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ABSTRACT

Counting processes and their compensators are introduced at a heuristic level. The martingale
property of stochastic integrals with respect to a compensated counting process leads to moment
estimates and asymptotic normal distributions for statistics arising in multiple state, non-parametric
and semi-parametric models. The place of survival models in actuarial education is discussed.
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INTRODUCTION

In Part I, Sections 1-4 and Part II, Sections 5-7 we described statistical models
for small segments of lifetimes and for complete lifetimes, all in the presence of
censoring. Many of these can be formulated as special cases of counting process
models, in which setting results about the distributions of parameter estimates can
be obtained much more simply than in the original models. The key is the
adoption of a dynamic viewpoint; survival data arise from processes which evolve
over time, so models based on random processes rather than random variables are
better representations.

All of the material in this part is standard in the recent statistical literature, and
it might be useful background for an actuary working with mortality or morbidity
data. Acknowledgements and references were given in Part I.

Part I appears in British Actuarial Journal, Volume 2, Part I and Part II in
BAJ. 2, II.

8. COUNTING PROCESS MODELS

In this section we describe some recent developments which unify multiple
state models, the Kaplan-Meier estimate and the Cox model. The key is the
introduction of counting processes. Unfortunately, most of the available literature
assumes knowledge of stochastic processes well beyond the level of the U.K.
actuarial syllabus. The basic ideas, however, are often very simple. Our aim here
is to guide the reader through the sequence of constructions leading to the
applications, introducing the technical terms of the subject heuristically. The
reader might regard the following as a glossary for accessing a proper treatment,
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704 Statistical Models for Decrement and Transition Data III

such as the monographs by Fleming & Harrington (1991) and by Andersen et al.
(1993). The machinery we will need includes the following:
(a) conditional probabilities and expectations;
(b) counting processes and multivariate counting processes;
(c) martingales;
(d) predictable processes;
(e) compensators of counting processes;
(f) moment properties of counting processes; and
(g) stochastic integrals.

Some of these tools also appear in models from financial economics, so it is
worth repeating that the ideas behind these constructs are extremely simple, even
when rigorous proof is delicate; the actuary should not be discouraged by the
technical appearance of much of the literature.

8.1 Conditional Probabilities and Expectations
In survival analysis, we observe events and acquire information as time passes;

in other words we need some mathematical structure which can represent this
accrual of information; such a structure is a filtered probability space. At each
time t, we represent all the information which has been revealed up to and
including time t by the symbol &~t. Similarly, we denote all the information
revealed up to, but not including, time t by ^_ . In the case of a stochastic
process, the revelation of information usually means the past history of the
process. The idea is that, given a stochastic process H p say, we can write:
(a) conditional probabilities P[H(+S e £/{&,], interpreted as "the probability that

H is in the subset s/ of Q (the sample space) at time t + s, given all the
information up to and including time t"; and

(b) conditional expectations E[H,+J | ^ ] , interpreted as "the expected value of H
at time t + s, given all the information up to and including time t".

We suppose that information, once acquired, is not forgotten, so anything known
at time t is also known at time t + s for s > 0.

If we are dealing with a finite number of random variables, or a discrete-time
stochastic process, the ZFt notation is no more than a compact way to write
conditional probabilities and expectations which we could have written explicitly
in terms of the random variables themselves, and, in general, the reader will not
be led astray if he or she regards symbols like yt in this way. In continuous time,
however, the idea of filtrations is essential for technical reasons. It is particularly
important to distinguish between Sr

r and ,^ , as we shall see in the case of
predictable processes.

8.2 Counting Processes
A counting process is an integer-valued stochastic process N, indexed by time
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t, where N, counts the number of events of specified type which have taken place
up to time t. The prototype of a counting process is the Poisson process.

In Part I, Section 3 we introduced the indicator D( of the event that the /th life
was observed to die between the ages of x + at and x + bt. Suppose we extend
the definition of D, to a family of random variables {N,-,} where (a, < t < bt), as
follows:

(1 if the rth life is observed to die not later than age x + t
N • — \

' ' ' [0 if the /th life is not observed to die by age x + t.

(We use the notation N rather than D because this agrees with most of the
literature on counting processes.) Then the family {N,,} is a counting process,
taking on the values 0 or 1. The sample path of the process indicates the event
of death, and, if death occurs, the time of death; we will refer to it as an indicator
of death.

Some models encountered in survival analysis are based on multivariate
counting processes. A multivariate counting process is a collection of K (say)
counting processes, with the additional assumption that no two component
processes jump simultaneously. For example, if we extend the random variables
defined in connection with the illness-death model of Part I, Section 3 to
stochastic processes, in the same manner as N/( above, then the collection (N,,,
U,,, S,(, R,,) is a multivariate counting process with K = 4. It is evident from the
model specification that no two components can jump simultaneously.

It is helpful to characterise the stochastic processes which we will use by their
increments over infinitesimal intervals. All of the 'obvious' results in this
heuristic approach can be proved formally. At time t, we condition on knowledge
up to, but not including, time t; the information accruing at time t cannot affect
anything we can decide at time t. In other words, our knowledge at time t is
represented by £?~r. Then the (multivariate) counting process is characterised by:

E[dN, | ̂ _ ] = P[<2N, = 1 | Fr\ (1)

because N, has jumps of size +1, and the component processes do not jump
simultaneously. Slightly more technically, this characterisation depends on the
process being right-continuous. If it were left-continuous, then its value at time t
would be the limit of its values up to time /, and dN, (given ^ - ) would be zero.

A rigorous discussion of the probabilistic aspects of counting processes can be
found in Jacobsen (1982) or Karr (1991).

8.3 Martingales
Essentially, a martingale is a stochastic process without expected drift.

Counting processes, being non-decreasing, are not martingales. Formally, a
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martingale is a stochastic process M(, whose absolute value process |M,| has finite
expected values E[|M,|] for all / > 0, and for which:

for all s > 0. Alternatively, a martingale has zero expected future increments over
finite intervals:

E[M(+S - M, | ̂  J = 0 (3)

for s > 0, or over infinitesimal intervals:

E[dM, | 9-,.] = 0. (4)

Martingales have two properties which play a central part in the sequel. As we
observe a population, we can record the evolution of any statistics of interest. The
history of each such statistic is a stochastic process. In some cases, this stochastic
process can be written in terms of a stochastic integral with respect to a
martingale integrator (described later). The two relevant properties, and their
consequences, are as follows:
(a) Stochastic integrals preserve martingales. If we form a stochastic integral

with a martingale M, as the integrator (for a suitable integrand H() then the
resulting process:

o

is also a martingale. So, if we can express a statistic as a stochastic integral
with respect to a martingale, the martingale property tells us that the statistic
has conditional expectation zero. This allows us to find asymptotically
unbiased estimators of parameters or distributions.

(b) Martingale central limit theorems. Under reasonably general conditions, it
can be shown that a sequence of martingales, where each successive member
of the sequence represents a statistic drawn from a larger population,
converges in distribution to a Gaussian process (one whose finite-
dimensional distributions are all multivariate Normal). Applied to survival
data statistics expressed in terms of stochastic integral martingales, these
results provide asymptotic Normal distributions.

For a survey of martingales and their actuarial uses, see Smith (1991). The plan
here is to construct martingales from the quantities arising in our survival models,
and then to express relevant statistics in terms of stochastic integrals. In order to
define a stochastic integral we need predictable processes.
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8.4 Predictable Processes
A predictable (sometimes called previsible) process is one whose value at time

t is known, given the information available up to, but not including, time /. The
prototype of a predictable process is one whose sample paths are left-continuous,
since its value at time / is certain, given its values at all preceding times. Not all
predictable processes are left-continuous, however.

The technical condition satisfied by a predictable process is that it is &~t- —
measureable at time t. This allows us to characterise predictable processes by
their properties over infinitesimal intervals, of which the most useful is the
following: let H, be a predictable process and let G, be any other process. Then:

E[H,G, | ̂ - ] = H,E[G, | <?r] (5)

or, over an infinitesimal interval:

E[H,</G, | <?r] = H,E[</G, | >?,-] (6)

In terms of the increment d¥Lt, the predictable property is:

^r]=dHt. (7)

Counting processes are not predictable processes.

8.5 Compensators of Counting Processes
Let S, be a stochastic process for which E[ | S, | ] < °° (t > 0) as for a martingale,

but for which E[S(+J | &~t] > S, (s, t > 0). In other words, the martingale property
is weakened so that the conditional expectation of S, is merely non-decreasing.
Such a process is called a submartingale. A fundamental result — the Doob-
Meyer decomposition (Fleming & Harrington, 1991, Chapter 1) — says that,
under suitable conditions, a positive submartingale can be decomposed in a
unique way as:

S, = A, + Mr

where:
(a) A, is a non-decreasing right-continuous predictable process (which obviously

must be of bounded variation); and
(b) Mr is a martingale.

Now, note that a counting process N, with jumps of +1 is a positive
submartingale; apply this result and we have that A, exists such that:

M, = N, - A, (8)
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is a martingale. The process A, is called the compensator of the counting process
N r There follow some simple examples of compensators, which are more familiar
than might be supposed from the definition:
(a) A homogeneous Poisson process. Given a Poisson process P, with parameter

A, the compensator is the function At. To see this, note that by the
memoryless property of the Poisson process:

E[Pm | PJ = P( + As

so that:

E[P/+S -A(t + s)\Pl-At] = Pl-At

or, in other words, P, - At is a martingale. However, At is a non-decreasing
predictable (in fact, deterministic) process; hence by the uniqueness of the
Doob-Meyer decomposition At must be the compensator of P,.

(b) An inhomogeneous Poisson process. Given a Poisson process P* with time-
dependent parameter A(t), we know that:

Define A, = J'o A(u)du. Then we have:

E[P;+S - A,+S I P : - A J = p ; - A,

or, in other words, P* - A, is a martingale. By uniqueness again, A, is the
compensator of P*. Note that this is also a deterministic function. It can be
shown that any counting process with a continuous deterministic
compensator must be a Poisson process (Karr, 1991).

(c) An indicator of death. Let Tx be the random lifetime of a life aged x, and let
N, be the counting process taking the value 1 if the life has died not later
than age x+t and 0 otherwise. Define:

l i f T , >f

The choice of inequalities in the definition of Y, ensures that it is a
predictable process. Suppose that the force of mortality fj,x+l is continuous.
Then define:

https://doi.org/10.1017/S1357321700003524 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003524


Statistical Models for Decrement and Transition Data III 709

A,= jY J Awfc = /Y,dA,. (9)
o o

Intuitively, we have 'stopped' the integrated hazard process A, = j ' o flx+/is at
the time of death. (This formulation of the hazard is a special case of Aalen's
multiplicative intensity model which will be discussed later.) The continuity
of nM makes it obvious that A, is predictable. Then we have:

N ( - A , (10)

where J^ is a filtration representing all the information about the processes
N, and A( up to and including time t. Hence A, is the compensator of N(; note
that it is a stochastic process. The intuitive explanation of this is that Nr

behaves like the inhomogeneous Poisson process with parameter /iXH until
time Tx, when the process jumps. Since no more jumps are possible, the
process N, is identically 1 after that time, and it is clear from equation (8)
that the compensator must also be constant after that time,

(d) Transitions in a multiple state model. Consider, for example, the illness-death
model of Part I, Section 3. We can describe the movements of a single life
in terms of a multivariate counting process with 4 components, each
component counting the number of transitions of a given type. Note that the
components counting transitions between the able and ill states can jump
more than once.

Each component is a counting process in its own right, and has a
compensator. As an example, let N( be the component counting the number
of transitions able —» dead. This process can only jump while the life is in
the able state, so define:

Y" = I (11)
1 ( *{In able stale at time / }• v '

Y" is a predictable process indicating presence in the able state. Now define:

A/=jY//zx+JdS = jY/rf\, (12)
o o

and it is easy to see that A, is the compensator of N,. The compensators of
the other components are defined in a similar way.

Note that, in the last two examples, the indicator processes Y, and Y° are
related to the waiting times defined in Part I, Section 3. For example, in the
illness-death model the waiting time in the able state (for a single individual) is
just:
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V,=JY>. (13)
o

In fact, this integral is the same as that which is estimated in census formulae for
exposed to risk.

A general definition of the integrated hazard process, where the underlying
lifetime distribution may be mixed, is:

A| = f ^ ( 0

The 'stopped' process, defined as in the last term of equation (9), does not now
have left-continuous sample paths, it has jumps at the discontinuities of A,, at
which points it is right-continuous. It is, however, predictable, and it is the
compensator of the corresponding counting process; see Fleming & Harrington
(1991, Chapter 1) for a proof of this slightly surprising result. (The proof depends
on the fact that Y( is predictable.)

8.6 Moment Properties of Counting Processes
Given a counting process N( with compensator A(, we need to know how the

moments of the process behave. The martingale central limit theorem will
guarantee convergence to a Gaussian process, but this still leaves the problem of
computing the asymptotic mean and second moments of the limit process. We
will show that we can do so if A, is known, which explains why it is useful to
specify models in terms of compensators.

In this and the following sections, Mr will denote a compensated counting
process; that is M, = N, - A,:
(a) First moments. Since M, is a martingale, the first moment behaviour of N, is

very simple; it is given by equation (10) or by:

E[dS, | 9-r\ = E[</A, | <?r] (15)

(b) The predictable variation process. Second moment results require an
application of the Doob-Meyer decomposition to the non-negative
submartingale M2,. This shows that, under some mild conditions, there is a
non-decreasing right-continuous predictable process, denoted (M),, such that
M] - (M), is a martingale. (M), is called the predictable variation process
of M r The origin of the term 'variation' can be seen by writing:

5r_] = d(M)t

by the predictability of (M)(; but:
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because M, is a martingale (heuristic hint: expand E[d(M,)2 \ ^r] and note
that terms in M,_ can be taken outside the expectation, being known at time
r ) . Hence:

d(M>, = VarfdM, | ^ - ] .

In words, (M), integrates the variances of the increments of M(, conditional
on the information accruing as time passes. This result is valid for any
suitable martingale, but if M( is a compensated counting process we can show
more. Suppose that A, has continuous sample paths (we will not consider the
more general case here). First, consider the case that N, can jump at or after
time t. Then:

, - dAt | 9^t-\

,| ^ - ]

= dAt(l - rfA,) = dAt (17)

because:
(a) the left continuity of the compensator implies that A, is non-random,

given SFr; and
(b) dN, is a 0 - 1 random variable with expected value dAt, given !Fr.

The approximate equality in equation (17) is, in fact, an equality, as can be
shown in a more rigorous treatment. Second, in the case that N, cannot jump
at or after time t the same equality is obvious.

(c) The predictable covariation process. Given two martingales M, and M*
satisfying some mild conditions, there is a right-continuous predictable
process (M, M"), such that:

M,M; - <M, M*>,

is a martingale. (M, M*)( is called the predictable covariation process of M,
and M*; the name is explained heuristically by the property:

d(M, M*), = Cov[dMt, dtf,]. (18)

If (M, M*), = 0 then M, and M* are said to be orthogonal.

These results are useful when the compensator is known or can be estimated
from observable quantities. Furthermore, we gain insight into the Poisson central
limit theorem, referred to in Part I, Section 4 (Hoem, 1987). One of the
conditions required by the martingale central limit theorem is that the predictable
variation process (of a suitable sequence of martingales) converges to a
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deterministic process. Under certain assumptions, this can be proved for our
compensated counting processes, and in most cases of interest the resulting
process is continuous; but for counting processes the predictable variation process
is the compensator, and, as we remarked before, any process with a continuous
deterministic compensator is a Poisson process.

8.7 Application to Multiple State Models
The key to the application of these results to parameter estimation in multiple

state models is that N( is observable, so if A, is observable apart from an
unknown parameter, we can solve M r = 0 for the parameter (where T is the end-
point of the investigation), and then the moment results of equations (15) and
(17) can be used in the martingale central limit theorem. As an illustration, we
will generalise Sverdrup's equations, (Part I, equation (21)), for first moments
and (Part I, equations (22) and (35)) for second moments in the illness-death
model of Part I, Section 3 (Sverdrup, 1965).

Take the transition able -» dead as an example, assuming:
(a) a constant force of mortality fi; and
(b) that the rth life is able at age x.

We change the notation slightly from that in Part I, Section 3, and here let N,,
denote the observed number of deaths. Define an indicator process Y", as in
equation (11) indicating that the life is in the able state. The compensator of N/(

is given by equation (12) with constant p.. Putting t = 0 in equation (10) then
gives:

U (19)

where V,, is the waiting time in the able state up to time t. If we end the
investigation at t = 1, then equation (19) is Sverdrup's (Part I, equation (21)). For
the variance, apply equation (17) to the martingale M i ( = N^ - /J\ir

(20)
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= 1
0

(21)

which is Sverdrup's (Part I, equation (22)). Further, if we extend the random
variables defined in Part I, Section 3 to stochastic processes in the same manner
as above, we see that (for example):

E[d((Nt -/xV,), (U,. - vW,.)>,| ^_ ] = 0 (22)

because the life can only be in one state at a time, and upon integration (and
conditioning on ^0) we obtain Sverdrup's (Part I, equation (35)). In fact:

that is, (N,-,- jUV,,,) and (U;, -vW / () are orthogonal martingales.
By shifting our viewpoint from random variables in a model with a fixed

observational period — the multiple state model of Part I, Section 3 — to
stochastic processes describing events evolving over time, we find the natural
setting for problems in which the future is conditioned upon the past.

8.8 Stochastic Integrals
Given two deterministic functions F(t) and G(t), we can form the Stieltjes

integral of F with respect to G over an interval [a, b\.

\F{t)dG(t).

The Appendix gives a brief explanation of the Stieltjes integral, and, in particular,
notes that, if G(t) is the distribution function of a random variable G taking
values in [a, b], whether continuous, discrete or mixed, then:

Given two stochastic processes F( and G,, defined on the same sample space,
a single realisation yields a sample path from each process, namely a function
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F(t) and a function G(t). A natural and useful question is to ask if it is possible
to form a Stieltjes integral of F(t) with respect to G(t) over the intervals [0, t)
(t > 0). If this could be done, then the integral:

would itself be a stochastic process; a function of time through the upper limit of
integration, and a function of the sample space through the sample paths. Under
what conditions is it possible to form such a stochastic integral?

It is enough that the process F, should be predictable and bounded, and the
process G( should be of bounded variation. More precisely, we require the sample
paths of the processes to have these properties (with probability 1), since we are
forming integrals path-by-path. All of the processes which we use in survival
analysis have these properties; in particular a counting process N, and its
compensator A, are of bounded variation, therefore so is the martingale
M, = N, - A,.

Integration with respect to a martingale M, has an important consequence. Let
H, be a bounded predictable process. Then:

= E[HtdM,\^_]

= H,E[dM, \F_] (23)

= 0 (24)

where equation (23) follows from the predictability of H,, and equation (24)
because M, is a martingale. In other words, the integral itself is a martingale, as
was mentioned previously.

The stochastic integrals used here are very simple. Because the sample paths
of counting processes and compensators are well-behaved, we can form the
integrals path-by-path using ordinary, deterministic calculus. The difficulties arise
when an integral is formed with respect to a process whose sample paths are not
of bounded variation, of which Brownian motion is the prototype. Then ordinary
calculus fails, and the stochastic integral (most often the Ito integral) must be
defined by a limiting argument. None of these difficulties apply here; our
integrals are very straightforward and we have no need of any truly stochastic
calculus.

In particular, a stochastic integral with respect to a counting process is no more
than the sum of the integrand evaluated at the jump points of the counting
process, weighted by the sizes of the jumps. Assuming jumps of +1, we have:
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(25)

where^/ is the (path-dependent) set of jump points of N r

If we wish to study the distributions of statistics by writing them as stochastic
integrals, we have to find the predictable variation process of the integral, since
this embodies the second moment behaviour. There is a simple result where the
integrator is a martingale:

(26)

and there is a similar result for the predictable covariation process of two
stochastic integrals, which we will not show here.

8.9 Aalen's Multiplicative Intensity Model
We have noted above the forms of the compensators for certain simple

counting processes, including that which jumps just once, at the time of death.
We did not allow for censoring, however. Suppose now that observation of a
random lifetime T, is subject to censoring at a random time U,, which we suppose
to be independent of T;. (Censoring at the end of a fixed period of observation is
a special case.) We observe T,™"1 = min(T,, U,), and we define an indicator D,-
which takes the value 1 if death is observed and 0 otherwise. The counting
process representing an observed death is now defined as:

_jl ifT, r a i n<randD,. =1

[0 otherwise.

The compensator of N i( is obtained by 'stopping' the integrated hazard when it
becomes impossible for the process to jump in future, which happens:
(a) when death occurs; or
(b) when censoring occurs.

A convenient device is the following. Define:

f l i f T m i n > /
Y = 1 =1

M {Tr>-'] OifXm i n<;
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or, in words, Y^ indicates that the rth life is under observation. Note carefully the
inequalities; we have defined Y(-, to be 1 if T7"n = t, that is, to jump to 0 just after
time T™"1, so that Y/( will be a predictable process. Now define the hazard by:

where A^ is hazard rate associated with the random lifetime T, in the presence of
censoring. For simplicity, we are assuming that A,-, is continuous. Then the
compensator of N,;/ is:

A,,=J4<fc. (28)

The hazard A*, is the product of:
(a) a deterministic hazard rate; and
(b) a stochastic indicator.

This is the basis of Aalen's multiplicative model (Aalen, 1978). The inclusion
of the indicator Y(, allows us to specify the counting process Ni( by specifying
the form of its compensator, and so to apply the machinery outlined above to
censored observations. It is a very simple idea, but a very powerful one, easily
applied to more general models. In any multiple state model, for example, in
which N/( counts the number of jumps between two given states, we can define
the process Yi( to be 1 whenever the life is in the originating state at time t~, and
0 otherwise; it is simple to allow for further random censoring (Andersen &
Borgan, 1985).

A;, corresponds to:
(a) the transition intensity in a Markov model for two decrements; or
(b) the crude hazard rate of the competing risks model.

Let A", denote the net hazard rate, that is, the hazard associated with the
random lifetime T,. We are assuming the independence of T, and U, here, so that
\i = Kt> b u t ' m o r e generally, it can be shown that A,-, = A", if and only if:

is a martingale. So the counting process approach provides a necessary and
sufficient condition (weaker than the independence of T; and U,) for the equality
of the crude and net hazards.

Next, we assume that the N /( (i = 1, 2, ..., N) comprise a collection of
independent counting processes. If the underlying hazards A,, are all equal, as in
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the observation of a homogeneous group of lives of the same age, then we can
define the aggregated processes:

(29)

(30)

(31)
i=1

M , = N , - A , (32)

where A, is the common underlying hazard. We now show how this construction
allows the properties of non-parametric estimates and the Cox model to be
explored. In each case we show how certain model quantities arise naturally as
stochastic integrals, and state without proof some consequences.

8.10 Application to Non-Parametric Estimation
We can interpret the aggregated counting process, above, as representing

observations on N independent lives with a common (unknown) underlying
hazard rate. Then:

(33)

is a martingale, where I is an indicator process, taking the value 1 when the
stated condition is true and 0 otherwise. Its purpose here is to avoid division by
zero; by convention we take the integrand to be 0 when Ys = 0. Now notice that:

(34)

Each term on the right hand side of equation (34) has a simple interpretation. The
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second term is the integrated hazard, Ar, over the range of ages for which lives
are under observation. The first term is:

(35)

where f is the set of times at which deaths occur; that is, the jump points of N(.
Compare this with (Part II, equation (17)); we see that it is the Nelson-Aalen
estimate. The martingale property (equation (33)) then tells us that the Nelson-
Aalen estimate is an unbiased estimate of the second term of equation (34), which
differs from the integrated hazard by:

( t i

j ̂ sds - J WojM 5 = 1 V^ojM* (36)

so that the Nelson-Aalen estimate is approximately an unbiased estimate of the
integrated hazard, the bias arising from the probability that all the lives should
have left observation. Clearly, in a large enough study this probability can be
made small, and, in fact, it decreases exponentially as N increases (for a proof of
this and subsequent results in this section, see Fleming & Harrington (1991,
Chapter 3)). The following notation is convenient in the sequel:

A,

A;

A,

0

t

0

f I

0

sds

{Y,>0}

Ys

A, is the object of the estimation, and A, is the observable statistic. It is not an
unbiased estimate of A(, but it is an unbiased estimate of A*. The variance of
A(-A* is given by the predictable variation formula:

(37)

Since Â  - A, is small, a good estimate of the mean squared error E[(A, - E[A,])2]
is:
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(38)

It is the hazard X, rather than the integrated hazard A, which is usually the
object of interest, especially for computational work. The Nelson-Aalen estimate
lends itself naturally to estimation of X, by means of kernel smoothing (similar to
moving average smoothing); see Ramlau-Hansen (1983). If K(f) is a suitable
kernel function, zero outside [-1, 1] and integrating to unity, then:

( 3 9 )

is an estimate of Xr It can be shown to be asymptotically consistent as the sample
size increases and the bandwidth b tends to zero (the bandwidth corresponds to
the number of terms in a moving average formula); the proofs rely on the fact
that:

<40>

is a martingale. Note that these integrals do not provide estimates of X, for t in
the lower and upper extremities of length b.

The Nelson-Aalen estimate is easier to handle than the Kaplan-Meier estimate
because of the very simple martingale representation (equation (33)). We can
derive the Kaplan-Meier estimate by product-integration, but this does not lead
straightaway to its statistical properties. For completeness, we list below some of
the properties of the Kaplan-Meier estimate which are most easily proved by the
methods of this section. Let Ft be the Kaplan-Meier estimate, and 5, = 1 - F, the
corresponding estimate of the survival distribution,
(a) It can be shown that:

from which, by writing:

it follows after some algebra that the bias of S, is:
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{T<t} •
ST(S(T)-S(t))

S(T)
>0

where T = inf{s: Ys = 0} is the time at which the last life leaves observation.
The estimate Ft, therefore, has negative bias, arising from the probability
that all lives exit during the period of observation, so again this bias reduces
exponentially as N -» °°.

(b) If Y, -^ °o as N -» °° for all te [0, b], then jY;'dNs estimates A, consistently
and Ft estimates Ft consistently for te[0, b]. A consistent estimator is one
whose distance from the 'true' value tends to zero in probability; here we
take the 'distance' between two functions f(t) and g(t) to be the supremum
norm sup, 6 [ ( W 1X0 - g(t)\.

(c) The martingale central limit theorem shows that the process JY~^dNs
converges in distribution to a Gaussian process with mean A( and variance
given by equation (38).

Some of these results were previously proved by methods other than those
described here, in particular see Breslow & Crowley (1974), but, in general, the
proofs depended on individual calculations and the connections were not obvious.

8.11 Application to Logrank Statistics
A wide variety of logrank statistics can be written as stochastic integrals with

respect to martingales which represent sums of compensated counting processes.
Consider the two-sample logrank statistic Z(<i1; — e,;) of Part II, Section 6. The
ith sample can be represented by a collection of counting processes:

(N,,(0, N,2(0,..., NW/(0) 0' = l> 2)

with associated indicators Y;ft) and compensators A^t). Processes with a single
subscript (/ = 1, 2) represent the aggregation of the component processes of the
corresponding sample, and processes with no subscript represent the aggregation
of the component processes of both samples. Then:

0 0

Y2(5)
) l
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Y,(s) Y2(s)j

= JK(5)T?f"T# (42)
* ^ Y l(5) Y2\S) )

where:

If the two samples have underlying hazard rates A,(s) and X^is), equation (42) is:

^ dM,(s) - J - ^ - dM2(s) +JK(s)(Xl(s) - Ms))*. (43)

Under the hypothesis of equal hazards, equation (43) states that the logrank
statistic is a martingale, and as the sample sizes increase the martingale central
limit theorem establishes the asymptotic Normal distribution of the logrank
statistic.

The same method can be applied to weighted logrank statistics, in which a
weight function W(s) is applied to the integrand in equation (42) (Gill, 1980). The
shape of the weight function determines whether the statistic emphasises earlier
or later observed lifetimes; this generalises the various logrank statistics
mentioned in Part II, Section 6.

8.12 Application to the Cox Model
Regression problems can also be put into a counting process framework, by

specifying the hazard as a function of the covariates. Here, let the vector Z ; , be
the covariate process associated with the ith life. The covariates need not be
constants, and need not even be deterministic functions of time, although these
are clearly special cases. Z ; , must be predictable, however, because it appears in
the following definition of the compensator A ; /:

A,-, = J Y,-s exp(/3Zls)A0(s)ds (44)
o

where /? is the vector of regression coefficients. As in Cox's original formulation,
the object is to estimate j8 and possibly the baseline hazard ^(s). Now we can
rewrite the partial likelihood:
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as:

(45)

(46)

Then the key step is to write the score function:

fc?logL(j3)
(47)

(suitably formulated as a stochastic process) as a sum of stochastic integrals.
Take, for example, the first component d log L(p)/d/3l of the score function. This
can be written:

d log L(P)Jy f
r i 1=1 o

(48)

It is easy to show that, under the hypothesis ji = j8°, equation (48) is equivalent
to:

XI
1=1 O l

; exP(j3° ^7
(49)

Then the martingale central limit theorem can be applied to show that this score
process, evaluated at /J°, has an asymptotic Gaussian process limit. Subject to
some regularity conditions, this property is the key to the asymptotic normal
properties of likelihood estimators (Cox & Hinkley, 1974, Chapter 9; Fleming &
Harrington, 1991, Chapter 8). Therefore, the^ estimator obtained by setting
equation (47) equal to zero and solving for j3 has the same properties. The
formulation via the censoring processes Y,->t and the covariate processes Z j ( means
that this result holds under a wide variety of censoring schemes and
dependencies. Gill (1984) gave a simple introduction to the counting process
approach to the Cox model.

Stochastic process approaches are of value when the data have dependencies
over time, making analysis of simpler models difficult. It is interesting that the
explanatory power of a martingale approach is seen in equally striking fashion in
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the proof of Hattendorf's Theorem in life contingencies (Papatriandafylou &
Waters, 1984).

9. ACTUARIAL EDUCATION

The approach we have adopted might seem to differ from the traditional
actuarial education; we have not even mentioned rate intervals! The reader might
ask how much the student should be expected to know about these statistical
models (we exclude the topics surveyed in Section 8 from consideration).

Were we to accept the utilitarian view of Haycocks & Perks quoted in the
introduction to Part I, the syllabus might cover only those computational tools
which the average actuary would use. On the other hand, we might worry that
statisticians and others are fast disappearing over the horizon and taking our
heritage with them. We make three general points below, and then consider the
actuary's education in the subject matter of this review.
(a) Models beget computational tools and not vice versa. Pitfalls await those

who would extend tools to new problems and new data, without considering
the models upon which the tools are based.

(b) Actuarial science gives rise to a distinctive jargon where it deals with
distinctive problems, but otherwise it would be helpful to use the same
language as everyone else, and to beware of assuming actuarial ownership of
widespread techniques.

(c) If actuarial work should evolve in future, in the face of competition from
other numerate professionals, education has to emphasise principles, even at
the expense of methods. The view that deterministic methods, lx and related
functions, and the calculation of exposed to risk form an adequate approach
to actuarial science is no longer tenable. Likewise, the temptation to strip
down the mathematical basis of the subject to the bare minimum needed to
access current applications should be strongly resisted.

In our view, the relevant part of the syllabus should be based on the Markov
models of Part I, Section 3, emphasising estimation and computation as aspects
of a coherent modelling process, not as separate subjects. In such a context, the
place of exposed to risk should be clear.

It is desirable to present alternative models, not least to make the point that
there is no one correct model for all problems. The Binomial and Poisson models
are obvious candidates; brief mention of the actuarial estimate would be more
than enough comment on initial exposed to risk. An introduction to non-
parametric estimation and the Cox model is also required; it is difficult to call
any treatment adequate that does not include these tools.

Competing risks models offer no advantages over multiple state models, though
they are common enough in the literature that the student should, perhaps, be
aware of their existence. The approach to multiple decrements should make clear
the distinction between observable and unobservable quantities, and calculations
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involving the latter should be clearly identified as such and not confused with
estimation.

REFERENCES

References were given in part I.

https://doi.org/10.1017/S1357321700003524 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003524


Statistical Models for Decrement and Transition Data III 725

APPENDIX

STIELTJES INTEGRALS

Recall the definition of the Riemann integral of a non-negative function F(t)
over the interval [a, b). We define a partition of the interval to be a set of points:

a = to<tl-<tt_l<tk=b

and we define the mesh of the partition to be:

y = * - l
SUp (tj+i-tj).

The lower and upper Riemann sums are respectively:

; ; } , and i ( ' / + i - ' ; > SUP

and the Riemann integral is defined as the limit of the lower and upper Riemann
sums as the mesh of the partition tends to zero, provided these exist and are finite
and equal. It is visualised as the area under the graph of F(t).

The Stieltjes integral is a generalisation of the familiar Riemann integral,
allowing the function values F(t) to be weighted by the rate of change of an
integrating function G(t). The lower and upper Riemann sums are modified as
follows:

'l(G(ti+i)-G(tj)) inf F(t) and J =I(G(0+ 1)-C(f,)) sup F(t)
j=0 <6[<rV.> ;=0 <€[(y,(J+1)

and the Stieltjes integral is defined as the limit of these sums as for the Riemann
integral. It is often called the Riemann-Stieltjes integral, and is written:

\F{t)dG{t) or just \F(t)dG.
[a,6) [a,b)

The definition above treats an interval of the form [a, b); the integral can be
extended to closed intervals and unbounded intervals.

If G(t) is a probability distribution, the Stieltjes integral is very easily
visualised. First suppose that G(t) is the distribution of a continuous random
variable G, with density function g(t), taking values in the interval [a, b).
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Multiply and divide the yth term in each of the lower and upper sums by (tj+1—tj),
and notice that, as the mesh of the partitions tends to zero:

tends everywhere to the derivative g(/). Hence, in this case, the Stieltjes integral
is:

J F(t)dG(t) = J F(t)g(t)dt = E[F(G)].
\a,b) [a,b)

Second, suppose that G(i) is the distribution of a discrete random variable G
distributed on the points t, < t2 < . . . < tk, with probability ppX the point
tj (1 < ; < it). Then G{t) has a jump of size pj at the point tj (1 < j < k), and is
constant everywhere else, so the Stieltjes integral is:

JF(t)dG(t) = '£F(tj)Pj = E[F(G)].
[a,b) /'=!

In other words, the Stieltjes integral is a natural way in which expected values of
functions of random variables can be written down.

Of more direct relevance to counting process data, consider the case that G{t)
is a single sample path of some counting process N,. Then the Stieltjes integral
is:

JF(t)dG(t)=
[a,b) teS

is the set of jump points of N, (which depends on the particular sample
path). Thus, statistics which consist of sums of quantities observed when
specified events occur (such as transitions between states) can be simply
represented as Stieltjes integrals; an example is the Nelson-Aalen estimate. There
are other, more general, theories of integration which we will not discuss.
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