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Turbulent emulsions are complex physical systems characterized by a strong and
dynamical coupling between small-scale droplets and large-scale rheology. By using
a specifically designed Taylor–Couette shear flow system, we are able to characterize
the statistical properties of a turbulent emulsion made of oil droplets dispersed in an
ethanol–water continuous solution, at an oil volume fraction up to 40 %. We find that the
dependence of the droplet size on the Reynolds number of the flow at a volume fraction
of 1 % can be well described by the Hinze criterion. The distribution of droplet sizes
is found to follow a log-normal distribution, hinting at a fragmentation process as the
possible mechanism dominating droplet formation. Additionally, the effective viscosity of
the turbulent emulsion increases with the volume fraction of the dispersed oil phase, and
decreases when the shear strength is increased. We find that the dependence of the effective
viscosity on the shear rate can be described by the Herschel–Bulkley model, with a flow
index monotonically decreasing with increasing oil volume fraction. This finding indicates
that the degree of shear thinning systematically increases with the volume fraction of
the dispersed phase. The current findings have important implications for bridging the
knowledge on turbulence and low-Reynolds-number emulsion flows to turbulent emulsion
flows.
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1. Introduction

Emulsions consisting of two immiscible liquids, such as oil and water mixtures, are
common in many industrial processes, including chemical engineering (Wang et al. 2007),
food processing (Mcclements 2007), drug delivery systems (Spernath & Aserin 2006) and
enhanced oil recovery (Mandal et al. 2010; Kilpatrick 2012), among others. While the
applications of emulsions are wide, as mentioned above, the understanding of the physics
of emulsions, particularly turbulent emulsions, is still rather limited.

In very low-volume-fraction regimes, turbulent emulsions are mainly characterized
by the breakup of droplets, and coalescence events can be neglected due to the very
slight chance of coalescing. The microscopic droplet structure (droplet size distribution)
is generated by the turbulent stresses, while it has little influence on the macroscopic
properties (viscosity) of the fluid. Pacek, Nienow & Moore (1994) and Pacek, Man &
Nienow (1998) conducted experimental studies that focused on turbulent emulsions in a
stirred vessel and found that the dispersed droplet size follows a log-normal distribution.
The dispersed droplet size of the emulsion in dilute regimes in a homogeneous and
isotropic turbulent flow was initially investigated by Hinze (1955), who linked the turbulent
fluctuations to the breakup of dispersed droplets, and derived an expression for the
maximum droplet size for a given intensity (i.e. Reynolds number) of a homogeneous
and isotropic turbulent flow. More recently, a fully resolved numerical investigation of
the droplet size distribution in homogeneous isotropic turbulence also supported the
validity of the Hinze relation for the average droplet size in turbulence (Perlekar et al.
2012). Droplet size distribution for liquid–liquid emulsions in Taylor–Couette flows was
studied based on the Kolmogorov turbulence theory (Farzad et al. 2018). Lemenand et al.
(2017) investigated the drop size distribution in an inhomogeneous turbulent flow using a
turbulent spectrum model for drop-breakup mechanisms.

With an increase of the volume fraction of the dispersed phase, turbulent emulsions
are characterized by the interplay between droplet breakup and coalescence events.
Droplet shapes and sizes respond to and influence the macroscopic flow properties.
The effective viscosity is a primary parameter among these properties. One important
factor that affects the viscosity of emulsions is the volume fraction of the dispersed
phase. However, the current viscosity–concentration relations for emulsions are mainly
based on an analogy with suspensions of solid spheres (Pal, Yan & Masliyah 1992;
Derkach 2009). Many empirical equations have been proposed to describe the effective
viscosity of a solid particle suspension as a function of the volume fraction, such as
the one proposed by Krieger and Dougherty that works for particle–fluid suspensions
in both low- and high-concentration limits (Krieger & Dougherty 1959; Krieger 1972):
ηr = (1 − φ/φm)−2.5φm , where φ denotes the volume fraction of the solid spheres in the
suspension. In this equation, the maximum volume fraction φm, where the viscosity of
the suspension diverges, is introduced. However, there are some key differences between
turbulent emulsions and suspension systems with particles. In these suspension fluids, a
microscopic structure is always present and the flow can only interact with it. In fluid
emulsions, however, the microscopic droplet structure, which confers complex rheological
properties to the fluid, is itself generated by the macroscopic (turbulent) stress through
deformation, breakup and coalescence of the droplets. Another empirical equation to
describe the effective viscosity of a suspension is the Eilers formula, ηr = [1 + Bφ/(1 −
φ/φm)]2, which fits well both experimental and numerical data (Zarraga, Hill & Leighton
2000; Singh & Nott 2003; Stickel & Powell 2005). In this expression, B is a constant
and φm is the geometrical maximum packing fraction. Numerical studies of Rosti, Brandt
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& Mitra (2018) show that the Eilers formula is a good description also for suspensions
of viscoelastic spheres, provided that the volume fraction φ is replaced by the effective
volume fraction. Among the studies of the effective viscosity, various types of dispersed
entities have been investigated, such as deformable particles in suspensions and droplets
in emulsions (Tadros 1994; Adams, Frith & Stokes 2004; Saiki, Prestidge & Horn 2007;
Derkach 2009; Faroughi & Huber 2015; Rosti et al. 2018; De Vita et al. 2019; Villone
& Maffettone 2019). The conventional way to measure the viscosity of a fluid is usually
based on capillary tubes or rheometers, both of which only operate in the laminar regime
(Pal et al. 1992). To determine the effective viscosity of an emulsion under flowing
conditions, the most usual way is to measure the pressure drop in a pipe when the emulsion
flows through. Urdahl, Fredheim & Løken (1997) performed viscosity measurements of
water-in-crude-oil emulsions under flowing conditions using a high-pressure test wheel.
The vast majority of work on emulsions has focused on flows of relatively low Reynolds
numbers. The current knowledge of the detailed interplay between the dispersed droplets
and the global rheological properties of droplet–liquid emulsions under turbulent flow
conditions is still limited.

In this work, we aim to study an emulsion in a turbulent shear flow, focusing on
two aspects: (i) the statistical properties of the dispersed droplets for different Reynolds
numbers at a low volume fraction and (ii) the global rheological properties of the emulsion,
particularly at high volume fractions.

2. Experimental set-up and procedure

The emulsion in our study consists of oil and an aqueous ethanol–water mixture. The
silicone oil (Shin-Etsu KF-96L-2cSt) used in this study has a viscosity of νo = 2.1 ×
10−6 m2 s−1 and a density of ρo = 866 kg m−3. The aqueous ethanol–water mixture
(νw = 2.4 × 10−6 m2 s−1, ρw = 860 kg m−3) is prepared with 75 % ethanol and 25 %
water in volume to match the density of the oil. The viscosity values are measured with
a hybrid rheometer (type TA DHR-1) at a temperature of T = 22 ◦C. The silicone oil and
the ethanol–water solution are immiscible. In all experiments, no surfactant is added. In
the current work, the oil volume fraction is kept at φ � 40 %, the dispersed phase always
being the oil droplets. Though the two liquids are almost matched in density, the emulsion
still tends to separate after they are mixed without adding surfactants and in the absence of
external stirring. Considering the meta-stability of the mixture of oil and ethanol–water, a
Taylor–Couette turbulent flow is used to stir the emulsion towards a dynamical equilibrium
state. Basically, we input energy via the rotation of an inner cylinder to maintain the system
in a turbulent emulsified state. If the forcing is stopped, the emulsion coarsens until it is
fully destroyed with the two immersible fluids fully separated.

The experimental set-up is shown in figure 1(a). A Taylor–Couette system is constructed
from a rheometer (Discovery Hybrid Rheometer, TA Instruments). The system has an
inner cylinder radius of ri = 25 mm, an outer cylinder radius of ro = 35 mm, a gap d =
10 mm and a height of L = 75 mm. These give a radius ratio of η = ri/ro = 0.71 and an
aspect ratio of Γ = L/d = 7.5. The inner cylinder is made of aluminium and the outer
one is made of glass. The inner cylinder is connected to the torque sensor of the rheometer
(with an accuracy of 0.1 nN m). The control parameter of the Taylor–Couette flow is the
Reynolds number defined as

Re = ωirid/ν (2.1)
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Figure 1. (a) A sketch of the experimental set-up. The gap between the outer and inner cylinders is filled
with the emulsion. The inner cylinder is connected to a rheometer so that the torque of the inner cylinder is
directly measured by the torque sensor of the rheometer. A high-speed camera is used to capture the dispersed
oil droplets. (b) Typical snapshots of the emulsion for various Re at a given oil volume fraction φ = 1 %. From
left to right are the cases of Re = 7.81 × 103, 1.04 × 104 and 2.08 × 104. All three cases are recorded with a
high-speed camera connected with a long-distance microscope.

and the response parameter is the dimensionless torque given by

G = τ

2πLρν2 , (2.2)

where τ denotes the torque that is required to maintain the inner cylinder rotating at
a constant angular velocity ωi and ν is the viscosity of the emulsion. By rotating the
inner cylinder with an imposed angular velocity, the emulsion is formed when it achieves
a dynamically statistical equilibrium state, characterized by a detected balance between
the breakup and the coalescence of the oil droplets dispersed in the ethanol–water
continuous solution. After that the system has reached a statistically stable state, the
direct measurements of the time series of the torque are recorded with the torque
sensor. From this, we compute a time-averaged value of the torque. Experiments are
conducted for different oil fractions, φ, and angular velocities, ωi. The temperature of
the emulsion system is maintained at T = 22 ± 1 ◦C by controlling the time duration
of each experiment, and the effect of temperature on the physical parameters (viscosity,
interfacial tension) can be neglected. A high-speed camera (Photron NOVA S12) is used
to record the dispersed oil droplets in the ethanol–water solution. Considering that the
sizes of the droplets (about 40–500 μm) and of the measurement window (3 mm) are both
much smaller than the diameter of the outer glass container (80 mm), the distortion due to
the curvature can be neglected. To ensure achieving enough statistics, the average droplet
size is computed from O(103) samples, for all experiments. All experiments are performed
at room temperature, T = 22 ± 1 ◦C, and under atmospheric pressure conditions.

3. Results and discussion

3.1. Statistical properties of droplets at a low volume fraction
The size distribution of dispersed droplets is an important statistical parameter, as it
characterizes the microscopic structure of the turbulent emulsion, which closely links to
the macroscopic rheological properties and the global transport properties of the fluid
system. At a low volume fraction, the droplet sizes in the turbulent emulsion eventually
show a statistically stationary distribution for the current experiments under stationary
stirring conditions.
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Figure 1(b) shows some typical snapshots of the emulsion for three different Reynolds
numbers Re = ωirid/ν. Since in these cases the volume fraction of the oil phase is
very low (φ = 1 %), the viscosity of the emulsion is approximately equal to that of
the continuous phase, i.e. ν = νw. It is expected that the average droplet size of the
emulsion at a higher Re will be smaller than that at a lower Re. The reason is that the
higher average shear strength, in the cases of larger Re, promotes the breakup of oil
droplets.

Droplet interfaces are extracted from the recorded images, at various Reynolds numbers,
and the diameter of all the detected droplets is calculated and normalized with the average
droplet diameter, for each Re case, as X = D/ 〈D〉. The distribution of the number of
droplets of size X, as a function of X, is computed as the probability density function
(PDF) of the droplet size and shown in figure 2(a), for various Reynolds numbers. It is
clear (solid lines in figure 2a) that the experimental results at all Reynolds numbers can be
well described with the log-normal distribution

P(X) = a

Xσ0
√

2π
exp

[
− [log(X) − log(X0)]2

2σ 2
0

]
, (3.1)

where a, X0 and σ0 are fitting parameters. The deviation from the standard log-normal
distribution for points in the range X > 1.5, for two cases of high Re (Re = 2.08 × 104 and
2.60 × 104), is due to the relatively fewer statistics for large droplet size. These log-normal
distributions suggest that fragmentation is the primary process for droplet generation in
the current system. Similar fragmentation processes are also observed in other systems
(Villermaux 2007), including plume formation in Rayleigh–Bénard turbulence (Zhou, Sun
& Xia 2007; Bosbach, Weiss & Ahlers 2012) among others. In addition, it is found that the
fitted value of the standard deviation σ0 decreases monotonically with increasing Re (see
the inset of figure 2a). This means that the distribution of droplet size becomes narrower
at higher Re, as clearly shown in figure 2(a). Some additional analyses of the distribution
of droplet size are provided in appendix C using the gamma distribution function, which
is found to be a good description of the droplet breakup during the atomization process
(Villermaux 2007). The next question is what sets the droplet size in the typical size in the
fragmentation process leading to droplet formation.

In 1955, Hinze proposed that the maximum stable droplet diameter in a homogeneous
and isotropic turbulent flow is given by D = C(ρw/γ )−3/5ε−2/5, where ρw is the density
of the continuous phase (the ethanol–water solution in the present case), γ is the surface
tension between the two phases, ε is the energy dissipation rate and the coefficient
C = 0.725 was obtained by Hinze through fitting with experimental data available at that
time (Hinze 1955). The argument of Hinze applies to a dilute distribution of droplets
that occasionally coalesce due to collisions and break up due to turbulent stresses. A
key element of Hinze’s argument consists of assuming that droplets do not produce a
significant feedback on the turbulent flow, whose statistics are those of homogeneous and
isotropic turbulence. Many studies show that the average droplet size and the maximum
size are proportional in turbulent emulsions (Lemenand et al. 2003; Boxall et al. 2012).
Considering that the maximum droplet diameter in turbulent emulsions is usually unstable
due to breakup and occasional coalescence, the average droplet diameter can be used as an
indicator of the droplet size in the Hinze relation (Perlekar et al. 2012).

We notice that the distribution of the energy dissipation rate in Taylor–Couette
turbulence is inhomogeneous, i.e. the dissipation in the bulk is much smaller than
that in the boundary layers. As the volume of the bulk is much larger than that of
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Figure 2. (a) The PDF of the droplet diameter, with respect to the average diameter, for various Reynolds
numbers, Re. The solid lines denote the fitting results with a log-normal distribution function. The statistics are
based on O(103) droplet samples for each Re value. The statistical error bars are shown for all Re cases. The
fitted values of the standard deviation σ0 as a function of Re are shown in the inset. (b) The average droplet
diameter normalized by the gap width as a function of the Reynolds number. The blue circles are the data of the
droplet diameter for φ = 1 % measured in experiments, and the error bars are based on the errors of the edge
detection. The red solid line denotes the power-law dependence based on the Hinze relation using the local
energy dissipation rate in the bulk (3.2). The black dashed line represents the weighted fit of the experimental
data, the weight being based on the relative error of each data point.

the boundary layers in the current parameter regime (Grossmann, Lohse & Sun 2016),
droplets are expected to mainly distribute in the bulk, where the flow is found to be
nearly homogeneous and isotropic (Ezeta et al. 2018). The local energy dissipation rate
in the bulk can be expressed as εl ∼ u3

T
/�, where uT and � denote the typical velocity

fluctuation and the characteristic length scale of the flow. The typical velocity fluctuation
uT can be approximated as Aωiri in the current Taylor–Couette turbulent flow (van Gils
et al. 2012) with an almost constant prefactor A (order of 0.1). As we know that the
Reynolds number can be expressed as Re = ωirid/ν, then the typical velocity fluctuation
can be expressed as uT ∼ ωiri ∼ Re · ν/d. Substituting this velocity estimation into the
expression for the energy dissipation above, we obtain εl ∼ u3

T/� ∼ Re3ν3/d4 by assuming
� ∼ d, and this scaling dependence is also in good agreement with the recent measurement
of the local energy dissipation rate in the bulk of Taylor–Couette turbulence (Ezeta
et al. 2018). Inserting this local energy dissipation expression into Hinze’s relation, one
obtains

〈D〉 /d ∼ C/d
(

ρw

γ

)−3/5

ε
−2/5
l ∼ Re−6/5, (3.2)

suggesting that the average droplet diameter has a power-law dependence on Re with an
effective power-law exponent of −1.20 (equation (3.2)). We compare the dependence of
the normalized droplet size on Re from the experiments and the model in figure 2(b). The
best fit of the experimental data gives a scaling exponent of −1.18 ± 0.05. We find that the
scaling dependence based on the local energy dissipation rate in the bulk (red solid line)
agrees well with the experimental data. The results show that the scaling dependence of the
droplet size on Re could be connected to turbulent fluctuations in the bulk of the system.
The discussion above is a simple analysis based on the scaling law. A more in-depth
and quantitative understanding of the droplet formation in a turbulent (Taylor–Couette)
emulsion flow deserves further studies in the future.
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Figure 3. (a) Torque measurements. The torque that is required to maintain the inner cylinder at a constant
angular velocity, ωi, is measured for the emulsion systems with oil volume fractions corresponding to φ = 0 %,
1 %, 5 %, 10 %, 20 %, 30 % and 40 %. As an estimate for the error on the torque measurements, we use the
standard deviation and find that it is smaller than 0.8 % for all volume fractions (see appendix A for details).
The error results are therefore smaller than the symbol size. (b) The dependence between the dimensionless
torque, G, and the Reynolds number, Re, using the effective viscosity. All these sets of data at the various oil
volume fractions collapse into a master curve, and the error is less than 1 %. The inset shows the dimensionless
torque compensated with Re−1.58.

3.2. Effective viscosity and shear-thinning effects
The torque of the inner cylinder is directly measured by the rheometer sensor for different
oil volume fractions, φ, and angular velocities, ωi, as depicted in figure 3(a), which
shows that the faster the inner cylinder rotates, the larger is the torque needed to maintain
the selected angular velocity. The torque becomes larger when the oil volume fraction
is increased at a given angular velocity, indicating that the oil additive will bring an
obvious change to the rheological property of the emulsion system. Combined with the
flow properties of Taylor–Couette turbulence at various Reynolds numbers (van Gils et al.
2011a,b; Huisman et al. 2014; Ostilla-Mónico et al. 2014; Grossmann et al. 2016), we
can calculate the effective viscosity of emulsions in these dynamical equilibrium states.
We use the same method as that recently proposed for viscosity measurements in a very
high-Reynolds-number Taylor–Couette flow (Bakhuis et al. 2020).

An effective power-law dependence between G and Re can be obtained as G ∝ Reβ for
the Taylor–Couette turbulent flow, and the power-law exponent β depends on the Reynolds
number regime (Grossmann et al. 2016). Here we assume that the power-law dependence
G ∝ Reβ can still be applied to the two immiscible liquids in our Taylor–Couette turbulent
flow. As a reference case, this relation can be determined by using the results of the
pure ethanol–water mixture (φ = 0 %) with a known viscosity. When we plot together
all data for the various oil fractions in a G–Re plot, and collapse them on a master
curve with an effective exponent of β = 1.58 (figure 3b), the effective viscosity is a
fitting parameter for each case. To demonstrate the quality of the overlap of the different
data sets, all data are compensated by Re1.58 (inset of figure 3b), which clearly shows
that the effective power-law dependence works very well. Remarkably, the power-law
dependence G ∝ Re1.58 for single-phase Taylor–Couette flows still works well for the
present two-phase emulsion flows. By using the effective power-law exponent of β = 1.58
between G and Re, we can calculate the effective viscosity of the emulsion at various ωi
and φ with an expression of νeff = νw(τ/τw)2.38; here νw, τw and τ denote the viscosity
of the ethanol–water solution and the measured torques of the ethanol–water solution
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Figure 4. (a) The effective viscosity normalized by the viscosity of the ethanol–water mixture, νeff /νw, as a
function of the volume fraction of the dispersed oil phase φ at various angular velocity ωi. The solid line denotes
the effective viscosity model for solid particle suspensions of Krieger & Dougherty (1959). The calculation
of the effective viscosity is based on the torque measurements. The relative standard deviation is less than
2.5 %, so the errors bars are smaller than the symbol size. (b) The effective viscosity of the emulsion versus
the characteristic shear rate γ̇ of the flow. The data for the different oil volume fractions, φ, are denoted
by the open symbols with various colours in the legend. The solid lines show the fitting results (fits 1–7) using
the Herschel–Bulkley model (Herschel & Bulkley 1926) for various volume fractions. The inset shows the
power-law index n as a function of the volume fraction φ.

and the emulsion, respectively. It should be noted that νw is known, but νeff , τw and τ

are dependent on the experimental settings, i.e. φ and ωi. The detailed calculation of the
effective viscosity is documented in appendix B.

To understand the effect of oil addition on the rheology of the emulsion in turbulent
shear flows, we systematically vary two parameters of the system, i.e. the oil volume
fraction, φ, and the angular velocity of the inner cylinder, ωi. The effective viscosity of
emulsions, as a function of φ and for various ωi, is reported in figure 4(a), where all data
are normalized by the viscosity of the ethanol–water solution, νw. Obviously, the effective
viscosity of the emulsion increases with increasing oil volume fraction, φ, for all ωi cases.
While the effective viscosity has a weak dependence on φ in the dilute regime (e.g. for
φ < 5 %), it displays a stronger dependence for larger φ. The hydrodynamic or contact
interactions between oil droplets for larger φ are expected to yield an increasing viscous
contribution, somehow similar to what is observed for the case of dispersions of hard
spheres in suspensions (Guazzelli & Pouliquen 2018). The relation between the effective
viscosity and the volume fraction of dispersed solid particles in particle–fluid suspensions
is also plotted in figure 4(a) for comparison. Strictly speaking, we find that the effective
viscosities of the emulsions, at all ωi, are smaller than that of the dependence proposed
by Krieger & Dougherty (1959). Here it needs to be emphasized that this model was
developed for suspensions of monodispersed hard spheres in fluids in the viscous regime.
This disagreement in the viscosity can be due to the different nature of the dispersed
phases: the dispersed solid particles have a fixed, undeformable shape, while the dispersed
oil droplets can deform; the solid particles have a fixed size, while the droplets can
dynamically coalesce and break up under the flow. The dynamics of the dispersed droplets
in emulsions is therefore much richer than that of the solid particles in suspensions.

Furthermore, the effective viscosity is found to decrease with increasing ωi for a given
φ as indicated in figure 4(a). In other words, the turbulent emulsion shows a continued
shear-thinning behaviour. To reveal this effect better, we plot the effective viscosity as a
function of shear rate in figure 4(b), where the shear rate is defined as γ̇ = ωiri/d. Though
the Taylor–Couette flow is not a planar shear flow, the shear rate γ̇ can still represent well
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the effective shear strength of the system. When the volume fraction of oil is φ = 0 %
(i.e. pure ethanol–water), the system is a single-phase flow state and, as expected, the
effective viscosity does not change with the shear rate γ̇ . With the addition of the oil
phase, the effective viscosity of the emulsion decreases with increasing γ̇ , and this effect
is more pronounced for high volume fractions, as shown in figure 4(b). This shear-thinning
behaviour is similar to what was found in a suspension of deformable microgel particles
under steady shear flow (Adams et al. 2004).

To quantify the shear-thinning effect of the turbulent emulsion, we compare our data
with the Herschel–Bulkley model (Herschel & Bulkley 1926):

μeff = k0γ̇
n−1 + τ0γ̇

−1, (3.3)

where μeff is the effective dynamic viscosity, k0 and n represent the consistency and the
flow index, respectively, and τ0 is the yield shear stress. As the system is far from the
jamming state, the yield shear stress is expected to be zero in the current case (τ0 = 0).
Consequently, the Herschel–Bulkley model can then be simplified as νeff /νw = Kγ̇ n−1.
The fitting results using the Herschel–Bulkley model for various volume fractions are
also shown in figure 4(b). As expected, the flow index is around 1 at very low volume
fractions, suggesting that the fluid behaves like a Newtonian fluid. The flow index,
n, monotonically decreases with increasing volume fraction of dispersed phase (inset
of figure 4b), indicating a more pronounced shear-thinning effect for the emulsions
with high oil volume fractions. The agreement between the experimental data and the
Herschel–Bulkley model indicates that the shear-thinning effect can be well described by
this classical non-Newtonian model, opening an important avenue for the description of
the effective viscosity of turbulent emulsion systems.

4. Conclusions

Turbulent emulsions are complex physical systems coupling macro- and micro-scales.
In this work, we investigated the dynamics of emulsions of oil droplets dispersed in an
ethanol–water solution without surfactant additive in a turbulent shear flow. Firstly, we
find that the PDF of the droplet sizes follows a log-normal distribution, suggesting a
fragmentation process in the droplet generation process. By comparing the droplet size
for various Reynolds numbers for the system at a low volume fraction of 1 % with Hinze
theory, we find that the scaling dependence of the droplet size on Reynolds number can be
connected to the turbulent fluctuations in the bulk of the system.

The effective viscosity of the emulsion is found to increase with increasing oil volume
fraction, but the increasing trend is weaker than that reported for solid particle suspensions.
This difference is associated with the different nature (deformability and size distribution)
of the dispersed phase in fluid–fluid emulsions. Additionally, we find that the effective
viscosity of the emulsions decreases with increasing shear rate, displaying a shear-thinning
behaviour that can be quantitatively described using the classical Herschel–Bulkley model
via a dependency of the flow index on the volume fraction. The shear-thinning effect
of a turbulent emulsion has many potential applications, such as drag reduction of
multicomponent liquid systems in turbulent states. The current findings have important
implications for extending the knowledge on turbulence and low-Reynolds-number
emulsion flows to turbulent emulsion flows.
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Appendix A. Experiments

A.1. Liquids used in the current study
We use silicone oil (dispersed phase) and ethanol–water mixture (continuous phase) in the
experiments. The silicone oil and ethanol–water solution are immiscible. The density of
the silicone oil (type Shin-Etsu KF-96L-2cSt) is ρo = 866 kg m−3. We use an aqueous
mixture of deionized water and ethanol as the second liquid. The volume fraction of water
is 25 %. The density of the ethanol–water mixture is ρw = 860 kg m−3, which is very close
to that of the silicone oil. The density match of these two kinds of liquids can eliminate the
effect of centrifugal force on liquid distribution. Both ethanol–water mixture and silicone
oil are transparent, which facilitates the imaging of emulsions. As the refractive indices
of these two kinds of liquids are different, we can distinguish the oil droplets from the
background of ethanol–water.

The viscosity is measured using a hybrid rheometer of type TA DHR-1 (Discovery
Hybrid Rheometer, TA Instruments). We equip the rheometer with a parallel plate, which
is appropriate for measurements of low-viscosity liquids in the current study. The Peltier
steel plate under the measured liquids provides temperature control and measurement
with an accuracy of ±0.1 ◦C. Plots of kinematic viscosity ν versus temperature T for
these two kinds of liquids are shown in figure 5. The viscosity of ethanol–water is
larger than that of silicone oil in the measured temperature range of 10 to 30 ◦C. At
the experimental temperature, T = 22 ◦C, we found the viscosity of ethanol–water is
νw = 2.4 × 10−6 m2 s−1, which is close to that of silicone oil of νo = 2.1 × 10−6 m2 s−1.
The interfacial tension between the dispersed phase and continuous phase is an important
parameter in emulsions, which is closely linked to the breakup and coalescence of droplets.
We measure the interfacial tension between the two kinds of liquids (ethanol–water and
silicone oil) used in the current experiments with the pendant drop method. The type
of measurement instrument is an SCA20. The interfacial tension is calculated using
characteristic parameters of the drop profiles and density difference of the liquids. We
perform six measurements and use the average value as the final result of interfacial
tension: γ = 4.53 mN m−1. All measurements are conducted at a temperature of T =
22 ◦C.

A.2. Torque measurement
The torque is a response parameter of the emulsion system in the current study. The
torque is directly measured by the rheometer through a shaft connected to the inner
rotating cylinder with high accuracy of up to 0.1 nN m. For each experiment, we set the
angular velocity ωi of the inner cylinder as a constant value. After the system reaches
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Figure 5. The kinematic viscosity ν as a function of temperature T . The red circles denote measured viscosity
of ethanol–water and the blue circles denote that of silicone oil. For the temperature of experiments, T = 22 ◦C,
the viscosity of ethanol–water is νw = 2.4 × 10−6 m2 s−1 while that of silicone oil is νo = 2.1 × 10−6 m2 s−1.
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Figure 6. A typical result of time series of torque measurements for the emulsion system. The oil volume
fraction is φ = 1 % and the Reynolds number is Re = 5.21 × 103 in this case. The standard deviation of the
torque time series is 15.47 μN m, which is much smaller than the averaged torque value.

a statistically stable state, direct measurements of time series of torque are recorded.
A typical time series of torque measurements is shown in figure 6. The standard deviation
of the torque time series is 15.47 μN m, which is much smaller than the torque value and
consequently fulfils the requirement of the torque measurement. To show the quality of
torque measurements, we calculate the relative standard deviation (RSD) for all cases in
the current study, as shown in figure 7. We find that all values of RSD are smaller than
0.8 %, indicating that the torque measurements are reliable. The results show that the RSD
does not change with oil volume fraction φ and angular velocity ωi.

A.3. Imaging of the dispersed drops
The statistical properties of dispersed oil droplets in emulsions are important parameters
in the current study. We use a high-speed camera to capture the drops, which are constantly
moving rapidly along with the flow in turbulent states. Two sets of camera lenses are used.
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Figure 7. (a) The RSD of torque time series as a function of volume fraction for various angular velocities.
(b) The RSD of torque time series as a function of angular velocity for various volume fractions.
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Figure 8. The results of length calibration for two sets of lenses used in the current study. (a) The image of
length calibration for Set 1. Each of the smallest tick intervals is 100 μm. (b) The calibration results of Set 1.
The x axis corresponds to the ticks in (a) and the y axis corresponds to the pixel distance from the left border
in (a). (c) The image of length calibration for Set 2. Each of the smallest tick intervals is 100 μm. (d) The
calibration results of Set 2. The x axis corresponds to the ticks in (c) and the y axis corresponds to the pixel
distance from the left edge in (c).

One is a Nikon 105 mm f/2.8G macro lens with an extension tube that gives about 2×
magnification ratio (Set 1). This set of lenses is used for a low-Re case (Re = 5.21 ×
103), in which the drop size is in the range of about 40–500 μm. The light source is
two front lamps, and the reflected light from the surface of the inner cylinder is used for
imaging. For the experiments at higher Re (Re > 5.21 × 103), another set of NAVITAR
microscopic lenses coupled with a 5× objective type (Mitutoyo M Plan Apo) is connected
to the high-speed camera to resolve the very small oil droplets in turbulent Taylor–Couette
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flows (Set 2). For this set of lenses, the light source is coaxial with the microscope so that
we can obtain a better view in the small observation area. The axes of the lenses are at
about half the height of the system so that we can reduce the edge effects from top and
bottom.

To reduce the effect of curvature, both these two sets of lenses are focused on the central
area of the Taylor–Couette system. For both sets of lenses, we perform a length calibration
before experiments. The typical results of length calibration are shown in figure 8. The
length of the images is 600 pixels and the height is 400 pixels. Figures 8(a) and 8(c) show
the calibration images for Set 1 and Set 2, respectively. Each of the smallest tick intervals
is 100 μm. We plot the pixel distance as a function of the tick distance in figure 8(b,d).
The linearity of the data indicates that the effect of curvature can be safely neglected in
the current measurements.

Appendix B. The effective viscosity calculation

First, we calculate Re and G at various angular velocities ωi for pure ethanol–water mixture
(φ = 0 %) with a known viscosity. When we plot these data in a G–Re plot, we find a
scaling law as G ∼ Re1.58. Further, we can write this relation as G = KRe1.58, where K
denotes a constant prefactor. If we insert the definitions of G and Re to this dependence,
we obtain a dependence of torque τ and viscosity ν as

τ = AKν0.42, (B1)

where A is equal to 2πLρ/(ωirid)0.42. We assume that this relation is still valid for
emulsion systems with various oil volume fractions and Reynolds numbers. We write the
torque and effective viscosity of the emulsion system as τ and νeff for a constant angular
velocity ωi at a volume fraction of φ. For the pure ethanol–water mixture (φ = 0 %) system
at the same angular velocity, we obtain the measured torque value τw and the viscosity νw.
Based on our assumption, these two systems both follow the relation given above. Because
the angular velocities of these two systems are the same, the prefactor A is therefore also
the same. Then, we can derive the following relation:

νeff

νw
=

(
τ

τw

)2.38

. (B2)

The effective viscosity of emulsion systems νeff can be obtained based on this relation. To
further verify our assumption above, we calculate G and Re for various volume fractions
and angular velocities using the effective viscosity obtained for each case. When we plot
together all data of various oil fractions in a G–Re plot, we find that all data of G versus Re
collapse into a master curve. The fitting results for the oil fractions of φ = 1 %, 5 %, 10 %,
20 %, 30 % and 40 % show that all these six sets of data follow the relation G = KRe1.58

with an error bar of only 1 %, which strongly supports the assumption above. Here we
provide a new approach for the measurement of the effective viscosity of emulsions in
high-Reynolds-number turbulent states.

Appendix C. The analysis of droplet size

C.1. Image processing
The videos and images obtained in the experiments are analysed using the Matlab code
and ImageJ software. For better post-processing, the original images are firstly cropped
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100 µm100 µm100 µm

(b)(a) (c)

Figure 9. The results of drop detection for various Reynolds numbers: (a) Re = 7.81 × 103, (b) Re = 1.04 ×
104 and (c) Re = 1.56 × 104. The volume fraction of oil is φ = 1 %. The blue circles are the boundaries of the
oil drops from edge detection. Most of the drops in the images are captured with a high fidelity.

5 × 103 5 × 104

Re
104

Data by Matlab code

Data by counting pixels

The Hinze relation: D ∼ Re–1.2

10–3

10–2

〈D
〉/d

Figure 10. A comparison between the results of the average drop diameter determined using the Matlab code
and that by manually counting pixels in ImageJ software. The blue circles denote the data determined using the
Matlab code and the red triangles denote the results from the manual pixel counting. The solid black line is the
fitted power-law dependence based on the Hinze relation (Hinze 1955). All data are obtained for an oil volume
fraction of φ = 1 %.

and exported as tiff-format images. The size of the clipping window is 300 pixels ×
1024 pixels. At the same time, we determine the interval between every two frames based
on the average speed of the droplets moving in the horizontal direction, so that the oil
droplets in each image are not counted repeatedly.

Next, we adjust the contrast of images and detect the boundary of drops using the
Matlab code. The radii of droplets are exported as the data sets for further processing.
Typical results of boundary detection for the various Reynolds numbers are shown in
figure 9. Most of the oil droplets in the images are well captured. A few drops are
not detected, because they are out of the focal plane, inducing boundaries that are too
indistinct. Considering that we count enough droplet samples (O(103)), these undetected
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Re 5.21 × 103 7.81 × 103 1.04 × 104 1.56 × 104 2.08 × 104 2.60 × 104

Matlab code 2190 710 1643 2486 1573 807
Manual counting 765 636 624 605 514 513

Table 1. The numbers of detected droplet samples at various Re using the Matlab code and manual counting.

0 1 2 3

10–2

100

P
D

F

102

X = D/〈D〉

0

20

40Re = 5.21 × 103

Re = 7.81 × 103

Re = 1.04 × 104

Re = 1.56 × 104
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Figure 11. The PDF, in log–log scale, of the droplet size for various Reynolds numbers, Re. The solid lines
denote the fitted results using gamma distribution functions. The inset shows the fitted value of the index n as
a function of Re.

drops do not have much influence on the analysis of the statistical characteristics for the
drops.

In order to verify the reliability of drop detection using the Matlab code, we also
use another method to calculate the droplet size. We use ImageJ software to obtain the
diameter of droplets by manually counting the pixel distance. A comparison between
the results obtained using manual counting and those using the Matlab code is shown in
figure 10. The differences between the two methods are very small, and both sets of results
are in good agreement with the Hinze relation (Hinze 1955), indicating that the results
obtained using both the Matlab code and manual counting are reliable. The numbers of
detected droplet samples at various Re using the Matlab code and manual counting are
shown in table 1. Of course, detection using the Matlab code provides more statistics, and
we therefore use the results from the Matlab detection for all cases in the main paper.

C.2. The distribution of droplet size
The distribution behaviours of droplet sizes in emulsions are found to be well described
by log-normal distribution functions. We have fitted the same data using the gamma
distribution function:

P(X = D/〈D〉) = nn

Γ (n)
Xn−1 e−nX, (C1)
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where n is a constant and Γ (n) is the gamma function. This function is expected to be
a good description of droplet size during atomization (Bremond & Villermaux 2006;
Villermaux 2007). The results of the fit are shown in figure 11. It is found that the gamma
distribution function can also describe the droplet size distribution for most Re cases. In
addition, we also see a monotonic increase of the index n with increasing Re, indicating
that the distribution is narrowed. Indeed, we cannot tell which distribution function is
better for describing the distribution of the droplet size for all cases, given the current data.
Thus, while we report only the results for the log-normal distribution in the main text, the
results for gamma distribution are also provided here for the purpose of comparison. The
distribution of droplet size will be studied in the future.
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