. A standard of adenine
showed the samem/z peaks and retention time. The unknown com-
pound detected previously in HPLC chromatograms (Fig. 7)
showed peaks at 152 and 153 m/z with a retention time varying
from 2.01 to 2.07 min (figure not shown). Xanthine has a peak at
152.1 m/z, however its retention time is 1.83 min. The standard of
hypoxanthine showed retention times of 137 m/z and 1.84 min
which did notmatch the retention time of the unknown compound.
Thus, it is very likely that the unknown compound is not xanthine
or hypoxanthine. The formation of isoguanine (molar mass =
151.1261) has been reported in radiolysis experiments of oxyge-
nated adenine, and it probably formed in the current experiments;
this result was not corroborated due to the lack of a standard.
Although different conditions have been used in several experi-
ments, the most common product detected in adenine radiolysis
experiments is 8-hydroxy-adenine; in fact, according to Conlay

Fig. 5. FT-IR spectra of adenine after irradiated at different doses. Adenine was dissolved in distilled water (500 µg ml−1), after the samples were irradiated and
solutions were lyophilized. Before the irradiation, O2 was removed by fluxing Ar into the sample.
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(1963), the main product of adenine irradiation both in oxygen free
and oxygen saturated solutions is 8-hydroxyadenine. In addition, in
adenine radiolysis experiments, other products have also been
detected: hypoxanthine, 4,6-diamino-5-formamido-pyrimidine,
6-amino-8-hydroxy-7,8-dihydropurine, adenine-7-N-oxide and
6-amino-8-hydroxy-7,8-dihydropurine (van Hemmen and
Bleichrodt, 1971; Gorin et al., 1977; Yamamoto, 1980; Yamamoto
and Fuji, 1986; Hartmann et al., 2007; Agnihotri andMishra, 2011).

Radiation-chemical yield

The radiation-chemical yield is defined as the number of species
produced or disappeared by 100 eV of radiation absorbed (Allen,
1961; Draganić and Draganić, 1971). Radiation-chemical yield G

is the number of disappeared moles of adenine (n) multiplied by
Avogadro’s number, divided by the absorbed dose (Gy), multi-
plied by a conversion factor from Gy to eV (Equation (5)).

G = 100
n× (6.023× 1023)
Gy × (6.245× 1018)

( )
(5)

After plotting the G values (Fig. 8) for each dose and system,
the G(−A) value was estimated (Table 2). In all cases, the G(−A)
values were ≤1. The low G(−A) values for the decomposition
of adenine suggest its resilience to decomposition in solution,
and may be due to reactions of reconstitution with adenine as
a product (van Hemmen and Bleichrodt, 1971). The highest
G(−A) value was the one estimated for adenine irradiated in

Fig. 6. Deconvolution bands of FT-IR spectra in the
region of 1550 to 1750 cm−1 of adenine. (a) Control
sample. The best regression was obtained with four
bands (r2 = 0.998). (b) Irradiated sample at 71.12 kGy.
The best regression was obtained with five bands
(r2 = 0.999). Adenine was dissolved in distilled water
(500 µg mL−1), after the sample was irradiated and
solution was lyophilized. Before the irradiation, O2

was removed by fluxing Ar into the sample.
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MgSO4 (0.95) solutions, and the lowest for the adenine-KCl sys-
tem (0.57). The presence of oxygen also affects the decompos-
ition of adenine solution; decomposition of de-aerated
solutions is G(−A) = 0.65 and of oxygen containing solutions is
G(−A) = 0.61.

Theoretical calculations

Theoretical calculations were performed to investigate the pos-
sible products of decomposition of irradiated adenine. The

following adenine-related compounds were used in the theoretical
calculations: the three adenine Nx-oxides (N1, N3 and N7-oxides),
2-hydroxy-adenine (enol-amino and keto-amino),
8-hydroxy-adenine (enol-amino and keto-amino) and
N-hydroxy-adenine (6-N-hydroxyl-aminopurine) (Fig. 9). It
should be pointed out that some of these species are detected in
experiments with adenine exposed to γ-radiation (Conlay, 1963;
Ponnamperuma et al., 1963; van Hemmen and Bleichrodt,
1971; Yamamoto, 1980; Yamamoto and Fuji, 1986). It should
be noted that these molecules have the same molecular mass

Fig. 7. HPLC chromatograms of adenine radiolysis in: (a) distilled water solution and (b) seawater solution. Adenine was dissolved in distilled water (500 µg ml−1) or
artificial seawater (500 µg ml−1), after the sample was irradiated. Before the irradiation, O2 was removed by fluxing Ar into the sample. Seawater was prepared as
described by Zaia (2012). The adenine peak is showed around 11.4 min, the arrow corresponds to.

230 João Paulo T. Baú et al.

https://doi.org/10.1017/S1473550419000272 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550419000272


(151 a.u.) detected by the HPLC-Mass analysis. The geometry of
the molecules was optimized by the functional B3LYP and
aug-cc-pvdz bases set, and the simulated vibrational spectra.
There are several possible adenine Nx-oxides, but only three are
common, with oxygen bonded to N1, N3 and N7 of adenine
(Stevens and Brown, 1958). For the hydroxyl adenine species,
although there are several tautomers, amino, imino, enol and
keto, only those with the lowest relative energy were chosen for
the investigations (Cysewski et al., 1995).

For adenine, the main simulated frequencies were 1513, 1600,
1636 and 1660 cm−1, and these were attributed to ν(C = N)im
stretching, ν(C = C) stretching, ν(C = N) stretching and β(NH2)
in plane bending, respectively (Anizelli et al., 2014). The attribu-
tions of the frequencies for the adenine Nx-oxides and the
hydroxy-adenine were performed according to the theoretical cal-
culations (Table 3). It is important to notice that adenine
N1-oxide shows a frequency at 1702 cm−1 (Table 3). This fre-
quency has a value close to the new band observed in the decon-
volution of the FT-IR spectra of the irradiated adenine (Fig. 6(b)).
However, adenine N3 and N7-oxide show this frequency at 1673

and 1687 cm−1, respectively (Table 3). The keto-amino species
present frequencies at 1746 and 1811 cm−1 for 2-hydroxy-adenine
and 8-hydroxy-adenine, respectively, attributed to stretching
ν(C = O). However, these frequencies were not observed
experimentally. Thus, the formation of the keto-amino tautomers
cannot be assumed.

The hydroxyl and oxide derivatives have lower relative energy
than adenine molecules (Fig. 10). Among the Nx-oxides, adenine
N1-oxide has the lowest Erel, with a difference of a few kcal mol−1,
following the sequence N1 < N7 < N3. The calculations for the
hydroxyl adenine presented a lower value of Erel than
Nx-oxides. The relative energies of the keto-amino species are
lower than the enol-amino species (Fig. 10). However, as the cal-
culated vibrational frequencies do not point to its formation, it
may be concluded that enol-amino could be the formed species.

Discussion

Adenine radiolysis under different conditions has been widely
studied (Conlay, 1963; Ponnamperuma et al., 1963; Rhaese,
1968; van Hemmen and Bleichrodt, 1971; Yamamoto, 1980;
Yamamoto and Fuji, 1986). Reported G values for adenine
decomposition range from 0.35 to 1.2 for adenine concentrations
from 2 × 10−5 to 8 × 10−3 mol l−1 (Scholes et al., 1960; Conlay,
1963; Mannan, 1972; and reference therein). In these experiments,
the calculated values are always between 0.5≥ 1.00. The G value
seems to be higher in systems containing oxygen, compared to
de-aerated solutions. Conlay (1963) obtained a G(−A) = 0.86 for
an oxygen containing solution, and G(−A) = 0.35 for a non-aerated
solution. In this study, both values are very close (Table 2). The
relevance of the presence of oxygen is that oxygen can react
with adenine molecules or compete with the organic molecule,
adenine in this case, to react with water radicals. If oxygen is
not continuously supplied into the system it is easily consumed
(Mannan, 1972); this behaviour could explain the G values in
these experiments, since the aerated solutions were not saturated
with oxygen.

Fig. 8. Radiation-chemical yield in function of the dose. G is defined as the number of molecules of adenine disappeared by 100 eV of absorbed radiation. For all
experiments, the adenine concentration was 500 µg ml−1. Seawater was prepared as described by Zaia (2012). The concentration of all saline solutions was
0.129 mol l−1.

Table 2. G(−A) values calculated for adenine decomposition in each system

System G(−A)

Distilled water (O2) 0.61

Distilled water (Ar) 0.65

Seawater solution (Ar) 0.78

KCl solution (Ar) 0.57

K2SO4 solution (Ar) 0.61

MgCl2 solution (Ar) 0.58

MgSO4 0.9

G(−A) refers to G values for adenine degradation.
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In radiation chemistry experiments, the ions in the solution
strongly influence the radiolysis experiments. In general, halide
ions (i.e. Cl− and Br−) react with the OH radical (Draganić and
Draganić, 1971), the main factor responsible for attacking aden-
ine. In the experiments shown here, the presence of both Cl−

and Br− in the seawater model produced lower degradation of
the organic molecule.

Radical modified adenine derivatives

Adenine in aqueous solution submitted to ionizing radiation
generates a variety of substances, such as hypoxanthine,
xanthine, 2-hydroxy-adenine (isoguanine), 8-hydroxy-adenine,
6-N-hydroxy-adenine, adenine Nx-oxides and adenine itself, as
well as other species with open rings (Conlay, 1963;
Ponnamperuma et al., 1963; Rhaese, 1968; van Hemmen and
Bleichrodt, 1971; Yamamoto, 1980; Yamamoto and Fuji, 1986).
Equations (6), (7) and (8) show the adenine N1-oxide and
adenine N7-oxide synthesis from adenine (Fig. 11). The theoret-
ical calculations indicate a lower relative energy for adenine

N1-oxide, suggesting its formation (Fig. 10). Previously published
works did not detect the formation of adenine N3-oxide, probably
because among adenine Nx-oxides, adenine N3-oxide has the
highest energy (Fig. 10). Yamamoto (1980) suggested the forma-
tion of adenine N7-oxide and its conversion to adenine N1-oxide
(equation (8)). Adenine Nx-oxide is stable in aqueous solution
and no conversion to adenine was observed through the loss of
oxygen atom (Stevens et al., 1958).

Equations (9) to (11) show the formation of 2-hydroxy-adenine,
8-hydroxyl-adenine and N-hydroxy-adenine (Fig. 11). 8-Hydroxy-
adenine was the major product formed from irradiation of a
de-aerated solution of adenine, followed by hypoxanthine (Conlay,
1963). However, adenine Nx-oxides were not observed (Conlay,
1963). After irradiation of adenine, Ponnamperuma et al. (1963)
observed the formation of 8-hydroxy-adenine and 4,6-diamino-
5-formamidopyrimidine with traces of hypoxanthine and
4-amino-5-formamido-6-hydroxypyrimidine. Submitting aqueous
adenine (de-eared solution) to γ-irradiation, van Hemmen and
Bleichrodt (1971 ) observed the formation of six compounds, with
8-hydroxy-adenine as the major compound. The X-ray irradiation

Fig. 9. Structure of optimized geometry of the simulated molecules of: (a) adenine N1-oxide; (b) adenine N3-oxide; (c) adenine N7-oxide; (d) 2-hydroxyl-adenine
(enol-amino); (e) 8-hydroxyl-adenine (enol-amino); (f) 2-hydroxyl-adenine (keto-amino); (g) 8-hydroxyl-adenine (keto-amino) and (h) N-hydroxy-adenine.
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of aqueous adenine led to the formation of several products,
such as adenine N1-oxide, adenine N7-oxide, 8-hydroxy-adenine
and 2-hydroxy-adenine, among others (Rhaese, 1968). The
γ-irradiation of aqueous adenine produced several compounds
such as: adenine N7-oxide, adenine N1-oxide, 2-hydroxy-adenine
(isoguanine) and isoguanine-7-N-oxide (Yamamoto, 1980).

The γ-irradiation of adenine in aqueous solution produced
8-hydroxy-adenine, and the chromatographic profile was similar
to the present work (Hartmann et al., 2007). Using gas discharges
for radiolysis of adenine in aqueous solution, Su et al. (2011)
observed the formation of 4,6-diamino-5-formamidopyrimidine,
8-hydroxy-adenine and 2-hydroxy-adenine.

Table 3. Assignments of the frequencies observed in adenine-related compounds

Pattern Nx-oxides

Adenine Assignments Adenine N1-oxide Adenine N3-oxide Adenine N7-oxide Assignments

1660 β(NH2) 1702 1673 1687 β(NH2)

1636 ν(C = N) 1627 1643 1632 ν(C = N)

1605 ν(C = C) 1565 1612 1600 ν(C = C)

1513 ν(C = N)im 1525 1509 1550 ν(C = N)im

– – 1294 1301 1266 ν(N–O)

Enol-amino Keto-amino Hydroxyl-aminopurine

2-Hydroxy
-adenine

8-Hydroxy
-adenine

2-Hydroxy
-adenine

8-Hydroxy
-adenine Assignments

N-Hydroxy
-adenine Assignments

– – 1746 1811 ν(C = O) – –

1664 1666 1683 1667 β(NH2) 1650 ν(C = N)

1653 1648 1633 1644 ν(C = N) 1629 ν(C = C)

1614 1612 1596 1619 ν(C = C) 1554 β(HNOH)

1523 1590 1524 1492 ν(C = N)im 1506 ν(C = N)im

1470 1534 – – β(C–O-H) 1145 ν(N–O)

ν-stretching; β-in-plane bending; im-imidazole ring. The assignments of the oxide and hydroxyl-modified adenine derivatives were attributed according to the theoretical calculations.

Fig. 10. Relative energies (Gcal mol−1) of the simulate molecules: (a) adenine N1-oxide; (b) adenine N3-oxide; (c) adenine N7-oxide; (d) 2-hydroxyl-adenine
(enol-amino); (e) 8-hydroxyl-adenine (enol-amino); (f) 2-hydroxyl-adenine (keto-amino); (g) 8-hydroxyl-adenine (keto-amino) and (h) N-hydroxyl-adenine.
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Prebiotic seawater relevance

Izawa et al. (2010) performed an experiment by leaching meteor-
ite samples from the Tagish lake, and obtained the following order
of cations: Mg2+ > Ca2+ >> Na+≈ K+ and anions: SO4

2− >> Cl−. It
should be noted that the meteorite samples from the Tagish
lake are among the oldest rocks from the solar system (Brown
et al., 2000). The artificial seawater 4.0 Ga, used in this research,
better resembles the major cations and anions of seawater on the
Earth of 4.0 billion years ago (Zaia, 2012). Thus, the experiments
carried out in this work may better represent what could have
occurred in the prebiotic Earth 4.0 billion years ago. Of course,
control experiments (in distilled water) are necessary to provide
an idea of the effect of the ions. We observed that this seawater
influences the stability of minerals and the adsorption of nucleic
acid bases (Anizelli et al., 2015, 2016; Canhisares-Filho et al.,
2015; Carneiro et al., 2017; Villafañe-Barajas et al., 2018; Zaia
et al., 2018). In addition, the interaction of cations of seawater
(Ca2+, Mg2+, Sr2+ and Na+) with nucleic acid bases changed

their reactivity (Anizelli et al., 2014; Baú et al., 2019). It should
be noted that Mg2+, the highest cation concentration in sea-
water, could be important in nucleoside formation (Sheng
et al., 2009). However, Ferris and Ertem (1993) observed that
Mg2+ adsorbed onto montmorillonite did not have a catalytic
effect on the formation of adenylic acid. K+, one of the cations
of the seawater, has an effect on the formation of peptides
(Dubina et al., 2013).

In general, saline solutions present better adenine protective
effects against γ-gamma radiation than distilled water because
Br−, Cl− and SO4

2− act as scavengers for hydroxyl radicals
(Draganić and Draganić, 1971; Kumagai et al., 2013; Hata et al.,
2016a, 2016b). It is probable that as the artificial seawater
4.0 Ga contains both Cl− and Br− a better protective effect of
adenine was achieved (Table 1, Fig. 4) (Hata et al., 2016b).

The results obtained in several works suggested that adenine
irradiation produced a large variety of species (Conlay, 1963;
Ponnamperuma et al., 1963; Rhaese, 1968; van Hemmen and
Bleichrodt, 1971; Yamamoto, 1980; Yamamoto and Fuji, 1986).

Fig. 11. Reaction mechanisms for the irradiation of
aqueous adenine. Steps in brackets refer to transi-
tional states (A Adenine; radical) (Conlay, 1963;
Ponnamperuma et al., 1963; Rhaese, 1968; van
Hemmen and Bleichrodt, 1971; Yamamoto, 1980;
Yamamoto and Fuji, 1986).
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The synthesis of different species during irradiation of the aden-
ine samples could be a double-edged sword for prebiotic chemis-
try. On the one side, a large variety of species could mean much
more complex prebiotic chemistry, with more possibilities for the
formation of different and more complex molecules. On the other
hand, this could represent the production of a mixture which
could not further produce any important molecules. This subject,
intractable mixture-‘gunk’, has already been addressed by one
researcher (Schwartz, 2007).

In the current work, two important results were found. First,
the radiolysis of adenine is affected by the presence of ions in
the milieu. Second, artificial seawater 4.0 Ga protected adenine
against degradation by γ-radiation. In a context of chemical evo-
lution, it is fundamental to take into account the possible com-
position of primitive seas, in order to understand the fate of
organic molecules.

Remarks

The radiolysis of aqueous adenine leads to hydroxyl and oxide
radical modified adenine derivatives that could be available for
chemical evolution steps. Furthermore, it was demonstrated that
the artificial seawater 4.0 Ga, which resembles the early ocean
(from 4.0 billion years ago), was able to decrease the decompos-
ition of aqueous adenine through γ-radiation exposure. These
results reaffirm the importance of using seawater analogues in
prebiotic chemistry experiments, since differences in adenine
decomposition were observed only for the seawater solution,
which may give rise to results of prebiotic relevance.
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