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Rigorous study of propagation in metallic
circular waveguide filled with anisotropic
metamaterial
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This paper presents an extension of the formulation of wave propagation in transverse electric (TE) and transverse magnetic
(TM) modes in the case of metallic circular waveguides filled with anisotropic metamaterials. The determined higher-order
modes have been analyzed and exploited to the design of filters. Among the particularities of anisotropic material, the back-
ward waves can propagate below the cut-off frequency. The numerical results for TE and TM modes have been compared with
theoretical predictions. Good agreements were obtained. We analyzed a periodic structure containing waveguides filled with
anisotropic metamaterial using the mode-matching technique. By using modal analysis, our approach reduced considerably
the computation time compared to HFSS.
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I . I N T R O D U C T I O N

Recently, many researchers have been interested in the
guiding devices using metamaterials in some frequency
range for their potential novel applications in microwave cir-
cuits and radiofrequency (RF) devices such as the patch anten-
nas, waveguide antennas, resonators, the circulators, the
insulators, the phase-converters, and the filters. However,
there is a lack in the study of the dispersion of anisotropic
metamaterials in circular waveguides. The state-of-the-art of
these structures can be found in [1–13]. Many studies of
guided modes in circular waveguides with isotropic media
[14–17] or negative index materials [18, 19] have been pre-
sented in the literature.

In this paper, we extended the studies of the transverse
electric (TE) and transverse magnetic (TM) modes to circular
waveguides filled with anisotropic metamaterials. The pro-
posed study which takes account of the spatial distribution
of the permittivity and permeability of the medium is
applied to the transverse fields. Then, we discussed the
effects of anisotropic parameter on dispersion characteristics.
Among the particularities of this anisotropic material, the
backward waves can propagate below the cut-off frequency
in the guide. The numerical results for TE and TM modes
were obtained and compared with theoretical predictions.

The design of anisotropic metamaterial circular waveguides
discontinuities using mode matching (MM) gave good perfor-
mances compared to HFSS.

I I . F O R M U L A T I O N

In the anisotropic diagonal metamaterials medium, the
Maxwell equations are expressed as follows:

�∇ × �E = −jv��m. �H, (1)

�∇ × �H = jv��1.�E (2)

with

��m = m0

mrr 0 0
0 mru 0
0 0 mrz

⎛
⎝

⎞
⎠ = m0

mrt 0
0 mrz

( )
(3)

and

��1 = 10

1rr 0 0
0 1ru 0
0 0 1rz

⎛
⎝

⎞
⎠ = 10

1rt 0
0 1rz

( )
. (4)

Let consider a circular waveguide of radius R completely
filled with anisotropic metamaterial without losses, as
represented in the Fig. 1. The wall of the guide is perfect
conductor.
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By considering the propagation in the Oz-direction and
manipulating equations (1) and (2), we obtain the expressions
of the transverse electromagnetic fields according to the longi-
tudinal fields.

Er =
−j
K2

c.r
kz

∂Ez

∂r
+ vm0mru

r
∂Hz

∂u

( )
, (5)

Eu =
j

K2
c.u

−kz

r
∂Ez

∂u
+ vm0mrr

∂Hz

∂r

( )
, (6)

Hr =
−j

K2
c.u

−v101ru

r
∂Ez

∂u
+ kz

∂Hz

∂r

( )
, (7)

Hu =
j

K2
c.r

−v101rr
∂Ez

∂r
− kz

r
∂Hz

∂u

( )
(8)

with

K2
c.r = k2

01rrmru − k2
z , (9)

K2
c.u = k2

01rumrr − k2
z, (10)

k2
0 = v210m0. (11)

In this paper, we study rigorously the TE and TM modes in
this anisotropic waveguide.

A) TE modes
From equation (1), the differential equation for z-component
can be obtained as follows:

∂2Hz

∂r2
+ 1

r
∂Hz

∂r
+

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√

( )2
1
r2

∂2Hz

∂u2 +
����
mrz

√����
mrr

√ K (h)
c.u

( )2

Hz = 0.

(12)

The resolution of the differential equation (12), using the
separation of the variables (r,u), requires the expression of
Hz for the TEmn modes in the circular metallic waveguide
fully filled of anisotropic metamaterial. The expression of
the longitudinal magnetic field can be written as follows:

H(h)
z = H0 sin

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )
Jn

����
mrz

√����
mrr

√ K (h)
c.u .r

( )
e−jkz z. (13)

Jn is the Bessel function of the first kind of order n (n ¼ 0, 1, 2,
3,. . .).

The expressions (5)–(8) become

E(h)
r = −jvm0mru

K2
c.r.r

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )
H0. cos

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )

. Jn

����
mrz

√����
mrr

√ K (h)
c.u .r

( )
e−jkz z, (14)

E(h)
u = jvm0mrr

K2
c.u

����
mrz

√����
mrr

√ K (h)
c.u

( )
H0. sin

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )

. J ′n

����
mrz

√����
mrr

√ K (h)
c.u .r

( )
e−jkz z, (15)

H(h)
r =−jkz

K2
c.u

����
mrz

√����
mrr

√ K (h)
c.u

( )
H0. sin

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )

. J ′n

����
mrz

√����
mrr

√ K (h)
c.u .r

( )
e−jkz z, (16)

H(h)
u = −jkz

K2
c.r .r

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n

( )
H0. cos

K (h)
c.u .

����
mru

√

K (h)
c.r .

����
mrr

√ n.u

( )

. Jn

����
mrz

√����
mrr

√ K (h)
c.u .r

( )
e−jkz z (17)

with J ′n is the derivative of the Bessel function of the first kind
of order n (n ¼ 0, 1, 2, 3,. . .).

The boundary conditions are written as follows:

Eu(r = R) = Ez(r = R) = 0. (18)

Fig. 1. Geometry of circular waveguide filled with metamaterial.

806 hedi sakli et al.

https://doi.org/10.1017/S1759078716000970 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078716000970


Consequently, from equation (15), we obtain

J ′n

����
mrz

√����
mrr

√ K (h)
c.u .R

( )
= 0. (19)

This implies

u′
nm =

����
mrz

√����
mrr

√ K (h)
c.u .R, (20)

where u′
nm represents the mth zero (m ¼ 1, 2, 3,. . .) of the de-

rivative of the Bessel function J ′n of the first kind of order n.
The constant H0 is determined by normalizing the power

flow down the circular guide.

PTE =
∫R
0

∫2p
0

E(h)
r H∗(h)

u − E(h)
u H∗(h)

r

( )
rdrdu = 1, (21)

where ∗ indicates the complex conjugate.
Equation (21) gives

H0 =
K3

c.r�������
vm0kz

√ ����
mrz

√

mru
N (h)

nm (22)

with

N (h)
nm = 1������

sn/2
√

.((u′
nm)2 − n2)1/2.Jn(u′

nm)
, (23)

sn =
2p, if n = 0,

p− sin(4pa.n)
4a.n

, if n . 0,

⎧⎨
⎩ (24)

a =
K (h)

c.u .
����
mru

√

K (h)
c.r .

����
mrr

√ . (25)

Finally, the propagation constant in TE mode is given by

k(TE)
z.nm = +

��������������������������
k2

01ru.mrr −
mrr

mrz

u′
nm

R

( )2
√

. (26)

The cut-off frequency is written as

f (TE)
c.nm = c

2p
1���������

1rumrz

∣∣ ∣∣√ .
u′

nm

R

( )
. (27)

We can introduce the following effective permeability and
effective permittivity to describe the propagation characteris-
tics of the waveguide modes [6, 7, 13].

mTE
r,eff = mrr, (28)

1TE
r,eff = 1ru 1 − 1

1rumrzk2
0
.

u′
nm

R

( )2( )
. (29)

Further, it is observed that:

† kTE
z = k0

�����������
mTE

r,eff .1
TE
r,eff

√
≻ 0, for mTE

r,eff ≻ 0 and 1TE
r,eff ≻ 0;

† kTE
z = −k0

�����������
mTE

r,eff .1
TE
r,eff

√
≺ 0, for mTE

r,eff ≺ 0 and 1TE
r,eff ≺ 0;

† kTE
z = +jk0

�����������
mTE

r,eff .1
TE
r,eff

√
, for mTE

r,eff .1
TE
r,eff ≺ 0.

The sign of 1TE
r,eff depends on the sign of mrz as follows:

1) first case: mrz ≻ 0
For 1ru ≻ 0, we have

1TE
r,eff = 1ru| | 1 − 1

1rumrz

∣∣ ∣∣k2
0

.
u′

nm

R

( )2
( )

= 1ru| | 1 − f TE
c.nm

f

( )2( )
≺ 0 if f ≺ f TE

c.nm. (30)

For 1ru ≺ 0, 1TE
r,eff is rewritten as

1TE
r,eff = − 1ru| | 1 + 1

1rumrz

∣∣ ∣∣k2
0

.
u′

nm

R

( )2
( )

≺ 0. (31)

It can be seen that mrz ≻ 0 leads to 1TE
r,eff ≺ 0 below the

cut-off frequency whenever 1ru ≻ 0 or 1ru ≺ 0.

2) second case: mrz ≺ 0
For 1ru ≻ 0, 1TE

r,eff is rewritten as

1TE
r,eff = 1ru| | 1 + 1

1rumrz

∣∣ ∣∣k2
0

.
u′

nm

R

( )2
( )

≻ 0. (32)

For 1ru ≺ 0, we obtain

1TE
r,eff = − 1ru| | 1 − 1

1rumrz

∣∣ ∣∣k2
0

.
u′

nm

R

( )2
( )

= − 1ru| | 1 − f TE
c.nm

f

( )2( )
≻ 0 if f ≺ f TE

c.nm. (33)

Consequently, mrz ≺ 0 leads to 1TE
r,eff ≻ 0 below the cut-off

frequency whenever 1ru ≻ 0 or 1ru ≺ 0.
As a result, the sign of the relative effective permittivity of

the circular waveguide filled with an anisotropic metamaterial
is determined by the relative permeability mrz below the
cut-off frequency. Furthermore, the sign of the propagation
constants of the studied waveguide is determined by the
sign of the product mrr.mrz of the metamaterial below the
cut-off frequency.

The forward waves are obtained for mrz ≺ 0 and mrr ≻ 0
and backward waves for mrz ≻ 0 and mrr ≺ 0. Therefore, not
only backward waves can propagate below the cut-off fre-
quency, but the forward waves can propagate too.
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B) TM modes
Similarly to TE modes, TM modes can be derived as follows:

From equation (2), the differential equation for
z-component can be obtained

∂2Ez

∂r2
+1

r
∂Ez

∂r
+ K (e)

c.r .
����
1ru

√

K (e)
c.u.

���
1rr

√

( )2
1
r2

∂2Ez

∂u2 +
���
1rz

√���
1rr

√ K (e)
c.r

( )2

Ez = 0.

(34)

The resolution of the differential equation (34), using the
separation of the variables (r,u), requires the expression of
Ez for the TMnm modes in the circular metallic waveguide
fully filled of anisotropic metamaterial. The expression of
the longitudinal electric field can be written as follows:

E(e)
z = E0 cos

K (e)
c.u.

���
1rr

√

K (e)
c.r .

����
1ru

√ n.u

( )
Jn

���
1rz

√���
1rr

√ K (e)
c.r .r

( )
e−jkz z (35)

The expressions (5)–(8) become

E(e)
r =−jkz

Kc.r

���
1rz

√���
1rr

√ E0. cos
K (e)

c.u.
���
1rr

√

K (e)
c.r .

����
1ru

√ n.u

( )

J ′n

���
1rz

√���
1rr

√ K (e)
c.r .r

( )
e−jkz z, (36)

E(e)
u = jkz

Kc.u.Kc.r

���
1rr

√����
1ru

√
n
r

E0. sin
K (e)

c.u.
���
1rr

√

K (e)
c.r .

����
1ru

√ n.u

( )

Jn

���
1rz

√���
1rr

√ K (e)
c.r .r

( )
e−jkz z, (37)

H(e)
r = −jv10

Kc.u.Kc.r

����
1ru

√ ���
1rr

√
.
n
r

E0. sin
K (e)

c.u.
���
1rr

√

K (e)
c.r .

����
1ru

√ n.u

( )

Jn

���
1rz

√���
1rr

√ K (e)
c.r .r

( )
e−jkz z, (38)

H(e)
u =−jv10

Kc.r

���
1rr

√ ���
1rz

√
.E0. cos

K (e)
c.u.

���
1rr

√

K (e)
c.r .

����
1ru

√ n.u

( )

J ′n

���
1rz

√���
1rr

√ K (e)
c.r .r

( )
e−jkz z. (39)

The boundary condition (18) gives the following equation:

Jn(unm) = 0 (40)

with

unm =
���
1rz

√���
1rr

√ K (e)
c.r .R. (41)

In equation (41) unm represents the mth zero (m ¼ 1, 2,
3, . . .) of the Bessel function Jn of the first kind of order n.

The constant E0 is determined by normalizing the power
flow down the circular guide.

PTM =
∫R
0

∫2p
0

E(e)
r H∗(e)

u − E(e)
u H∗(e)

r

( )
rdrdu = 1. (42)

Equation (42) gives:

E0 = K2
c.r����������

v101rrkz
√ N (e)

nm (43)

with

N (e)
nm = 1

unm.J ′n(unm).
�����
dn/2

√ , (44)

dn =
2p, if n = 0,

p− sin(4pb.n)
4b.n

, if n . 0,

⎧⎨
⎩ (45)

b = K (e)
c.u.

���
1rr

√

K (e)
c.r .

����
1ru

√ . (46)

Finally, the propagation constant in TM mode is given by:

k(TM)
z.nm = +

�������������������������
k2

01rr .mru −
1rr

1rz

unm

R

( )2
√

. (47)

Obviously, the cut-off frequency is written

f (TM)
c.nm = c

2p
1���������

mru1rz

∣∣ ∣∣√ .
unm

R

( )
. (48)

We can introduce the following effective permeability and
effective permittivity to describe the propagation characteris-
tics of the waveguide modes.

1TM
r,eff = 1rr, (49)

mTM
r,eff = mru 1 − 1

mru1rzk2
0

.
unm

R

( )2
( )

. (50)

Similar to the previous discussion, we have three
possibilities:

Further, it is observed that:

† kTM
z = k0

�����������
mTM

r,eff .1
TM
r,eff

√
≻ 0, for mTM

r,eff ≻ 0 and 1TM
r,eff ≻ 0,

† kTM
z = −k0

�����������
mTM

r,eff .1
TM
r,eff

√
≺ 0, for mTM

r,eff ≺ 0 and 1TM
r,eff ≺ 0,

† kTM
z = +jk0

�����������
mTM

r,eff .1
TM
r,eff

√
, for mTM

r,eff .1
TM
r,eff ≺ 0.

Consequently, the sign of mTM
r,eff depends on the sign of 1rz

as follows:

808 hedi sakli et al.

https://doi.org/10.1017/S1759078716000970 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078716000970


1) case when 1rz ≻ 0
In this case, for mru ≻ 0, mTM

r,eff is rewritten as

mTM
r,eff = mru

∣∣ ∣∣ 1 − 1

mru1rz

∣∣ ∣∣k2
0

.
unm

R

( )2
( )

= mru

∣∣ ∣∣ 1 − f TM
c.nm

f

( )2( )
≺ 0 if f ≺ f TM

c.nm. (51)

For mru ≺ 0, we have

mTM
r,eff = − mru

∣∣ ∣∣ 1 + 1

mru1rz

∣∣ ∣∣k2
0

.
unm

R

( )2
( )

≺ 0. (52)

It can be seen that 1rz ≻ 0 leads to mTM
r,eff ≺ 0 below the

cut-off frequency whenever mru ≻ 0 or mru ≺ 0.

2) case when 1rz ≺ 0
In this case, for mru ≻ 0, we have

mTM
r,eff = mru

∣∣ ∣∣ 1 + 1

mru1rz

∣∣ ∣∣k2
0

.
unm

R

( )2
( )

≻ 0. (53)

For mru ≺ 0, we obtain

mTM
r,eff = − mru

∣∣ ∣∣ 1 − 1

mru1rz

∣∣ ∣∣k2
0

.
unm

R

( )2
( )

= − mru

∣∣ ∣∣ 1 − f TM
c.nm

f

( )2( )
≻ 0 if f ≺ f TM

c.nm. (54)

It is also seen that the sign of mTM
r,eff is determined by 1rz

which is independent of mru. The wave propagates in the
form of a forward wave in the waveguide for 1rz ≺ 0 and
1rr ≻ 0, and the wave propagates in the form of a backward
wave for 1rz ≻ 0 and 1rr ≺ 0.

According to this analysis, it is found that both the forward
waves and the backward waves are possible in any frequency
region. This is determined by the sign of mrz and mrr for TE

modes and by the sign of 1rz and 1rr for TM modes.
Therefore, we observe that in addition to backward waves,
the forward waves can propagate below the cut-off frequency.

C) Analysis of uni-axial discontinuities in the
circular waveguides
In this section, we extended the use of MM to characterize
uni-axial discontinuities between circular waveguides filled
with the studied medium. The discontinuities are considered
without losses. This method based on the modal development
of the transverse electromagnetic fields.

We consider in Fig. 2 a junction between two circular
waveguides filled with two different media having the same
cross-section where ai and bi are the incident and the reflected
waves, respectively.

The TE and magnetic fields (ET, HT) in the wave guides can
be written in the modal bases as follows [20]:

ET =
∑1
m=1

Ai
m ai

m + bi
m

( )
ei

m, (55)

HT =
∑1
m=1

Bi
m ai

m − bi
m

( )
hi

m, (56)

where ET and HT are the TE and magnetic fields (the sub-
index T refers to the components in the transverse plane)
Ai

m and Bi
m are complex coefficients which are determined

by normalizing the power flow down the circular guides
(i ¼ I, II and m is the index of the mode). ei

m, hi
m represent

the mth electric and magnetic modal eigenfunction in the
guide i, respectively.

At the junction, the continuity of the fields allows to write
the following equations:

EI
t = EII

t , (57)

HI
t = HII

t . (58)

Fig. 2. Junction between two circular waveguides filled with two different media having the same cross-section.
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By postponing the equations (55) and (56) in (57) and (58),
we obtain:

∑N1

m=1

AI
m aI

m + bI
m

( )
eI

m =
∑N2

p=1

AII
p aII

p + bII
p

( )
eII

p , (59)

∑N1

m=1

BI
m aI

m − bI
m

( )
hI

m =
∑N2

p=1

BII
p −aII

p + bII
p

( )
hII

p . (60)

N1 and N2 are the number of considered modes in guides 1
and 2, respectively. By applying the Galerkin’s method, equa-
tions (59) and (60), lead to the following systems:

∑N1

m=1

AI
m aI

m + bI
m

( )
keI

m

∣∣eII
p l = AII

p aII
p + bII

p

( )
, (61)

BI
m aI

m − bI
m

( )
=
∑N2

p=1

BII
p −aII

p + bII
p

( )
khII

p hI
m

∣∣ l. (62)

The inner product is defined as:

kem|epl =
∫
S

e∗mep dS. (63)

Equations (61) and (62) give:

− aII
p +

∑N1

m=1

AI
m

AII
p

aI
mkeI

m

∣∣eII
p l = bII

p −
∑N1

m=1

AI
m

AII
p

bI
mkeI

m

∣∣eII
p l, (64)

aI
m +

∑N2

p=1

BII
p

BI
m

aII
p khII

p hI
m

∣∣ l = bI
m +

∑N2

p=1

BII
p

BI
m

bII
p khII

p hI
m

∣∣ l, (65)

which can be written in matrix form:

U M1

M2 −U

[ ]
aI

1
.

aI
N1

aII
1
.

aII
N2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= U M1

−M2 U

[ ]
bI

1
.

bI
N1

bII
1
.

bII
N2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(66)

where U is the identity matrix. M1 and M2 are defined as:

M1ij =
BII

j

BI
i

khII
j hI

i

∣∣ l, (67)

M2ij =
AI

i

AII
j

keI
i

∣∣eII
j l. (68)

The scattering matrix of the discontinuity is:

S = U M1

−M2 U

[ ]−1
U M1

M2 −U

[ ]
. (69)

For a structure having cascaded uni-axial discontinuities,
the total scattering matrix is obtained by chaining the S scat-
tering matrices of all discontinuities [21].

I I I . N U M E R I C A L R E S U L T S A N D
D I S C U S S I O N

A) Propagating modes
In the first stage, we study the TE modes of metallic circular
waveguide of radius R ¼ 13.4 mm fully filled with an aniso-
tropic metamaterials (see Fig. 1) having negative mrz or nega-
tive mrr. The resonant frequency of the fundamental mode of
the equivalent empty circular waveguide is 6.57 GHz. For the
case of isotropic metamaterial with a permittivity 1r ¼ 24.4
and a permeability mr ¼ 21, the resonant frequency of the
fundamental mode is f TE

c.11 = 3.13 GHz.
Figure 3 represents the curves of the propagation constant

for the first five TE modes and for frequency range 1–10 GHz,
mrr ¼ 1, mrz ¼ 21, and 1ru ¼ 4.4. All modes propagate
without cut-off frequencies (forward waves). Figure 4 displays
the same diagrams for mrr ¼ 21, mrz ¼ 1, and 1ru ¼ 4.4.
When n and m is small and v is large, the waves stop propa-
gating. Therefore, these modes propagate at low frequencies
and cutoff at high frequencies (backward waves).

It is interesting to see that by controlling the signs of mrz

and mrr, both forward and backward waves can be obtained.
Figures 3 and 4 show that our results agree well with the pre-
dicted ones.

Let consider now the TM modes. Figure 5 represents the
curves of propagation constant for the first five TM modes
and for the frequency range is 1–10 GHz, and 1rr ¼ 4.4,
1rz ¼ 24.4, mru ¼ 1. All modes propagate without cutoff
(forward waves). Figure 6 represents a calculated curves of

Fig. 3. Curves of propagation constant kTE
z for TE mode of the circular

waveguide completely filled anisotropic metamaterial with parameters mrr ¼

1, mrz ¼21, 1ru ¼ 4.4.
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propagation constant for the first five TM modes and for the
frequency range is 1–10 GHz, and 1rr ¼ 24.4, 1rz ¼ 4.4,
mru ¼ 1.

We notice that by controlling the signs of 1rz and 1rr, both
forward wave and backward wave can be obtained. Figures 5
and 6 show that our results agree well with the predicted ones.

In Fig. 7, for mrr ¼ 21 and 1ru ¼ 4.4. We observe that the
cut-off frequencies of lowest TE modes decreased with the
respect increase of mrz. In a same manner in Fig. 8, for
1rr ¼ 24.4 and mru ¼ 1, the TM cut-off frequencies decreased
with the respect increase of 1rz. Consequently, the propagating
mode can be controlled by varying the parameters of material.

B) Filter design
We consider now, 12 discontinuities (see Fig. 9) constituted by
juxtaposing 13 circular waveguides having the same dimen-
sions (R ¼ 13.4 mm). The circuit is formed by alternation of
empty guide (1r ¼ mr ¼ 1) of width l ¼ 10 mm and guide

Fig. 4. Curves of propagation constant kTE
z for TE mode of the circular

waveguide completely filled anisotropic metamaterial with parameters
mrr ¼ 21, mrz ¼ 1, 1ru ¼ 4.4.

Fig. 6. Curves of propagation constant kTM
z for TM mode of the circular

waveguide completely filled anisotropic metamaterial with parameters
1rr ¼ 24.4, 1rz ¼ 4.4, mru ¼ 1.

Fig. 5. Curves of propagation constant kTM
z for TM mode of the circular

waveguide completely filled anisotropic metamaterial with parameters 1rr ¼

4.4, 1rz ¼ 24.4, mru ¼ 1.

Fig. 7. Cut-off frequencies for the first five TE modes versus mrz with
mrr ¼ 21, 1ru ¼ 4.4.

Fig. 8. Cut-off frequencies for the first five TM mode versus 1rz with
1rr ¼ 24.4, mru ¼ 1.
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filled by anisotropic metamaterials (1rr ¼ 1ru ¼ 21rz ¼ 24.4;
mrr ¼ mru ¼ 2mrz ¼ 1) of width d ¼ 0.2 mm (periodic struc-
ture). Figure 9 represents the geometry of the studied
structure.

Figure 10 represents the response circuit in terms of reflec-
tion and transmission coefficients as a function of the fre-
quency using our approach and HFSS. For the modal
method, we used eight modes in the whole circuit. We note
that both simulations are in perfect agreement. However,
our method is significantly faster than HFSS especially if the
number of discontinuities increases. Then, by using our ap-
proach, it could easy to design band-pass or low-pass filters
according to a given specifications.

V I . C O N C L U S I O N

Rigorous TE and TM modes analysis of circular anisotropic
metamaterial waveguides has been developed. It was demon-
strated that the electromagnetic characteristics of the wave-
guide are closely dependent on constitutive parameters of
the filled metamaterial. The curves of dispersion of the funda-
mental mode and the first four higher-order modes of the
metamaterial waveguide are obtained by using Matlab.

We found that both the forward and the backward waves
are possible in different frequency ranges below and above
the cut-off frequency. This is determined by the sign of mrz

and mrr for TE modes and by the sign of 1rz and 1rr for TM
modes. Our results are in good agreement with the theoretical
prediction.

Moreover, in this paper, we applied the MM technique to
analyze multiple uni-axial discontinuities in circular metallic
waveguides filled with anisotropic metamaterials. This intro-
duced tool is applied to the modeling of large complex struc-
tures such as filters where its rapidity compared with the
commercial simulation tools is verified. The proposed formu-
lation can be a useful tool for engineers of microwave.
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