
Math. Struct. in Comp. Science (2018), vol. 28, pp. 1606–1638. c© Cambridge University Press 2018

doi:10.1017/S0960129518000154 First published online 2 August 2018

Mechanizing proofs with logical relations –

Kripke-style

ANDREW CAVE and BRIGITTE PIENTKA

School of Computer Science, McGill University, Montreal, Canada

Email: acave1@cs.mcgill.ca, bpientka@cs.mcgill.ca

Received 8 January 2016; revised 9 December 2017

Proofs with logical relations play a key role to establish rich properties such as normalization

or contextual equivalence. They are also challenging to mechanize. In this paper, we describe

two case studies using the proof environment Beluga: First, we explain the mechanization of

the weak normalization proof for the simply typed lambda-calculus; second, we outline how

to mechanize the completeness proof of algorithmic equality for simply typed lambda-terms

where we reason about logically equivalent terms. The development of these proofs in

Beluga relies on three key ingredients: (1) we encode lambda-terms together with their

typing rules, operational semantics, algorithmic and declarative equality using higher order

abstract syntax (HOAS) thereby avoiding the need to manipulate and deal with binders,

renaming and substitutions, (2) we take advantage of Beluga’s support for representing

derivations that depend on assumptions and first-class contexts to directly state inductive

properties such as logical relations and inductive proofs, (3) we exploit Beluga’s rich

equational theory for simultaneous substitutions; as a consequence, users do not need to

establish and subsequently use substitution properties, and proofs are not cluttered with

references to them. We believe these examples demonstrate that Beluga provides the right

level of abstractions and primitives to mechanize challenging proofs using HOAS encodings.

It also may serve as a valuable benchmark for other proof environments.

1. Introduction

Logical relations provide a key proof method to establish rich properties such as non-

interference, normalization or program equivalence. This proof technique goes back to

Tait (1967) and was later refined by Girard et al. (1990). The central idea of logical

relations is to specify relations on well-typed terms via structural induction on the syntax

of types instead of directly on the syntax of terms themselves. Thus, for instance, logically

related functions take logically related arguments to related results, while logically related

pairs consist of components that are related pairwise.

Mechanizing logical relations proofs is challenging: First, specifying logical relations

themselves typically requires a logic which allows arbitrary nesting of quantification

and implications; second, to establish soundness of a logical relation, one must prove

the Fundamental Property which says that any well-typed term is in the relation. This

latter part usually requires some notion of simultaneous substitution together with the

appropriate equational theory of composing substitutions. As Altenkirch (1993) remarked:

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1607

I discovered that the core part of the proof (here proving lemmas about CR) is fairly

straightforward and only requires a good understanding of the paper version. However, in completing

the proof I observed that in certain places I had to invest much more work than expected, e.g.

proving lemmas about substitution and weakening.

While normalization proofs using logical relations often are not large, they are

conceptually intricate and mechanizing them has become a challenging benchmark for

proof environments. There are several key questions that are highlighted when we attempt

to formalize such proofs: Are the terms we are reasoning about closed? If they are not

closed, how can we characterize their free variables and reason about them? How should

we represent the abstract syntax tree for lambda-terms and enforce the scope of bound

variables? How should we represent well-typed terms or typing derivations? How should

we deal with substitution? How can we define logical relations on open terms?

Early work (Altenkirch 1993; Berardi 1990; Coquand 1992) represented lambda-terms

using (well-scoped) de Bruijn indices which leads to a substantial amount of overhead

to prove properties about substitutions such as substitution lemmas and composition

of substitution. To improve readability and generally better support such meta-theoretic

reasoning, nominal approaches support α-renaming but substitution and properties about

them are specified separately; the Isabelle Nominal package has been used in a variety

of logical relations proofs from proving strong normalization for Moggi’s modal lambda-

calculus (Doczkal and Schwinghammer 2009) to mechanically verifying the meta-theory

of logical framework (LF) itself including the completeness of equivalence checking

(Narboux and Urban 2008; Urban et al. 2011) which we will also discuss in this paper.

Approaches representing lambda-terms using higher order abstract syntax (HOAS)

model binders in the object language (i.e. in our case, the simply typed lambda-calculus)

as binders in the meta-language (i.e. in our case, the LF (Harper et al. 1993)). Such

encodings inherit not only α-renaming and substitution from the meta-language, but

also weakening and substitution lemmas. However, direct encodings of logical relations

proofs are beyond the logical strength supported in systems such as Twelf (Pfenning and

Schürmann 1999). In this paper, we demonstrate the elegance of logical relations proofs

within the proof environment Beluga (Pientka and Dunfield 2010) which is built on top of

the contextual LF. In contrast to LF where the assumptions are implicit, the contextual LF

extends LF with first-class contexts and first-class simultaneous substitutions supporting

a rich equational theory about them (Cave and Pientka 2013; Pientka and Cave 2015).

Moreover, it allows the direct representation of derivations that depend on assumptions by

pairing LF objects together with their surrounding context and this notion is internalized

as a contextual type [Ψ � A] which is inhabited by term M of type A in the context Ψ

(Nanevski et al. 2008).

Properties about contexts, substitutions and contextual objects such as for example

logical relations can be encoded in Beluga using indexed inductive types (Cave and

Pientka 2012). Inductive proofs about contexts and contextual LF objects are implemented

in Beluga as dependently typed recursive functions via pattern matching (Pientka 2008,

2010; Pientka and Dunfield 2008).

In this paper, we describe two case studies, both of which concentrate on the simply

typed lambda-calculus and require reasoning about open terms: First, we explain the

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1608

mechanization of the weak normalization proof for the simply typed lambda-calculus using

logical relations. As we reduce under lambda-abstractions, we must define reducibility on

open terms. This is an example of a unary logical relation. Second, we outline how to

mechanize the completeness proof of algorithmic equality for simply typed lambda-terms

by Crary (2005). Algorithmic equality is defined in a type-directed way. For example,

two terms M and N of type A → B are equal, if for any term x, M x is equal to N x.

To prove completeness, we reason about logically equivalent open terms using a binary

logical relation. In these case studies, we rely upon the following three key aspects:

1. We encode lambda-terms together with their typing rules, operational semantics,

algorithmic and declarative equality using HOAS in the LF. This allows us to model

binders in our object language (i.e. the simply typed lambda-calculus) using the binders

in the LF. As a consequence, we do not need to build up our own infrastructure

for representing binders, renaming and substitution. We showcase two techniques of

how to represent and reason with well-typed terms: In our first case study of weak

normalization, we will work with intrinsically typed terms, while in our second case

study of proving completeness of algorithmic equality, we reason about well-typed terms

using typing derivations explicitly.

2. We give a Kripke-style definition of logical relations about terms. Kripke logical

relations are indexed by possible worlds and reason about arbitrary future extensions

of worlds. In our setting, we define the logical relation on terms M in a context Ψ in

which it is defined. The context hence plays the role of the world in which the term is

meaningful. Possible context extensions are characterized by simultaneous substitutions.

This allows us to argue that logically related terms in a context Ψ and are also logically

related in extensions of the context Ψ.

3. We take advantage of Beluga’s support for representing derivations that depend on

assumptions using contextual objects, first-class contexts and first-class simultaneous

substitutions to directly state and encode inductive properties such as logical relations

and proofs about well-typed terms. In particular, we exploit these features to give a

Kripke-style definition of reducibility candidates for terms together with the context

in which they are meaningful using inductive types and higher order functions. In

mechanizing the proofs, we benefit from Beluga’s rich equational theory of simul-

taneous substitutions which obliterates the need to establish various properties about

simultaneous substitution and avoids cluttering our proofs with them. This leads to

a direct, elegant and compact mechanization and allows us to demonstrate Beluga’s

strength at formalizing logical relations proofs.

All case studies described in this paper, in addition to various variations and extensions,

are accessible at

https://github.com/Beluga-lang/Beluga/tree/master/examples/logrel.

The mechanization of the weak normalization proof for the simply typed lambda-

calculus using logical relations in Beluga has not been previously described. The

completeness proof of algorithmic equality in Beluga has been presented in Cave and

Pientka (2015). In this paper, we use both case studies to motivate and illustrate how to

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1609

state logical relations on open terms and how to model context extensions in Beluga and

propose these two examples as benchmark problems for proof environments.

Over the past decade, we have seen progress in developing a range of benchmark

problems: POPLmark (Aydemir et al. 2005) lead the way and highlighted best practices

when mechanizing standard theorems that only require proofs by structural induction on

a given derivation. Similar in spirit, Felty, Momigliano and Pientka proposed a set of

crafted benchmark problems that highlighted the role of reasoning about context (Felty

et al. 2017, 2015; Felty and Pientka 2010). More recently, Kaiser et al. (2017) proposed

the equivalence proof between System F and its single-sorted pure type system (PTS)

variant λ2 as a benchmark to compare different proof environments relying on HOAS

encodings as well as using de Bruijn encodings. The benchmark of logical relations on

open terms which we describe in this paper goes beyond these existing benchmarks as

we reason semantically about reducibility. It requires us to reason about open terms,

context extensions, substitutions and relies on both syntactic and semantic definitions.

We would welcome and encourage others in the community to mechanize the proposed

logical relations proof to initiate a dialogue on the trade-offs between different techniques.

2. Example: Weak normalization

We begin by discussing the weak normalization proof for simply typed lambda-terms with

reduction under binders.

2.1. The basics: Well-typed lambda-terms

The grammar for our lambda-calculus is straightforward: it includes lambda-abstractions,

variables and application in addition to simple types formed by the base type i and

function types.

Types A,B ::= i | A → B

Terms M,N ::= x | lam x.M | M N

We choose to describe the typing rules, the operational semantics and normal forms in

a two-dimensional way. Following Gentzen’s natural deduction style, we keep the context

of assumptions implicit. There are two main reasons for this kind of presentation: First,

it can be directly translated into specifications in the LF and hence it foreshadows our

mechanization; second, letting us be guided by LF highlights clearly what assumptions

are made and will naturally lead us to a concrete characterization of contexts, which we

postpone until needed in the next section. We begin stating the rules for well-typed terms.

M : A Term M has type A

M : A → B N : A
M N : B

app

x : A
u

...

M : B

lam x.M : A → B
lamx,u

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1610

Note that in the typing rule for lambda-abstractions, we must show that M has type B

assuming that x has type A and x is a fresh variable. We then define a form of reduction,

written as M −→ N, which supports reductions in the body of a lambda-abstraction. On

top of single step reduction, we build a multi-step relation, written as M −→∗ N, which

includes transitivity and reflexivity.

M −→∗ N M steps to N in multiple steps

M −→∗ M
s refl

M −→ M ′ M ′ −→∗ N
M −→∗ N

s trans

M −→ N M steps to N in one step

M −→ M ′

M N −→ M ′ N
s app1 N −→ N ′

M N −→ M N ′ s app2 M −→ M ′

lam x.M −→ lam x.M ′ s lamx

(lam x.M) N −→ M[N/x]
s beta

We halt when we reach a normal form, i.e. the term does not contain a redex. We define

below when a term is in normal form in a judgmental way using two mutual judgments.

M norm M is normal M neut M is neutral

M neut
M norm

n neut M neut N norm
M N neut

n app

x neut
n

...

M norm

lam x.M norm
n lamx,n

We have chosen here a standard set of reduction rules which is non-deterministic, but

reduction of well-typed terms is guaranteed to terminate and produce a unique normal

form. There are different alternative formulations of reductions and normal forms one

might consider. For example, we might only characterize weak head normal forms by

stating that M N is neutral if M is neutral and consider fixing a call-by-value strategy by

removing the evaluation rule s app2. Alternatively, we could fix a call-by-name strategy

by enforcing that we only use s β rule, if the argument is a value. These variations do not

change substantially the overall proof of normalization which we show in the next section.

2.2. Proof outline: Weak normalization

We revisit here the proof that the evaluation of well-typed terms halts using reducibility

candidates which is typical for logical relations proofs. However, often we simply define

reducibility on closed terms. As we allow reductions under binders, we must state

reducibility on open terms. This naturally leads to the question: What are the free

variables in a term? How can we characterize them and reason about them? – Here we

propose to think of a term within a context of assumptions and state reducibility of a

term at type A using Kripke-style possible worlds where the context in which a term is

meaningful corresponds to a world. While it is possible to define reducibility for simply

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1611

(Ψ � M) ∈ RA Term M is reducible at type A

Ri = {Ψ � M | Ψ � M halts}
RA→B = {Ψ � M | Ψ � M halts and ∀Φ ≥ρ Ψ, N where Φ � N : A,

if (Φ � N) ∈ RA then (Φ � M [ρ] N) ∈ RB}

Fig. 1. Reducibility for well-scoped and well-typed terms.

typed terms without necessarily ensuring that reducible terms are well-scoped and well-

typed (see, for example, Altenkirch (1993)), this approach does not scale to systems that

rely on type-directed evaluation or equivalence checking. In particular, we will consider

such a system in Section 3.

Starting from our desire to concentrate only on well-scoped and well-typed terms, this

leads to the question what context(s) should we consider. Previously, we have chosen

a two-dimensional representation of rules defining typing, reduction and normal forms.

This representation left the context of assumptions implicit sidestepping this question.

Revisiting the judgements for typing and normal forms, we note that each relies on

different assumptions. Typing judgements refer to typing assumptions that we can make

explicit using a typing context Γ = x1:A1, . . . , xn:An. For characterizing normal and neutral

terms, we rely on assumptions that characterize variables as neutral.

Reducibility makes statements about well-typed terms. As is standard, reducibility is

defined inductively on the type. A well-typed term is reducible at base type precisely when

it halts. Recall that a well-typed term M halts, if M is in normal form; however, our

judgment M norm requires that for each variable occurring in M, we have an assumption

stating that it is neutral. Hence, when we define reducibility of terms we need to consider

the term M in a context that has both typing and neutral assumptions. We refer to such

a context as the typed neutral variable context.

Typing Context Γ ::= · | Γ, x : A

Neutral Variable Context Ω ::= · | Ω, x neut

Typed Neutral Variable Context Ψ,Φ ::= · | Ψ, x : A, x neut

We can always weaken any typing context Γ to a typed neutral variable context Ψ;

similarly, any neutral variable context Ω can be weakened to a context Ψ. Moreover,

because our definition of typing and normal forms were defined independently from each

other, we can also strengthen any typed neutral variable context to a typing context

or a neutral variable context, respectively. This may seem trivial and obvious on-paper,

however, this may need to be taken into account in a mechanization. For example, in a

mechanization where we model variables and their scope using de Bruijn indices, we may

need to shift indices such that they remain meaningful.

We will define reducibility for a term M in the typed neutral variable context Ψ (written

as Ψ � M) to capture precisely the relevant assumptions (see Figure 1). A term M is

reducible at base type, when it halts, i.e. there exists a term V it steps to and V norm in

the context Ψ. To emphasize that we are working with well-scoped terms and well-typed

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1612

terms, we make the typing context explicit in the stepping relation writing Ψ � M −→ M ′

and Ψ � M −→∗ M ′, respectively.

Ψ � M −→∗ V Ψ � V norm
Ψ � M halts

How can we now define reducibility for a term M at function type A → B? – In the

course of evaluating a term M, we may extend the initial world (i.e. the context Ψ in

which M is meaningful) as we traverse lambda-abstractions. We hence must be able to

reason about future extensions of a world (i.e. contexts Φ) and more importantly, we must

be able to use the term M in the future world. The notion of accessibility of worlds in

Kripke-style semantics corresponds in our setting to moving from one context Ψ to its

extension via a simultaneous substitution that weakens Ψ and guarantees that normal

forms are preserved, i.e. we only replace variables with neutral terms. In practice, we in

fact simply rename variables. We can then define reducibility of a term M in a context

Ψ at function type A → B, if for all future contexts Φ, neutral substitutions ρ, where

Φ � ρ : Ψ (i.e. ρ has domain Ψ and co-domain Φ) and for every reducible term N at type

A in the future context Φ, the application M[ρ] N is reducible at type B in the future

context Φ.

We define Φ �ρ Ψ to mean Φ � ρ : Ψ where the substitution ρ is neutral, i.e. it only

allows variables in Ψ to be replaced by neutral terms of the expected type.

Φ �ρ Ψ ρ is a neutral substitution from the context Ψ to Φ

Φ �· ·
Φ �ρ Ψ Φ � M : A Φ � M neut

Φ �ρ,M/x Ψ, x : A, x neut

There are two special cases of neutral substitutions that often arise: (1) identity

substitution written as idΨ to denote a neutral substitution Ψ � idΨ : Ψ, where the

range and domain are the same and any variable x declared in Ψ is mapped to itself; (2)

weakening substitution written as wkΨ to denote a neutral substitution Ψ,Ψ′ � wkΨ : Ψ,

where the range of the substitution is extended and any variable in Ψ is mapped to itself.

The proof for showing that all well-typed terms halt, falls into two main parts. The

first part, the main lemma (sometimes called the escape lemma), states that if a term

is reducible at type A then it halts. The fundamental theorem states that all well-typed

terms are indeed reducible. Both theorems together then allow us to show that well-typed

terms halt. In stating the theorems, we make for clarity the context explicit in our typing

judgements and when referring to our judgemental definition of normal and neutral terms.

Obviously, the two-dimensional formulation which we used in Section 2.1 and the one

with explicit contexts are equivalent and it is easy to convert between them.

We begin by stating two main properties about the reducibility candidates: (1) if a term

M is reducible, then its evaluation is guaranteed to halt; (2) all neutral terms that are

well-typed are included in the reducibility relation.

Theorem 2.1 (Main lemma).

1. If (Ψ � M) ∈ RA, then Ψ � M halts.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1613

2. If Ψ � M : A and Ψ � M neut, then (Ψ � M) ∈ RA.

Proof. The first part follows directly from the definition of reducibility. The second part

is proven by induction on the type A.

One can then easily prove that RA is closed under expansion.

Lemma 2.2 (Closure under expansion).

1. If (Ψ � M ′) ∈ RA and Ψ � M −→ M ′, then (Ψ � M) ∈ RA.

2. If (Ψ � M ′) ∈ RA and Ψ � M −→∗ M ′, then (Ψ � M) ∈ RA.

Proof. Both statements are proven by induction on A. We show here the proof of the

first statement.

Case: A = i

(Ψ � M ′) ∈ Ri by assumption

Ψ � M ′ halts by definition of Ri

Ψ � M ′ −→∗ V and Ψ � V norm by definition of halts

Ψ � M −→∗ V by rule s trans

Ψ � M halts by definition of halts

(Ψ � M) ∈ Ri by definition of Ri

Case: A = B → C

(Ψ � M ′) ∈ RB→C by assumption

(Ψ � M ′) halts, i.e. Ψ � M ′ −→∗ V and Ψ � V norm for some V

for all Φ �ρ Ψ, if Φ � N : B and (Φ � N) ∈ RB then (Φ � M ′[ρ] N) ∈ RC by red. def.

Assume Φ �ρ Ψ, Φ � N : B and (Φ � N) ∈ RB

Ψ � M −→ M ′ by assumption

Ψ � M −→∗ V by s trans

Ψ � M halts by def. of halts

Φ � M[ρ] −→ M ′[ρ] by subst. property

Φ � M[ρ] N −→ M ′[ρ] N by rule s app1

(Φ � M ′[ρ] N) ∈ RC by previous lines

(Φ � M[ρ] N) ∈ RC by i.h.

(Ψ � M) ∈ RB→C by definition of R

Our aim is to show that all well-typed terms are reducible. As usual we must

generalize this statement to well-typed open terms: If M is a well-typed term of type

A under the typing assumptions x1:A1, . . . , xn:An and σ is a substitution of the form

M1/x1, M2/x2, . . . , Mn/xn s.t. for all Mi we have Mi:Ai in the context Φ, Mi is

reducible (i.e. (Φ � Mi) ∈ RAi) and (Φ � M[σ]) ∈ RA. Key to this generalization is

the notion of a simultaneous substitution σ which provides well-typed reducible terms

Mi for all the variables xi of the term M. We call such a substitution a reducible

substitution. It is worthwhile considering the domain (i.e. the variables being replaced by

the substitution) and range (i.e. the context in which the instantiations for the variables

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1614

are meaningful) of the reducible substitution carefully. What is the domain of such a

reducible substitution? – It should be the typing context Γ = x1:A1, . . . , xn:An. What

should be the range of the reducible substitution? – It should be the typed neutral

variable context Φ = y1:B1, y1 neut, . . . , yk:Bk, yk neut, as σ provides reducible terms Mi

for each variable xi and reducible terms are only meaningful in the typed neutral variable

context. This highlights the subtle issues due to variables. Thinking of terms within a

context of assumptions forces us to understand precisely what assumptions are necessary.

We can now define reducible substitutions more precisely inductively on the structure of

the typing context Γ.

R· = {Φ � · }
RΓ,x:A = {Φ � σ,M/x | Φ � M : A, (Φ � M) ∈ RA and (Φ � σ) ∈ RΓ }

It is easy to see that if (Φ � σ) ∈ RΨ, then the substitution σ is well-typed i.e. Φ � σ : Ψ,

i.e. σ provides a mapping from the variables in Ψ to the context Φ. Before we prove the

main lemma, we state two monotonicity properties about reducible terms and reducible

substitutions.

Lemma 2.3 (Monotonicity Lemma).

1. If (Ψ � M) ∈ RA and Φ �ρ Ψ, then (Φ � M[ρ]) ∈ RA.

2. If (Ψ � σ) ∈ RΨ0
and Φ �ρ Ψ, then (Φ � σ[ρ]) ∈ RΨ0

.

Intuitively, the monotonicity properties hold because the substitution ρ can only replace

variables with neutral terms. This is guaranteed by the fact that ρ is a mapping between

typed neutral variable contexts. As a consequence, proving that the term (or substitution)

continues to be reducible is straightforward. We are now ready to state and prove the

fundamental lemma.

Theorem 2.4 (Fundamental theorem).

If Γ � M : A and (Ψ � σ) ∈ RΓ, then (Ψ � M[σ]) ∈ RA.

Proof. By induction on the typing derivation, we show only the interesting cases:

Case
x:A ∈ Γ
Γ � x : A

Γ = Γ1, x:A,Γ2 since x:A ∈ Γ

(Ψ � σ) ∈ RΓ by assumption

(Ψ � σ1) ∈ RΓ1
and (Ψ � N) ∈ RA and σ = σ1, N/x, σ2 by def. of RΓ

(Ψ � x[σ]) ∈ RA by subst. property

Case
Γ � M : A → B Γ � N : A

Γ � M N : B

(Ψ � M[σ]) ∈ RA→B and (Ψ � N[σ]) ∈ RA by i.h.

∀Φ �ρ Ψ, N ′ where Φ � N ′ : A

if (Φ � N ′) ∈ RA, then (Φ � ((M[σ])[ρ]) N ′) ∈ RB by reducibility def.

(Ψ � (M[σ])[idΨ]) (N[σ]) ∈ RB choosing idΨ for ρ, Ψ for Φ, and N for N ′

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1615

(Ψ � (M[σ])[idΨ]) (N[σ]) = (M[σ]) (N[σ]) = (M N)[σ] by subst. properties

(Ψ � (M N)[σ]) ∈ RB by previous lines

Case
Γ, x:A � M : B

Γ � lam x.M : A → B

(Ψ � σ) ∈ RΓ by assumption

Ψ, x:A, x neut � wkΨ : Ψ and Ψ, x:A, x neut �wkΨ
Ψ by weakening

(Ψ, x:A, x neut � σ[wkΨ]) ∈ RΓ by monotonicity lemma

Ψ, x:A, x neut � x : A by typing rule

Ψ, x:A, x neut � x neut by def. of neutral/normal terms

(Ψ, x:A, x neut � x) ∈ RA by Main Lemma (2)

(Ψ, x:A, x neut � σ[wkΨ], x/x) ∈ RΓ,x:A by def. of reducibility of substitutions

(Ψ, x:A, x neut � M[σ[wkΨ], x/x]) ∈ RB by i.h.

Ψ, x:A, x neut � M[σ[wkΨ], x/x] halts by Main Lemma (1)

Ψ, x:A, x neut � M[σ[wkΨ], x/x] −→∗ V and Ψ, x:A, x neut � V norm by def. of halts

Ψ � lam x.M[σ[wkΨ], x/x] −→∗ lam x.V by multi-step red. for lambda-abstractions

Ψ � (lam x.M)[σ] −→∗ lam x.V by subst. property

Ψ � lam x.V norm by n lam

Ψ � (lam x.M)[σ] halts by def. of halts

Given an extension Φ �ρ Ψ and a term N, s.t. Φ � N : A and (Φ � N) ∈ RA.

(Φ � σ[ρ]) ∈ RΓ by monotonicity lemma

(Φ � (σ[ρ], N/x)) ∈ RΓ,x:A by def. of reducibility for substitutions

(Φ � M[σ[ρ], N/x]) ∈ RB by i.h.

(Φ � (M[σ[ρ], x/x])[N/x]) ∈ RB by subst. property

(Φ � (lam x.M[σ[ρ], x/x]) N) ∈ RB by backwards closed lemma

(Φ � (lam x.M)[σ[ρ]] N) ∈ RB by subst. properties

(Φ � ((lam x.M)[σ])[ρ] N) ∈ RB by subst. properties

(Ψ � (lam x.M)[σ]) ∈ RA→B by def. of reducibility

Corollary 2.5 (Weak normalization). If Γ � M : A, then M halts.

Proof. Let Γ be a context x1:A1, . . . , xn:An. Then there exists a substitution id =

x1/x1, . . . , xn/xn and a context Φ = x1:A1, x1 neut, . . . , xn:An, xn neut s.t. Φ � id : Γ.

Moreover, by the main lemma, we have that (Φ � M[id]) ∈ RA and hence by reification

Φ � M[id] halts. By subst. property, we have M[id] = M and therefore Φ � M halts.

In the proofs, we are drawing attention to the use of properties of simultaneous

substitutions marking their use with italics. These properties are typically the source

of the most overhead when formalizing results using various low-level representations

of variables and variable binding. In developing our definitions for well-typed terms,

normal forms and reducibility, we have been guided by the contextual LF. Thinking

about terms in the context, they are meaningful in put into sharp focus the scope of

terms and honed our mathematical thought processes providing a fresh perspective on

the weak normalization proof using Kripke-style logical relations. At the same time, our

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1616

definitions and use of context extensions are natural and commonly used in reasoning

about dependently typed calculi (see, for example, the work by Abel and Scherer (2012)

or the mechanization of dependent type theory using logical relations by Öhmann (2016)).

By using the same methodology for reasoning about simply typed systems, we can study

the role of context extensions more clearly while at the same time providing a stepping

stone towards establishing normalization properties about dependently typed calculi.

2.3. Encoding of lambda-terms, types and reductions in LF

Next, we demonstrate how the definitions of well-typed terms, normal forms and

reducibility translate directly and elegantly into Beluga. By hand, we defined grammar

and typing separately, but here it is actually more convenient to define intrinsically typed

terms directly, as it obliterates the need to carry typing derivations separately and leads to

a more compact mechanization. Below, tm defines our family of simply typed lambda terms

indexed by their type as an LF signature. In typical HOAS fashion, lambda abstraction

takes a function representing the abstraction of a term over a variable. There is no case

for variables, as they are treated implicitly. We remind the reader that this is a weak,

representational function space – there is no case analysis or recursion, and hence only

genuine lambda terms can be represented. We can then encode lam x.(lam y.(y x)) as

lam λx. lam λy. app y x. When declaring the type of each of the constant app and lam, the

indices A and B are free. Type reconstruction will infer the type of free variables and

abstract over them at the outside, but they are marked as implicit. As a consequence,

we do not pass instantiations for them when building terms, but type reconstruction will

infer them (Pientka 2013).

LF tp : type =

| i : tp

| arr: tp → tp → tp;

LF tm : tp → type =

| app : tm (arr A B) → tm A → tm B

| lam : (tm A → tm B) → tm (arr A B);

Next, we encode our step relation in a similar type-preserving fashion. Note in particular

the use of LF application to encode the object-level substitution in the s_beta case. Further,

in the definition of s_lam, we declare that (lam M) steps to (lam M’), if for all variables x,

we have that M x steps to M’ x. We rename here the bound variable in M and M’ simply

by applying each term to a fresh variable x. Hence, we again fall back to LF application

to model renaming. Finally, we point out that we write curly braces { } for universal

quantification in Beluga.

LF step : tm A → tm A → type =

| s_beta : step (app (lam M) N) (M N)

| s_lam : ({x:tm A} step (M x) (M’ x)) → step (lam M) (lam M’)

| s_app1 : step M M’ → step (app M N) (app M’ N)

| s_app2 : step N N’ → step (app M N) (app M N’)

;

LF mstep : tm A → tm A → type =

| s_refl : mstep M M

| s_trans: step M M’ → mstep M’ M’’ → mstep M M’’

;

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1617

Finally, we encode the judgements M norm and M neut as type families normal and

neutral in LF in the standard fashion. The most interesting case is the encoding for

normal (lam M). Note that M has type tm A → tm B. A term lam M is normal, if we can show

that for all x:tm A and neutral x, normal (M x). It directly translates the parametric and

hypothetical rule using the LF function space.

LF normal : tm A → type =

| n_lam : ({x:tm A} neutral x → normal (M x)) → normal (lam M)

| n_neut : neutral M → normal M

and neutral : tm A → type =

| n_app : neutral M → normal N → neutral (app M N);

For a more detailed explanation on how to encode formal systems using HOAS, we

refer the reader to the tutorial (Pientka 2015) which provides a gentle introduction to

encoding formal systems in LF and Beluga. For a guide to the Beluga surface language,

we refer the reader to the appendix A.

2.4. Encoding logical relations as inductive definitions

The reducibility predicate cannot be directly encoded as a type family in LF, since

it involves a strong, computational function space. Moreover, our earlier definition of

reducibility for open terms relied on reasoning about context extensions. In the LF, the

context of assumptions is ambient and implicit. This makes encoding of logical relations

in LF challenging. Luckily, Beluga not only supports LF specifications, but provides a

first-order logic with inductive definitions (Cave and Pientka 2012) to express properties

about contexts, contextual objects and substitutions. This is key to stating properties

about well-typed terms that depend on typing assumptions. This is accomplished by

pairing the well-typed term together with its context using contextual types (Nanevski

et al. 2008). For example, lam y.x y where x has type i → i is represented as the contextual

LF term [x:tm (arr i i) � lam λy.app x y]. If a term is closed, for example [� lam λx. x],

we simply write [lam λx.x] omitting the turnstyle to improve readability.

When stating reducibility candidates, we rely on the typed neutral variable context

which in addition to typing assumptions for variables also carries an assumption stating

that variables are neutral. As we have seen, it is often convenient and sometimes even

essential to abstract over the concrete context of assumptions to express meaningful

properties. In Beluga, we can classify contexts using context schemas. Schema declarations

in Beluga express an invariant we want to hold when stating inductive properties about

LF objects. The schema declaration ctx below states that a context of schema ctx contains

assumptions that are instances of tm A. We use the some keyword to abstract over variables

in a schema that are fexible, i.e. they can be instantiated. For example, the context x:tm

i, y:tm (arr i i) is a valid typing context of schema ctx. On the other hand, the context

a:tp, x:tm a does not fit the schema ctx. The schema declaration nctx states that a context

must consist of a block of two assumptions, namely x:tm t and n_x: neut x. It encodes our

definition of a typing context and typed neutral variable context from page 1611 forcing

the fact that the typing assumption x:tm A is introduced together with the assumption

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1618

neut x which states that the variable x is neutral. Formally, a block allows us to pair

several assumptions together using a Σ-type.

schema ctx = some [A:tp] tm A;

schema nctx = some [A:tp] block x:tm A, n_x:neut x;

In our previous reducibility definition, we stated that a term M in a typed neutral variable

context Ψ is reducible at type A → B if for all extensions Φ �ρ Ψ where ρ is a neutral

substitution and well-typed terms N where (Φ � N) ∈ RA, we have (Φ � [ρ]M N) ∈ RB .

We now can translate directly the reducibility definition given earlier on page 1611 into

an indexed recursive type.

Beluga supports inductive and stratified definitions. Inductive definitions, introduced

with the keyword inductive, satisfy the positivity restriction and correspond to least fixed

points. Moreover, we can reason about them by induction. On the other hand, stratified

definitions, introduced with the keyword stratified are defined recursively over an index;

they do not need to satisfy the positivity restriction. To reason about stratified definitions,

we reason by induction on the index directly. We first state the inductive predicate Halts

which is indexed by the context Ψ of schema nctx, the closed type A and a term M of type

A in the context Ψ.

inductive Halts : (Ψ:nctx) {A:[tp]}{M:[Ψ � tm A[]]} type =

| Halts : {V:[Ψ � tm _]} [Ψ � mstep M V] → [Ψ � normal V] → Halts [A] [Ψ � M];

stratified Reduce : (Ψ:nctx) {A:[tp]}{M:[Ψ � tm A[]]} type =

| Base : Halts [i] [Ψ � M] → Reduce [i] [Ψ � M]

| Arr : {M:[Ψ � tm (arr A[] B[])]}

Halts [arr A B] [Ψ � M] →
({Φ:nctx} {ρ:[Φ � Ψ]} {N:[Φ � tm A[]]}

Reduce [A] [Φ � N] → Reduce [B] [Φ � app M[ρ] N])

→ Reduce [arr A B] [Ψ � M];

By wrapping the context declaration in round parenthesis (in contrast to curly paren-

thesis) when we declare the kind of an inductive type, we express that Ψ remains implicit

in the use of this type family and may be omitted, whereas curly brackets would denote

an explicit dependent argument. In other words, (Ψ:nctx) is simply a type annotation

stating the schema the context Ψ must have, but we do not need to pass an instantiation

for Ψ explicitly. We refer to variables occurring inside a contextual object (i.e. inside [])

as meta-variables to distinguish them from bound variables. In general, all meta-variables

such as A, M, V, N, etc. are associated with a postponed substitution which may be omitted,

if it is the identity substitution. As A is closed, we must weaken it by applying the empty

substitution [] when we state the type of M as Ψ � tm A[].

We can then read the inductive definition of Halts as follows: Halts [A] [Ψ � M] if the

term M steps to a normal term V (i.e. [Ψ � mstep M V]) of the same type A.

Second, we encode the reducibility predicate using the stratified type Reduce. A stratified

type is defined inductively over one of its indices – in our case, we define Reduce inductively

on the type A. Stratified types do not give directly rise to an induction principle – instead,

we typically reason on the inductive argument directly.

For base types, we simply state that [Ψ � M] is reducible at base type i, if [Ψ � M] halts.

For function types, we state that [Ψ � M] is reducible at type arr A B, if it halts and for all

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1619

rec closed : {A:[tp]}{M:[Ψ � tm A[]]}{M’:[Ψ � tm A[]]}

{S:[Ψ � step M M’]} Reduce [A] [Ψ � M’] → Reduce [A] [Ψ � M] =

/ total A (closed _ A) /

Λ A,M,M’,S ⇒ fn r ⇒ case [A] of
| [i] ⇒

let Base (Halts [Ψ � V] [Ψ � S’] v) = r in
Base (Halts [Ψ � V] [Ψ � s_trans S S’] v)

| [arr _ C] ⇒
let Arr [Ψ � M’] (Halts [Ψ � V] [Ψ � S’] v) f = r in
Arr [Ψ � M] (Halts [Ψ � V] [Ψ � s_trans S S’] v)

(Λ Φ, ρ, N ⇒ fn rn ⇒ closed [C] [Φ � app M[ρ] N] [Φ � app M’[ρ] N]

[Φ � s_app1 S[ρ]] (f [Φ] [Φ � ρ] [Φ � N] rn));

Fig. 2. Encoding of backwards closed lemma in Beluga.

contexts Φ, substitutions ρ from Ψ to Φ, and terms N of type A in the context Φ that are

reducible, we have that [Φ � app M[ρ] N] is reducible at type B.

As both Ψ and Φ must satisfy the context schema nctx, we are guaranteed that ρ is a

substitution providing neutral terms for all the variables in Ψ.

In declaring LF types and type families as well as inductive type families, we left some

variables free. As in Twelf (Pfenning and Schürmann 1999), Beluga’s type reconstruction

infers types for any free variable in a given type or kind declaration and implicitly

quantifies over them (Ferreira and Pientka 2014; Pientka 2013). Programmers subsequently

do not need to supply arguments for implicitly quantified variables.

We refer the reader to the Appendix A for a description of Beluga’s grammar and

intuition behind the definitions.

2.5. Encoding inductive proofs as total functions in Beluga

Inductive proofs can be encoded as total functions using pattern matching in Beluga.

We begin with encoding the lemma showing that halts is closed under expansion

(Lemma 2.2) informally below, such that it can then be easily translated into the actual

type of function closed:

For all closed types A, terms M and M’ of type A in the context Ψ,

for all reductions S:[Ψ � step M M’], if Reduce [A] [Ψ � M’], then Reduce [A] [Ψ � M].

We describe the implementation of the lemma in Figure 2. As explained in the Appendix

A, Beluga’s computation language distinguishes between dependent and simple function

types. We use Λ-abstractions for the former and fn-abstractions for the latter. As the

lemma was proven by induction on the type of the term, our corresponding function

closed proceeds by pattern matching on the type A. In the base case where A=i, we

model inversion in the actual derivation Reduce [i] [Ψ � M’] using pattern matching on

the definition of Reduce and subsequently on the definition of Halt obtaining a derivation

S’ for [Ψ � step M’ V] and a proof v that V is normal. We then use the assumption S

which stands for [Ψ � step M M’] and S’, and build a derivation for [Ψ � step M V] using

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1620

transitivity (i.e. the rule s_trans). From this, it is now trivial to provide a witness that

Reduce [i] [Ψ � M].

If A = arr B C, we pattern match on Reduce [arr B C] [Ψ � M’] obtaining a function f

which says ‘for all Φ, ρ, N, if Reduce [B] [Φ � N], then Reduce [C] [Φ � app M’[ρ] N].’ This

models the inversion step in the proof.

We now build a witness for Reduce [C] [Φ � app M[ρ] N] by building a function that

assumes Φ, ρ and well-typed term N as well as rn which stands for Reduce [B] [Φ � N]

and returns Reduce [C] [Φ � app M[ρ] N] following our earlier proof arguing by induction

(recursion).

The Beluga directive / total A (closed _ A) / checks that that the function closed is

total, i.e. there exists a case for all possible input (coverage) and all recursive calls are on

smaller types A (termination) (Pientka and Abel 2015). In specifying the total directive,

the position of the input argument indicates the recursive argument. In this example, the

function closed takes in first (implicitly) a context Ψ followed by a type A. Hence, the

function represents a proof.

In specifying the proof, we explicitly passed instantiations when making our recursive

call. We could have left these with an underscore leaving reconstruction to figure out the

appropriate instantiation. However, we feel the proof becomes clearer when specifying

them explicitly.

The encoding of the main lemma follows the on-paper proof directly. The statement

of the lemmas is encoded as a type in Beluga making explicit the quantification over the

context Ψ, the type A and the term R. We again proceed by induction on the type A. We

only show the representation of the statement and omit the implementation of the proof

here, but it can be found in the electronic appendix.

rec main1 :{Ψ:nctx}{A:[tp]}{M:[Ψ � tm A[]]} Reduce [A] [Ψ � M] → Halts [A] [Ψ � M]

and main2:{Ψ:nctx}{A:[tp]}{R:[Ψ � tm A[]]}{NR:[Ψ � neut R]} Reduce [A] [Ψ � R]

Now we must state precisely what it means for a substitution to be reducible. We do this

by employing another indexed recursive type: a predicate expressing that the substitution

was built up as a list of reducible terms. The notation σ stands for a substitution variable.

Its type is written [Φ � Γ], meaning that it has domain Γ and range Φ, i.e. it takes

variables in Γ to terms of the same type in the context Φ. In the base case, the empty

substitution, written as [Φ �], is reducible. In the Cons case, we read this as saying: if

σ is a reducible substitution (implicitly at type [Φ � Γ]) and M is a reducible term at type

A, then σ with M appended is a reducible substitution (implicitly at type [Φ � Γ,x:tm A[]]

– the domain has been extended with a variable of type A).

inductive LogSub : {Γ:ctx}(Φ:nctx){σ:[Φ � Γ]} type =

| Nil : LogSub [] [Φ �]

| Dot : LogSub [Γ] [Φ � σ] → Reduce [A] [Φ � M]

→ LogSub [Φ � σ, M];

We explicitly quantify over Γ, the domain of the substitution, and leave the range of

the substitution implicit by using round parenthesis writing (Φ:nctx); we also explicitly

quantify over substitution variables using curly braces writing {σ:[Φ � Γ]}. There are two

monotonicity lemmas we rely on in our proof of the fundamental lemma. These lemmas

correspond exactly to those we used in the on-paper proof.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1621

rec fund : {M:[Γ � tm A[]]} LogSub [Γ] [Ψ � σ] → Reduce [A] [Ψ � M[σ]] =

/ total M (fund Γ Ψ A σ M) /

Λ M ⇒ fn rs ⇒ let (rs : LogSub [Γ] [Ψ � σ]) = rs in

case [Γ � M] of

| [Γ � #p] ⇒ redvar_monotone [Γ] [Γ � #p] rs

| [Γ � app M1 M2] ⇒
let Arr [Ψ � _] h f = fund [Γ � M1] rs in

f [Ψ] [Ψ � ...] [Ψ � M2[σ]] (fund [Γ � M2] rs)

| [Γ � lam λx. M] ⇒
let rx = main2 [Φ,b:block x:tm _,y:neutral x] [_] [Φ,b �b.1] [Φ,b �b.2] in

let q0 = fund [Γ,x:tm _ � M]

(Dot (monotone_sub [Φ,b:block x:tm _,y:neutral x � ...] rs) rx) in

let Halts [Φ,b:block x:tm A1[],y:neutral x � _]

[Φ,b:block x:tm A1[],y:neutral x � MS]

[Φ,b:block x:tm A1[],y:neutral x � NV]

= main1 [Φ,b:block x:tm _,y:neutral x] [_] [Φ,b � M[σ[...],b.1]] q0 in
Arr [Φ � lam (λx.M[σ[...], x])]

(Halts [_ � _]

(m_lam [Φ, x:tm A1[] � M[σ[...],x]]
[Φ, b:block x:tm A1[], y:neutral x � MS])

[Φ � n_lam (λx.λy. NV[...,<x;y>])])

(Λ Ψ,ρ,N ⇒ fn rN ⇒
closed [_] [Ψ � app (lam λx.M[σ[ρ[...]],x]) N] [Ψ � M[σ[ρ], N]]

[Ψ � s_beta]

(fund [Γ,x:tm _ � M] (Dot (monotone_sub [Ψ � ρ] rs) rN)))

Fig. 3. Implementation of the fundamental lemma in Beluga.

1. Given a neutral substitution σ with domain Ψ and range Φ, if Reduce [A] [Ψ � M], then

Reduce [A] [Φ � M[σ]]

monotone:(Φ:nctx){σ:[Φ � Ψ]} Reduce [A] [Ψ � M] → Reduce [A] [Φ � M[σ]]

2. Given a neutral substitution ρ with domain Ψ and range Φ and a reducible substitution

σ from Γ to Ψ, we know that the composition σ[ρ] is a reducible substitution from

Γ to Φ.

monotone_sub: {ρ:[Φ � Ψ]} LogSub [Γ] [Ψ � σ] → LogSub [Γ] [Φ � σ[ρ]]

Finally, our main lemma (see Figure 3) is standard and takes the form we would expect

from the handwritten proof: if M is a well-typed term in the typing context Γ, and σ is

a reducible substitution with domain Γ and range Ψ which provides neutral terms as

instantiations for each of the free variables of M, then M[σ] (that is, the application of

σ to M) is reducible. We proceed by induction on the term. When it is a variable (written

as Γ � #p), we appeal to redvar_monotone, which is a special case of monotonicity lemma

monotone where M is a variable. When it is an application, we straightforwardly apply the

functional argument we obtain from the induction hypothesis for M1 to the induction

hypothesis for M2. The application case is straightforward thanks to the equational theory

of substitutions supported in Beluga. The lam case is the most interesting, however it

follows directly the on-paper proof. We remark that underscores allows users to omit

writing certain arguments explicitly and type reconstruction fill them in instead. Further,

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1622

we write ... for both the identity and weakening substitution; in particular, ... is a weakening

substitution from the context Φ to Φ, x:tm _. It is also the witness that allows us to move

from Φ to Φ, b:block (x:tm A1[], y:neutral x).

Revisiting the on-paper proof, we note that we did not have to concern ourselves with

the property of substitutions that we wrote explicitly in the paper proofs. In Beluga,

normalizing LF objects incorporates the equational theory of simultaneous substitutions

and applies the necessary substitution properties automatically.

Intuitively, when checking that two LF objects are equal, Beluga not only normalizes

LF objects relying on βη-reductions but also takes into account the equational theory

of simultaneous substitutions. The full equational theory is presented in Cave and

Pientka (2013). We show here a few concrete instances that arise in this example to

illustrate.

Congruence (λx.M)[σ] =λx.M[σ, x]

(app M N)[σ] =app M[σ] N[σ]

(lam λx.M)[σ]=lam (λx.M)[σ]

(σ, N)[σ’] =σ[σ’], N[σ’]

Associativity (M[σ])[σ’] =M[σ[σ’]]

(σ[σ’])[σ’’] =σ[σ’[σ’’]]

Decomposition(M[σ, N]) =(M[σ, x])[...,N]

Weak normalization is now a trivial corollary. We only need to show that given a term

the context Γ there always exists a neutral identity substitution.

Our development is ≈180 lines, and it follows the handwritten proof very closely, with

essentially no extra overhead. Compared to low-level techniques for variable binding, it

is a huge win to not be burdened with proving properties of simultaneous substitution.

The approach scales naturally when we also consider not only β-reduction, but also

η-expansion.

Conceptually, our approach may be most closely related to modelling terms using well-

scoped de Bruijn indices (Benton et al. 2012; Öhmann 2016). However, our foundation

alleviates the user from manipulating de Bruijn indices and de Bruijn substitutions

directly exploiting the abstractions provided by using contextual LF. This leads to a

more compact mechanization. More generally, our approach should prove useful for

many (Kripke) logical relations proofs, such as parametricity, full abstraction or various

kinds of completeness proofs. This is especially so for larger languages (e.g. with case

expressions) where one must use such properties of substitution repeatedly.

3. Example: Completeness of algorithmic equality

In this section, we consider the completeness proof of algorithmic equality for simply typed

lambda-terms. Extensions of this proof are important for the meta-theory of dependently

typed systems such as LF and varieties of Martin-Löf type theory, where they are used

to establish decidability of type checking.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1623

M ≡ N : A Terms M and N are declaratively equivalent at type A

M1 ≡ N1 : B → B M2 ≡ N2 : B

M1 M2 ≡ N1 N2 : A
d app

x : A
u

...
M x ≡ N x : B

lam x.M ≡ lam x.N : A → B
d lamx,u

x : A
u

...
M1 x ≡ N1 x : B M2 ≡ N2 : A

(lam x.M1) M2 ≡ [N2/x]N1 : B
d betax,u

x : A
u

...
M x ≡ N x : B

M ≡ N : A → B
d extx,u

M : A
M ≡ M : A

d refl
N ≡ M : A
M ≡ N : A

d sym M ≡ L : A M ≡ N : A
M ≡ N : A

d trans

Fig. 4. Declarative equivalence.

3.1. The basics: Declarative and algorithmic equality

We revisit again the simply typed lambda-calculus from the previous section. However,

here we only perform weak head reduction. This makes algorithmic equality more efficient,

and also simplifies many aspects of the proof. We concentrate here on giving the motivation

and high-level structure of the completeness proof for algorithmic equality. For more detail,

we refer the reader to Crary (2005) and Harper and Pfenning (2005).

Declarative equivalence (see Figure 4) includes convenient but non-syntax directed

rules such as transitivity and symmetry, among rules for congruence, extensionality and

β-contraction. In particular, it declares a term M equal to itself at type A, provided it is

well-typed. It may also include type-directed rules such as extensionality at unit type:

M : Unit N : Unit

M ≡ N : Unit

This rule relies crucially on type information, so the common untyped rewriting strategy

for deciding equivalence no longer applies. Instead, one can define an algorithmic notion

of equivalence which is directed by the syntax of types. This is the path we follow here.

We define algorithmic term equivalence mutually with path equivalence, which is the

syntactic equivalence of terms headed by variables, i.e. terms of the form xM1 . . . Mn

(see Figure 5).

3.2. Proof outline: Completeness of algorithmic equality

In what follows, we sketch the proof of completeness of algorithmic equivalence for

declarative equivalence. A direct proof by induction over derivations fails unfortunately

in the application case, where we need to show that applying equivalent terms to

equivalent arguments yields equivalent results. Instead, one can proceed by proving a

more general statement that declaratively equivalent terms are logically equivalent, and so

in turn algorithmically equivalent. Logical equivalence is a relation defined directly on the

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1624

M ⇔ N : A Terms M and N are algorithmically equivalent at type A

M ↔ N : A Paths M and N are algorithmically equivalent at type A

M −→∗ M ′ N −→∗ N ′ M ′ ↔ N ′ : i
M ⇔ N : i

alg base

x ↔ x : A
ax

...

M x ⇔ N x : B

M ⇔ N : A → B
alg arrx,ax

M1 ↔ M2 : A → B N1 ⇔ N2 : A

M1 N1 ↔ M2 N2 : B
alg app

Fig. 5. Algorithmic equivalence.

structure of the types. It relates well-typed terms, as declarative equality is in fact only

defined on well-typed terms. In the base case, two terms M and N are logically related at

base type, if they are algorithmically equal. As algorithmic equality relies on assumptions

x ↔ x : A, we define logically equivalent terms in a well-typed neutral algorithmic equality

context where we keep the typing assumptions, i.e. x : A, and the fact that every variable

is algorithmically equal to itself, i.e. x ↔ x : A.

Typing context Γ ::= · | Γ, x : A

Well-typed algorithmic equality context Ψ ::= · | Ψ, x : A, nx : (x ↔ x:A)

This context is again the generalization of the typing context and the pure algorithmic

equality context. It might seem redundant to keep typing assumptions, however the

completeness proof of algorithmic equality relies on this information in subtle ways. We

therefore define

(Ψ � M ≈ N) ∈ RA Terms M and N are logically equivalent at type A

The key case is at function type. We directly define logically equivalent terms at function

type as taking logically equivalent arguments to logically equivalent results. Algorithmic

equality for terms M and N of type A → B states that it suffices to compare their

application to fresh variables: Assuming that x ↔ x : A, we show that M x ⇔ N x : B.

We hence must be able to reason about future extensions of the initial context. This

Kripke-style monotonicity condition hence naturally arises and is one of the reasons that

this proof is challenging. While in the previous weak normalization proof for simply typed

lambda-terms, this quantification over context extensions can be avoided as we are not

forced to define reducibility on well-typed terms, it is necessary and naturally arises in the

completeness proof of algorithmic equality where equality is defined in a type-directed

way.

Following the footprint of our previous reducibility definition, we use the simultaneous

substitution π as a witness to move between two algorithmic equality contexts. This

again ensures that we only replace variables with neutral terms thereby guaranteeing

monotonicity. In the course of the completeness proof, π will actually only ever be

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1625

instantiated by substitutions which simply perform weakening, i.e. replacing variables by

variables. We call such a substitution π a path substitution.

We define the abbreviation Φ �π Ψ for a path substitution, i.e. a substitution that only

replaces variables in Ψ by neutral terms (or paths) of the expected type.

Φ �π Ψ π is a path substitution from the context Ψ to Φ

Φ �· ·
Φ �ρ Ψ Φ � M : A Φ � M ↔ M : A

Φ �ρ,M/x Ψ, x : A, nx : (x ↔ x:A)

Our definition of logically equivalent terms generalizes Crary’s definition by witnessing

the context extension by path substitutions.

Ri = {Ψ � M1 ≈ M2 | Ψ � M1 ⇔ M2 : i}
RA→B = {Ψ � M1 ≈ M2 | ∀Φ �π Ψ, N1, N2 such that Φ � N1 : A and Φ � N2 : A,

if (Φ � N1 ≈ N2) ∈ RA then (Φ � M1[π] N1 ≈ M2[π] N2) ∈ RB}

The high-level goal is to establish that declaratively equivalent terms are logically

equivalent, and that logically equivalent terms are algorithmically equivalent. The proof

requires establishing a few key properties of logical equivalence. The first is monotonicity,

which is crucially used for weakening logical equivalence. This is used when applying

terms to fresh variables.

As in the previous weak normalization proof for simply typed lambda-terms, a

weakening substitution that would provide variables not neutral terms (or paths) would

suffice. However, working with path substitutions is convenient in our setting.

Lemma 3.1 (Monotonicity).

If (Ψ � M ≈ N) ∈ RA and Φ �π Ψ, then (Φ � M[π] ≈ N[π]) ∈ RA.

The second key property is (backward) closure of logical equivalence under weak head

reduction. This is proved by induction on the type A.

Lemma 3.2 (Weak head closure under expansion).

If (Ψ � N1 ≈ N2) ∈ RA and M1 −→∗ N1 and M2 −→∗ N2, then (Ψ � M1 ≈ M2) ∈ RA.

In order to escape logical equivalence to obtain algorithmic equivalence in the end, we

need the main lemma, which is a mutually inductive proof showing that path equivalence

is included in logical equivalence, and logical equivalence is included in algorithmic

equivalence:

Lemma 3.3 (Main lemma).

1. If Ψ � M ↔ N : A, then (Ψ � M ≈ N) ∈ RA.

2. If (Ψ � M ≈ N) ∈ RA, then Ψ � M ⇔ N : A.

Also required are symmetry and transitivity of logical equivalence, which in turn

require symmetry and transitivity of algorithmic equivalence, determinacy of weak head

reduction, and uniqueness of types for path equivalence. We will not go into detail about

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1626

these lemmas, as they are relatively mundane, but refer the reader to the discussion in

Crary (2005).

What remains is to show that declarative equivalence implies logical equivalence. This

requires a generalization of the statement to all instantiations of open terms by related

substitutions. If σ1 is of the form M1/x1, . . . ,Mn/xn and σ2 is of the form N1/x1, . . . , Nn/xn
and Γ is of the form x1:A1, . . . , xn:An, and each Mi (and Ni resp.) has type Ai, we write

Δ � σ1 ≈ σ2 : Γ to mean that Δ � Mi ≈ Ni : Ai for all i. Note that σ1 ≈ σ2 relates the

typing context Γ to the well-typed neutral algorithmic equality context Δ.

R· = {Δ � · ≈ · }
RΓ,x:A = {Δ � (σ1,M1/x) ≈ (σ2,M2/x) | Δ � M1 : A, Δ � M2 : A, and

Δ � M1 ≈ M2 : A and (Δ � σ1 ≈ σ2) ∈ RΓ }

Theorem 3.4 (Fundamental theorem).

If Γ � M ≡ N : A and (Δ � σ1 ≈ σ2) ∈ RΓ then (Δ � M[σ1] ≈ N[σ2]) ∈ RA

Proof. The proof goes by induction on the derivation of Γ � M ≡ N : A. We show one

interesting case in order to demonstrate some sources of complexity.

Case:

Γ, x : A � M1 ≡ M2 : B

Γ � λx.M1 ≡ λx.M2 : A ⇒ B

(Δ � σ1 ≈ σ2) ∈ RΓ by assumption

Given an extension Δ′ �π Δ and terms N1, N2 s.t.

Δ′ � N1 : A and Δ′ � N2 : A and (Δ′ � N1 ≈ N2) ∈ RA

(Δ′ � σ1[π] ≈ σ2[π]) ∈ RΓ by monotonicity

(Δ′ � (σ1[π], N1/x) ≈ (σ2[π], N2/x)) ∈ RΓ,x:A by definition

(Δ′ � M1[σ1[π], N1/x] ≈ M2[σ2[π], N2/x]) ∈ RB by induction hypothesis

(Δ′ � M1[σ1[π], x/x][N1/x] ≈ M2[σ2[π], x/x][N2/x]) ∈ RB by substitution properties

(Δ′ � (λx.M1[σ1[π], x/x]) N1 ≈ (λx.M2[σ2[π], x/x]) N2) ∈ RB by weak head closure

(Δ′ � ((λx.M1)[σ1])[π] N1 ≈ ((λx.M2)[σ2])[π] N2) ∈ RB by substitution properties

(Δ � (λx.M1)[σ1] ≈ (λx.M2)[σ2]) ∈ RA→B by definition of logical equivalence

We observe that this proof relies heavily on equational properties of substitutions.

Some of this complexity appears to be due to our choice of quantifying over substitutions

Δ � π : Γ instead of extensions Δ � Γ. However, we would argue that reasoning instead

about extensions Δ � Γ does not remove this complexity, but only rephrases it.

Finally, by establishing the relatedness of the identity substitution to itself, i.e. Γ �
id ≈ id : Γ, we can combine the fundamental theorem with the main lemma to obtain

completeness.

Corollary 3.5 (Completeness). If Γ � M ≡ N : A, then Γ � M ⇔ N : A.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1627

3.3. Encoding lambda-terms, typing and reduction in the logical framework LF

Unlike the previous case study, where we defined intrinsically terms, we define here

untyped lambda-terms and weak-head reduction on untyped terms in LF employing

HOAS for the representation of lambda abstraction and defining typing rules for terms

using an LF type family oft.

LF tm : type =

| app : tm → tm → tm

| lam : (tm → tm) → tm;

LF oft : tm → tp → type =

| t_app : oft M (arr A B) → oft N A → oft (app M N) B

| t_lam : ({x:tm} oft x A → oft (M x) B)

→ oft (lam λx. M x) (arr A B);

Weak head reduction adopts a call-by-name strategy (i.e. we drop the rule s app2) and

multi-step reductions remains unchanged.

3.4. Encoding declarative and algorithmic equivalence

We now encode declarative and algorithmic equivalence of terms in LF using HOAS.

Parametric and hypothetical derivations are again mapped to LF function spaces, but are

straightforward.

LF deq : tm → tm → tp → type =

| d_beta : ({x:tm} oft x T → deq (M2 x) (N2 x) S) → deq M1 N1 T

→ deq (app (lam λx. M2 x) M1) (N2 N1) S

| d_lam : ({x:tm} oft x T → deq (M x) (N x) S)

→ deq (lam λx. M x) (lam λx. N x) (arr T S)

| d_ext : ({x:tm} oft x T → deq (app M x) (app N x) S)

→ deq M N (arr T S)

| d_app : deq M1 M2 (arr T S) → deq N1 N2 T → deq (app M1 N1) (app M2 N2) S

| d_refl : oft M T → deq M M T

| d_sym : deq M N T → deq N M T

| d_trans: deq M N T → deq N O T → deq M O T;

Algorithmic equality of terms is defined as two mutually recursive LF specifications.

We write algeq M N T for algorithmic equivalence of normal terms M and N at type T and

algeqNeu P Q T for algorithmic path equivalence at type T – these are terms whose head

is a variable, not a lambda abstraction. Following the previous on-paper definition, term

equality is directed by the type, while path equality is directed by the syntax. Two terms

M and N at base type i are equivalent if they weak head reduce to weak head normal

terms P and Q which are path equivalent. Two terms M and N are equivalent at type T ⇒ S

if applying them to a fresh variable x of type T yields equivalent terms. Variables are

only path equivalent to themselves, and applications are path equivalent if the terms

at function position are path equivalent, and the terms at argument positions are term

equivalent.

LF algeq: tm → tm → tp → type =

| alg_base: mstep M P → mstep N Q → algeqNeu P Q i

→ algeq M N i.

| alg_arr : ({x:tm} algeqNeu x x T → algeq (app M x) (app N x) S)

→ algeq M N (arr T S)

and algeqNeu : tm → tm → tp → type

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1628

| alg_app : algeqNeu M1 M2 (arr T S) → algeq N1 N2 T

→ algeqNeu (app M1 N1) (app M2 N2) S;

By describing algorithmic and declarative equality in LF, we gain structural properties

and substitution for free. For this particular proof, only weakening is important.

Two different forms of contexts are relevant for this proof. We describe these with schema

definitions in Beluga. Below, we define the schema actx, which enforces that term variables

come paired with a typing assumption oft x T and an algorithmic equality assumption

algeqNeu x x t for some type t. In addition, we define the schema ctx of typing contexts.

schema actx = some [t:tp] block x:tm, t_x: oft x t, a_x:algeqNeu x x t;

schema ctx = some [t:tp] block x:tm, t_x: oft x t;

3.5. Encoding logical equivalence as an inductive definition

To define logical equivalence, we need the notion of path substitution mentioned in Section

3.2. For this purpose, we use again Beluga’s built-in notion of simultaneous substitutions.

We write [Φ � Ψ] for the built-in type of simultaneous substitutions, which provide for

each variable in the context Ψ a corresponding term in the context Φ. When Ψ is of

schema actx, such a substitution consists of blocks of the form <M;D;P> where M is a term,

D stands for a typing derivation that M is well-typed, and P is a proof showing that M is

algorithmically equal to itself and is in fact a neutral term.

To achieve nice notation, we define an LF type of pairs of terms, where the infix

operator ≈ simply constructs a pair of terms:

LF tmpair : type =

| ≈ : tm → tm → tmpair % infix;

Logical equivalence, written Log [Ψ � M ≈ N] [A], expresses that M and N are logically

related in context Ψ at type A and is again defined as a stratified type (Jacob-Rao

et al. 2018). Beluga verifies that this stratification condition is satisfied. In this case, the

definition is structurally recursive on the type A.

stratified Log : (Ψ:actx) [Ψ � tmpair] → [tp] → type =

| LogBase : [Ψ � algeq M N i] → Log [Ψ � M ≈ N] [i]

| LogArr : {M1:[Ψ � tm]}{M2:[Ψ � tm]}

({Φ:actx}{π:[Φ � Ψ]}

{N1:[Φ � tm]}{D1:[Φ � oft N1 T[]]}{N2:[Φ � tm]}{D2:[Φ � oft N2 T[]]}

Log [Φ � N1 ≈ N2] [T] → Log [Φ � app M1[π] N1 ≈ app M2[π] N2] [S])

→ Log [Ψ � M1 ≈ M2] [arr T S];

At base type, two terms are logically equivalent if they are algorithmically equivalent.

At arrow type, we employ the monotonicity condition mentioned in Section 3: M1 is related

to M2 in Ψ if, for any extension Φ �π Ψ, and terms N1, N2 that are well-typed in Φ, and

logically related in Φ, we have that app M1[π] N1 is related to app M2[π] N2 in Φ.

Crucially, logical equality is monotonic under path substitutions (see Lemma 3.1). The

mathematical definition of Lemma 3.1 can be directly encoded using Beluga’s first-class

support for contexts, substitutions and contextual objects.

monotone: {Φ:actx}{π:[Φ � Ψ]} Log [Ψ � M1 ≈ M2] [A] → Log [Φ � M1[π] ≈ M2[π]] [A]

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1629

We show below the mechanized proof of this lemma. The proof is by case analysis on

the logical equivalence. In the base case, we obtain a proof P of [Ψ � algeq M N i], which

we can weaken for free by simply applying π to P . Here we benefit significantly from

Beluga’s built-in support for simultaneous substitutions; we gain not just weakening by a

single variable for free as we would in Twelf, but arbitrary simultaneous weakening. The

proof proceeds in the arrow case by simply composing the two substitutions.

rec monotone:{Φ:actx}{π:[Φ � Ψ]}Log [Ψ � M1 ≈ M2] [A] → Log [Φ � M1[π] ≈ M2[π]] [A] =

ΛΦ,π ⇒ fn e ⇒ case e of

| LogBase [Ψ � P] ⇒ LogBase [Φ � P[π]]

| LogArr [Ψ � M1] [Ψ � M2] f ⇒
LogArr (Λ Φ’,π’, N1, D1, N2, D2 ⇒ fn rn ⇒

f [Φ’] [Φ’ � π[π’]] [Φ’ � N1] [Φ’ � D1] [Φ’ � N2] [Φ’� D2] rn)

We can state weak head closure directly by translating the Lemma 3.2. The proof is

structurally recursive on the type T.

rec closed : {A:[tp]}[Ψ � mstep N1 M1] → [Ψ � mstep N2 M2]

→ Log [Ψ � M1 ≈ M2] [A] → Log [Ψ � N1 ≈ N2] [A]

Last, we translate the main lemma 3.3 expressing that path equivalence is included in

logical equivalence, and logical equivalence is included in algorithmic term equivalence.

This enables ‘escaping’ from the logical relation to obtain an algorithmic equality in

the end. They are structurally recursive on the type. Crucially, in the arrow case, main2

instantiates the path substitution π with a weakening substitution in order to create a

fresh variable.

rec main1 : {A:[tp]} [Ψ � algeqNeu M1 M2 A] → Log [Ψ � M1 ≈ M2] [A]

and main2 : {A:[tp]} Log [Ψ � M1 ≈ M2] [A] → [Ψ � algeq M1 M2 A]

3.6. Encoding the fundamental theorem as a total function in Beluga

The fundamental theorem requires us to speak of all instantiations of open terms by related

substitutions. We express here the notion of related substitutions using inductive types.

Note that we relate substitutions that map typing context ψ to well-typed algorithmic

equality context φ silently incorporating weakening. Trivially, empty substitutions, written

as , are related at empty domain. If σ1 and σ2 are related at ψ, M1 and M2 are related

at A, and D1 (and resp. D2) describe the derivation that M1 (resp. M2) is well-typed, then

σ1,<M1;D1> and σ2,<M2;D2> are related at Ψ, b:block x:tm, t_x: oft x R[]. Note that we pair

<M1;D1> (and resp. <M2;D2>) to provide witness for the block x:tm, t_x: oft x R[].

inductive LogSub : {Ψ:ctx}(Φ:actx){σ1:[Φ � Ψ]}{σ2:[Φ � Ψ]} type =

| Nil : LogSub [] [Φ �] [Φ � ·]
| Dot : LogSub [Ψ] [Φ � σ1] [Φ � σ2] → Log [Φ � M1 ≈ M2] [T]

→ {D1:[Φ � oft M1 R[]]}{D2:[Φ � oft M2 R[]]}

LogSub [Ψ, b:block x:tm, t_x: oft x R[]] [Φ � σ1,<M1;D1>] [Φ � σ2,<M2;D2>]

We have a monotonicity lemma for logically equivalent substitutions which is similar

to the monotonicity lemma for logically equivalent terms:

rec monotone_sub : {Φ:actx}{Φ’:actx}{π:[Φ’ � Φ]}

LogSub [Ψ] [Φ � σ1] [Φ � σ2]

→ LogSub [Ψ] [Φ’ � σ1[π]] [Φ’ � σ2[π]]

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1630

The fundamental theorem requires a proof that M1 and M2 are declaratively equal,

together with logically related substitutions σ1 and σ2, and produces a proof that M1[σ1]

and M2[σ2] are logically related. In the transitivity and symmetry cases, we appeal to

transitivity and symmetry of logical equivalence, the proofs of which can be found in the

accompanying Beluga code.

rec thm : [Ψ � deq M1 M2 T[]] → LogSub [Ψ] [Φ � σ1] [Φ � σ2]

→ Log [Φ � M1[σ1] ≈ M2[σ2]] [T] =

We show the lam case of the proof term only to make a high-level comparison to

the handwritten proof in Section 3. Below, one can see that we appeal to monotonicity

(monotone_sub), weak head closure (closed) and the induction hypothesis on the subderiva-

tion d1. However, remarkably, there is no explicit equational reasoning about substitutions,

since applications of substitutions are automatically simplified. We refer the reader to Cave

and Pientka (2013) for the technical details of this simplification.

fn d, s ⇒ case d of

| [Ψ � d_lam λx.λy. E1] ⇒
let ([Ψ � _] : [Ψ � deq (lam λx.M1) (lam λx.M2) (arr P[] Q[])]) = d in

LogArr [Φ � lam (λx. M1[σ1[...],x])] [Φ � lam (λx. M2[σ2[...],x])]

(Λ Φ’,π,N1,D1,N2,D2 ⇒ fn rn ⇒
let q0 = Dot (monotone_sub [Φ’] [Φ] [Φ’ � π] s) rn [Φ’ � D1] [Φ’ � D2] in

let q2 = thm [Ψ,b:block x:tm,y:oft x _ � E1[...,b.1,b.2]] q0 in

closed [Q] [Φ’ � trans1 beta refl] [Φ’ � trans1 beta refl] q2

)

| ...

Completeness is a corollary of the fundamental theorem.

3.7. Remarks

The proof passes Beluga’s type checking and totality checking. As part of the totality

checker, Beluga performs a strict positivity check for inductive types (Pientka and

Abel 2015; Pientka and Cave 2015), and a stratification check for logical relation-style

definitions, i.e. it verifies that the definition is defined inductively over one of its indices

(Jacob-Rao et al. 2018).

Beluga’s built-in support for simultaneous substitutions is a big win for this proof.

The proof of the monotonicity lemma is very simple, since the (simultaneous) weakening

of algorithmic equality comes for free, and there is no need for explicit reasoning about

substitution equations in the fundamental theorem or elsewhere. We also found that

the technique of quantifying over path substitutions as opposed to quantifying over

all extensions of a context works surprisingly well. This could also prove us useful in

mechanizations that use well-scoped de Bruijn encodings to mechanize formal systems

and proofs.

We remark that the completeness theorem can in fact be executed, viewing it as an

algorithm for normalizing derivations in the declarative system to derivations in the

algorithmic system. The extension to a proof of decidability would be a correct-by-

construction functional algorithm for the decision problem. This is a unique feature of

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1631

carrying out the proof in a type-theoretic setting like Beluga, where the proof language

also serves as a computation language.

Furthermore, one might argue that having to explicitly apply the path substitutions π to

terms like M[π] is somewhat unsatisfactory, so one might wish for the ability to directly

perform the bounded quantification ∀Φ � Ψ and simply allow using a term tm in a

context ψ also in a context φ. During an elaboration phase, we then can insert weakening

substitutions in the appropriate places to convert terms. This is also a possibility we are

exploring.

Overall, we found that that the tools provided by Beluga, especially its support for

simultaneous substitutions, worked remarkably well to express this proof and to obviate

the need for bureaucratic lemmas about substitutions and contexts, and we are optimistic

that these techniques can scale to many other varieties of logical relations proofs.

4. Related work

Mechanizing proofs by logical relations is an excellent benchmark to evaluate the power

and elegance of a given proof development. Because it requires nested quantification

and recursive definitions, encoding logical relations has been particularly challenging for

systems supporting HOAS encodings.

There are the following two main approaches to support reasoning about HOAS

encodings:

(1) In the proof-theoretic approaches, we adopt a two-level system where we implement

a specification logic (similar to LF) inside a higher order logic supporting (co)inductive

definitions, the approach taken in Abella (Gacek 2008), or inside a type theory, the

approach taken in Hybrid (Felty and Momigliano 2012). To distinguish in the proof

theory between quantification over variables and quantification over terms, Gacek et al.

(2008) introduce a new quantifier, ∇, to describe nominal abstraction logically. To encode

logical relations, one uses recursive definitions which are part of the reasoning logic

(Gacek et al. 2009). Induction in these systems is typically supported by reasoning about

the height of a proof tree; this reduces reasoning to induction over natural numbers,

although much of this complexity can be hidden in Abella. Compared to our development

in Beluga, Abella lacks support for modelling a context of assumptions and simultaneous

substitutions. As a consequence, some of the tedious basic infrastructure to reason about

open and closed terms and substitutions still needs to be built and maintained. Moreover,

Abella’s inductive proofs cannot be executed and do not yield a program for normalizing

derivations. It is also not clear what is the most effective way to perform the quantification

over all extensions of a context in Abella that is needed to model logical relations on

open terms.

(2) The type-theoretic approaches fall into two categories: we either remain within

the LF and encode proofs as relations as advocated in Twelf (Pfenning and Schürmann

1999) or we build a dependently typed functional language on top of LF to support

reasoning about LF specifications as done in Beluga. The former approach lacks logical

strength; the function space in LF is ‘weak’ and only represents binding structures instead

of computations. To circumvent these limitations, Schürmann and Sarnat (2008) propose

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1632

to implement a reasoning logic within LF and then use it to encode logical relation

arguments. This approach scales to richer calculi (Rasmussen and Filinski 2013) and

avoids reasoning about contexts, open terms and simultaneous substitutions explicitly.

Exploiting the same idea of an assertion logic, Rabe and Sojakova (2013) show how

to use an extension of Twelf that allows users to define morphisms between different

signatures to express proofs by logical relation. However, one might argue that this

approach not only requires additional work to build up a reasoning logic within LF

and prove its consistency, but is also conceptually different from what one is used to

from on-paper proofs. It is also less clear whether the approach scales to describe logical

relations on open terms due to the need to talk about context extensions.

Outside the world of HOAS, Narboux and Urban (2008) have carried out essentially

the same proof of algorithmic completeness in Nominal Isabelle, and later Urban et al.

(2011) tackle the extension from the simply typed lambda calculus to LF. Relative to

their approach, Beluga gains substitution for free, and more importantly, equations

on substitutions are silently discharged by Beluga’s built-in support for their equational

theory, so they do not even appear in proofs. In contrast, proving these equations manually

requires roughly a dozen intricate lemmas.

5. Conclusion

Both our case studies of Kripke-style logical relations proofs take advantage of key infra-

structure provided by Beluga: it takes advantage of specifying lambda-terms together with

their relevant theory in the LF, and more importantly, it utilizes first-class simultaneous

substitutions, contexts, contextual objects and the power of recursive types. This yields a

direct and compact implementation of all the necessary proofs which directly correspond

to their on-paper developments and yields an executable program. We believe these case

studies demonstrate that Beluga provides the right level of abstractions and primitives to

mechanize directly challenging problems such as proofs by logical relations using HOAS

encodings. The programmer is able to concentrate on implementing the essential aspects

of the proof spending his effort in the right place.

There are two natural extensions we plan to explore in depth in the future: First, we aim

to explore mechanizing not only inductive, but also coinductive proofs. This is particularly

important, when we reason about contextual equivalence: m and n are equivalent when,

if inserted in any larger program fragment (context), both larger programs evaluate to

the same value, or equivalently both terminate. While this notion of program equivalence

is intuitive, it is often difficult to reason about it, mainly due to the quantification on

every possible context. Bisimilarity has emerged as a more manageable, yet, in this setting,

equivalent idea. Roughly, m and n are bisimilar if whenever m evaluates to a value,

so does n, and all the subprograms of the resulting values are also bisimilar, and vice

versa. To show congruence properties of (coinductively defined) (bi)simulation, it does

not suffice to consider only closed terms, but we rely on open simulation as a relation

on open well-typed terms, i.e. terms that are well-typed within a context. In addition,

proving directly the congruence properties will often fail – in this case, Howe’s method

(Pitts 1997), a remarkably flexible and powerful syntactic technique, comes to the rescue.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1633

The central idea is to define a Howe-relation that logically relates open terms and show

that when terms are Howe-related then they are (bi)similar. Defining and reasoning about

open terms and relations on them is central in this method.

We have recently extended Beluga to support coinductive definitions (Thibodeau et al.

2016) and are exploring the mechanization of Howe’s method for a simply typed lambda-

calculus with recursion and lazy lists (Pitts 1997). Our early results confirm that Beluga’s

support for modelling relations on open terms together with its built-in support for

simultaneous substitution also apply to this setting and lead to a compact and elegant

mechanization. In the future, we plan to explore in more depth case studies that involve

both inductive and coinductive reasoning on open terms.

Second, we aim to explore mechanizing richer properties, such as strong normalization,

as well as richer languages, for example, normalization of System F. In particularly, the

latter has not been tackled in proof assistants based on HOAS, as existing frameworks

such as Beluga and Abella lack the ability to express logical relations for polymorphic

types or recursive types. To express logical relations for System F or recursive types,

typically requires higher ranked polymorphism (or higher order logic). For Beluga, we do

not see any fundamental new challenges in supporting higher ranked polymorphism.

References

Abel, A. and Scherer, G. (2012). On irrelevance and algorithmic equality in predicative type theory.

Logical Methods in Computer Science 8 (1) 1–36. TYPES’10 special issue.

Altenkirch, T. (1993). A formalization of the strong normalization proof for system F in LEGO.

In: Bezem, M. and Groote, J. F. (eds.) International Conference on Typed Lambda Calculi and

Applications (TLCA ’93), Lecture Notes in Computer Science, vol. 664, Springer, 13–28.

Aydemir, B., Bohannon, A., Fairbairn, M., Foster, J., Pierce, B., Sewell, P., Vytiniotis, D., Washburn,

G., Weirich, S. and Zdancewic, S. (2005). Mechanized metatheory for the masses: The POPLmark

challenge. In: Hurd, J. and Melham, T. F. (eds.) Proceedings of the 18th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs), Lecture Notes in Computer Science, vol.

3603, Springer, 50–65.

Benton, N., Hur, C., Kennedy, A. and McBride, C. (2012). Strongly typed term representations in

coq. Journal of Automated Reasoning 49 (2) 141–159.

Berardi, S. (1990). Girard normalization proof in LEGO. In: Proceedings of the 1st Workshop on

Logical Frameworks 67–78.

Cave, A. and Pientka, B. (2012). Programming with binders and indexed data-types. In: Proceedings

of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’12), ACM Press, 413–424.

Cave, A. and Pientka, B. (2013). First-class substitutions in contextual type theory. In: Proceedings

of the 8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice (LFMTP’13), ACM Press, 15–24.

Cave, A. and Pientka, B. (2015). A case study on logical relations using contextual types. In:

Cervesato, I. and Chaudhuri, K. (eds.) Proceedings of the 10th International Workshop on Logical

Frameworks and Meta-Languages: Theory and Practice (LFMTP’15), Electronic Proceedings in

Theoretical Computer Science (EPTCS), 18–33.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1634

Coquand, C. (1992). A proof of normalization for simply typed lambda calculus writing in ALF.

In: Informal Proceedings of Workshop on Types for Proofs and Programs, Dept. of Computing

Science, Chalmers Univ. of Technology and Göteborg Univ, 80–87.

Crary, K. (2005). Logical relations and a case study in equivalence checking. In: Pierce, B. C. (ed.)

Advanced Topics in Types and Programming Languages, The MIT Press.

Doczkal, C. and Schwinghammer, J. (2009). Formalizing a strong normalization proof for Moggi’s

computational metalanguage: A case study in Isabelle/HOL-nominal. In: Proceedings of the

4th International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice

(LFMTP’09), ACM, 57–63.

Felty, A. and Momigliano, A. (2012). Hybrid: A definitional two-level approach to reasoning with

higher-order abstract syntax. Journal of Automated Reasoning 48 (1) 43–105.

Felty, A.F., Momigliano, A. and Pientka, B. (2017). Benchmarks for reasoning with syntax trees

containing binders and contexts of assumptions. Mathematical Structures in Computer Science.

Felty, A.P., Momigliano, A. and Pientka, B. (2015). The next 700 challenge problems for reasoning

with higher-order abstract syntax representations: Part 2 - a survey. Journal of Automated

Reasoning 55 (4) 307–372.

Felty, A.P. and Pientka, B. (2010). Reasoning with higher-order abstract syntax and contexts: A

comparison. In: Kaufmann, M. and Paulson, L. C. (eds.) International Conference on Interactive

Theorem Proving, Lecture Notes in Computer Science, vol. 6172, Springer, 227–242.

Ferreira, F. and Pientka, B. (2014). Bidirectional elaboration of dependently typed languages.

In: Proceedings of the 16th International Symposium on Principles and Practice of Declarative

Programming (PPDP’14), ACM, 161–174.

Gacek, A. (2008). The Abella interactive theorem prover (system description). In: Proceedings

of the 4th International Joint Conference on Automated Reasoning, Lecture Notes in Artificial

Intelligence, vol. 5195, Springer, 154–161.

Gacek, A., Miller, D. and Nadathur, G. (2008). Combining generic judgments with recursive

definitions. In: Pfenning, F. (ed.) Proceedings of the 23rd Symposium on Logic in Computer Science,

IEEE Computer Society Press, 33–44.

Gacek, A., Miller, D. and Nadathur, G. (2009). Reasoning in Abella about structural operational

semantics specifications. In: Proceedings of the International Workshop on Logical Frameworks and

Metalanguages: Theory and Practice (LFMTP 2008), Electronic Notes in Theoretical Computer

Science (ENTCS), vol. 228, Elsevier, 85–100.

Girard, J.-Y., Lafont, Y. and Tayor, P. (1990). Proofs and Types, Cambridge University Press.

Harper, R., Honsell, F. and Plotkin, G. (1993). A framework for defining logics. Journal of the ACM

40 (1) 143–184.

Harper, R. and Pfenning, F. (2005). On equivalence and canonical forms in the LF type theory.

ACM Transactions on Computational Logic 6 (1) 61–101.

Jacob-Rao, R., Pientka, B. and Thibodeau, D. (2018). Index-stratified types. In: Kirchner, H.

(ed.) Proceedings of the 3rd International Conference on Formal Structures for Computation

and Deduction (FSCD), Leibniz International Proceedings in Informatics (LIPIcs) of Schloss

Dagstuhl.

Kaiser, J., Pientka, B. and Smolka, G. (2017). Relating system F and λ2: A case study in

Coq, Abella and Beluga. In: Miller, D. (ed.) Proceedings of the 2nd International Conference

on Formal Structures for Computation and Deduction (FSCD), Leibniz International Proceedings

in Informatics (LIPIcs) of Schloss Dagstuhl, 21:1–21:19.

Nanevski, A., Pfenning, F. and Pientka, B. (2008). Contextual modal type theory. ACM Transactions

on Computational Logic 9 (3) 1–49.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1635

Narboux, J. and Urban, C. (2008). Formalising in Nominal Isabelle Crary’s completeness proof for

equivalence checking. Electronic Notes in Theoretical Computer Science 196 3–18.

Öhmann, J. (2016). A logical relation for dependent type theory formalized in agda. Master’s thesis,

University of Gothenburg.

Pfenning, F. and Schürmann, C. (1999). System description: Twelf – A meta-logical framework

for deductive systems. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference

on Automated Deduction (CADE-16), Lecture Notes in Artificial Intelligence (LNAI), vol. 1632,

Springer, 202–206.

Pientka, B. (2008). A type-theoretic foundation for programming with higher-order abstract

syntax and first-class substitutions. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’08), ACM Press, 371–382.

Pientka, B. (2010). Beluga: Programming with dependent types, contextual data, and contexts. In:

Blume, M., Kobayashi, N. and Vidal, G. (eds.) Proceedings of the 10th International Symposium

on Functional and Logic Programming (FLOPS’10), Lecture Notes in Computer Science (LNCS),

vol. 6009, Springer, 1–12.

Pientka, B. (2013). An insider’s look at LF type reconstruction: Everything you (n)ever wanted to

know. Journal of Functional Programming 1 1–37.

Pientka, B. (2015). Mechanizing Types and Programming Languages: A Companion, McGill

University. Available at https://github.com/Beluga-lang/Meta.

Pientka, B. and Abel, A. (2015). Structural recursion over contextual objects. In: Altenkirch, T.

(ed.) Proceedings of the 13th International Conference on Typed Lambda Calculi and Applications

(TLCA’15), Leibniz International Proceedings in Informatics (LIPIcs) of Schloss Dagstuhl,

273–287.

Pientka, B. and Cave, A. (2015). Inductive Beluga: Programming proofs (system description).

In: Felty, A. P. and Middeldorp, A. (eds.) Proceedings of the 25th International Conference

on Automated Deduction (CADE-25), Lecture Notes in Computer Science (LNCS), vol. 9195,

Springer, 272–281.

Pientka, B. and Dunfield, J. (2008). Programming with proofs and explicit contexts. In ACM

SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08), ACM

Press, 163–173.

Pientka, B. and Dunfield, J. (2010). Beluga: A framework for programming and reasoning with

deductive systems (system description). In: Giesl, J. and Haehnle, R. (eds.) Proceedings of the 5th

International Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Artificial

Intelligence (LNAI 6173), Springer, 15–21.

Pitts, A.M. (1997). Operationally based theories of program equivalence. In: Dybjer, P. and Pitts,

A. M. (eds.) Semantics and Logics of Computation. New York, NY: Cambridge University Press.

Poswolsky, A.B. and Schürmann, C. (2008). Practical programming with higher-order encodings and

dependent types. In: Proceedings of the 17th European Symposium on Programming (ESOP ’08),

Lecture Notes in Computer Science (LNCS), vol. 4960, Springer, 93–107.

Rabe, F. and Sojakova, K. (2013). Logical relations for a logical framework. ACM Transactions on

Computational Logic 14 (4) 32.

Rasmussen, U. and Filinski, A. (2013). Structural logical relations with case analysis and

equality reasoning. In: Proceedings of the 8th ACM SIGPLAN International Workshop on Logical

Frameworks and Meta-languages: Theory and Practice (LFMTP’13), ACM Press, 43–54.

Schürmann, C. and Sarnat, J. (2008). Structural logical relations. In: Proceedings of the 23rd Annual

Symposium on Logic in Computer Science (LICS), Pittsburgh, PA, USA: IEEE Computer Society,

69–80.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1636

Tait, W. (1967). Intensional interpretations of functionals of finite type I. The Journal of Symbolic

Logic 32 (2) 198–212.

Thibodeau, D., Cave, A. and Pientka, B. (2016). Indexed codata. In: Garrigue, J., Keller, G. and

Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN International Conference on Functional

Programming (ICFP’16), ACM, pp. 351–363.

Urban, C., Cheney, J. and Berghofer, S. (2011). Mechanizing the metatheory of LF. ACM

Transactions on Computational Logic 12 (2) 15.

Appendix A. Overview of Beluga Source Language

A Beluga signature consists of LF declarations, (co)inductive and stratified definitions,

context schema declarations and programs. We concentrate here on the inductive and

stratified definitions, as these are relevant for understanding the mechanization described

in the given paper and omit coinductive definitions. Similarly, we will curtail the surface

grammar of Beluga and concentrate on the fragment that is in fact used in the given

case studies. To describe the full surface language of Beluga is beyond the scope of this

paper.

It is also important to keep in mind that Beluga’s surface language is evolving; while

we hope the grammar of Beluga’s surface language is helpful, to understand the concise

meaning of the language, we refer to reader to Cave and Pientka (2012, 2015). We describe

the surface language supported as of July 2017.

For each LF type family a, we declare its LF kind together with the constants that allow

us to form objects that inhabit the type family. We also support mutual LF definitions

that we do not capture in our grammar below to not complicate matters.

Signature Decl. D ::= LF a : KLF = c1 : A1 | . . . | ck : Ak;

inductive a : K = c1:T1 | . . . | cn:Tn;
stratified a : K = c1:T1 | . . . | cn:Tn;
schema c = S;
rec c : T = E;

In our case study described in Section 3.3, we define for example LF kinds tp, tm as well

as step, mstep, and normal and neutral. To define reducibility candidates, we use a stratified

type definition; we also employ inductive definitions, for example, Halts characterizes when

evaluation of a given term halts while LogSub describes reducible substitutions. Inductive

definitions correspond to indexed recursive types and semantically are interpreted as least

fixed points. In addition to kind and type declarations, we also support schema declarations

that characterize the invariant a given LF context satisfies. In the case studies, we use

several context schema declarations, namely nctx (well-typed neutral variable context),

ctx (for typing contexts) and actx (for well-typed algorithmic equality contexts). Last, our

signature contains recursive programs together with their type.

We describe Beluga’s type and terms more precisely in Figure A.1. The syntax for LF

kinds, types and terms is close to the syntax in the Twelf system. We write curly braces

{ } for the dependent LF function space and allow users to write simply →, if there is no

dependency. LF kinds, types and LF terms used in a signature declaration must be pure,

i.e. they cannot refer to LF objects highlighted in blue. In particular, pure LF objects

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

Logical relations case study 1637

LF Kinds KLF ::= type | {X:A}KLF | A → KLF

LF Types A ::= a M1 . . .Mn | {X:A}A′ | A → A′

LF Terms M ::= λx.M| H M1 . . .Mn | X[σ]
LF Heads H ::= x | c | #p[σ] | H.i

LF Declaration D ::= A | block x1:A1, . . ., xn:An

LF Context Ψ, Φ ::= | ψ | Ψ,x:D
LF Subst. σ ::= | ... | σ,M | σ, <M1; . . . ;Mn>

LF Schema S ::= some [y1:A′
1, . . ., yk:A

′
k] block x1:A1, . . ., xn:An

Contextual Type U ::= [Ψ � a M1 . . .Mn] | [c] | [Ψ � Φ] | . . .

Contextual Object C ::= [Ψ � M] | [Ψ] | [Ψ � σ] | . . .

Beluga Kinds K ::= type | {X:U}K | U → K
Beluga Types T ::= {X:U}T | (X:c)T | T → T | U | a C1 . . . Cn

Beluga Terms E ::= Λ �X ⇒ E | fn �x ⇒ E | case E of B | let P = E in E |
E E | C | x | c

Beluga Branches B ::= | (B | P ⇒ E)
Beluga Pattern P ::= x | C | c P1 . . .Pn

Fig. A.1. Grammar of Beluga.

cannot contain closures written as X[σ] and #p[σ]. Here, X and #p are meta-variables that

are bound and introduced in Beluga types and patterns. Furthermore, we may construct

LF contexts in Beluga programs that satisfy the rich invariant that context schemas allow

us to express. In particular, such LF contexts may be build out of blocks x1:A1, . . ., xn:An;

formally, this denotes a Σ-type which allows us to group LF types together. We can access

an element of a block using projections written in general as H.i.
LF contexts may be empty, consist of a context variable or are built by concatenating

to an LF context an LF variable declaration.

We can declare a context schema by some [y1:A′
1, . . ., yk:A

′
k] block x1:A1, . . ., xn:An. An

LF context that satisfies this schema if every LF variable declaration is an instance of

block x1:A1, . . ., xn:An where we have chosen a suitable instantiation for all the variables

y1:A′
1, . . ., yk:A

′
k .

Substitutions in closures are either empty, written as ^, or a weakening substitution

..., which we use in practice to transition from a context to a possible extension.

Substitutions can also be built by extending a substitution σ with a LF term M; in

fact, in general substitutions may be extended with an n-ary tuple of LF terms that

provide an instantiation for LF declarations of type block x1:A1, . . ., xn:An.

Contextual types and terms pair a LF context together with an LF type or LF term,

respectively. As LF contexts are first-class in Beluga, they form valid contextual objects.

LF contexts are in general classified by a schema that allows us to state an invariant the

LF context satisfies. We refer to the schema by name.

Finally, we come to Beluga’s computation language. It allows us to make statements

about contextual types and objects and we highlight them in the colour blue. It is in

many ways similar to standard functional programming languages with two exceptions:

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

A. Cave and B. Pientka 1638

first, contextual types and objects are the special domain and we support also pattern

matching. We only describe here the part of Beluga’s term language that is relevant for

our example. Beluga programs are constructed using two forms of abstractions: Λ �X ⇒ E
(abstraction over contextual variables) and fn �x ⇒ E (abstraction over program variables).

The remaining constructs are mostly standard in functional programming. We support

function application and case statements with pattern matching. In general, branches may

be empty, if we try to analyse a Beluga term that has the empty type. This corresponds

to an impossible case. We also support let-expressions in our surface language that are

translated internally into case expressions with one branch. Beluga supports pattern

matching on both inductively defined objects as well as contextual LF objects. Last, we

can embed contextual objects into Beluga programs.

In addition to indexed dependent function space, {X:U}T , Beluga’s type language

supports simple types, embedding contextual types and (co)inductive definitions, described

as a C1 . . .Cn. Note that in {X:U}T , we make X explicit and hence any computation-level

expression of that type expects first an object of type U . We also allow a limited form

of implicit type annotation for context variables; by writing (X:c)T , where c denotes a

context schema, we can abstract over the context variable X and declare its context schema,

while keeping X implicit.

https://doi.org/10.1017/S0960129518000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000154

