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In this paper, we study the principal spectral theory of age-structured models with
random diffusion. First, we provide an equivalent characteristic for the principal
eigenvalue, the strong maximum principle and a positive strict super-solution. Then,
we use the result to investigate the effects of diffusion rate on the principal
eigenvalue. Finally, we study how the principal eigenvalue affects the global
dynamics of the KPP model and verify that the principal eigenvalue being zero is a
critical value.
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1. Introduction

In modelling the population dynamics of biological species and the transmission
dynamics of infectious diseases, it is very important to consider the age structure
as well as the spatial movement of the populations. In the last few decades, various
age-structured models with random diffusion have been constructed and studied
in the literature, see [1, 2, 7, 8, 15–18, 24, 25, 39–49]. Among some of them,
for example [1], [15] and [7, 8], the principal eigenvalue serves as a crucial tool in
investigating such equations. In this paper, we develop the principal spectral theory
for age-structured models with random diffusion. More precisely, we are interested
in the effects of diffusion on the principal eigenvalue for the following age-structured
models with random diffusion⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(a, x)
∂a

= dΔu(a, x) − μ(a, x)u(a, x) − λu(a, x), (a, x) ∈ (0, a+) × Ω,

u = 0, (a, x) ∈ (0, a+) × ∂Ω,

u(0, x) =
∫ a+

0

β(a, x)u(a, x) da, x ∈ Ω,

(1.1)

where u(a, x) denotes the density of the population with age a ∈ [0, a+] at location
x ∈ Ω, in which a+ <∞ represents the maximum age and Ω ⊂ R

N is a bounded
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Effects of diffusion on principal eigenvalue for age-structured models 259

domain with smooth boundary. Here, d > 0 represents the diffusion rate. We assume
that the birth rate β(a, x) is positive everywhere and the death rate μ(a, x) is
nonnegative, and both belong to C1,2([0, a+] × Ω). Define

μ(a) := inf
x∈Ω

μ(a, x), μ(a) := sup
x∈Ω

μ(a, x),

β(a) := inf
x∈Ω

β(a, x), β(a) := sup
x∈Ω

β(a, x).

Actually, the effects of diffusion on the principal eigenvalue for both elliptic and
parabolic types of operators in the time periodic case have been studied, see [3, 23,
27, 31] and references cited therein. However, we cannot directly apply these results
to our case, since our eigenvalue problem has an initial-boundary condition. The
reason is that such a function space satisfying this integral condition is unknown
and heavily depends on the birth rate β. We outcome this difficulty by exploiting
the solvability of the age-structured model without random diffusion which allows
us to construct appropriate sub/super-solutions for studying the effects of diffusion.

The paper is organized as follows. In § 2, we recall some existing theory on the
principal eigenvalue for age-structured models with random diffusion and give an
equivalent characterization of the principal eigenvalue, the strong maximum prin-
ciple and a positive strict super-solution. In § 3, we first analyse the spectral bound
s(B) of B defined in (3.1) which corresponds to age-structured models without
random diffusion defined in (3.12), and then use global implicit function theorem
to investigate the solvability of (3.12) which is a key ingredient in constructing
the sub/super-solutions of A defined in (2.1) later. In § 4, we study the effects
of the diffusion rate on the principal eigenvalue of A. In § 5, we discuss the exis-
tence, uniqueness and stability of the age-structured KPP type models with random
diffusion via the sign of the principal eigenvalue of the linearized operator. Finally,
we provide a discussion in § 6.

2. Preliminaries

We recall the theory of resolvent positive operators in a Banach space Q, the readers
can refer to [37, 38]. A linear operator C : D → Q, defined on a linear subspace
D of Q, is said to be positive if Cx ∈ Q+ for all x ∈ D ∩Q+ and C is not the 0
operator, where Q+ is closed convex cone that is normal and generating.

Definition 2.1. A closed operator A in Q is said to be resolvent positive if the
resolvent set of A, ρ(A), contains a ray (ω,∞) and (λI −A)−1 is a positive operator
(i.e. maps Q+ into Q+) for all λ > ω.

Definition 2.2. We define the spectral bound of a closed operator A as

s(A) = sup{Reλ ∈ C;λ ∈ σ(A)},

the real spectral bound of A as

sR(A) = sup{λ ∈ R;λ ∈ σ(A)},
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and the spectral radius of A as

r(A) = sup{|λ|;λ ∈ σ(A)},

where σ(A) = C \ ρ(A) represents the spectrum of A.

In order to deal with the problem, we introduce the state space E = Lp((0, a+) ×
Ω) and X = Lp(Ω), where p > N and define an operator A : E → E by

Aφ(a, x) = dΔφ(a, x) − ∂φ(a, x)
∂a

− μ(a, x)φ(a, x), ∀φ ∈ D(A),

D(A) =
{
φ(a, x)

∣∣φ,Aφ ∈ E, φ|∂Ω = 0, φ(0, x) =
∫ a+

0

β(a, x)φ(a, x) da
}
. (2.1)

The eigenvalue problem of A is explicitly written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(a, x)
∂a

= dΔu(a, x) − μ(a, x)u(a, x) − λu(a, x), (a, x) ∈ (0, a+) × Ω,

u = 0, (a, x) ∈ (0, a+) × ∂Ω,

u(0, x) =
∫ a+

0

β(a, x)u(a, x) da ∈ X, x ∈ Ω.

(2.2)

Define an evolution family {U(τ, a)}{0�τ�a�a+} on X for the following equations⎧⎪⎪⎨
⎪⎪⎩
∂u(a, x)
∂a

= dΔu(a, x) − μ(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u = 0, (a, x) ∈ (0, a+) × ∂Ω,
u(τ, x) = φ(x) ∈ X, x ∈ Ω.

(2.3)

Note that the existence of the evolution family U is from the theory of classical
parabolic equations, see [15, lemma 1]. Next, define an operator Mλ : X → X by

Mλφ =
∫ a+

0

β(a, x) e−λaU(0, a)φda, φ ∈ X. (2.4)

In fact such Mλ is obtained by plugging the solution of the characteristic equation
of A into the boundary condition, the readers can refer to [15, 47] for the derivation.
Moreover, Mλ is a compact and nonsupporting operator, see [15], where nonsup-
porting is a generalization of strong positivity when working on a Banach space
Q with a positive cone Q+ which has empty interior, for example the Lp space (see
[35] or [28] for a complete definition). In the next theorem, a function is strictly
positive if it is a quasi-interior point of Q+ which is defined in the following (2.5).
Now we recall some existing results on the principal eigenvalue of A.

Theorem 2.3 [15, theorem 3].

(i) The spectrum σ(A) consists of all eigenvalues of operator A, and the inter-
section of any finite strip paralleling the y axis with σ(A) contains at most a
finite number of eigenvalues of A;
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(ii) A has only one real eigenvalue λ0 which is algebraically simple, and it is
greater than the real part of any other eigenvalue of A;

(iii) The eigenfunction φ corresponding to λ0 is given by φ(a, x) = e−λ0aU(0, a)
φ0(x), where φ0 is nontrivial fixed point of Mλ0 . Moreover, φ0 is a quasi-
interior point of X; i.e.

〈f, φ0〉 > 0, ∀f ∈ X∗, f � 0, f 
= 0, (2.5)

where X∗ represents the space of linear functionals on X and 〈·, ·〉 denotes
the usual dual product.

(iv) λ0 satisfies the following equation

r(Mλ0) = r

(∫ a+

0

β(a, x) e−λ0aU(0, a) da

)
= 1; (2.6)

(v) s(A) = ω0(A) = λ0, where ω0(A) denotes the growth bound of A.

Lemma 2.4 [47, lemma 2.6]. The mapping λ→ r(Mλ) : R → (0,∞) is continuous
and strictly decreasing and limλ→∞ r(Mλ) = 0, limλ→−∞ r(Mλ) = ∞.

We would like to mention that in a series of papers, Walker [39–47] investigated
various issues related to the existence of positive nontrivial steady states of age-
structured models with nonlinear diffusion and (non)linear birth and death rates,
where he employed bifurcations methods to treat these problems by assuming the
maximum regularity of the diffusion operator [5, 32]. In most of his papers, similar
results on the spectrum of A were also obtained.

To obtain the strong maximum principle and sub/super-solutions, we introduce
the following Sobolev space:

Z = W 1,2
p ((0, a+) × Ω) with p > N.

Thus, the standard Sobolev embedding theorem guarantees that φ ∈ Cθ/2,1+θ

([0, a+] × Ω) for some θ ∈ (0, 1) if φ ∈ Z. Hence in the following context, φ ∈ Z
and thus φ ∈ Cθ/2,1+θ([0, a+] × Ω) for some θ ∈ (0, 1) when we mention that
φ(a, x) = e−λ0aU(0, a)φ0(x), where φ0 ∈ Lp(Ω).

Definition 2.5. A function w ∈ Z is called a super-solution of A if w satisfies⎧⎪⎪⎨
⎪⎪⎩
∂w

∂a
� dΔw − μw, (a, x) ∈ (0, a+] × Ω,

w � 0, (a, x) ∈ (0, a+] × ∂Ω,

w(0, x) �
∫ a+

0
β(a, x)w(a, x) da, x ∈ Ω.

(2.7)

The function w is called a strict super-solution if it is a super-solution but not a
solution. A sub-solution w is defined by reversing the inequality signs in (2.7).

Definition 2.6. We say that A admits the strong maximum principle if w ∈ Z
satisfying (2.7) implies that w > 0 in [0, a+] × Ω unless w ≡ 0.
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With the above preparations, we are ready to give an equivalent characteristic for
the principal eigenvalue, the strong maximum principle and a positive strict super-
solution. We should mention that such an equivalent characteristic was partially
proved by Delgado et al. [7, 8].

Proposition 2.7. The following statements are equivalent:

(i) A admits the strong maximum principle property;

(ii) λ0 < 0;

(iii) A has a strict super-solution which is positive in [0, a+] × Ω.

Proof. The idea of the proof below traced back to [8]. For completeness and for
the reader’s convenience, we include necessary modifications and provide a detailed
proof. (i) ⇒ (ii). Suppose that λ0 � 0. Then for the corresponding principal eigen-
function φ > 0 in [0, a+] × Ω, it is obvious that −φ < 0 and solves the following
characteristic equation for λ = λ0:

⎧⎪⎪⎨
⎪⎪⎩
∂(−φ)
∂a

− dΔ(−φ) + μ(−φ) = −λ0(−φ) � 0, (a, x) ∈ (0, a+] × Ω,

−φ = 0, (a, x) ∈ (0, a+] × ∂Ω,

−φ(0, x) =
∫ a+

0
β(a, x)(−φ)(a, x) da, x ∈ Ω.

(2.8)

Thus, applying the strong maximum principle in definition 2.6 to −φ, we find −φ >
0 in [0, a+] × Ω, a contradiction with the positivity of φ. (ii) ⇒ (iii). It is obvious
that the corresponding principal eigenfunction φ > 0 is a strict super-solution of A.
(iii) ⇒ (i). Let ψ ∈ Z satisfy (2.7) with ψ 
≡ 0 and φ be a strict super-solution of A
which is positive. Assume by contradiction that there exists (a0, x0) ∈ [0, a+] × Ω
such that ψ(a0, x0) = min[0,a+]×Ω ψ � 0. Then consider the set

Γ := {ε ∈ R : ψ + εφ � 0 in [0, a+] × Ω}.

Denote by ε0 = min Γ and u0 = ψ + ε0φ. It is clear that ε0 � 0 by the assumption
of ψ(a0, x0) � 0 and that u0 � 0. Then by the definition of a strict super-solution,
we have ⎧⎪⎪⎨

⎪⎪⎩
∂u0

∂a
− dΔu0 + μu0 � 0, (a, x) ∈ (0, a+] × Ω,

u0 � 0, (a, x) ∈ (0, a+] × ∂Ω,

u0(0, x) �
∫ a+

0
β(a, x)u0(a, x) da, x ∈ Ω.

(2.9)

It follows that u0 is a nonnegative strict super-solution. Observe that by [6, propo-
sition 13.1] we have that u0(a, x) > 0 in (0, a+) × Ω. Then u0(0, x) > 0 and thus
by [6, theorem 13.5], u0 is strictly positive, in the sense that it is positive and its
normal derivative at ∂Ω is negative. This contradicts the fact that ε0 is the infimum
of Γ. Hence ψ > 0 in [0, a+] × Ω which concludes (i). �
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3. The spectrum without diffusion

Define an operator B : E → E by

Bφ(a, x) = −∂φ(a, x)
∂a

− μ(a, x)φ(a, x), ∀φ ∈ D(B),

D(B) =
{
φ(a, x)

∣∣φ,Bφ ∈ E, φ|∂Ω = 0, φ(0, x) =
∫ a+

0

β(a, x)φ(a, x) da
}
. (3.1)

Proposition 3.1. (αI − B)−1 exists when Reα > α0, where α0 ∈ R satisfies

r(Gα0) = r

(∫ a+

0

β(a, x) e−α0aΠ(0, a, x) da

)
= 1, (3.2)

in which Π(γ, a, x) := e−
∫ a

γ
μ(s,x) ds and Gα : X → X is a linear bounded operator

defined in (3.7). Moreover, s(B) = α0 and α0 also satisfies the following equation,

max
x∈Ω

∫ a+

0

β(a, x) e−α0aΠ(0, a, x) da = 1. (3.3)

Proof. Writing the equation (αI − B)φ = ψ ∈ E explicitly, we obtain⎧⎪⎪⎨
⎪⎪⎩
∂φ(a, x)
∂a

= −(α+ μ(a, x))φ(a, x) + ψ(a, x), (a, x) ∈ (0, a+) × Ω,

φ(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

φ(0, x) =
∫ a+

0
β(a, x)φ(a, x) da, x ∈ Ω.

(3.4)

Solving the equation, one has

φ(a, x) = e−αaΠ(0, a, x)φ(0, x) +
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ, (3.5)

and accordingly

φ(0, x) −
∫ a+

0

β(a, x) e−αaΠ(0, a, x)φ(0, x) da

=
∫ a+

0

β(a, x)
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ da,

which is equivalent to

(I − Gα)φ(0, x) =
∫ a+

0

β(a, x)
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ da. (3.6)

where

[Gαg](x) =
∫ a+

0

β(a, x) e−αaΠ(0, a, x)g(x) da, g ∈ X. (3.7)
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Thus if 1 ∈ ρ(Gα), then

φ(0, x) = (I − Gα)−1

[∫ a+

0

β(a, x)
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ da

]
, (3.8)

which implies that

φ(a, x) = e−αaΠ(0, a, x)(I − Gα)−1

×
[∫ a+

0

β(a, x)
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ da

]

+
∫ a

0

e−α(a−γ)Π(γ, a, x)ψ(γ, x) dγ. (3.9)

It follows that α ∈ ρ(B) and thus (αI − B)−1 exists. Now the problem is inverted
into finding such α satisfying 1 ∈ ρ(Gα). By assumptions on β and μ, we have

Gαg �
∫ a+

0

β(a) e−αaΠ̃(0, a) dag, g ∈ X, (3.10)

where Π̃(γ, a) := e−
∫ a

γ
μ(s) ds. Now we define

Hα :=
∫ a+

0

β(a) e−αaΠ̃(0, a) da,

then one has from (3.10) that Gα � Hα in the sense of positive operators (actually
Hα is a function of α) and that r(Gα) is a strictly decreasing continuous function
with respect to α, see [21, lemmas 3.3 and 3.4]. Recall from the theory of classical
age-structured models that there is a unique α1 ∈ R such that

∫ a+

0

β(a) e−α1aΠ̃(0, a) da = 1,

i.e. Hα1 = 1. Now by the positive operators theory, we have immediately r(Gα1) �
r(Hα1) = Hα1 = 1, there exists a unique α0 ∈ R satisfying r(Gα0) = 1. Note for
any α ∈ C, when Reα > α0 we have r(GRe α) < r(Gα0) = 1, (I − GRe α)−1 exists.
It follows that α ∈ ρ(B) when Reα > α0, which implies that ρ(B) contains a ray
(α0,∞) and (αI − B)−1 is obviously a positive operator by (3.9) for all α > α0.
Thus B is a resolvent positive operator. Furthermore, α0 is larger than all other real
spectral values in σ(B). It follows that α0 = sR(B). But since E is a Banach space
with a normal and generating cone E+ := Lp

+((0, a+) × Ω) and s(B) � α0 > −∞
due to α0 ∈ σ(B), we can conclude from [37, theorem 3.5] that s(B) = sR(B) = α0.
Note that Gα is actually a positive multiplication operator in X. We can obtain the
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spectral radius r(Gα) of Gα easily via

r(Gα) = max
x∈Ω

∫ a+

0

β(a, x) e−αaΠ(0, a, x) da.

Thus α0 satisfies (3.3). Denote

αmin := min
x∈Ω

∫ a+

0

β(a, x) e−αaΠ(0, a, x) da.

It is easy to see from [26, proposition 2.7] that σe(Gα) = σ(Gα) = ∪x∈ΩGα(x) =
[αmin, r(Gα)], where

Gα(x) =
∫ a+

0

β(a, x) e−αaΠ(0, a, x) da, (3.11)

and σe(A) represents the essential spectrum of A. �

Next we give a key proposition on the solvability of the following equation, which
is important in studying the effects of diffusion rate on the principal eigenvalue:

⎧⎪⎪⎨
⎪⎪⎩
∂u(a, x)
∂a

= −αu(a, x) − μ(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

u(0, x) =
∫ a+

0
β(a, x)u(a, x) da, x ∈ Ω.

(3.12)

Proposition 3.2. There exists a C2 continuously differentiable function x→
α(x) : Ω → R such that equation (3.12) has positive solutions and

∫ a+

0

β(a, x) e−α(x)aΠ(0, a, x) da = 1, ∀x ∈ Ω.

Moreover, α(x) � α0 for all x ∈ Ω.

Proof. Solving (3.12) explicitly, we obtain a formal positive solution, u(a, x) =
e−αaΠ(0, a, x)φ(x) provided with φ > 0 and φ ≡ 0 at ∂Ω. Then plugging it into
the integral initial condition we get

∫ a+

0

β(a, x) e−αaΠ(0, a, x) da = 1.

Now define

G(α, x) := Gα(x) =
∫ a+

0

β(a, x) e−αaΠ(0, a, x) da.

It is easy to check that G : R × Ω → (0,∞) is a C1,2 continuously differentiable
function with respect to α and x due to C1,2 continuous differentiability of β and
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μ. Moreover,

∂G
∂α

= −
∫ a+

0

β(a, x)ae−αaΠ(0, a, x) da < 0, ∀x ∈ Ω, (3.13)

a
∂G
∂xi

=
∫ a+

0

∂β(a, x)
∂xi

e−αaΠ(0, a, x) da

−
∫ a+

0

∫ a

0

β(a, x) e−αa ∂μ(s, x)
∂xi

Π(0, a, x) dsda, i = 1, . . . , N. (3.14)

It follows by implicit function theorem that (i) G is locally solvable for x ∈ Ω due
to (3.13), i.e. for each (α0, x0) ∈ OG := {(α, x) ∈ R × Ω : G(α, x) = 1}, there are
open neighbourhoods Nα0 and Nx0 of α0 and x0 respectively, and a continuous
map α of Nx0 into Nα0 such that for x ∈ Nx0 , α = α(x) is the unique solution
in Nα0 of G(α, x) = 1. Next, let A be any family of compact subset of Ω such
that for each compact subset C of Ω, there is an S ∈ A such that C ⊆ S and
similarly, let B denote any collection of compact subsets of R with the property
that for any compact set D in R, there is T ∈ B such that D ⊆ T . Note that due
to μ, β ∈ C1,2([0, a+] × Ω), we have from (3.13) and (3.14) that∣∣∣∣∂α∂x

∣∣∣∣ =
∣∣∣∣∂G∂x

∣∣∣∣ /
∣∣∣∣∂G∂α

∣∣∣∣ � C,

where |∂α/∂x| (|∂G/∂x| respectively) denotes the length of vector ∂α/∂x =
(∂α/∂x1, . . . , ∂α/∂xN ) (∂G/∂x = (∂G/∂x1, . . . , ∂G/∂xN ) respectively) in the
usual sense. It follows by the mean value theorem that we can extend α up to
the boundary of Nx0 . In fact if any sequence {xk} ∈ Nx0 converges to b ∈ ∂Nx0 ,
then

|α(xk) − α(xl)| �
∣∣∣∣∂α(ξ)
∂x

∣∣∣∣ |xk − xl|,

for some ξ ∈ (xk, xl), which implies that {α(xk)} is a Cauchy sequence. Thus
{α(xk)} converges to α(b) by the continuity of α. Hence by the above argument we
have (ii) for each S ∈ A, there is a T ∈ B such that x ∈ S, α ∈ R and G(α, x) = 1
imply that α ∈ T . Finally, since ∂G/∂a < 0 for all x ∈ Ω, then (iii) for some x0 ∈ Ω,
there is exactly one α0 such that G(α0, x0) = 1. In actually, (iii) implies that the
extension of α is unique. Now we have verified the three hypotheses (i), (ii) and (iii)
satisfying the global implicit function theorem, see [34, theorem 1] or [33]. It follows
that we have a unique α : Ω → R such that G(α(x), x) = 1 for all x ∈ Ω and α is
C2 continuously differentiable since β and μ are C2 continuously differentiable by
assumptions. Moreover, it is obvious α(x) � α0 by (3.3). In fact, α0 = maxx∈Ω α(x).
Thus the proposition is desired. �

Proposition 3.3. λ0 � α0.

Proof. Note that λ0 and α0 satisfy (2.6) and (3.2), respectively. It is easy to see
that we obtain the classical heat equation in Ω with Dirichlet boundary condition
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after we subtract (2.3) by the following equation

⎧⎪⎪⎨
⎪⎪⎩
∂u(a, x)
∂a

= −μ(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,
u(0, x) = φ ∈ X, x ∈ Ω.

(3.15)

Since the semigroup generated by a Laplace operator in X is strongly positive, we
have U(0, a) � Π(0, a, x), i.e. 0 < φ ∈ X ⇒ U(0, a)φ(x) > Π(0, a, x)φ(x). It follows
that Mλ � Gλ, then by the theory of positive operators, we have r(Mλ) � r(Gλ).
Hence the result is desired. �

4. Effects of diffusion rate

In this section, we study the effects of diffusion rate d on the principal eigenvalue
λ0 of A. We would like to emphasize that unlike elliptic-type operators studied in
the literature, the principal eigenvalue for our parabolic-type operator A does not
admit the usual L2 variational formula due to the presence of the age derivative in
the operator. Thus proposition 2.7 remedies the situation and plays crucial roles
in the following results. First we give a property on the continuous dependence λ0

on the birth rate β and death rate μ. We write λ0(β, μ) for λ0 to highlight the
dependence on β and μ.

Proposition 4.1. λ0(β, μ) is strictly increasing and decreasing with respect to β
and μ, respectively.

Proof. We have known that Mλ is compact and nonsupporting, then by
Krein–Rutman theorem, see [35], r(Mλ) is the principal eigenvalue of Mλ. Now,
if β1 > β2, it follows that Mλ(β1) >Mλ(β2) in the operator sense which implies
that r(Mλ(β1)) > r(Mλ(β2)) by [28, theorem 4.3]. Thus by lemma 2.4, we have
λ0(β1, μ) > λ0(β2, μ). Similarly, when μ1 > μ2, since U(0, a) is strongly positive in
X, we have Uμ1(0, a) < Uμ2(0, a) in the operator sense, which implies Mλ(μ1) <
Mλ(μ2). Then it follows that r(Mλ(μ1)) < r(Mλ(μ2)), hence λ0(β, μ1) < λ0(β, μ2)
by lemma 2.4. In summary, the result is desired. �

In the next main theorem, we write λd
0 for λ0 to highlight the dependence on d.

Theorem 4.2. The function d→ λd
0 is continuous on (0,∞) and satisfies

λd
0 →

{
α0 as d→ 0+,

−∞ as d→ ∞.
(4.1)

Proof. Since λd
0 is an isolated eigenvalue, the continuity of d→ λd

0 follows from the
classical perturbation theory, see [22]. For the limits, we first claim that for every
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ε > 0, there exists dε > 0 such that

λd
0 � α0 + ε, ∀d ∈ (0, dε). (4.2)

Consider the following equation,⎧⎪⎪⎨
⎪⎪⎩
∂ψ(a, x)
∂a

= −(α(x) + μ(a, x))ψ(a, x), (a, x) ∈ (0, a+) × Ω,

ψ(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

ψ(0, x) =
∫ a+

0
β(a, x)ψ(a, x) da, x ∈ Ω.

(4.3)

By proposition 3.2, we know that equation (4.3) has a positive continuously differen-
tiable solution ψ(a, x) = e−α(x)aΠ(0, a, x)ψ0(x) provided ψ0 > 0 with C2 regularity
in x ∈ Ω. Moreover, by proposition 3.2 and some computations, we have

∇ψ = −∇αψ −
∫ a

0

∇μ(s, ·) dsψ + e−α(x)aΠ(0, a, x)∇ψ0,

which implies

Δψ = −Δαψ −∇α · ∇ψ −
∫ a

0

Δμ(s, ·) dsψ −
∫ a

0

∇μ(s, ·) ds · ∇ψ

−
(
∇α · ∇ψ0 +

∫ a

0

∇μ(s, ·) ds · ∇ψ0 − Δψ0

)
e−α(x)aΠ(0, a, x). (4.4)

It follows that

max
(a,x)∈[0,a+]×Ω

Δψ � C(‖α‖C2(Ω), ‖μ‖C1,2([0,a+]×Ω), ‖ψ0‖C2(Ω), a
+), (4.5)

where C denotes a constant only depending on α, μ, ψ0 and a+. It follows that Δψ
is bounded above in [0, a+] × Ω. Now since ψ is also bounded in [0, a+] × Ω, we can
normalize ψ such that min(a,x)∈[0,a+]×Ω ψ = 1 by choosing a specific ψ0. Thus for
each ε > 0, there exists dε > 0 such that for each d ∈ (0, dε), there holds

dΔψ − εψ � 0, 
≡ 0.

Now consider the following auxiliary eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩
∂φ

∂a
− dΔφ+ μφ+ (α0 + ε)φ = −λφ, (a, x) ∈ (0, a+) × Ω,

φ(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

φ(0, x) =
∫ a+

0
β(a, x)φ(a, x) da, x ∈ Ω.

(4.6)

Denote by λ0 the principal eigenvalue of (4.6). Then it is easy to check that ψ is a
strict super-solution of (4.6). Indeed,

∂ψ

∂a
− dΔψ + μψ + (α0 + ε)ψ = (α0 − α(x))ψ + εψ − dΔψ � 0, 
≡ 0,

when d ∈ (0, dε) and we used α0 � α(x) by proposition 3.2. Now it follows that
λ0 < 0 by proposition 2.7 which implies that λd

0 < α0 + ε. Next from proposition
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3.3, we have α0 � λd
0. Setting d→ 0+, we find

α0 � lim inf
d→0+

λd
0 � lim sup

d→0+
λd

0 � α0 + ε, ∀ε > 0,

which leads to λd
0 → α0 as d→ 0+. Finally, to show λd

0 → −∞ as d→ ∞, let us con-
sider the eigenvalue problem of classical Laplace equation with Dirichlet boundary
condition in Ω: {

−Δφ = λφ, x ∈ Ω,
φ = 0, x ∈ ∂Ω.

(4.7)

It is well known from the classical Laplace equation that the principal eigenvalue
of −Δ with Dirichlet boundary condition exists and is positive. Let λ0 > 0 be the
principal eigenvalue of −Δ and Ψ0 ∈ X+ be an associated eigenfunction. Next let
Ψ1 ∈ Lp(0, a+) be the solution of the following equation (note that the existence is
guaranteed by the theory of classical age-structured models, see [50]):⎧⎪⎪⎨

⎪⎪⎩
∂Ψ1(a)
∂a

= −(λ1 + μ(a))Ψ1(a),

Ψ1(0) =
∫ a+

0

β(a)Ψ1(a) da,
(4.8)

where λ1 satisfies ∫ a+

0

β(a)e−λ1ae−
∫ a
0 μ(s) ds da = 1.

Now let λd = −dλ0 + λ1 and Ψ(a, x) = Ψ0(x)Ψ1(a). Consider the following auxil-
iary eigenvalue problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂φ

∂a
− dΔφ+ μφ+ λdφ = −λφ, (a, x) ∈ (0, a+) × Ω,

φ(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

φ(0, x) =
∫ a+

0

β(a, x)φ(a, x) da, x ∈ Ω.

(4.9)

Denote by λ0 the principal eigenvalue of (4.9). It is easy to see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ψ
∂a

− dΔΨ + μΨ + λdΨ � Ψ0

[
∂Ψ1

∂a
+ μΨ1 + λ1Ψ1

]
+dλ0Ψ0Ψ1 − dλ0Ψ0Ψ1 = 0, (a, x) ∈ (0, a+) × Ω,

Ψ(a, x) = Ψ1(a)Ψ0(x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

Ψ(0, x) = Ψ0(x)
∫ a+

0

β(a)Ψ1(a) da

�
∫ a+

0

β(a, x)Ψ(a, x) da, x ∈ Ω.

Thus Ψ is a strict super-solution of (4.9). It follows by proposition 2.7 that λ0 < 0,
which implies that λd

0 < λd = −dλ0 + λ1. Setting d→ ∞, we reach at λd
0 → −∞ as

d→ ∞. Hence the result is desired. �
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Next we give the strict monotonicity of λd
0 with respect to d under some specific

conditions in the following.

Theorem 4.3. If μ(a, x) = μ1(a) + μ2(x) and β(a, x) ≡ β(a), where μ1 ∈
L2(0, a+), μ2 ∈ L2(Ω) and β ∈ L2(0, a+), then d→ λd

0 is strictly decreasing.

Proof. We write A = T + L, where

[Lv](x) = dΔv(x) − μ2(x)v(x), v ∈W 2
2 (Ω),

[T v](a) = −∂v(a)
∂a

− μ1(a)v(a), v ∈W 1
2 (0, a+)

with

D(T ) :=
{
φ(a)

∣∣φ, φ′ ∈ L2(0, a+), φ(0) =
∫ a+

0

β(a)φ(a) da
}
.

Let (λd
1(L), v2) to be the principal eigenpair of −L. Then by the classical theory

for second order elliptic PDEs or the usual L2 variational structure, we know that
d→ λd

1(L) is strictly increasing. Now define v1(a) be the solution of characteristic
equation T v1 = λ1v1 (note that the existence of (λ1, v1) is guaranteed by the theory
of age-structured models, see [50]). It follows that λd

0 = −λd
1(L) + λ1 is the principal

eigenvalue of A with the principal eigenfunction v2(x)v1(a). As d→ λd
1(L) is strictly

increasing, so d→ λd
0 is strictly decreasing. �

Remark 4.4. Observe that in theorem 4.3 we define directly the principal eigen-
function v2v1 in a larger space W 1,2

2 ((0, a+) × Ω) which contains Z, since we do not
need proposition 2.7 to prove the conclusion any more.

5. Global dynamics

In this section we are interested in the global dynamics of the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, a, x)
∂t

+
∂u(t, a, x)

∂a
= dΔu(t, a, x)

−μ(a, x)u(t, a, x) + f(a, x, u(t, a, x)), (t, a, x) ∈ (0,∞) × (0, a+) × Ω,

u(t, 0, x) =
∫ a+

0

β(a, x)u(t, a, x) da, (t, x) ∈ (0,∞) × Ω,

u(t, a, x) = 0, (t, a, x) ∈ (0,∞) × (0, a+) × ∂Ω,
u(0, a, x) = u0(a, x), (a, x) ∈ (0, a+) × Ω,

(5.1)
where f is a KPP type of nonlinearity. Such type of equations naturally appears in
some ecological problems when in addition to the dispersion of the individuals in
the environment, the birth and death of individuals are also modelled, see [14, 19,
29, 30].

On the nonlinear function f we assume that

(i) f ∈ C([0, a+] × Ω × [0,∞)) and is differentiable with respect to u;
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(ii) fu(·, ·, 0) is Lipschitz;

(iii) f(·, ·, 0) ≡ 0 and f(a, x, u)/u is decreasing with respect to u;

(iv) There exists K > 0 such that f(a, x, u) � 0 for all u � K and all a, x.

A typical example of such a nonlinearity is given as f(a, x, s) = s(k(a, x) − s). In
the following we will only consider this case for the convenience; namely,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u(a, x)
∂a

= dΔu(a, x) − μ(a, x)u(a, x)

+u(a, x)(k(a, x) − u(a, x)), (a, x) ∈ (0, a+) × Ω,
u(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

u(0, x) =
∫ a+

0

β(a, x)u(a, x) da, x ∈ Ω,

(5.2)

where k(a, x) � K for any (a, x) ∈ [0, a+] × Ω.

Definition 5.1. We call u is a super-solution (resp. sub-solution) of (5.2) if = is
replaced by � (resp. �) in (5.2).

Now let us prove the comparison principle for (5.2).

Lemma 5.2. Let u be a strictly positive sub-solution of (5.2) and v be a strictly
positive super-solution of (5.2). Then u � v in [0, a+] × Ω.

Proof. Let α∗ := sup{α > 0 : αu � v in [0, a+] × Ω}. By assumptions on u and v,
the number α∗ is well defined and positive. If α∗ � 1, then we are done. So we
assume that α∗ < 1. Set w := v − α∗u. Then w � 0 and there exists (a0, x0) ∈
[0, a+] × Ω such that w(a0, x0) = 0. Obviously, w satisfies

∂w(a, x)
∂a

� dΔw(a, x) − μ(a, x)w(a, x) + v(k − v) − α∗u(k − u)

> dΔw(a, x) − μ(a, x)w(a, x) + v(k − v) − α∗u(k − α∗u)

× (a, x) ∈ (0, a+) × Ω, (5.3)

where we used α∗ < 1 in the second inequality. Considering the above inequality at
(a0, x0) with a0 > 0, we immediately deduce a contradiction by ∂w(a0, x0)/∂a � 0
and Δw(a0, x0) � 0. If a0 = 0, from the integral boundary condition, we have

∫ a+

0

β(a, x0)w(a, x0) da = 0,

which by the positivity of β and w � 0 implies w(a, x0) = 0 for all a ∈ [0, a+]. Then
integrating (5.3) from 0 to a+ at x = x0, we still have the contradiction as above.
Thus α∗ � 1 and the proof is completed. �
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We denote by λk
0 the eigenvalue of the following linearized operator Ak which is

obtained by linearizing (5.2) at u = 0:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(a, x)
∂a

= dΔu(a, x) − μ(a, x)u(a, x) + k(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

u(0, x) =
∫ a+

0

β(a, x)u(a, x) da, x ∈ Ω.

(5.4)

Proposition 5.3. There exists at a unique positive nontrivial solution u∗(a, x) of
(5.2) when λk

0 > 0.

Proof. First we construct a pair of sub-solution and super-solution for equation
(5.2) to establish the existence. Taking u(a, x) := εφ(a, x), where φ is the positive
eigenfunction associated with λk

0 . Let us check that it is a sub-solution of (5.2):

∂u(a, x)
∂a

− dΔu(a, x) + μ(a, x)u(a, x) − u(a, x)k(a, x) � −u2(a, x),

provided εφ(a, x) � λk
0 which is true by taking ε > 0 sufficiently small if λk

0 > 0,
since φ(a, x) is bounded. Furthermore,

u(0, x) = εφ(0, x) = ε

∫ a+

0

β(a, x)φ(a, x) da =
∫ a+

0

β(a, x)u(a, x) da

holds for any x ∈ Ω and u(a, x) = εφ(a, x) = 0 for x ∈ ∂Ω. Next, we construct a
super-solution of (5.2), motivated by Delgado et al. [7, theorem 14]. Define

Fq(a) := qa−
∫ a

0

μ(s) ds, q ∈ R,

and take q ∈ R sufficiently large so that∫ a+

0

eFq(a) da � 1

β̂
, q > K, (5.5)

where β̂ := sup(a,x)∈[0,a+]×Ω β(a, x). Consider the function

G(x) :=
∫ a+

0

eFq(a)

1 + x
∫ a

0
eFq(s) ds

da.

Observe that G is a continuous function and by (5.5) we have that

lim
x→0

G(x) � 1

β̂
, lim

x→∞G(x) = 0.

So there exists y0 > 0 such that G(y0) = 1/β̂, i.e.∫ a+

0

eFq(a)

1 + y0
∫ a

0
eFq(s) ds

da =
1

β̂
. (5.6)
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Define Y (a) the unique solution of the differential equation

∂y(a)
∂a

+ μ(a)y = qy − y2, y(0) = y0,

where y0 is defined by (5.6). Solving the above equation, we obtain that

Y (a) =
eFq(a)

1/y0 +
∫ a

0
eFq(s) ds

. (5.7)

Take u(a, x) := MY (a), with M a positive large constant. It can be proven that u
is a super-solution of (5.2) for q large. Indeed, u > 0 on ∂Ω and

∂u

∂a
− dΔu+ μu− ku � −u2,

provided that M � 1 and∫ a+

0

β(a, x)u(a, x) da � My0β̂

∫ a+

0

eFq(a)

1 + y0
∫ a

0
eFq(s) ds

da = My0 = u(0, x).

Now it is clear that we can choose ε > 0 and M > 0 such that u � u. Then by a
basic iterative scheme we obtain the existence of a positive nontrivial solution u of
(5.2), see [4, theorem A.1] or [7, theorem 14]. For the uniqueness, let u and v be
two nonnegative bounded solutions of (5.2). Since they are bounded and strictly
positive, the following quantity is well defined:

γ∗ := inf{γ > 0|γu � v}.

We claim that γ∗ � 1. Indeed, assume by contradiction that γ∗ > 1. Based on γ∗u �
v, we consider two cases: (i) γ∗u � v, γ∗u 
≡ v. Then from the initial integral bound-
ary condition with positivity of β everywhere, we have γ∗u0 := γ∗u(0, x;u0) �
v(0, x; v0) =: v0 and γ∗u0 
≡ v0. Now consider the following reaction-diffusion
problem

∂u

∂a
= dΔu(a, x) − μ(a, x)u(a, x) + u(a, x)(k(a, x) − u(a, x)),

(a, x) ∈ (0, a+) × Ω. (5.8)

By [13, theorem 2.2], solutions of equation (5.8) have strong monotone property,
i.e. for φ, ψ ∈ X+ with φ � ψ, φ 
≡ ψ, u(a, x;φ) � u(a, x;ψ), a > 0 at which both
u(a, x;φ) and u(a, x;ψ) exist, where u is the solution of (5.8). Then we have

u(a, x; γ∗u0) � u(a, x; v0). (5.9)

On the other hand, let w(a, x) = γ∗u(a, x;u0). Then w(0, x) = γ∗u0 and

∂w

∂a
= dΔw(a, x) − μ(a, x)w(a, x) + w(a, x)[k(a, x) − u(a, x;u0)]

= dΔw(a, x) − μ(a, x)w(a, x) + w(a, x)[k(a, x) − w(a, x)]

+ w(a, x)[w(a, x) − u(a, x;u0)]

� dΔw(a, x) − μ(a, x)w(a, x) + w(a, x)[k(a, x) − w(a, x)] + δ0
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for some δ0 > 0 and 0 � a < a+ since γ∗ > 1. Now by the comparison principle, we
have

γ∗u(a, x;u0) � u(a, x; γ∗u0) (5.10)

for some 0 < a < a+. Now combing (5.9) and (5.10), we have

γ∗u(a, x;u0) � u(a, x; v0),

which is a contradiction with the definition of γ∗. Hence it follows that γ∗ � 1.
Next let us consider case (ii) γ∗u ≡ v. But

0 = −∂v
∂a

+ dΔv(a, x) − μv + v(k − v)

= −∂(γ∗u)
∂a

+ dΔγ∗u(a, x) − γ∗μu+ γ∗u(k − γ∗u)

= −γ∗u(k − u) + γ∗u(k − γ∗u) < 0, (5.11)

which is a contradiction due to γ∗ > 1. Thus we still have γ∗ � 1. In summary
we conclude as a consequence u � v. Now switch the role u and v in the above
argument, we also have v � u, which shows the uniqueness of the solution. �

Theorem 5.4. The nontrivial equilibrium u∗ is stable in the sense of u(t, a, x) →
u∗(a, x) pointwise as t→ ∞ if λk

0 > 0, where u(t, a, x) is a solution of (5.1) with
initial data u0 � 0 and u0 
= 0.

Proof. The existence of a solution u(t, a, x) for (5.1) defined for all time t follows
from a standard semigroup method by writing equation (5.1) as an abstract Cauchy
problem and based on the Lipschitz assumption on f , see [1], thus we omit it. Next,
the proof of stability is motivated by [4, theorem 1.7]. Note u0 � 0 and u0 
= 0, using
the comparison principle, there exists a positive constant δ such that u(1, a, x) > δ
in [0, a+] × Ω. Since λk

0 > 0, we can build a bounded continuous function u so
that εu is a sub-solution of (5.1) for ε small enough. Since u(1, a, x) � δ and u is
bounded, by choosing ε smaller if necessary we achieve also that εu � u(1, a, x).
Now let us denote U(t, a, x) the solution of (5.1) with initial data εu. By construc-
tion, using a standard argument, U(t, a, x) is a non-decreasing function of the time
and U(t, a, x) � u(t+ 1, a, x). On the other hand, MY (a) which is defined in the
proof in proposition 5.3 is a super-solution of (5.1) and u0 is bounded, we have also
u(t, a, x) � U(t, a, x) if necessary choosing M large enough, where U(t, a, x) denotes
the solution of (5.1) with initial data U(0, a, x) = MY (a) � u0. A standard argu-
ment using the comparison principle shows that U is a non-increasing function of
t. Thus we have for all time t,

εu � U(t, a, x) � u(t+ 1, a, x) � U(t+ 1, a, x).

Since U(t, a, x) (respectively U(t, a, x)) is an uniformly bounded monotonic function
of t, U (resp. U) converges pointwise to p (resp. p) which is a solution of (5.2).
From U 
= 0, using the uniqueness of a non-trivial solution of (5.2), we deduce that
p ≡ p = u∗ 
= 0 and therefore, u(t, a, x) → u∗ pointwise as t→ ∞. �

https://doi.org/10.1017/prm.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.10


Effects of diffusion on principal eigenvalue for age-structured models 275

Finally, let us give a similar result on the long-time dynamics of (5.1) in terms
of diffusion rate d.

Theorem 5.5. Equation (5.1) admits a unique equilibrium u∗ that is stable for each
0 < d� 1 if α2 > 0, where α2 satisfies

max
x∈Ω

∫ a+

0

β(a, x)e−α2ae
∫ a
0 (k(s,x)−μ(s,x)) ds da = 1. (5.12)

Proof. Note that the linearized operator Ak defined in (5.4) also satisfies all the
properties of A discussed in § 4. Then by theorem 4.2, λd

0(Ak) > 0 for all 0 < d� 1
if α2 > 0, then the result follows from proposition 5.3 and theorem 5.4. �

At the end of this section, we investigate the asymptotic behaviour of the equi-
librium u∗ with respect to diffusion rate d. In order to highlight the dependence
of u∗ on d we denote u∗ by u∗d. Before proceeding, we first give a lemma on the
solution of (5.2) without random diffusion, that is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v(a, x)
∂a

= −μ(a, x)v(a, x) + v(a, x)(k(a, x) − v(a, x)), (a, x) ∈ (0, a+) × Ω,

v(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

v(0, x) =
∫ a+

0

β(a, x)v(a, x) da, x ∈ Ω.

(5.13)

Lemma 5.6. Suppose α2 > 0, then for each x ∈ Ω, equation (5.13) has a unique
positive solution, denoted by v∗(a, x), which is continuous in x, where α2 satisfies
(5.12).

Proof. First imitating the proofs in propositions 3.1 and 3.2, we can show that for
such α2 satisfying (5.12), there exists a positive solution v to the following equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v(a, x)
∂a

= −α2v(a, x) − (μ(a, x) − k(a, x))v(a, x), (a, x) ∈ (0, a+) × Ω,

v(a, x) = 0, (a, x) ∈ (0, a+) × ∂Ω,

v(0, x) =
∫ a+

0

β(a, x)v(a, x) da, x ∈ Ω.

(5.14)
Then it is easy to see by the proof of proposition 5.3 that v := εv is a sub-solution
of (5.13) when α2 > 0 by taking ε > 0 sufficiently small. Meanwhile, v := MY (a)
defined in (5.7) for M sufficiently large is also a super-solution of (5.13). Now it is
clear that we can choose ε > 0 and M > 0 such that v � v. Then by a basic iterative
scheme as in proposition 5.3 we obtain the existence of a positive nontrivial solution
v∗ of (5.13). �
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Theorem 5.7. If α2 > 0 and v∗ is from lemma 5.6, we have the following
asymptotic result:

lim
d→0+

u∗d(a, x) = v∗(a, x) uniformly in (a, x) ∈ [0, a+] × Ω, (5.15)

where u∗d is given in theorem 5.5.

Proof. The proof is motivated by [36, theorem 6.3]. We claim that for each 0 <
ε� 1, there exists a dε such that for each d ∈ (0, dε) there holds

v∗(a, x) − ε � u∗d(a, x) � v∗(a, x) + ε, (a, x) ∈ [0, a+] × Ω.

Let us prove the lower bound, the upper bound follows from similar arguments. Let
0 < ε� 1. Since min[0,a+]×Ω v

∗ > 0, there exists δ = δ(ε) > 0 such that

v(a, x) := (1 − δ)v∗(a, x) � v∗(a, x) − ε > 0, (a, x) ∈ [0, a+] × Ω.

Note that for each (a, x) ∈ (0, a+) × Ω,

− ∂v(a, x)
∂a

+ dΔv(a, x) − μ(a, x)v(a, x) + v(a, x)(k(a, x) − v(a, x))

= −(1 − δ)
∂v∗(a, x)

∂a
+ d(1 − δ)Δv∗(a, x) − (1 − δ)μ(a, x)v∗(a, x)

+ (1 − δ)v∗(a, x)(k(a, x) − v∗(a, x)) + v(t, x)(k(a, x) − v(a, x))

− (1 − δ)v∗(a, x)(k(a, x) − v∗(a, x))

= d(1 − δ)Δv∗(a, x) + v(t, x)(k(a, x) − v(a, x))

− (1 − δ)v∗(a, x)(k(a, x) − v∗(a, x)),

and we have seen in (4.5) that dΔv∗ → 0 as d→ 0+ uniformly in (a, x) ∈ [0, a+] ×
Ω. Since for each (a, x) ∈ [0, a+] × Ω,

v(t, x)(k(a, x) − v(a, x)) − (1 − δ)v∗(a, x)(k(a, x) − v∗(a, x)) > 0,

there holds

inf
(a,x)∈[0,a+]×Ω

v(t, x)(k(a, x) − v(a, x)) − (1 − δ)v∗(a, x)(k(a, x) − v∗(a, x)) > 0.

Hence, there exists dε > 0 such that for each d ∈ (0, dε), there holds

∂v(a, x)
∂a

< dΔv(a, x) − μ(a, x)v(a, x) + v(a, x)(k(a, x)

− v(a, x)), (a, x) ∈ (0, a+) × Ω. (5.16)

It remains to show that for each d ∈ (0, dε), there holds v(a, x) � u∗d(a, x) for all
(a, x) ∈ [0, a+] × Ω. To do this, let us fix any d ∈ (0, dε) and define

α∗ = inf{α > 0 : v(a, x) � αu∗d(a, x) for all (a, x) ∈ [0, a+] × Ω}.

Since min[0,a+]×Ω u
∗
d > 0 and v(a, x) is bounded, α∗ is well-defined and positive.

Due to the continuity of v(a, x) and u∗d(a, x), there holds v(a, x) � α∗u∗d(a, x)
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for all (a, x) ∈ [0, a+] × Ω. Moreover, there exists (a0, x0) ∈ [0, a+] × Ω such that
v(a0, x0) = α∗u∗d(a0, x0). Clearly, if α∗ � 1, we are done. Therefore, let us assume
α∗ > 1. By (5.16) and the equation satisfied by u∗d(a, x), we see that w(a, x) :=
v(a, x) − α∗u∗d(a, x) satisfies

∂w(a, x)
∂a

< dΔw(a, x) − μ(a, x)w(a, x) + v(a, x)(k(a, x) − v(a, x))

− α∗u∗d(a, x)(k(a, x) − u∗d(a, x)) (5.17)

for all (a, x) ∈ (0, a+) × Ω. However, if a0 ∈ (0, a+), we have ∂w(a0, x0)/∂a �
0,dΔw(a0, x0) � 0 and

v(a0, x0)(k(a0, x0) − v(a0, x0)) − α∗u∗d(a0, x0)(k(a0, x0) − u∗d(a0, x0)) < 0,

where we used α∗ > 1 so that α∗u∗d(a0, x0) > u∗d(a0, x0) and hence we arrive at

∂w(a0, x0)
∂a

< dΔw(a0, x0) − μ(a0, x0)w(a0, x0)

+ v(a0, x0)(k(a0, x0) − v(a0, x0)) − α∗u∗d(a0, x0)(k(a0, x0) − u∗d(a0, x0)),

which leads to a contradiction. Hence α∗ � 1 which is desired. Now if a0 = 0, it
follows from the integral boundary condition that

∫ a+

0

β(a, x0)w(a, x0) da = 0.

The positivity of β implies w(a, x0) ≡ 0 for all a ∈ [0, a+]. Then integrating (5.17)
from 0 to a+ at x = x0, we still have the contradiction as above. Thus α∗ � 1 and
the proof is completed. �

6. Discussion

In this paper, we studied the spectrum theory for age-structured models with ran-
dom diffusion. We provided an equivalent characteristic for the principal eigenvalue,
strong maximum principle and a positive strict super-solution. Then we used it to
examine the effects of diffusion rate on the principal eigenvalue. Finally, we inves-
tigated the existence, uniqueness and stability of a diffusive age-structured model
with KPP type of nonlinearity and verified that the principal eigenvalue being zero
is a threshold. It is also interesting to study the effects of advection term on the
principal eigenvalue if the equation contains an advection term. In addition, we
also studied the principal spectral theory, limiting properties and global dynamics
for age-structured models with nonlocal diffusion, see [20]. We expect that anal-
ysis on the principal eigenvalue and constructions of sub/super-solutions can be
applied to study the existence of travelling wave solutions and spreading speeds of
age-structured models with random diffusion, see [9–12]. We leave these for future
consideration.
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