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SUMMARY
This paper proposes control algorithms for heterogeneous teleoperation systems to guarantee stability
and tracking performance in the presence of time-varying communication delays. Because robotic
manipulators, in most applications of bilateral teleoperation systems, interact with a human operator
and remote environment on the end-effector, the control system is developed in the task-space.
When the dynamic parameters of the robots are unknown and the communication network is
subject to time-varying delay, the developed controller can ensure stability and task-space position
tracking. Additionally, if the robotic systems are influenced by human and environmental forces,
the presented teleoperation control system is demonstrated to be stable and all signals are proven
to be ultimately bounded. By employing the redundancy of the slave robot for sub-task control,
the proposed teleoperation system can autonomously achieve additional missions in the remote
environment. Numerical examples utilizing a redundant planar robot are addressed to validate the
proposed task-space teleoperators with time-varying delay.

KEYWORDS: Teleoperation system; Time-varying delay; Heterogeneous robots; Task-space control;
Adaptive control.

1. Introduction
Bilateral teleoperation systems, composed of interconnected master and slave robots, have been
demonstrated to be useful in implementing tasks in remote or hazardous environments.1, 2 By
exchanging information over a long distance, the slave robot can track the position of the master
robot, which is manipulated by a human operator. Moreover, the master robot can convey to
the human operator the contact force between the slave robot and the remote environment. The
development of teleoperators could potentially contribute to a variety of applications, such as outer
space manipulation, undersea exploration, and remote medical operation.2–5 The unreliability of
communication channels and the possibly kinematic dissimilarity of master and slave robots warrant
the study of bilateral teleoperation with heterogeneous robots under time-varying delays.

Long-distance transmission incurs unavoidable communication delays and bandwidth limitations
that can destabilize and degrade the performance of bilateral teleoperation systems.6, 7 The stability
of teleoperation systems with constant delays has been extensively studied using scattering or wave-
variable formulation.8, 9 By transmitting wave variables that are encoded by the passive input–output
pair of a robotic system, the passivity of a delayed communication block can be guaranteed.
Assuming passive human and environmental forces, the interconnected teleoperation system is
passive and stable. Although this method is capable of stabilizing bilateral teleoperation with
arbitrary constant delays, the issues of wave reflection8 and position drift10 are major impediments to
system performance. To improve tracking performance, control schemes employing passivity-based
synchronization,11 PD-like control,12 and neural networks13 have been presented recently without
utilizing wave variables.

For teleoperation systems closed by communication networks, the resulting data congestion and
scarcity of transmission bandwidth may lead to time-varying delays that significantly deteriorate
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system performance and result in instability.14–16 Time-varying delay is more difficult to compensate
for than is constant delay.17 The method of using a scattering transformation has been modified to
address teleoperation systems subject to time-varying delays.18, 19 Passivity-based control algorithms
have been proposed for teleoperators facing time-varying communication delays and passive external
forces.15, 20 Delay-dependent20, 21 and mode-dependent14 control schemes have been proposed to
stabilize teleoperation systems with time-varying delays. Moreover, PD-like control12 has been
extended to teleoperators with variable time delays.16

Based on the realization that teleoperation systems mostly involve interaction between a human
operator and the remote environment in the end-effector, the study of task-space teleoperators has
become an emerging research topic.22–25 Task-space teleoperation with a redundant slave robot
has been developed in free motion under constant communication delays.26 A new teleoperation
framework has been addressed in ref. [23], where two master robots are utilized to control different
coordinates assigned to the slave robot. Control of teleoperation systems with kinematically redundant
manipulators was presented in ref. [24]. By utilizing a redundant slave robot to enhance the efficiency
of complex teleoperation, a semi-autonomous teleoperation system has been developed for constant
communication delay.22 A control algorithm for task-space teleoperation with guaranteed position
and orientation tracking has been proposed in ref. [25].

In this paper, we study the control problem for a task-space teleoperation system with
heterogeneous robots under time-varying delay by considering dynamic uncertainties and external
forces from the human operator and remote environment. We demonstrate that if the control gains
of the proposed control algorithm are contingent on the communication delay, the closed-loop
teleoperation system in free motion is stable and the convergence of tracking errors is guaranteed.
Under external forces, the control system is shown to be stable with ultimately bounded states. Since
the teleoperation is achieved in the task-space, a redundant manipulator is considered as the slave
robot so that the null-space can be exploited to achieve additional missions autonomously. Simulations
are introduced by considering 3-degree-of-freedom (DOF) and 5-DOF planar robots with the use of
redundancy for increasing manipulability and collision avoidance.

The contributions of this paper are summarized as follows. In comparison with refs. [24]–[26],
the teleoperation systems addressed here are more practical because the master and slave robots
are considered to be heterogeneous owing to dissimilar kinematic structures. In contrast to refs.
[22]–[24] and [26], the proposed teleoperation systems study the issue of asymmetric time-varying
communication delays in the presence of external forces. In contrast to refs. [23]–[26], we propose
an adaptive control algorithm to cope with parameter uncertainties in robot dynamics. By utilizing
a control framework involving heterogeneous robots, the redundancy of robotic manipulators can be
designed to achieve secondary tasks, while refs. [23], [25], and [26] control only the teleoperation
task.

The rest of this paper is organized as follows. Section 2 presents the model of the teleoperation
system and the problem description. Section 3 addresses the controller, stability analysis, and sub-task
control. Section 4 contains numerical examples of a bilateral teleoperation system. Finally, Section 5
summarizes the results and discusses possible directions for future research.

2. Problem Formulation
Without loss of generality, the robotic systems in the proposed task-space teleoperator are modeled
as Euler–Lagrangian systems under the assumptions that:

Assumption 1. The master and slave robots have identical dimension in the task-space.

Assumption 2. The master robot is a non-redundant manipulator, and the slave robot is a redundant
manipulator.1

1 A teleoperation system with redundant master robot can be accomplished directly from the control framework
developed in this paper. Additionally, the assumption of redundant slave robots is necessary for the robotic
manipulator to achieve an autonomous task in the remote environment.
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Fig. 1. Control architecture of the task-space teleoperation system for heterogeneous robots with time-varying
delays.

Following ref. [27], the dynamics of the heterogeneous master and slave robots are described as

{
Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τm + J T

m (qm)Fh

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τs − J T
s (qs)Fe

, (1)

where qm ∈ Rp and qs ∈ Rq are the vector of generalized configuration coordinates, Mm(qm) ∈ Rp×p

and Ms(qs) ∈ Rq×q are the inertia matrices, Cm(qm, q̇m) ∈ Rp×p and Cs(qs, q̇s) ∈ Rq×q are the vector
of Coriolis/centrifugal forces, gm(qm) = ∂Hm(qm)/∂qm ∈ Rp and gs(qs) = ∂Hs(qs)/∂qs ∈ Rq are
the gradient of the potential function Hm(qm) and Hs(qs), τm ∈ Rp and τs ∈ Rq are the vectors of
applied torques. As the teleoperation system is implemented in the task-space, the external forces
Fh and Fe exerted by the human operator and the remote environment have the same dimension
such that Fh, Fe ∈ Rp. Therefore, the Jacobian matrices of the master and slave robots are denoted
by Jm(qm) ∈ Rp×p and Js(qs) ∈ Rp×q , respectively. The Jacobian matrix of the slave robot Js is a
non-square matrix as the slave robot is a redundant manipulator (Assumption 2).

The robot dynamics (1) exhibit several fundamental properties resulting from the Lagrangian
dynamic structure.27

Property 1. The matrix Mi(qi) is symmetric and positive-definite, and there exists positive
constants ml and mu such that mlIn ≤ Mi(qi) ≤ muIn, where In is an n × n identity matrix.

Property 2. For any differentiable vector xi ∈ Rn, the Lagrangian dynamics are linearly
parameterizable which implies Mi(qi)ẋi + Ci(qi, q̇i)xi + gi(qi) = Yi(qi, q̇i , xi, ẋi)�i , where �i ∈
Rw is a constant vector of unknown parameters, and Yi(qi, q̇i , xi, ẋi) ∈ Rn×w is the matrix of known
functions of the generalized coordinates and their higher derivatives.2

Property 3. Under an appropriate definition of the matrix Ci(qi, q̇i), the matrix Ṁi(qi) −
2Ci(qi, q̇i) is skew symmetric such that xT (Ṁi(qi) − 2Ci(qi, q̇i))x = 0 for x ∈ Rn.

Property 4. For qi, q̇i , xi ∈ Rn, there exists positive constant βc such that the matrix of
Coriolis/centrifugal torques is bounded by ‖Ci(qi, q̇i)xi‖ ≤ βc‖q̇i‖‖xi‖, where ‖ · ‖ denotes the
Euclidean norm of the enclosed signal.

Although the heterogeneous robots have different dimensions in the joint-space, the dimensions
of the end-effector are identical (Assumption 1). Therefore, the relationships between the positions
of the end-effector Xm, Xs ∈ Rp and the joint-space vectors qm ∈ Rp, qs ∈ Rq are described as

Xm = hm(qm), Ẋm = Jm(qm)q̇m,

Xs = hs(qs), Ẋs = Js(qs)q̇s ,
(2)

where hm(·) : Rp → Rp, hs(·) : Rq → Rp denote the mapping between the joint space and the task
space, and Jm(qm) = ∂hm(qm)/∂qm, Js(qs) = ∂hs(qs)/∂qs are the Jacobian matrices that are assumed
to be known in the control system.

Following the dynamic and kinematic model of the robotic system, the proposed control
architecture for task-space teleoperation system is illustrated in Fig. 1. The master and slave robots

2 If the dynamic parameters of a robotic manipulator are uncertain, then the constant vector �i is unknown to
the controller.
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exchange the positions of the end-effector Xm and Xs through the communication network. These
signals are subject to asymmetric time-varying communication delays, which are denoted by Tm(t)
and Ts(t). In the subsequent studies, the time-varying delays are considered under the following
assumption.

Assumption 3. The time-varying delays are continuously differentiable, have known upper
bounds T̄i , i.e. 0 ≤ Ti(t) < T̄i < ∞, and satisfy the condition that −dl

i ≤ Ṫi(t) < 1, where dl
i ≥ 0 are

the absolute value of the lower bounds of the derivative of time-varying delays3.

According to the proposed control architecture (Fig. 1), the delayed task-space tracking errors
between the master and slave robots are defined as

em(t)=Xs(t−Ts(t))−Xm(t), es(t)=Xm(t−Tm(t))−Xs(t). (3)

Therefore, the derivative of tracking errors are given by ėm(t) = (1 − Ṫs(t))Ẋs(t − Ts(t)) − Ẋm(t) and
ės(t) = (1 − Ṫm(t))Ẋm(t − Tm(t)) − Ẋs(t), where 1 − Ṫm(t) and 1 − Ṫs(t) result from taking the time
derivative of delayed position signals and are assumed to be unknown in the controller. Following
the formulated teleoperation system, the objective of this paper is to develop a control algorithm
so that the closed-loop teleoperation system under time-varying communication delays (Ti(t)) and
dynamic uncertainties (unknown �i) can be guaranteed to be stable with task-space position tracking
i.e. limt→∞ em(t) = 0 and limt→∞ es(t) = 0. In the rest of this paper, the subscript i = m denotes the
master robot, and i = s represents the slave robot.

2.1. Instrumental lemma
The following lemmas are utilized in this paper to prove stability and tracking performance of the
proposed task-space teleoperation system.

Lemma 1. 7 Given signals x, y ∈ Rn, ∀T (t) such that 0 < T (t) ≤ T̄ < ∞ and α > 0, the
following inequality holds:

−
∫ t

0
xT (σ )

∫ 0

−T (σ )
y(σ + θ)dθdσ ≤ α

2
||x||22 + T̄ 2

2α
||y||22,

where || · ||2 denotes the L2 norm of the enclosed signal.

Lemma 2. 17 Given signals x, y ∈ Rn and time-varying delays 0 ≤ T (t) ≤ T̄ , where T̄ is the
upper bound of T (t), the following inequality holds:

−2xT(t)
∫ t

t−T (t)
y(σ )dσ −

∫ t

t−T (t)
yT(σ )y(σ )dσ ≤ T̄ xT(t)x(t).

3. Task-Space Teleoperator with Time-Varying Delays

3.1. Control design
To achieve task-space teleoperation under dynamic uncertainties and time-varying communication
delays, the control input for the teleoperation system (1) is given as

τi = M̂i(qi)ξ̇i + Ĉi(qi, q̇i)ξi + ĝi(qi) − kppi − krJ
T
i ri + kvJ

T
i ėi

= Yi(qi, q̇i , ξi, ξ̇i)�̂i − kppi − krJ
T
i ri + kvJ

T
i ėi , (4)

3 The necessary condition Ṫi(t) < 1 results from the causality implications of continuous-time control system.
The reader is referred to ref. [28] for more details.
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where M̂i(qi), Ĉi(qi, q̇i), and ĝi(qi) denote the estimate of Mi(qi), Ci(qi, q̇i), and gi(qi), which may
include unknown parameters of the robotic manipulator, Property 2 is utilized for the second equality,
�̂i is the estimate of the vector �i , and kp, kr , kv ∈ R+ are constant control gains.

The control signal ξi in (4) is defined as ξm = λJ−1
m em for the non-redundant master robot, and

ξs = λJs
+es + (Iq − J+

s Js)ψs for the redundant slave robot with the use of null-space method.22, 29, 30

In the definition of ξi , λ ∈ R+ is a control constant, J−1
m ∈ Rp×p is the inverse of Jm, J+

s ∈ Rq×p

denotes the pseudoinverse of Js , and ψs ∈ Rp is the negative gradient of an appropriately defined
convex function for sub-task control4. The pseudoinverse J+

s , which is given by J+
s = J T

s (JsJ
T
s )−1,

satisfies JsJ
+
s = Iq , and has the following properties:31, 32

Js(Iq − J+
s Js) = 0, (5)

(Iq − J+
s Js)(Iq − J+

s Js) = Iq − J+
s Js. (6)

Additionally, the control signals pi and ri are designed as pi = q̇i − ξi and ri = Jipi = −λei + Ẋi ,
where the robot kinematics (2) is utilized for ri and the property of the pseudoinverse (5) is utilized
for rs .

By substituting the control input (4) into the robot dynamics (1), the closed-loop control system
of the teleoperation is given as

{
Mmṗm+Cmpm+kppm =Ym�̃m−krJ

T
m rm+kvJ

T
m ėm+J T

m Fh

Msṗs +Csps +kpps =Ys�̃s −krJ
T
s rs +kvJ

T
s ės −J T

s Fe

, (7)

where �̃i = �̂i − �i is the estimation errors of the unknown parameters. In the proposed system,
we let the uncertain dynamic parameters �̂i be generated by the adaption law

˙̂�i = −�iY
T
i pi, (8)

where �i is a positive-definite constant matrix.
Denote by C = C([−T , 0], Rn) the Banach space of continuous functions mapping

the interval [−T , 0] into Rn, with the topology of uniform convergence. Let z =
[pm, ps, em, es, �̃m, �̃s, Ẋm, Ẋs] be the state of the system and define zt = z(t + φ) ∈ C,
−T ≤ φ ≤ 0 as the state of the system.33 We assume in this paper that z(φ) = η(φ), η ∈ C, and all
signals belong to L2e, the extended L2 space.

3.2. Stability analysis in free motion
By denoting the maximum round-trip delay T̄ = T̄m + T̄s , the result of task-space teleoperation
system with time-varying communication delays follows.

Theorem 3.1. Consider the closed-loop teleoperation system described by (7) and (8). Assume
that the Jacobian matrix of the non-redundant master manipulator is full rank. If the control gains
satisfy the condition that

(
kr − kvd

l
s

2

)(
kr − kvd

l
m

2

)
> λ2k2

r T̄
2, (9)

then in free motion (Fh ≡ 0, Fe ≡ 0) the task-space position tracking error ei , the robotic velocity
Ẋi , and the control signal pi asymptotically approach the origin in the presence of time-varying
communication delays.

4 The details of sub-task control are discussed in Section 3.4.
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Proof. Consider the positive-definite storage functional V for the closed-loop teleoperation
system:

V (zt ) = 1

2

∑
i={m,s}

(
pT

i Mipi + �̃T
i �−1

i �̃i + λkve
T
i ei

+ kv

∫ t

t−Ti (t)
ẊT

i (σ )Ẋi(σ )dσ

)
+ λkr (Xm − Xs)

T (Xm − Xs).

Taking the time-derivative of V along the trajectories of the teleoperation system with the use of the
adaptive law (8), Property 3, and ri = Jipi , the derivative becomes

V̇ =
∑

i={m,s}

(−kppT
i pi − krr

T
i ri + kvr

T
i ėi + λkve

T
i ėi

+ kv

2
ẊT

i Ẋi − kv

2
(1 − Ṫi(t))Ẋ

T
i (t − Ti(t))Ẋi(t − Ti(t))

)

+ 2λkr (Xm − Xs)
T (Ẋm − Ẋs).

Substituting ri = −λei + Ẋi , we have −krr
T
i ri + kvr

T
i ėi = −λ2kre

T
i ei + 2λkrẊ

T
i ei − krẊ

T
i Ẋi −

λkve
T
i ėi + kvẊ

T
i ėi . Thus, the derivative of the storage function can be written as

V̇ ≤
∑

i={m,s}

(−kppT
i pi − λ2kre

T
i ei − krẊ

T
i Ẋi

) + 2λkrẊ
T
mem

+ 2λkrẊ
T
s es + 2λkr (Xm − Xs)

T (Ẋm − Ẋs) +
∑

i={m,s}

(
kvẊ

T
i ėi

+ kv

2
ẊT

i Ẋi − kv

2
(1 − Ṫi(t))Ẋ

T
i (t − Ti(t))Ẋi(t − Ti(t))

)
. (10)

Substituting ei into 2λkrẊ
T
mem + 2λkrẊ

T
s es , we have the following relationship:

2λkrẊ
T
mem + 2λkrẊ

T
s es + 2λkr (Xm − Xs)

T (Ẋm − Ẋs)

= 2λkr

(−Ẋm(Xs − Xs(t − Ts(t))) − Ẋs(Xm − Xm(t − Tm(t))
)

= −2λkrẊ
T
m

∫ 0

−Ts (t)
Ẋs(t+σ )dσ −2λkrẊs

∫ 0

−Tm(t)
Ẋm(t+σ )dσ. (11)

Furthermore, by expanding ėi , kvẊ
T
mėm in the second summation term of (10) can be rewritten as

kvẊ
T
mėm = kvẊ

T
m((1 − Ṫs(t))Ẋs(t − Ts(t)) − Ẋm)

= −kvẊ
T
mẊm + kv(1 − Ṫs(t))Ẋ

T
mẊs(t − Ts(t)).

Similarly, we have

kvẊ
T
s ės = −kvẊ

T
s Ẋs + kv(1 − Ṫm(t))ẊT

s Ẋm(t − Tm(t)).
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Therefore, the second summation term in (10) becomes

∑
i={m,s}

(
kvẊ

T
iėi + kv

2
ẊT

iẊi − kv

2
(1−Ṫi(t))Ẋ

T
i (t − Ti(t))Ẋi(t − Ti(t))

)

= −kv

2
(1 − Ṫm(t))(Ẋm(t − Tm(t)) − Ẋs)

T (Ẋm(t − Tm(t)) − Ẋs)

− kv

2
(1 − Ṫs(t))(Ẋs(t − Ts(t)) − Ẋm)T (Ẋs(t − Ts(t)) − Ẋm)

− Ṫs(t)
kv

2
ẊT

mẊm − Ṫm(t)
kv

2
ẊT

s Ẋs

≤ kvd
l
s

2
ẊT

mẊm + kvd
l
m

2
ẊT

s Ẋs, (12)

where the inequality results from Assumption 3. By substituting (11) and (12) into (10), the derivative
becomes

V̇ ≤
∑

i={m,s}

(
−kppT

i pi − λ2kre
T
i ei − krẊ

T
i Ẋi

)
+ kvd

l
s

2
ẊT

mẊm

+ kvd
l
m

2
ẊT

s Ẋs − 2λkrẊ
T
m

∫ 0

−Ts (t)
Ẋs(t + σ )dσ

− 2λkrẊs

∫ 0

−Tm(t)
Ẋm(t + σ )dσ.

By integrating the above equation from 0 to t with the use of Lemma 1, we have

V (t)−V (0) ≤
∑

i={m,s}

(
− kp‖pi‖2

2 − λ2kr‖ei‖2
2 − kr‖Ẋi‖2

2

)

+ kvd
l
s

2
‖Ẋm‖2

2 + kvd
l
m

2
‖Ẋs‖2

2 + 2λkr

(α1

2
‖Ẋm‖2

2

+ T̄ 2
s

2α1
‖Ẋs‖2

2 + α2

2
‖Ẋs‖2

2 + T̄ 2
m

2α2
‖Ẋm‖2

2

)
, (13)

where ‖ · ‖2 denotes the L2 norm of the enclosed signal. The coefficients of ‖Ẋm‖2
2 and ‖Ẋs‖2

2 in (13)
have to be negative in order to ensure that the storage function V is a non-increasing function. Hence,

we have the inequalities kr − kvd
l
s

2 − λkr (α1 + T̄ 2
m

α2
) > 0 and kr − kvd

l
m

2 − λkr (α2 + T̄ 2
s

α1
) > 0. As α1 and

α2 are positive constants resulting from Lemma 1, the above inequalities result in the condition that

(
kr − kvd

l
s

2

)(
kr − kvd

l
m

2

)
>λ2k2

r (T̄m+T̄s)
2 >λ2k2

r T̄
2. (14)

Therefore, if control gains λ, kr, kv and time delays satisfy the condition (14), then V (t) − V (0) ≤
0, ∀t > 0. Hence, signals pi, ei, Ẋi ∈ L2 from (13). In addition, we get that pi, �̃i, ei , and
Xm − Xs ∈ L∞ because V is bounded. Since ri = −λei + Ẋi and ei, Ẋi ∈ L2, we obtain ri ∈ L2.
As Ẋi(t) and Ṫi(t) are bounded, we obtain ėi ∈ L∞. As ei ∈ L2 and ėi ∈ L∞, it is shown by invoking
Barbalat’s Lemma27, 34 that limt→∞ ei(t) = 0. Therefore, the position tracking of the teleoperation
system in the task space under time-varying communication delays is guaranteed.

Subsequently, we can obtain that the control input is bounded τi ∈ L∞. Hence, we get ṗi ∈ L∞
from the closed-loop system (7) by utilizing Property 1 and Property 4. As pi ∈ L2 and ṗi ∈ L∞, we
have limt→∞ pi(t) = 0 by invoking Barbalat’s Lemma again. Additionally, taking the time derivative
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of ri = Jipi , which is ṙi = J̇ipi + Jiṗi , we obtain that ṙi is bounded. Since ri ∈ L2 and ṙi ∈ L∞,
we conclude that limt→∞ ri(t) = 0. Therefore, ri = −λei + Ẋi and limt→∞ ei(t) = limt→∞ ri(t) = 0
lead to limt→∞ Ẋi(t) = 0. Consequently, the proposed task-space teleoperation system is stable, and
the position tracking error ei , the robotic velocity Ẋi , and the control signal pi approach the origin in
the presence of time-varying delays. �

We next consider the case when the external forces from the human operator and the remote
environment are passive with (Fh, rm) and (Fe, rs) as input–output pairs, respectively. Thus, there
exist constants βh, βe ∈ R+ such that12, 13

−
∫ t

0
FT

h (σ )rm(σ )dσ ≥−βh,

∫ t

0
FT

e (σ )rs(σ )dσ ≥−βe. (15)

Therefore, the task-space teleoperation system with passive external forces follows.

Corollary 3.2. Consider the closed-loop teleoperation system described by (7) and (8). Assume
that the Jacobian matrix of the non-redundant master manipulator is full rank. If the control gains
satisfy condition (9), and the external forces are passive with (15), then the task-space position
tracking error ei , the robotic velocity Ẋi , and the control signal pi asymptotically approach the
origin with time-varying communication delays.

Proof. By considering the storage functional candidate for the teleoperation system as

V (zt ) = 1

2

∑
i={m,s}

(
pT

i Mipi + �̃T
i �−1

i �̃i + λkve
T
i ei

+ kv

2

∫ t

t−Ti (t)
ẊT

i (σ )Ẋi(σ )dσ

)
+ λkr (Xm − Xs)

T (Xm − Xs)

+
∫ t

0

(−FT
h (σ )rm(σ ) + FT

e (σ )rs(σ )
)
dσ + βh + βe,

the proof can be completed by following the proof of Theorem 3.1. Therefore, under passive external
forces, the closed-loop control system is stable with limt→∞ ei(t) = limt→∞ Ẋi(t) = limt→∞ pi(t) =
0. �

Remark 1. The proposed control system in Theorem 3.1 and Corollary 3.2 is studied without
the requirement of exact knowledge of the time-varying delay. The only required parameters are the
upper bound of round-trip delay T̄ and the absolute value of the lower bound of the time derivative
of delay dl

i . Given the control gains, which are contingent on T̄ and dl
i , the proposed controller

can guarantee stability and tracking performance of the teleoperation, both in free motion and with
passive forces. For time-varying delay with large T̄ and dl

i , the stability of the teleoperation system
can be guaranteed by decreasing λ and kv , and increasing kr .

Remark 2. In the proposed control algorithm, the upper bound of communication delay T̄ and the
lower bound of time-derivative delay dl

i are necessary for stability and tracking performance. Both of
these values can be approximately obtained by transmitting a known continuous function fi(t), such
as fi(t) = t/N with a positive constant N , through the communication network. Thus, the function
arrives at the destination with the value of fi(t − Ti(t)) = (t − Ti(t))/N . Therefore, the upper bound
of time-varying delay can be obtained by comparing the received function fi(t − Ti(t)) with the
original function that Ti(t) = N(fi(t) − fi(t − Ti(t))). Furthermore, by taking the time-derivative of
fi(t − Ti(t)), the value −dl

i ≤ Ṫi(t) can be computed from Ṫi(t) = 1 − Nḟi(t − Ti(t)).

Remark 3. Since the problem of constant delay is a special case of the teleoperation system
studied in Theorem 3.1 and Corollary 3.2 when Ṫi(t) ≡ 0, by letting dl

i ≡ 0 for condition (9), we
can determine that the constant delay teleoperation system is stable with the convergence of tracking
errors to the origin if λT̄ < 1. Therefore, the values of kv and kr would not affect system stability or
tracking performance in a constant delay problem.
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3.3. Stability analysis with non-zero external force
The stability of the task-space teleoperation system with time-varying communication delays when the
external forces from the human operator and the remote environment are non-zero and non-passive is
studied subsequently. The external forces are given by Fh = kf h − khrm and Fe = kf e + kers , where
kf h and kf e are bounded vectors in Rp, and kh, ke are bounded non-negative constants. According
to ref. [11], we assume that the teleoperation system exists no dynamic uncertainty, which implies
�̃i = 0, in the case of non-passive force. Therefore, the closed-loop system of the teleoperation
becomes

{
Mmṗm + Cmpm + kppm = −krJ

T
m rm + kvJ

T
m ėm + J T

m Fh

Msṗs + Csps + kpps = −krJ
T
s rs + kvJ

T
s ės − J T

s Fe.
(16)

By defining the constant gain βk = kr + kf , where kf = min{kh, ke}, and denoting z =
[pm, ps, em, es] the state of the system, the result for teleoperation system with non-passive external
forces under time-varying communication delays is now presented.

Theorem 3.3. Consider the closed-loop teleoperation system described by (16). Assume that the
Jacobian matrix of the non-redundant master manipulator is full rank, and the external forces are
given by Fh = kf h − khrm and Fe = kf e + kers . If the control gains and delays satisfy the condition
that

2βk(1 − λT̄ ) > max
{
kvd

l
s + 1, kvd

l
m + 1

}
, (17)

then all signals in the control system are ultimately bounded.

Proof. Consider the positive-definite storage functional as

V (zt ) = 1

2

∑
i={m,s}

(
pT

i Mipi +λkve
T
i ei + kv

∫ t

t−Ti (t)
ẊT

i (σ )Ẋi(σ )dσ

+ 2λβk

∫ t

t−T̄i

(σ − t + T̄i)Ẋ
T
i (σ )Ẋi(σ )dσ

)

+ λβk(Xm − Xs)
T (Xm − Xs). (18)

Taking the time-derivative of the storage functional and following the proof of Theorem 3.1 with the
substituting of Fh and Fe, we get

V̇ =
∑

i={m,s}

(
−kppT

i pi − krr
T
i ri + kvr

T
i ėi + λkve

T
i ėi + kv

2
ẊT

i Ẋi

− kv

2
(1 − Ṫi(t))Ẋ

T
i (t − Ti(t))Ẋi(t − Ti(t)) + λβkT̄iẊ

T
i Ẋi

− λβk

∫ t

t−T̄i

ẊT
i (σ )Ẋi(σ )dσ

)
+ 2λβk(Xm − Xs)

T (Ẋm − Ẋs)

+ kT
f hrm − kT

f ers − khr
T
mrm − ker

T
s rs . (19)

Since the last two terms are less than −kf rT
mrm − kf rT

s rs , by substituting ri = −λei + Ẋi , we have

−krr
T
i ri + kvr

T
i ėi − kf rT

i ri

= −λ2βke
T
i ei + 2λβkẊ

T
i ei − βkẊ

T
i Ẋi − λkve

T
i ėi + kvẊ

T
i ėi .
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In addition, we have the relationships that kT
f hrm ≤ kT

f hkf h + λ2

2 eT
mem + 1

2 ẊT
mẊm, −kT

f ers ≤ kT
f ekf e +

λ2

2 eT
s es + 1

2 ẊT
s Ẋs and

−λβk

∫ t

t−T̄i

ẊT
i (σ )Ẋi(σ )dσ ≤ −λβk

∫ t

t−Ti (t)
ẊT

i (σ )Ẋi(σ )dσ.

Utilizing the aforementioned mathematical manipulations, the derivative becomes

V̇ ≤
∑

i={m,s}

(
− kppT

i pi − λ2βke
T
i ei − βkẊ

T
i Ẋi + kvẊ

T
i ėi

+ kv

2
ẊT

i Ẋi − kv

2
(1 − Ṫi(t))Ẋ

T
i (t − Ti(t))Ẋi(t − Ti(t))

+ λβkT̄iẊ
T
i Ẋi − λβk

∫ t

t−Ti (t)
ẊT

i (σ )Ẋi(σ )dσ

)
+ 2λβkẊ

T
mem

+ 2λβkẊ
T
s es + 2λβk(Xm − Xs)

T (Ẋm − Ẋs) + kT
f hkf h

+ kT
f ekf e +

∑
i={m,s}

(
λ2

2
eT
i ei + 1

2
ẊT

i Ẋi

)
. (20)

By employing the relationships in (11) and (12), V̇ can be written as

V̇ ≤
∑

i={m,s}

(
−kppT

i pi −λ2βke
T
i ei −βkẊ

T
i Ẋi + λ2

2
eT
i ei + 1

2
ẊT

i Ẋi

)

+ kvd
l
s

2
ẊT

mẊm + kvd
l
m

2
ẊT

s Ẋs + λβkT̄mẊT
mẊm + λβkT̄sẊ

T
s Ẋs

− 2λβkẊ
T
m

∫ 0

−Ts (t)
Ẋs(t + σ )dσ −2λβkẊs

∫ 0

−Tm(t)
Ẋm(t + σ )dσ

− λβk

∫ t

t−Tm(t)
ẊT

m(σ )Ẋm(σ )dσ −λβk

∫ t

t−Ts (t)
ẊT

s (σ )Ẋs(σ )dσ

+ kT
f hkf h + kT

f ekf e. (21)

By exploiting Lemma 2 for the integral terms in (21), we get

V̇ ≤
∑

i={m,s}

(−kppT
i pi − λ2βke

T
i ei − βkẊ

T
i Ẋi + λT̄ βkẊ

T
i Ẋi

+ λ2

2
eT
i ei + 1

2
ẊT

i Ẋi

)
+ kvd

l
s

2
ẊT

mẊm + kvd
l
m

2
ẊT

s Ẋs + kT
f hkf h

+ kT
f ekf e, (22)

where λT̄ βkẊ
T
mẊm is the sum of λT̄mβkẊ

T
mẊm in (21) and λT̄sβkẊ

T
mẊm resulting from Lemma 2. By

following similar argument, we obtain λT̄ βkẊ
T
s Ẋs in (22). Therefore, if the control gains and delays
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satisfy condition (17), we get

V̇ ≤ −kppT
mpm − kppT

p ps −
(
λ2βk − λ2

2

)
eT
mem

−
(
λ2βk − λ2

2

)
eT
s es + kT

f hkf h + kT
f ekf e

≤ −βmin(1 − ρ)‖z‖2 − βminρ‖z‖2 + kT
f hkf h + kT

f ekf e

≤ −βmin(1 − ρ)‖z‖2 ∀‖z‖ ≥
√

kT
f hkf h + kT

f ekf e

βminρ
, (23)

where 0 < ρ < 1 and βmin = min
{
kp, λ2βk − λ2

2

}
> 0 as βk > 1/2. Considering that βmin and ρ are

positive and bounded away from zero, and kf h, kf e are assumed to be bounded constant, we have
that V̇ < 0, ∀z(t) �= 0.11 Consequently, we conclude that the signals of the teleoperation system are
ultimately bounded. �

Remark 4. By observing conditions (9) and (17), the control gain λ and upper bound of round-
trip delay T̄ have to satisfy λT̄ < 1 for the existence of at least one solution to the control gains.
Therefore, the value of λ can be selected from the estimation of T̄ in the communication network
by λ < 1/T̄ . Consequently, the control gains kr and kv can be decided according to dl

m and dl
s by

adhering to conditions (9) and (17).

Remark 5. Although for simplicity the control gains λ, kp, kr , and kv are assumed to be constant,
the proposed teleoperation system can be easily extended to accommodate control gains in matrix
forms.

3.4. Sub-task control
The advantage of controlling teleoperation system in task-space is that the null space resulting from
the redundancy can be considered to achieve various additional missions to improve teleoperation
performance. Since the slave robot is assumed to be a redundant manipulator, where the null space
of the Jacobian matrix has a minimum dimension of q − p, the redundancy can be employed to
achieve several sub-tasks in addition to following the task-space position of the master robot. In this
section, we briefly introduce the null-space control of the redundant slave robot that is utilized in the
numerical examples. The reader is referred to refs. [24] and [35] for more details.

According to ref. [35], the sub-task control error for the slave robot can be defined as est =
(Iq − J+

s Js)(q̇s − ψs), where (Iq − J+
s Js)ψs is utilized to control the slave robot in the null space

of Js .36 Thus, premultiplying ps by (Iq − J+
s Js) with the use of the properties of pseudoinverse (6),

we have that (Iq − J+
s Js)ps = (Iq − J+

s Js)(q̇s − ψs) = est .30, 32 Consequently, the convergence of
signal ps would also imply the convergence of the sub-task tracking error est . Thus, the proposed
controller for the task-space teleoperation can guarantee that the sub-task tracking error goes to the
origin because limt→∞ ps(t) = 0 in free motion (Theorem 3.1) or in the presence of passive external
forces (Corollary 3.2). Moreover, if the external forces are non-passive, then the sub-task tracking
error is bounded resulting from bounded ps (Theorem 3.3).

In the design of sub-task control, the vector ψs in ξs is considered as a negative gradient of
an auxiliary function fs(qs) such that ψs = − ∂

∂qs
fs(qs).29, 30, 32 The auxiliary function fs(qs) can

be designed for various sub-task controls, where the lower value corresponds to more desirable
configurations. Therefore, we can control the null space of the slave robot by designing appropriate
function for fs(qs) to achieve additional task. Various functions can be considered as the auxiliary
functions for the redundant slave robot to avoid singularities, limit joint angles, and avoid
collisions.22, 30, 31, 37, 38 Since the development of sub-task control is not the main contribution of
this paper and the null-space control is only utilized to demonstrate the benefits of using task-space
teleoperation, readers are referred to null-space control in the literature.29, 36 In the next section, the
sub-task control for increasing manipulability24, 38 and collision avoidance22 are considered for the
proposed task-space teleoperation system.
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Fig. 2. Asymmetric time-varying communication delays in the simulations.
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Fig. 3. Generalized human input force.

4. Simulation Results
Numerical examples are addressed in this section to demonstrate the efficacy of the proposed task-
space teleoperation system under time-varying communication delays and dynamic uncertainties. In
the following simulations, the time-varying delays are selected as Tm(t) = 0.15 + 0.02 sin(8t) +
0.06 sin(7t) + 0.07 sin(5t) and Ts(t) = 0.2 + 0.01 sin(10t) + 0.1 sin(6t) + 0.05 sin(3t), which are
illustrated in Fig. 2. Based on the given communication delays and their derivative, we have
T̄ = 0.65 s, dl

m = 0.80, and dl
s = 0.71. Moreover, both delays satisfy the causality condition that

Ṫm(t), Ṫs(t) < 1.
In the first case, we consider a 2-DOF planar manipulator for the non-redundant master robot,

and a 3-DOF planar manipulator for the redundant slave robot. The robot dynamics are referred
to ref. [27] where the physical parameters of the robots are given by mm = [3.14, 2.26] kg, Im =
[0.16, 0.07] kgm2, Lm = [1.04, 0.96] m for the master robot, ms = [3.12, 1.85, 1.02] kg, Is =
[0.12, 0.07, 0.04] kgm2, Ls = [0.74, 0.72, 0.64] m for the slave robot, and g = 9.8 m/s2. The
initial conditions of the robotic systems are qm(0) = [0.2, 0.5] rad and qs(0) = [−0.6, 0.3, 0.4] rad
with zero initial angular velocities. Additionally, the adaptive control gains are given as �m = 0.2I5,
�s = 0.1I9, �̂m(0) = [4, 1, 0.6, 4, 1]T , and �̂s(0) = [3.5, 1.5, 0.5, 1.5, 0.5, 0.5, 43.5, 19.5,

6.5]T .
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Fig. 4. Position configurations and tracking errors of the teleoperation system with a 3-DOF slave
robot.
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Fig. 5. Estimates of the dynamic uncertainties of the non-redundant master robot.

The control gains, which are considered to be identical throughout this section, are given as
λ = 1, kr = 4, kp = 3, and kv = 0.1. In the simulation, the human operator is assumed to exert the
generalized forces shown in Fig. 3 on the end-effector of the master robot, whereas there is no external
force applied on the slave robot. Moreover, the null space of the redundant slave robot is utilized to
avoid singularity by increasing the manipulability.31, 38 The simulation results are shown in Figs. 4–6.
It can be observed from Fig. 4 that the closed-loop teleoperation system with time-varying delays
is stable and the task-space position tracking is guaranteed. Furthermore, the estimates of uncertain
dynamic parameters are bounded and converge to constant values as seen in Figs. 5 and 6. The
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Fig. 6. Estimates of the dynamic uncertainties of the redundant slave robot.

0 10 20 30 40 50
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time (sec)

M
an

ip
ul

ab
ili

ty

With sub−task control

Without sub−task control

Fig. 7. The manipulability of the slave robot with and without utilizing sub-task control.

manipulability of the slave robot with and without utilizing sub-task control is shown in Fig. 7, which
demonstrates that the redundancy can be exploited to increase manipulability of the slave robot in the
remote environment.

The next simulation illustrates the performance of the proposed teleoperation systems when
the slave robot contacts the remote environment with the consideration of collision avoidance.
The master robot is the same as in the previous case, and the slave robot is considered
as a 5-DOF planar manipulator. The physical parameters of the slave robot are given by
ms = [3.12, 1.85, 1.02, 0.8, 0.7] kg, Is = [0.12, 0.07, 0.04, 0.02, 0.01] kgm2, and Ls =
[0.4, 0.4, 0.4, 0.4, 0.4] m. The initial conditions of the master and slave robots are selected as
qm(0) = [2π/3, π/6]rad and qs(0) = [π/2, − π/6, − π/6, − π/6, − π/6]rad with zero angular
initial velocities. In this case, we assume that there is no dynamic uncertainty in the robotic systems
as considered in Theorem 3.3. Moreover, the control gains and communication delays are considered
identical to the previous case.

In this simulation, the redundancy of the slave robot is utilized to avoid colliding obstacles in the
remote environment, as seen in Fig. 9, where two circular obstacles are located at X = [0.3, 0.1] m
and X = [1, 0.3] m. The collision avoidance auxiliary function proposed in ref. [22] is adopted in
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Fig. 8. Position configurations and tracking errors of the teleoperation system with a 5-DOF slave robot.

this case with avoidance distance R = 0.3 m and safe distance r = 0.15 m. The 2nd to 5th joints are
considered as the collision-free points. Therefore, the slave robot will start avoiding the obstacles
when the distance from these joints to an obstacle is less than 0.3 m, and the distances between
obstacles and 2nd to 5th joints will remain greater than 0.15 m. In addition to collision avoidance, the
slave robot will contact a wall in the remote environment at y = −0.5 m, which is the gray area in
Fig. 9. In this simulation, the external forces from the human operator and the remote environment are
modeled as a spring-damper force.12, 39 The spring and damping gains are given as 12 N/m and 1 N s/m
for the human operator and 80 N/m and 1 N s/m for the remote environment. The simulation results
are illustrated in Figs. 8–10. Figure 8 demonstrates that the control system is stable with time-varying
communication delays. Moreover, the task-space position tracking between the robots is guaranteed
except for the slave robot is in contact with the remote environment at around t = 28 − 45 s. Figure 9
illustrates that the redundant slave robot is able to regulate its configuration to avoid obstacles in the
remote environment with guaranteed position tracking in the task space. The external forces from the
human and the environment are shown in Fig. 10.

5. Conclusion and Future Work
The development of task-space teleoperation is significant because robots generally interact with
human operators and remote environments on the end-effector. In this paper, we proposed a control
algorithm to guarantee stability and task-space position tracking when teleoperation systems are
subject to time-varying delay. Provided that the control gains are contingent on communication
delay, an adaptive control algorithm was proposed to ensure stability and position tracking of
the teleoperation system under dynamic uncertainties. For a teleoperation system influenced by
non-passive external forces, ultimate boundedness of all signals in this system was also studied.
Furthermore, the redundant slave robot with the use of the developed control algorithm, in addition
to tracking the end-effector of the master robot, could regulate its configuration to achieve additional
tasks autonomously. Simulation results showed the efficacy of the proposed control system and the
efficiency of sub-task control for the slave robots. Future work will encompass not only developing
control algorithms for task-space teleoperation systems under multiple robotic manipulators and
kinematic uncertainties, but studying the control schemes without requiring knowledge of time
delay.
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(c) t = 28 ∼ 50 sec
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Fig. 9. Configurations of the slave robot in the presence of obstacles and a wall in the remote environment. Two
circles indicate the obstacles, and the gray color denotes the area of the wall. The blue solid-line denotes the
trajectory of the end-effector of the slave robot.
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Fig. 10. External forces from the human operator and remote environment.
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38. U. Özbay, H. T. Şahin and E. Zergeroğlu, “Robust tracking control of kinematically redundany robot

manipulators subject to multiple self-motion criteria,” Robotica 26(6), 711–728 (2008).
39. R. Lozano, N. Chopra and M. W. Spong, “Convergence Analysis of Bilateral Teleoperation with Constant

Human Input,” Proceedings of the American Control Conference, New York, USA (Jul. 11–13, 2007)
pp. 1443–1448.

https://doi.org/10.1017/S0263574714001295 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001295

