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Abstract

We report on the relationships between some conspicuous Mediterranean photophilous
sponge species and Caulerpa cylindracea, a non-indigenous species. A diversification of
defence strategies and behaviour is highlighted in target species belonging to different orders
of Demospongiae from a western Mediterranean Marine Protected Area (NW Sardinian Sea).
Caulerpa cylindracea displays a strongly invasive behaviour during body colonization of the
Irciniidae Sarcotragus spinosulus and Ircinia retidermata (order Dictyoceratida). These
sponges possess pre-adaptive defensive morpho-functional and physiological traits enabling
them to partly withstand algal invasion. Also Aplysina aerophoba (order Verongiida) seems
to be able to control colonization. Successful anti-Caulerpa strategies characterize the rarely
affected Crambe crambe (order Poecilosclerida). Species-specific competitive strategies are dis-
played at different levels of body architecture, behaviour and physiology by native sponge spe-
cies. The invasion patterns on sponges, the invasion dynamics in 2016–2017 and topographic
distribution of C. cylindracea on S. spinosulus confirm this algal species as a threat, with
potential long-term effects on sponge assemblages. Data suggest other kinds of poorly inves-
tigated synergic stressors affecting these habitat-forming species. Defence strategies of sponge
species take the form of: (1) passive deterrence by morpho-functional pre-adaptive traits as
growth form, biomass amount, surface traits, and microhabitat within the sponges’ aquiferous
system; (2) active physiological defence, whereby the morphology/anatomy of the sponge
body is adapted to control invaders, by body remodelling and regenerative processes within
the aquiferous system and at the sponge surface; (3) presumed active chemical defence by
exudation processes of bioactive compounds.

Introduction

Caulerpa cylindracea Sonder, 1845 is widespread in Australia (type locality), and the Indian,
Pacific and Atlantic oceans (Harvey, 1858; Womersley, 1984; Verlaque et al., 2003; Belton
et al., 2014). This very prolific green alga was first recorded in the Mediterranean Sea off
Libya in 1990 (Nizamuddin, 1991). To date, it has colonized large areas of the entire
Mediterranean Sea, plus the Canary Islands in the Eastern Atlantic Ocean (Verlaque et al.,
2000, 2003; Piazzi et al., 2005, 2016; Casu et al., 2006; Klein, 2007; Ould-Ahmed & Meinesz,
2007; Cottalorda et al., 2008; Klein & Verlaque, 2008; Piazzi & Balata, 2009; Papini et al.,
2013; Belton et al., 2014; Montefalcone et al., 2015; Corriero et al., 2016; Piazzi et al., 2018).

Caulerpa cylindracea is included both in the list of the 100 worst Non-Indigenous Species
(NIS) in the Mediterranean Sea (Streftaris & Zenetos, 2006) and in the IUCN black list of inva-
sive species (Otero et al., 2013). The success of this euriecious algal species is due to its high
rate of growth and survival, its dispersal by means of fragmentation and its production of bio-
active secondary metabolites, e.g. caulerpenyne (Brunelli et al., 2000; Erickson et al., 2006;
Raniello et al., 2007; Rocha et al., 2007; Montefalcone et al., 2010, 2015; Mollo et al., 2015).
The thallus of this alga, which is characterized by thin rhizoids closely arranged along the sto-
lons, is able to settle on several substrate types in a wide range of Mediterranean biotopes, both
in polluted and in pristine water from shallow water to >70 m depth (Verlaque et al., 2003;
Piazzi et al., 2005).

In general, the influence of C. cylindracea invasion on sessile invertebrates is little known.
As for Porifera assemblages C. cylindracea colonization was first investigated in coralligenous
reefs and Posidonia oceanica (L.) Delile meadows in the Adriatic, Ionian and Sardinian seas
(Žuljević et al., 2003, 2011; Baldacconi & Corriero, 2009; Fazzi et al., 2014) where its ability
to overgrow some sponge species was reported.

The aim of the present study was to investigate in a pluriannual cycle the patterns of inva-
sion attempts of C. cylindracea on some Mediterranean photophilous sponge species in a
Marine Protected Area (MPA). In particular, we focused on the dynamics of sponge assem-
blage, on patterns of C. cylindracea colonization, and topographic distribution of C. cylindra-
cea on sponges.
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Materials and methods

Study area

The study was conducted in Sardinia (Figure 1A) within the
Porto Conte Bay (40°36′4.72′′N 8°13′3.60′′E; Figure 1B, C) in
the C-Zone partial reserve of the Capo Caccia – Isola Piana
Marine Protected Area (North Sardinian Sea, Algero-Provençal
Basin, Western Mediterranean Sea). The Porto Conte Bay har-
bours diversified assemblages of e.g. molluscs (Russo et al.,
1991), mysidaceans (Maj & Taramelli, 1989), polychaetes
(Gambi et al., 1995, 1989) and sponges (Manconi et al., 2005,
2009, 2013; Cadeddu et al., 2014; Padiglia et al., 2015, 2018a)
inhabiting the sandy-silty-rocky seabed dominated by
Posidonia oceanica meadows as recently mapped by De Luca
et al. (2018).

Caulerpa cylindracea was first recorded (2005/2006) in very
shallow water in Porto Conte Bay during routine surveys (F.D.
Ledda, personal communication) and it has steadily spread to
ever-larger areas, suggesting its remarkably strong and persistent
acclimation in this sheltered bay (see Fazzi et al., 2014).
Caulerpa cylindracea is widespread around Sardinian coasts
(Bulleri et al., 2011; Caronni et al., 2015; Figure 1B) and
recorded in the Asinara MPA (Sardinian Sea; Casu et al.,
2006), Capo Carbonara MPA (Tyrrhenian Sea; Piazzi et al.,
2018) and Capo Caccia-Isola Piana MPA (Sardinian Sea; Fazzi
et al., 2014).

Sponge community surveys

To investigate the presence/absence of conspicuous sponge spe-
cies, species richness, population abundance and the density of
each target species preliminary surveys on sponge fauna were
carried out by means of snorkelling. Moreover, replicates of
random surveys were carried out four times from 2010 to
2017 by means of scuba by using visual census along four par-
allel linear belt transects (50 m in length × 2 m in width; 400 m2

total area surveyed) oriented perpendicularly to the coastline
(Figure 1C).

Among conspicuous photophilic sponge species surveyed four
times from 2010 to 2017, Aplysina aerophoba (Nardo, 1833),
Crambe crambe (Schmidt, 1862), Ircinia retidermata Pulitzer-
Finali & Pronzato, 1981, Ircinia variabilis (Schmidt, 1862) and
Sarcotragus spinosulus (Schmidt, 1862) were selected as target spe-
cies for a long-term survey. Macro-photographic shots (N =∼300)
were carried out on sponges displaying the presence of C. cylindracea
on substrata around basal portion and on the surface of their body
(see below).

Two species – S. spinosulus (N = 15 specimens) and A. aero-
phoba (N = 15 specimens) – were marked in situ (2016), i.e. at a
depth of 2.5–3m in a target area surveyed by transects of ∼30m2,
∼200m from the coastline (40°36′4.72′′N 8°13′3.60′′E; Figure 1C).
The timing, intensity and persistence of colonization by
C. cylindracea were studied for each sponge species by means of

Fig. 1. Study area maps. (A) Sardinia Island
(Western Mediterranean Sea). (B) Capo Caccia –
Isola Piana MPA (Algero-Provençal Basin,
Sardinian Sea). Records of Caulerpa cylindracea
in MPAs are indicated (Capo Carbonara MPA,
Asinara MPA, Capo Caccia-Isola Piana MPA). (C)
Study area in the Porto Conte Bay (40°36′4.72′′N
8°13′3.60′′E) with four transects (red bars, not
to scale) in C-Zone (green line) of the MPA;
A-Zone (pink lines), B-Zone (blue lines).
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image analysis on the basis of in situ photographs of marked
specimens.

Each marked S. spinosulus was photographed at 30-day inter-
vals during the vegetative phase of C. cylindracea, from June to
October over 2 years (2016–2017), with a Canon Powershot
G-10 equipped with an underwater case, a ruler having been
placed next to the sponge. Images were then digitized and ana-
lysed by means of ImageJ 1.47t software (National Institutes of
Health, USA) in order to (a) check for the presence/absence
and localization of C. cylindracea on the sponges’ body surface
and surrounding seabed; (b) calculate sponge area and algal
cover areas on S. spinosulus and the percentage of algal cover
area by tracing the body outline of each sponge and of the alga
that colonized the more or less flat apical surface of the sponge
and taking photos in an orthogonal perspective. To ensure accur-
acy of measurement, the sponge and algal areas in each image
analysed were measured three times and the average (AVG) was
used; (c) calculate the percentage Growth Rate (GR %) of the
sponge under the presence of C. cylindracea in the long term
(2 years; 2016–2017).

GR % analysis was based on sponge volume calculated from
the diameter measured on photographs, and each sample of S. spi-
nosulus (used for statistical analyses) was assumed to have a
spherical sponge body (see also Žuljević et al., 2011). The formula
used was adapted from Duckworth & Battershill (2001):

GR = (Vm − Vm−1)
Vm−1/n

{ }
× 100

where Vm = sponge volume calculated at month m, Vm−1 =
sponge volume calculated during the previous monitoring event,
and n = number of months between each monitoring event and
the previous one. GR% was measured at the end of each monitor-
ing month (i.e. June–September) in each year. To explore and
model the relationship between the algal cover and the GR % of
sponges, a Pearson correlation coefficient analysis was performed
on monthly data from June–October of 2 years (2016–2017),
although differences in sponge growth may also be related to
other biotic and abiotic factors.

Topographic distribution of C. cylindracea on S. spinosulus

To understand the algal colonization process in the case of S. spi-
nosulus, we also conducted a detailed investigation of the topo-
graphic distribution of C. cylindracea on the sponge surface and
within the sponge body. Conspicuous body portions of three target
specimens (∼2 cm in length, N = 3 per specimen), extending from
ectosomal to choanosomal areas, were collected (September 2017
and February 2018) and fixed in alcohol. Sponges bearing more
or less perpendicular oscular canals and horizontally oriented sub-
dermal canals, together with choanosomal canals, were dissected by

hand with scalpel and analysed in detail by means of light micros-
copy (Leica Wild M3C stereomicroscope). Selected sponge frag-
ments (1–4mm in thickness) were air-dried, mounted on a stub,
sputter-coated with gold and observed by means of scanning elec-
tron microscopy (SEM Vega3Tescan, Czech Republic).

Abiotic parameters

To characterize environmental conditions of the study area light
intensity and water temperature were recorded every 60 min
(June 2016 to January 2018) by means of an underwater
UA-002 HOBO® Data Logger (Onset, MA, USA) installed in
the shade of a pier (2.5 m depth) near target sponges within the
study area. Monthly average temperature (June 2016 to
December 2017) and light values were then calculated. To ascer-
tain the difference in temperature between the beginning (2012)
and the end (2017) of our quantitative observations, we ran a
Student’s t-test, in which mean daily values registered from
June to October in each year were compared.

Long-term colonization of C. cylindracea on S. spinosulus

Long-term colonization of C. cylindracea on S. spinosulus (over 5
years from August 2012 to August 2017) was investigated on two
randomly selected sponge groups (N = 10 specimens for each
group living in the same experimental area of 400m2) by the com-
parison of the density of stolons and fronds growing over the
sponge body and in the nearby substrate. The algal cover area on
the total body surface was compared with that on the substratum
close to the basal portion of the sponge. The cover area dataset
of marked sponges (N = 10; August 2017) was compared with
that of previously photographed specimens (N = 10; August
2012) by means of ImageJ. A square grid of 20 × 20 cm with cells
of 1 cm2 was superimposed on photographs (for a total of 4000
cells referred to 10 sponges) to detect six descriptive variables
representing the colonization process, based on the density of sto-
lons and fronds growing over or surrounding the selected speci-
mens. The values for each variable correspond to: (1) Number of
cells with sponge surface free from epibiosis; (2) Number of cells
with stolons overgrowing sponges; (3) Number of cells with fronds
overgrowing sponges; (4) Number of cells with free substrate sur-
rounding sponges; (5) Number of cells with stolons on substrate
surrounding sponges; (6) Number of cells with fronds on substrate
surrounding sponges. For each variable mean values and percent-
age of increase/decrease were calculated (Table 1).

Since the samples for 2012 (10 marked sponges) and 2017 (10
marked sponges) were randomly selected with each element in the
sample taken independently, we performed a Hotelling’s T2-test
for two independent samples to test for significant differences
between the mean vectors (multivariate means of the six variables

Table 1. Average values and % increase/decrease of the variables (1–6) chosen to define the long-term trend of the colonization process of C. cylindracea vs
S. spinosulus in the Porto Conte Bay (North Sardinian Sea)

N Variables Mean cells number 2012 Mean cells number 2017
% increase/
decrease

1 Number of cells with sponge surface free from epibiosis 702 1197 +70.51

2 Number of cells with stolons overgrowing sponges 179 32 −82.12

3 Number of cells with fronds overgrowing sponges 381 63 −83.46

4 Number of cells with free substrate surrounding sponges 1883 2241 +19.01

5 Number of cells with stolons on substrate surrounding sponges 124 45 −63.71

6 Number of cells with fronds on substrate surrounding sponges 727 84 −88.44
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listed in Table 1) of two multivariate datasets. Each dataset
describes one population with one multivariate mean. No subpo-
pulations exist within each dataset. To meet the assumptions of
the analysis, data were previously log(x + 1) transformed and
tested (Shapiro–Wilk test for multivariate normality) to have a
normal distribution. Subsequently a Box’s M test was performed
to assess homogeneity of the covariance matrices of the two popu-
lations. Values of P < 0.05 were considered significant in rejecting
the null hypothesis of equal population means (H0: μX = μY).

Statistical analyses were performed by means of R 3.2.2.
(R Core Team, 2013), with R package MVTests, Multivariate
Hypothesis Tests (Bulut, 2018).

Results

In general, between 2010 and 2017, the alga first formed a dense
canopy surrounding the sponge base; subsequently, the digiti-
form stolons grew in length, climbing and settling on the sponge
body.

In severely affected sponge specimens, algal colonization pro-
cesses occurred during the circa-annual cycle of algae, being man-
ifested as an alternation of highly epibiotic behaviour on sponges;
starting in spring and culminating in summer, this epibiosis
declined in autumn–winter, when algae almost disappeared
from sponge surfaces.

Sponge community surveys

Populations of seven conspicuous photophilous sponge species
(Demospongiae) were identified along the transects (Table 2).
At the first visual census (2010) densities of S. spinosulus, A. aero-
phoba, C. crambe, I. variabilis and I. retidermata ranged from 9–
52 sponges 400 m−2 (Table 2). However, on comparing the 2010
and 2017 data sets replicated on the same transects, it emerged
that the population of A. aerophoba had decreased markedly in
7 years (from N = 77 to N = 15 specimens counted; loss >80%),
as had the population of C. crambe (from N = 19 to N = 5 speci-
mens; loss >73%). By contrast, the abundance of S. spinosulus
remained almost constant (from N = 52 to N = 51 specimens;
loss ∼2%), while increases were recorded in the abundance of
Cliona viridis (Schmidt, 1862) (from N = 8 to N = 10; increase
>20%), I. variabilis (from N = 14 to N = 15; increase ∼7%) and
I. retidermata (N = 8 to N = 14; increase 55%). Tethya aurantium
(Pallas, 1766) was first recorded in 2016 (N = 1 specimen) and
increased to N = 3 in 2017 (Table 2). However the density of I.
variabilis and I. retidermata more than doubled between 2010
and 2012 (Table 2).

Settlement of Caulerpa cylindracea on the surface of sponges

The sponge C. crambe typically settles on the surface of sessile
bivalve shells, such as Spondylus and Arca spp., as was also the
case in the shallow water of the biotope studied here (Figure 2).
Only rarely C. cylindracea climb and colonize the surface of this
encrusting sponge species. The majority of C. crambe specimens
surveyed in the bay appeared as not affected by algal colonization.

In the massive photophilous species I. retidermata, the
behaviour varied among specimens, ranging from the restraint
of algal settlement on the densely conulose sponge surface to
totally permissive invasion, with several algal intrusions into
the large oscula (Figure 3). A very similar behaviour was
observed also in I. variabilis characterized by similar
morphotraits.

All marked specimens of A. aerophoba were inexplicably lost
during the first year (between 2016 and 2017). In the very plastic
growth form of this species, the body grows from a flat base
endowed with permanent, erect oscular tubes, and seasonally
forms several arborescent branches with apical digitations
(Figure 4). In the case of unmarked specimens settled in the sur-
rounding areas, the alga first colonized the spaces where sediment
had accumulated among the oscular tubes at the base of the
sponge, and then moved up vertically along the surface of the
tubes (Figure 4). Stolons were never observed attempting to
intrude into the apertures at the top of the oscular tubes.
However, ring-shaped stolons were also occasionally observed
strangling the distal portions of the oscular tubes.

All marked samples of S. spinosulus (N = 15) were colonized
by C. cylindracea over 2 years (2016–2017). A single specimen
was lost at the end of the second year of monitoring.
Colonization occurred on both the outer and inner (aquiferous
canals) body surfaces. Algae were seen climbing on lateral surfaces
and intruding into oscula in most cases observed, and in a few
cases almost entirely covered the sponge surface. The persistence
of algae in aquiferous canals was documented up to late summer
(September) and winter (February) in specimens in which various
levels of colonization by C. cylindracea had been recorded in the
previous spring-summer (Figures 5 & 6).

Different colonization processes were observed: (i) algae formed
a network on the sandy-silty seabed around the basal portion of the
sponge and then climbed up to the apical surface, where over-
growth began; (ii) algae developed from fragments anchored to
the sponge surface. Indeed, dissections and LM and SEM observa-
tions revealed the intrusion of algae, via the ectosomal aquiferous
system, up to the choanosome a few centimetres within the sponge
body. During autumn-winter, when C. cylindracea undergo a nat-
ural population regression and disappear from the sponge surface,

Table 2. Demospongiae species recorded along linear belt transects at 2.5–4 m depth in the study area in the Porto Conte Bay (North Sardinian Sea), with
abundance and density values of sponge populations over 7 years (total area surveyed 400 m2)

Species

2010 2012 2016 2017

Sponges
(N)

Density
sponge m−2

Sponges
(N)

Density
sponge m−2

Sponges
(N)

Density
sponge m−2

Sponges
(N)

Density
sponge m−2

Sarcotragus spinosulus 52 0.130 54 0.135 56 0.140 51 0.128

Aplysina aerophoba 77 0.193 33 0.070 28 0.07 15 0.038

Crambe crambe 19 0.048 7 0.018 10 0.025 5 0.013

Cliona viridis 8 0.020 10 0.025 9 0.023 10 0.025

Ircinia variabilis 14 0.035 36 0.090 17 0.425 15 0.038

Ircinia retidermata 9 0.023 20 0.050 21 0.053 14 0.035

Tethya aurantium – – – 1 0.003 3 0.008
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fragments of C. cylindracea clearly persist as living resting stages
inside sponges (Figures 7 & 8).

SEM analyses showed that the sponges were able to respond to
internal invasion by isolating algal fragments in large oval subder-
mal cavities (up to 0.5 cm in diameter; Figure 7C, D, arrows) con-
nected with the aquiferous system. These cavities, which are
unusual in specimens not associated with C. cylindracea, are
lined by a fibrous lamina containing dense clumps of collagen
filaments typical of Irciniidae (Figures 7–9). Stolon fragments
trapped in sponge cavities appeared to be in good condition,
being still turgid and green, despite the presumed absence of
light (Figures 7–9).

Sarcotragus spinosulus was also affected by partial necrosis.
Analyses of in situ images revealed that necrotic areas recorded

during colonization of the sponge body surface persisted in
autumn, at the end of the vegetative phase of the algae (Figure 6).

Sarcotragus spinosulus: sponge growth and trend of C.
cylindracea cover area on sponge body

The average of the estimated volume ranged from 523–683 cm3

during the summer of 2016 and from 903–959 cm3 during the
summer of 2017 (Table 3). The average percentage growth rate
ranged from a minimum value of −0.10% (July 2016) to a max-
imum of 0.62% (July 2017) (Table 3).

The maximum percentage of algal cover area (∼9% of the
sponge surface) in marked samples was recorded in June and
September 2016. Some unmarked sponges in the vicinity of the

Fig. 3. Observed association patterns between the mas-
sive, conulose sponge with large oscula Ircinia retider-
mata and the non-indigenous alga Caulerpa
cylindracea in situ (shallow water, Sardinian Sea).
Colonization varied among specimens, ranging from (A,
C) the restraint of algal settlement on the sponge surface
to (B, D) totally permissive invasion, with several stolons
intruding into the oscules. (Photo credit R. Fazzi.)

Fig. 2. Observed association patterns between the thinly
encrusting sponge Crambe crambe and the non-
indigenous alga Caulerpa cylindracea in situ (shallow
water, Sardinian Sea): (A) C. cylindracea surrounding
the sponge, together with other native algae with only
a few small fragments of C. cylindracea colonizing the
sponge surface; (B–D) the majority of C. crambe surveyed
was not affected by algal invasion. (Photo credit
R. Fazzi.)
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study area were entirely overgrown by C. cylindracea. Caulerpa
cylindracea was observed on the apical surface of all marked speci-
mens (15/15) in July 2016, whereas only 6 samples were colonized
in September 2016 and 5 in September 2017 (Table 3).

No significant relationship between algal cover area and the
percentage growth rate (GR %) of the sponge emerged on apply-
ing Pearson’s correlation coefficient to the data recorded in 2016
(R = 0.003; P = 0.979) and 2017 (R = 0.042; P = 0.782), except for
the comparisons made in July 2016 (R = 0.533; P < 0.05) and
July 2017 (R = 0.683; P < 0.01).

Sarcotragus spinosulus: comparison of colonization process
(August 2012 vs August 2017)

On the basis of the six variables selected from in situ photographs
in order to define the colonization process of C. cylindracea vs

S. spinosulus (Table 1), the Hotelling’s T2-test for two independ-
ent samples was performed (T2 = 159.894, F = 19.24, df1 = 6;
df2 = 12.33; P = 0.0000134) to validate differences between
August 2012 and August 2017. Since P-value <0.05 we assessed
that there is a significant difference between the mean vectors
for August 2012 and August 2017. The analysis of data
(Table 1) provided evidence that in 5 years ∼70% less of the sur-
face of the sponges is covered with algae (variable 1); over 80%
less seaweed (both leaves and stolons) grows on sponges (variables
2 and 3); the substrate of the algae regresses up to 90% (variables 5
and 6).

Abiotic parameters

As for environmental conditions of the study area the water
temperature measured at 2.5 m depth matched Mediterranean

Fig. 4. Observed association patterns between the erect,
arborescent sponge Aplysina aerophoba and the non-
indigenous alga Caulerpa cylindracea in situ (shallow
water, Sardinian Sea): (A, B) algae surrounding the
sponge basal portion in areas of sediment accumulation
at the base of the oscular tubes; (C, D) algae climbing
vertically up the surfaces of the oscular tubes. Stolons
were never observed attempting to invade oscular aper-
tures at the top of oscular tubes. (Photo credit R. Fazzi.)

Fig. 5. Observed association patterns between the
sponge Sarcotragus spinosulus and the non-indigenous
alga Caulerpa cylindracea in situ (shallow water,
Sardinian Sea). The climbing and intrusive behaviour of
the algae is favoured by the conulose surface and the
large oscula, respectively: (A, B) algae first climb laterally
up the sponges to intrude oscular apertures; (C, D) algae
almost entirely cover the surface of the sponge. (Photo
credit R. Fazzi.)
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seasonal trends (Figure 10). The maximum temperature
(29.05°C) was recorded in August 2017, and the minimum
temperature (10.94°C) in January 2017. The annual average
for 2017 was 19.54°C (SD σ = 4.106 on the basis of 8017
measurements).

The average daily temperatures from June to October in 2012
and 2017 were significantly different (Student’s t-test P < 0.05%).
In general, the average temperatures recorded in 2012 were lower
than those recorded in same period of 2017, with the exception of
October (Figure 10).

Fig. 6. Observed association patterns between the
sponge Sarcotragus spinosulus and the non-indigenous
alga Caulerpa cylindracea in situ (shallow water,
Sardinian Sea): (A, B) algal fragments anchored within
an osculum (B is a magnification of the area indicated
in A); (C) algae at the sponge basal portion and subse-
quent colonization extending towards the apical surface.

Fig. 7. Observed association patterns between the
sponge Sarcotragus spinosulus and the non-indigenous
alga Caulerpa cylindracea in the warm season (dissected
fresh fragments, cross section, September 2017); (A, B)
sponge surface colonization by algae (arrows); (C, D)
canal enlargements (cavities) of the internal aquiferous
system (arrows) as defence to isolate algae within a
dense tangle of collagen filaments.
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The study area is well exposed to sunlight. Maximum light
values (∼40,000 Lux) were recorded in September and
November 2016, and in January and September 2017
(Figure 11). The best light intensity was June 2017, with average
>15 h of light per day. Less than 9 h of light were recorded in
December 2017 (Figure 11).

Discussion

Sponge community dynamics

Population decrease seems to be a general tendency among the most
common sponge species inhabiting Porto Conte Bay, with losses
ranging from >80% for Aplysina aerophoba to >73% for Crambe

Fig. 8. Observed association patterns between the
sponge Sarcotragus spinosulus and the non-indigenous
alga Caulerpa cylindracea in the cold season (dissected
fresh fragments, cross section, February 2018): (A, B)
sponge surface colonized by resting algae; (C) sponge
body with canals largely free of algae; (D) despite the
lack of light and low temperatures, green algae persist
in the inner portions of the degenerating sponge.
Arrows indicate algae.

Fig. 9. Observed association patterns between the
sponge Sarcotragus spinosulus and the non-indigenous
alga Caulerpa cylindracea. Morphological traits (SEM) of
sponge fragments and algae (arrows indicate collapsed
algal stolons, sponge fibres and filaments): (A) intrusion
by algae into the sponge body via the ectosomal aquifer-
ous system; (B) exposed skeletal fibres around conules in
subdermal areas; (C) algae intruding into sponge canals
and involving the choanosome; (D, E) persistent healthy
algal stolons in cavities connected with the resting aqui-
ferous system (an amphipod is evident in E); (F) along
the aquiferous canals, the sponge reacts to internal inva-
sion by isolating algal fragments in sub-oval cavities
lined by fibrous laminae and a dense tangle of thin col-
lagen filaments (see Figure 7).
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crambe over the 7-year period (2010–2017). On the other hand,
some increases were also recorded, most notably in the case of
Ircinia retidermata (55%). These changes in sponge populations
occurred during marked fluctuations in the environmental condi-
tions (2012–2017) of the bay (Figures 10 & 11; Table 2). In fact,
the variation between max and min temperature was higher in
2017 (∼25°C) than in 2012 (∼24°C), with the monthly average tem-
peratures recorded in 2012 significantly lower than those recorded
in 2017. Moreover, fluctuation of light intensity was high and
irregular independently from season and weather (Figure 11).

Caulerpa cylindracea colonization on sponges

The active vegetative phase and biomass increase of C. cylindracea
in very shallow water occurs from June to September–October, in
agreement with Ruitton et al. (2005). The colonization of photo-
philous sponges by algae occurs during spring-summer. Target
sponge species show contrasting behavioural patterns in response
to colonization attempts by C. cylindracea. Sponge defence strat-
egies display various degrees of intensity and efficiency against
colonization. While a certain ability to resist algal invasion was
seen to be common to the target sponge species, differences
were also observed. Indeed, Sarcotragus spinosulus, Ircinia retider-
mata, I. variabilis and Aplysina aerophoba were, to varying
degrees, overgrown by algae, whereas Crambe crambe appeared
to be markedly less affected by epibiotic processes.

The data show a significant decrease of colonization, in terms
of the density of stolons and fronds, and a significant difference in
the average daily temperature between August 2012 (23.7°C) and
2017 (24.6°C) on Student’s t-test. We hypothesize that the sea-
water temperature and light intensity could play a key role in
invasions (see Raniello et al., 2004; Ruitton et al., 2005).
Indeed, C. cylindracea displays high performances of colonization
in temperate climates and is able to withstand low temperatures in
winter. Comparison of 2012 and 2017 data suggests that C. cylin-
dracea in Porto Conte Bay is adapting its life cycle and settlement/

spreading dynamics to local conditions: (a) a slow colonization
phase matching the ‘boom and bust’ model, as hypothesized for
Caulerpa taxifolia by Boudouresque & Verlaque (2012), followed
by (b) a stalled phase in which maximum expansion is reached
∼12–14 years after first settlement (Jousson et al., 2000;
Withgott, 2002) as also suggested for more northerly Ligurian
Sea populations (Montefalcone et al., 2015). If these models are
valid, we can assume that C. cylindracea settled in the Porto
Conte Bay in 2003–2004 and it was in a phase of maximum
expansion during the first observations in 2006.

Crambe crambe

This poecilosclerid species seems to be resistant to overgrowth by
C. cylindracea, as is suggested by the observation that the presence
of stolons surrounding the substrate area occupied by sponges is
rarely followed by attempts of algal settlement, although this
observation is not supported by quantitative data as in S. spinosu-
lus. Only one case of algal settlement was observed during the
5-year study on the wild population of the bay. Moreover, the
absence of this invasive alga in sponge-farming plants has been
documented during long-term experiments on C. crambe cultiva-
tion in the same Porto Conte Bay (Padiglia et al., 2018b), where
modular plants are suspended in the water column at a distance
of ∼50 cm from the dense C. cylindracea prairie.

These findings are in line with the fact that this sponge species:
(a) produces anti-fouling toxins against other algal species (see
Murray et al., 2013) and (b) displays topographic localization in
the sponge body periphery (spherulous cells) of toxic compounds
that play a defensive role against potential epibionts, endobionts,
predators and competitive neighbours (Uriz et al., 1996a), like a
chemical shield (Ternon et al., 2016). Nevertheless, the wild popu-
lation of C. crambe has declined markedly. As almost all the speci-
mens studied had settled on sessile bivalves, as is typical of this
species, this decrease in population density could have been
caused by the large-scale death of these epibiont hosts, as recently

Table 3. Two-year monitoring of marked S. spinosulus samples

Years Months S cm2 V cm3 CA cm2 MCA % GR % CS n/15 SS n/15

2016 June 71.63 523.11 1.55 9.08 – 10 15

July 70.71 487.90 3.18 8.68 −0.067 15 15

August 75.98 561.88 1.37 4.56 0.151 12 15

September 88.81 683.00 2.00 9.30 0.215 6 15

2017 June 102.94 902.57 3.00 7.95 – 12 14

July 102.85 958.73 1.00 5.05 0.622 9 14

August 108.62 928.62 2.00 5.60 −0.040 9 14

September 108.01 913.84 5.00 7.40 0.260 5 14

S, AVG of apical surface; V, AVG of estimated volume; CA, AVG of algal cover surface; MCA, Maximum percentage cover area measured on a single sample surface; GR, AVG Growth Rate;
CS, Colonized samples (number of sponge samples colonized by C. cylindracea); SS, Surviving sponges.

Fig. 10. Comparison of daily mean temperatures at the
beginning (2012) and end (2017) of the experiments dur-
ing the warm season favouring the algal attack. The
2017 values are distinctly higher (up to over 5°C) over
the entire period, except for October.
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occurred in populations of Pinna nobilis (R. Manconi, personal
communication).

Ircinia retidermata

This irciniid species do not show a uniform defensive response,
and algal colonization varies from total absence to high coverage
and internal invasion. In apparent disagreement with quantitative
data on the other studied sponge species, which indicated a down-
ward trend in sponge population dynamics in the bay, our study
evidenced an increase in the population of I. retidermata. This is
in line with the finding of another long-term massive increase
recently observed in an Aegean population (Bianchi et al.,
2014). No data on the bioactive molecules of this poorly known
species are available in the literature.

Aplysina aerophoba

The decrease in the population of this verongiid species (8-year
data; Table 2), contrasts the fact that A. aerophoba in Porto
Conte Bay produces spring-summer asexual propagules by spon-
taneous processes of budding at the tips of tubes/branches fol-
lowed by dispersal in the water column during autumnal-winter
gales (Manconi et al., 2005). Large seasonal to pluriannual fluc-
tuations in populations of A. aerophoba could be related to nat-
ural fragmentation, which is very common in species of the
genus Aplysina (see Wulff, 1991; Tsurumi & Reiswig, 1997). As
for the interaction with C. cylindracea, A. aerophoba is probably
able to hinder the early surrounding action of C. cylindracea at
the sponge base and the subsequent growth and climbing of sto-
lons among/on the proximal portions of the oscular tubes,
thereby preventing the colonization of relatively large surface
areas. In some cases, the algal colonization seems to cease at
the base of this sponge. Caulerpa cylindracea is unable to intrude
oscular apertures and to settle within the sponge body although
ring-shaped stolons were occasionally observed strangling the dis-
tal portions of the oscular tubes (see also Fazzi et al., 2014).

Sarcotragus spinosulus

Our study confirmed that this irciniid species is highly vulnerable
to colonization by C. cylindracea, as previously reported in the

northern Adriatic Sea (Croatia) by Žuljević et al. (2011).
According to the Pearson correlation, our dataset indicates that
the growth rate of sponge samples colonized by C. cylindracea
was significantly correlated with the presence of algae only in
July of both years (2016 and 2017), when the temperature reached
average daily values of 24.5°C and the expansive vegetative activity
of algae increased.

Temporal trends indicate a cyclic algal colonization/re-
colonization process of C. cylindracea on S. spinosulus. In the
first phase, the alga surrounds the basal portion of the sponge sur-
face. The second phase is characterized by the epibiotic spreading
of algae on lateral/vertical sponge body surfaces, followed by
attempts both to enter into lateral oscular apertures and to
move towards the apical portion of the sponge, where most oscu-
lar apertures are located in S. spinosulus (Figure 6C). These two
phases occur in summer, during the highest vegetative activity
of algae. A third phase follows in autumn/winter, when algal frag-
ments persist in the canals of the aquiferous system, as revealed by
LM and SEM analyses (Figures 7 & 9).

In this last phase, internal colonization is indicated by the
presence of large sub-ectosomal and choanosomal cavities lined
with a continuous protective film (i.e. endosomal membranes)
around sub-oval bundle-like bodies containing sponge skeleton
remains, algal fragments coloured in various shades of green,
and sometimes inhabited by amphipods and polychaetes
(Figure 9). We interpret this reaction to algal colonization as a
strategy whereby the sponge isolates and rejects portions of its
own body that have been damaged by incompatible foreign bod-
ies, i.e. algal fragments. This is quite similar to the behaviour
observed in Spongia officinalis specimens affected by disease,
which are able to isolate and reject damaged body portions by
producing a new wound-like horny cuticle to promote the sur-
vival of the affected sponge (see Gaino & Pronzato, 1989; Gaino
et al., 1992).

The process of foreign-body control by the sponge in response
to algal intrusion also occurs on the sponge surface, as shown by
wound-like areas in areas previously occupied by thalli at the end
of the algal vegetative phase. This feature matches the necrotic
areas observed by Žuljević et al. (2011) after removal of the alga
from the sponge surface. Necrosis is a defence process displayed
by sponges during unfavourable conditions, e.g. wounding,
diseases.

Fig. 11. Porto Conte Bay: annual trends (2016–2017) of shallow water light intensity during the last 18 months of experiments (2.5 m depth, Sardinian Sea, Capo
Caccia – Isola Piana MPA).
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It seems clear that stolons/rhizoids are able to persist within
the aquiferous system of S. spinosulus during autumn and winter
(Figures 7–9). We hypothesize that resting thalli inhabiting
sponges since the previous summer are able to restart (after win-
tering) the vegetative algal phase at the beginning of the subse-
quent spring/summer. However, on the basis of the present
dataset, it is not possible to determine: (a) how many sponges
and how many oscules and canals of each sponge are inhabited
by algae at the end of winter; (b) whether algal recolonization
starts exclusively from the inner cavities of the sponge body,
from fragments anchored to the sponge surface or from the sur-
rounding environment, or from both; (c) whether the potential
drift of naturally detached and fragmented thalli, e.g. owing to
wave action in shallow water, can cause further algal colonization
from these asexual propagules floating in the water column during
storms.

The ‘mechanical’ defence of S. spinosulus, i.e. by isolating/
extruding affected body areas and remodelling, seems to be
powerless. However, it probably supports the metabolome defence
against algal colonization, unlike in other target sponge species
(Tsoukatou et al., 2002).

Conclusions

The invasion of C. cylindracea by means of creeping, climbing
and intruding into empty spaces seems to be favoured by some
species-specific morphotraits of sponges e.g. S. spinosulus: (a)
massive growth form with rough, irregular, finely conulose sur-
faces, and (b) large oscules and canals of the aquiferous system
as suitable spaces/micro-habitats with flowing water rich in nutri-
ents. Accordingly, the larger canals of the aquiferous system seem
to be a winter refuge for C. cylindracea.

The amount of biomass of sponges with a massive growth
form can also support algal survival growth, as suggested by
Žuljević et al. (2011). By contrast, the encrusting, thin growth
form and fragile body consistency of C. crambe do not appear
to be a suitable micro-habitat for conspicuous algal species,
such as C. cylindracea.

The colonization behaviour of algae and the defence strategies
implemented by sponges to inhibit algal growth are probably
based largely on chemical competition between their bioactive
metabolome. Sponges have evolved a wide range of defence beha-
viours that involve bioactive compounds, such as the production
of anti-fouling toxins and toxins that have a functional role in
spatial competition and the control of predation, epibiosis and
endobiosis by other organisms (Bakus & Green, 1974;
Braekman & Daloze, 1986; Pawlik et al., 1995; Uriz et al.,
1996a, 1996b; Becerro et al., 2003; Bell, 2008; Murray et al.,
2013; Ternon et al., 2016). This chemical protection is evident
in photophilous species, which are mostly free from epibiosis,
except for C. cylindracea, in Porto Conte Bay.

The behaviour of investigated sponge species seems a reaction
to algal colonization by implementing various strategies to inhibit
algal growth. Sponge morphological plasticity, which is based on
continuous morphogenesis, enables damaged body parts to be
rejected and subsequently regenerated by means of rapid healing
by stem cell systems after damage (e.g. Boury-Esnault, 1976; Storr,
1976; Simpson, 1984; Gaino et al., 1995; Funayama, 2018). This is
a very effective defence strategy of sponges together with chemical
reactions. On the other hand, our data indicate that C. cylindracea
is able to colonize different sponge species and to respond against
their species-specific defence.

Sponge species suffered algal colonization in various ways.
These were carried out by creeping stolons growing directly on
the sponge surface, which is normally more or less free from
other macro-epibionts in the studied species. This could be

interpreted as an evident and effective ability to avoid the major-
ity of possible indigenous colonizers, but not C. cylindracea and a
few other native algal species on S. spinosulus.

Not all the complex relationships of competition between the
invasive alien algae and the sponge community we studied can
be explained, and many questions remain. The sponge commu-
nity of Porto Conte Bay showed an unexpected pluriannual ability
to resist an extremely prolific and invasive non-indigenous alga
probably through the production of sponge toxins variously
able to counteract algal invasion.

The population density of the seven monitored species chan-
ged notably in the long term, showing contrasting trends: several
of them decreased but some increased. The stress caused by the
algal behaviour as a sponge colonizer seems to be evident; on
the other hand, the sponge reaction mitigates it, in different
ways, depending on the species. The algal invasion, together
with the significant temperature rise, could be partly
re-interpreted, not only as a negative impact, but also as an
expression of a sort of intermediate disturbance (IDH sensu
Connell, 1978; Wilkinson, 1999) stimulating the sponge commu-
nity to a continuous adaptation.
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