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1. INTRODUCTION

Let X be a non-negative random variable with probability density function (pdf) f , cumu-
lative distribution function (cdf) F and survival function F̄ = 1 − F , respectively. Ruiz and
Navarro [33] defined the inactivity time of X as the random variable X(t) = [t − X|X ≤ t].
The expected inactivity time of X is given by

m(t) = EX(t) =
1

F (t)

∫ t

0

F (x) dx, t > 0.

Denoting the reversed hazard rate of X by r̃ = f/F , we have m(t)r̃(t) = 1 − m′(t), where
m′(t) = d

dtm(t). For different properties of the expected inactivity time, one may refer to
Kayid and Ahmad [22], Ahmad and Kayid [1], Ahmad, Kayid, and Pellerey [2], Li and Xu
[25], and Badia and Berrade [5]. To measure the uncertainty contained in inactivity time or
past lifetime of X, Di Crescenzo and Longobardi [12] introduced the past entropy as

Ht(X) � H(X(t)) = −
∫ t

0

f(x)
F (t)

log
f(x)
F (t)

dx, t > 0. (1.1)
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It should be noted that as t → ∞, Ht(X) become the well-known Shannon entropy (Shan-
non [35]) given by H(X) = − ∫∞

0
f(x) log f(x) dx. Readers can refer to Di Crescenzo and

Longobardi [12,13], Nanda and Paul [29,30], Kundu, Nanda, and Hu [23] and Kundu, Nanda,
and Maiti [24] for more works on the past entropy. By means of r̃, we can rewrite (1.1) as

Ht(X) = 1 − 1
F (t)

∫ t

0

f(x) log r̃(x) dx, t > 0. (1.2)

Quantile function F−1(u) = inf{t : F (t) ≥ u}, 0 < u < 1, is equivalent to the cdf in
modeling statistical data (Gilchrist [16], Nair and Sankaran [27]). Putting t = F−1(u) in
(1.1), Sunoj, Sankaran, and Nanda [36] introduced the following quantile entropy in the
past lifetime for X,

HF−1(u)(X) = log u − 1
u

∫ u

0

log f(F−1(x)) dx, u ∈ (0, 1).

Basically, HF−1(u)(X) gives the expected uncertainty contained in the conditional density
about the predictability of an outcome of X until 100u% point of distribution (Sunoj,
Sankaran, and Nanda [36]). Using HF−1(u)(X), Sunoj, Sankaran, and Nanda [36] not only
introduced the definitions of decreasing (increasing) quantile entropy in the past lifetime
[DPQE (IPQE)] class of life distributions and less quantile entropy in the past lifetime
(LPQE) order, but also explored some properties of them. Recently, after giving an equiv-
alent definition of the LPQE order, Kang [21] surveyed some closure and reversed closure
properties of the LPQE order under several stochastic models.

The objective of this paper is to explore further properties of DPQE (IPQE) classes of
life distributions and LPQE order. Section 2 gives the bounds of the quantile entropy in the
past lifetime for some ageing classes. Section 3 gives relationships between DPQE and IPQE
classes of life distributions and its expected inactivity time. Closure properties of LPQE
order under the model of generalized order statistics are discussed in Section 4. Section 4
also gives sufficient conditions for a weighted random variable to have more quantile entropy
in the past lifetime than original random variable.

Throughout this paper, all random variables are implicitly assumed to be non-negative
absolutely continuous. The term “increasing” (“decreasing”) means non-decreasing (non-
increasing).

2. PRELIMINARIES

2.1. Definitions and lemmas

In this paper, we need some concepts of non-parametric ageing classes, including increasing
(decreasing) failure rate [IFR (DFR)], increasing (decreasing) failure rate in average [IFRA
(DFRA)], new better (worse) than used [NBU (NWU)] and increasing (decreasing) expected
inactivity time [IEIT (DEIT)]. One may refer to Barlow and Proschan [7] and Marshall and
Olkin [26] for their definitions, properties, and applications. The following relationships hold
among the ageing classes mentioned above:

IFR ⊆ IFRA ⊆ NBU, DFR ⊆ DFRA ⊆ NWU.

Let Y be another random variable with pdf g. X is said to be smaller than Y in the
likelihood ratio order, denoted by X ≤lr Y , if g(x)/f(x) is increasing in x ≥ 0. For the
definitions of other stochastic orders, such as hazard rate order (≤hr), usual stochastic
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order (≤st), convex transform order (≤c), star order (≤∗), super-additive order (≤su) and
dispersive order (≤disp), one may refer to Shaked and Shanthikumar [34]. It is well-known
that

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y ; X ≤c Y =⇒ X ≤∗ Y =⇒ X ≤su Y.

X ≤st Y if and only if Eφ(X) ≤ Eφ(Y ) for all increasing functions φ. Theorem 4.B.2 of
Shaked and Shanthikumar [34] states that if X ≤st Y , then X ≤su Y (and therefore X ≤∗ Y
or X ≤c Y ) implies X ≤disp Y . Lemma 2.1 below generalizes this theorem.

Lemma 2.1 (Ahmed et al. [3]): Let X and Y be two random variables with pdfs f and g,
respectively, such that f(0) ≥ g(0) > 0. If X ≤su Y (X ≤∗ Y or X ≤c Y ), then X ≤disp Y .

Definition 2.2 (Sunoj, Sankaran, and Nanda [36]): X is said to have

(1) decreasing (increasing) quantile entropy in the past lifetime [DPQE (IPQE)] if
HF−1(u)(X) is decreasing (increasing) in u ∈ (0, 1);

(2) less quantile entropy in the past lifetime than Y , denoted by X ≤LPQE Y , if
HF−1(u)(X) ≤ HG−1(u)(Y ) for all u ∈ (0, 1).

2.2. Bounds of quantile entropy in the past lifetime for some ageing classes

It was shown in Theorem 2.2 of Kang [21] that X ≤LPQE Y if X ≤disp Y . Combining this
fact and Lemma 2.1, we have the following Lemma 2.3. This lemma can also be viewed as
the generalization of Theorem 2.3 of Kang [21].

Lemma 2.3: If X ≤su (≤∗, ≤c)Y and f(0) ≥ g(0) > 0, then X ≤LPQE Y .

Theorem 4.8.11 of Shaked and Shanthikumar [34] declares that X ∈ IFR (IFRA, NBU)
if and only if X ≤c (≤∗, ≤su)Z, where Z has the exponential distribution with failure rate
λ (λ > 0). By Lemma 2.3, we have X ≤LPQE Z if the f(0) ≥ λ > 0. Noting that the quantile
entropy in the past lifetime of Z is given by

HF−1
Z (u)(Z) = 1 + log

u

λ
+

1 − u

u
log(1 − u), u ∈ (0, 1),

we have the following proposition by Definition 2.2 (2).

Proposition 2.4: If X ∈ IFR (IFRA, NBU) and f(0) ≥ λ > 0, then

HF−1(u)(X) ≤ 1 + log
u

λ
+

1 − u

u
log(1 − u), u ∈ (0, 1).

Example 4 of Shaked and Shanthikumar [34] states that X has a decreasing pdf f if
and only if U ≤c X, where U ∼ U(0, 1). Since the quantile entropy in the past lifetime of
U is given by log u, we have the following proposition by analogy with Proposition 2.4.

Proposition 2.5: If X has a decreasing pdf f such that f(0) ≤ 1, then

HF−1(u)(X) ≥ log u, u ∈ (0, 1).

In view of HF−1(u)(X) → H(X) as u → 1, we obtain the following corollaries 2.6 and
2.7 by letting u → 1 in Propositions 2.4 and 2.5, respectively.
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Corollary 2.6: If X ∈ IFR (IFRA, NBU) and f(0) ≥ λ > 0, then H(X) ≤ 1 − log λ.

Corollary 2.7: If X has a decreasing pdf f such that f(0) ≤ 1, then H(X) ≥ 0.

Another interested application of the fact that X ≤disp Y implies X ≤LPQE Y is
illustrated in the following Proposition 2.8.

Proposition 2.8: Let Wk = Xk:n − Xk−1:n be the k-th sample spacing between order statis-
tics X1:n ≤ X2:n ≤ · · · ≤ Xn:n of a random sample of n observations on X with failure
rate r. Denote the cdf of Wk by FWk

. If r(x) ≤ λ for all x ≥ 0, then

HF−1
Wk

(u)(Wk) ≥ 1 + log
u

(n − k + 1)λ
+

1 − u

u
log(1 − u), u ∈ (0, 1).

Proof: Let Y have an exponential distribution with failure rate λ. Denote the order statis-
tics and the k-th sample spacing of Y by Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n and Vk = Yk:n − Yk−1:n,
respectively. Recall that X ≥disp Y if X ≥hr Y and X or Y is DFR. Thus, if the failure
rate of Y is denoted by r

Y
, then r(x) ≤ λ = r

Y
(x) for all x ≥ 0. This implies X ≥hr Y and

hence, X ≥disp Y . Since the distribution of Vk is exponential with failure rate (n − k + 1)λ,
it follows from Theorem 4.2 (ii) of Rojo and He [32] that Wk ≥disp Vk. Hence,

HF−1
Wk

(u)(Wk) ≥ HF−1
Vk

(u)(Vk)

= 1 + log
u

(n − k + 1)λ
+

1 − u

u
log(1 − u), u ∈ (0, 1),

where FVk
is the cdf of Vk. �

3. DPQE AND IPQE CLASSES

A random variable X is said to have increasing (decreasing) uncertainty of life [IUL (DUL)]
if Ht(X) is increasing (decreasing) in t ≥ 0 (Nanda and Paul [29]). Since

HF−1(u)(X) = Ht(X)|t=F−1(u),

and F−1(u) is an increasing function, we see that HF−1(u)(X) and Ht(X) have the same
monotone properties. That is, the IUL (DUL) class of life distributions is equivalent to the
IPQE (DPQE) class of life distributions. For this reason, we only consider the properties
of IUL (DUL) class of life distributions in this section. The following Theorem 3.1 was
borrowed from Di Crescenzo and Longobardi [12] to give the relationship between IUL class
and decreasing reversed hazard rate (DRHR) class of life distributions.

Theorem 3.1: If X is DRHR, then X is IUL.

Result 2.6 of Chandra and Roy [9] states that if X is DRHR, then X is IEIT. The
following Theorem 3.2 shows that the condition of Theorem 3.1 can be weakened.

Theorem 3.2:

(1) If X is IEIT, then it is IUL.
(2) If X is DUL, then it is DEIT.
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Proof: For Part (1), it follows from (1.2) that

d
dt

Ht(X) = − 1
F 2(t)

[f(t)F (t) log r̃(t) − f(t)
∫ t

0

f(x) log r̃(x) dx]

=
r̃(t)
F (t)

∫ t

0

f(x) log r̃(x) dx − r̃(t) log r̃(t)

= r̃(t)[1 − Ht(X) − log r̃(t)]. (3.1)

Recall that the exponential distribution achieves maximal entropy among all the continuous
distributions with given mean. That is, if m(t) < ∞, then for all t ≥ 0,

Ht(X) ≤ 1 + log m(t).

Therefore, we have from (3.1) that

d
dt

Ht(X) ≥ r̃(t)[− log m(t) − log r̃(t)]

= −r̃(t) log[m(t)r̃(t)]

= −r̃(t) log [1 − m′(t)]

≥ 0, (3.2)

where the last inequality follows from the assumption that m(t) is increasing. This completes
the proof of Part (1). For Part (2), since X is DUL, we have d

duHt(X) ≤ 0. It follows from
(3.2) that m′(t) ≤ 0 for all t ≥ 0. Thus, X is DEIT.

Next, we give an example to show the usefulness of Theorem 3.2. �

Example 3.3: Let X be a random variable with cdf F given by

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ 0,

x

2
, 0 ≤ x < 1,

x2 + 2
6

, 1 ≤ x < 2,

1, x ≥ 2.

X is not DRHR as shown in Example 3.2 of Nanda and Paul [29]. Hence, we cannot say
that X is IUL by Theorem 3.1. However, the expected inactivity time of X is given by

m(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t

3
, 0 ≤ x < 1,

t3 + 6t − 4
3(t2 + 2)

, 1 ≤ x < 2,

t − 17
18

, x ≥ 2.

m(t) is obviously increasing. We can say that X is IUL by Theorem 3.2 (1). In fact, as shown
in Example 3.2 of Nanda and Paul [29], we can also prove that X is IUL by using (1.1).

A random variable X is said to have increasing reversed variance residual life (IRVR) if
the variance of X(t) is increasing in t > 0. Nanda et al. [31] proved that if X is IEIT, then

https://doi.org/10.1017/S0269964818000062 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000062


FURTHER RESULTS ON QUANTILE ENTROPY IN THE PAST LIFETIME 151

X is also IRVR. That is, the IEIT property is stronger than the IRVR property. One may
wonder whether the condition in Theorem 3.2 (1) can be relaxed to be IRVR. The next
example gives a negative answer.

Example 3.4: Let X be a random variable with cdf

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ 0,

x2

16
, 0 ≤ x < 1,

x4 − 2x + 2
16

, 1 ≤ x < a,

1, x ≥ a,

where a ≈ 2.06338 is the unique positive root of the equation x4 − 2x − 14 = 0. As shown
in Example 2.1 of Nanda et al. [31], X is IRVR. However,

H1.269(X) = −0.09989 > −0.1006 = H1.32(X).

X is not IUL.

Order statistics can be used in many fields, including statistical inference, goodness-of-
fit tests, reliability, and quality control. For example, in reliability theory, order statistics
are used for statistical modeling. Let X1, X2, · · · , Xn be a random sample of size n from
a population X, and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding order statistics. Then
Xk:n represents the lifetime of an (n − k + 1)-out-of-n system. It is to be noted that X1:n

represents the lifetime of a series system, whereas Xn:n represents that of a parallel system.
Kundu, Nanda, and Hu [23] showed that IUL class life distributions are preserved under
the formation of series systems. However, as shown in the following example, DUL class life
distribution is not preserved under the formation of series systems.

Example 3.5: Let X have an inverted exponential distribution with cdf F (x) = e−λ/x, x > 0.
It is easy to verify that X is DUL. But, if we let λ = 1.2, then

H0.2(X1:2) = 0.00822 < 0.20570 = H1.2(X1:2) > H2.2(X1:2) = −0.66476.

X1:2 neither is DUL nor is IUL.

If the reversed hazard rate of a random variable is not decreasing but is increasing, we
say this random variable has increasing reversed hazard rate (IRHR). The following theorem
shows that Ht(Xn:n) is decreasing in n if X is IRHR.

Theorem 3.6: If X is IRHR, then Ht(Xn:n) is decreasing in n ≥ 1.

Proof: It follows from (1.2) that

Ht(Xn:n) = 1 − 1
Fn(t)

∫ t

0

nFn−1(x)f(x) log[nr̃(x)] dx

= 1 − log n − 1
Fn(t)

∫ t

0

nFn−1(x)f(x) log r̃(x) dx
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= 1 − log n −
∫ t

0

gt
n:n

(x) log r̃(x) dx

= 1 − log n − E[log r̃(Xn:n)|Xn:n ≤ t], (3.3)

where

gt
n:n

(x) =
nFn−1(x)f(x)

Fn(t)
, x ≤ t,

is the pdf of [Xn:n|Xn:n ≤ t]. Thus,

gt
n:n

(x)
gt

(n−1):(n−1)
(x)

=
n

n − 1
F (x)
F (t)

is increasing in x ∈ [0, t]. This implies [X(n−1):(n−1)|X(n−1):(n−1) ≤ t] ≤lr [Xn:n|Xn:n ≤ t],
and hence, [X(n−1):(n−1)|X(n−1):(n−1) ≤ t] ≤st [Xn:n|Xn:n ≤ t]. If r̃ is increasing, then,

E[log r̃(X(n−1):(n−1))|X(n−1):(n−1) ≤ t] ≤ E[log r̃(Xn:n)|Xn:n ≤ t].

That is, E[log r̃(Xn:n)|Xn:n ≤ t] is increasing in n. Hence, Ht(Xn:n) in (3.3) is decreasing
in n. This completes the proof. �

4. LPQE ORDER

Sunoj, Sankaran, and Nanda [36] proved that the LPQE order is closed under the linear
transformations. Kang [21] proved that the LPQE order is closed under non-linear transfor-
mations and other stochastic models. In this section, we first give sufficient conditions for a
function of a random variable to have more (less) quantile entropy in the past lifetime than
itself. As a consequence, result related on the accelerated life model is obtained. In Section
4.2, we display the closure and the reversed closure properties of the LPQE order under the
generalized order statistics model. In Section 4.3, the weighted distributions are considered.
We give general conditions under which the weighted distribution has more quantile entropy
in the past lifetime than the original distribution.

The following two lemmas will play an important role in the proofs of the main results
in this section.

Lemma 4.1 (Kang [21]): X ≤LPQE Y if and only if, for all t ≥ 0,∫ t

0

f(x) log
f(x)

g(G−1 ◦ F (x))
dx ≥ 0.

Lemma 4.2 (Barlow and Proschan [7]): Let μ(x) be a measure on the interval (a, b), not
necessary non-negative, where −∞ ≤ a < b ≤ +∞, and h(x) ≥ 0 be a decreasing function
defined on (a, b). If

∫ t

a
dμ(x) ≥ 0 for all t ∈ (a, b), then

∫ b

a
h(x) dμ(x) ≥ 0.

4.1. Monotone transformations

Theorem 4.3:

(1) If φ is a non-negative increasing function with φ′(x) ≥ 1 for all x ≥ 0, then X ≤LPQE

φ(X);
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(2) If φ is an increasing function with φ(0) = 0 and φ′(x) ≤ 1 for all x ≥ 0, then
φ(X) ≤LPQE X.

Proof: Denote the cdf and pdf of φ(X) by Fφ(X) and fφ(X), respectively. Then,∫ t

0

f(u) log
f(u)

fφ(X)(F−1
φ(X) ◦ F (u))

du =
∫ t

0

f(u) log
f(u)

fφ(X)(φ(u))
du

=
∫ t

0

f(u) log φ′(u) du

≥ 0,

where the inequality comes from the assumption that φ′(x) ≥ 1 for all x ≥ 0. This completes
the proof of Part (1) by Lemma 4.1. The proof of Part (2) is similar.

The usefulness of Theorem 4.3 is illustrated by the following example. �

Example 4.4: Let X have the exponential cdf F (x) = 1 − e−λx, x ≥ 0, λ > 0, and let

φ(x) =
1
γ

log
(

1 +
λγ

β
x

)
, x ≥ 0, γ > 0, λ ≤ β.

Then, φ(X) has the Gompertz–Makeham cdf Fφ(X)(x) = 1 − exp[−β(eγx − 1)/γ], x ≥ 0. It
follows from Theorem 4.3 (2) that φ(X) ≤LPQE X, which implies

HF−1
φ(X)(u)(φ(X)) ≤ HF−1(u)(X) = 1 + log

u

λ
+

1 − u

u
log(1 − u), u ∈ (0, 1).

Making use of a time-dependent scale transformation function W (x) as bridge, Cox and
Oakes [10] put forward the following accelerated life model (ALM) to study the relationship
between F and G,

F (x) = G(W (x)),

where W (x) is strictly increasing with W (0) = 0, and W (x) → ∞ as x → ∞. In general,
assume that W (x) is continuous and differentiable in [0, ∞),

W (x) =
∫ x

0

w(t) dt, w(t) ≥ 0, x ∈ [0,∞).

Therefore, if G is viewed as the cdf of a life Y for an item functioning in a baseline (reference)
environment, then F defines a cdf for another random variable, say, X, who can be regarded
as the lifetime for the item functioning in a severe environment.

For ALM, it is interesting to investigate the role of W (x) or w(x). For example, through
investigating the role of W (x) or w(x) in establishing the ageing properties of X via the
ageing properties of Y , Finkelstein [14] obtained some non-parametric properties of IFR,
IFRA, and NBU classes of life distributions. Next, we give sufficient condition under which
X has less quantile entropy in the past lifetime than Y .

Theorem 4.5: If W (x) − x is increasing in x, then X ≤LPQE Y .

Proof: Obviously, we see from above discussion that X = φ(Y ), where φ = W−1. Thus,
Theorem 4.5 can be proved by Theorem 4.3 (2). �

Remark 4.6: It was shown in Di Crescenzo and Longobardi [12] that if X is IUL, then φ(X)
is also IUL for all non-negative increasing convex function φ with φ(0) = 0. For ALM, if X
is IUL and W (x) is convex, then Y is also IUL.
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4.2. Generalized order statistics (GOSs)

The concept of GOSs was introduced by Kamps [19,20] as a unified approach to a variety
of models of ordered random variables. GOSs have been of interest in the past 10 years
because they are more flexible in reliability theory, statistical modeling, and inference, see
Gajek and Okolewski [15] and Cramer, Kamps, and Rychlik [11].

Formally, uniform GOSs are defined via some joint pdf on a cone of the R
n. GOSs based

on an arbitrary cdf F are defined by means of the quantile function of F .

Definition 4.7 (Kamps [19]): Let n ∈ N, k ≥ 0, m1, · · · , mn−1 ∈ R, and

Mr =
n−1∑
j=r

mj , 1 ≤ r ≤ n − 1, Mn = 0,

be parameters such that for all r ∈ {1, · · · , n},
γr,n = k + n − r + Mr ≥ 1,

and let m̃ = (m1, · · · , mn−1) if n ≥ 2 (m̃ arbitrary if n = 1). If the random variables
U(r,n,m̃, k) possess a joint pdf of the form

fU(1,n,m̃,k),··· ,U(n,n,m̃,k)(u1, u2, · · · , un) = k

⎛⎝n−1∏
j=1

γj,n

⎞⎠(n−1∏
i=1

(1 − ui)mi

)
(1 − un)k−1

on the cone 0 ≤ u1 ≤ u2 ≤ · · · ≤ un < 1 of R
n, then they are called uniform GOSs. Now,

let F be an arbitrary cdf. The random variables X(r,n,m̃, k) = F−1(U(r,n,m̃, k)), r = 1, · · · , n,
are called the GOSs based on F .

Throughout this subsection, we will consider the special case of GOSs, that is m1 =
m2 = · · · = mn−1 = m, and in this time, GOSs will be denoted by X(r,n,m,k). If F is abso-
lutely continuous with pdf f , Lemma 3.3 of Kamps [20] states that for each r = 1, · · · , n,
the marginal pdf of the r-th GOS X(r,n,m,k) based on F is given by

f(r,n,m,k)(x) = ϕr:n(F (x))f(x), (4.1)

where

ϕr:n(x) =
cr−1,n

(r − 1)!
(1 − x)γr,n−1gr−1

m (x), x ∈ (0, 1),

gm(x) =

⎧⎨⎩
1

m + 1
[1 − (1 − x)m+1], m �= −1,

− log(1 − x), m = −1,

and cr−1,n = Πr
i=1γi,n. Note that the corresponding marginal cdf of the r-th GOS based on

F is
FX(r,n,m,k)(x) = φr:n(F (x)), (4.2)

where

φr:n(u) = 1 − cr−1,n(1 − u)γr,n

r−1∑
j=0

1
j!cr−j−1,n

gj
m(u), u ∈ (0, 1).

Let m = 0 and k = 1, (4.1) reduces to the pdf of the r-th ordinary order statistic of
a random sample from F . Let m = −1 and k ∈ N, then the model of k-record values is
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obtained. Choosing the parameters appropriately, several other models of ordered random
variables are seen to be particular cases, see Kamps [20], Balakrishnan, Cramer, and Kamps
[6] and Belzunce, Mercader, and Ruiz [8]. The following Theorem 4.8 gives the closure
properties of the LPQE order under GOSs models.

Theorem 4.8: Let {X(r,n,m,k), r = 1, 2, · · · , n} and {Y(r,n,m,k), r = 1, 2, · · · , n} be GOSs
based on cdfs F and G, respectively.

(1) If X(n,n,m,k) ≤LPQE Y(n,n,m,k) for k = 1, m ≥ −1, then X ≤LPQE Y .
(2) If X ≤LPQE Y , then X(1,n,m,k) ≤LPQE Y(1,n,m,k) for k ≥ 0, m ∈ R.

Proof: We note from (4.2) that, for all 1 ≤ r ≤ n,

G−1
Y(r,n,m,k)

◦ FX(r,n,m,k)(x) = (G−1 ◦ φ−1
r:n) ◦ (φr:n ◦ F (x)) = G−1 ◦ F (x). (4.3)

(1) It follows from X(n,n,m,k) ≤LPQE Y(n,n,m,k) for k = 1, m ≥ −1 and Lemma 4.1 that∫ t

0

f(n,n,m,k)(x) log
f(n,n,m,k)(x)

g(n,n,m,k)(G−1
(n,n,m,k) ◦ F(n,n,m,k)(x))

dx

=
∫ t

0

ϕn:n(F (x))f(x) log
ϕn:n(F (x))f(x)

g(n,n,m,k)(G−1 ◦ F (x))
dx

=
∫ t

0

ϕn:n(F (x))f(x) log
f(x)

g(G−1 ◦ F (x))
dx

≥ 0.

Since k = 1, m ≥ −1, we have γn,n = 1 and hence, ϕ−1
n:n(x) = (n−1)!

cn−1,n
g1−n

m (x) is decreasing

in x. Thus, we have from Lemma 4.2 that
∫ t

0
f(x) log f(x)

g(G−1◦F (x)) dx ≥ 0, t ≥ 0, which is
equivalent to X ≤LPQE Y by Lemma 4.1.

(2) The assumption X ≤LPQE Y is equivalent to
∫ t

0
f(x) log f(x)

g(G−1◦F (x)) dx ≥ 0, t ≥ 0.

Since ϕ1:n(F (x)) = γ1,n(F̄ (x))γ1,n−1 is decreasing in x. It follows from Lemma 4.2 that∫ t

0

f(1,n,m,k)(x) log
f(1,n,m,k)(x)

g(1,n,m,k)(G−1
(1,n,m,k) ◦ F(1,n,m,k)(x))

dx

=
∫ t

0

ϕ1:n(F (x))f(x) log
ϕ1:n(F (x))f(x)

g(1,n,m,k)(G−1 ◦ F (x))
dx

=
∫ t

0

ϕ1:n(F (x))f(x) log
f(x)

g(G−1 ◦ F (x))
dx

≥ 0, t ≥ 0,

which is equivalent to X(1,n,m,k) ≤LPQE Y(1,n,m,k). �

Remark 4.9: Theorem 4.8 (1) reduces to Theorems 3.2 of Kang [21] when m = 0. Theorem
4.8 (2) reduces to Theorem 3.1 of Kang [21] when m = 0, k = 1.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed random vari-
ables. An observation Xn is called an upper record value if Xn > Xi, for every i < n. Note
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that X1 is a trivial record. The times at which record values appear are given by the random
variables {Tn, n ≥ 1} and is defined recursively by T1 = 1, Tn = min{j : j > Tn − 1, Xj >
XTn−1, n > 1}. The sequence of record values corresponding to {Xi, i ≥ 1} is then defined
by Un = XTn

, n ≥ 1. Here Un is known as n-th upper record value. An analogous definition
deals with lower record values. For a detailed discussion on record values, one may refer to
Arnold, Balakrishnan, and Nagaraja [4]. Since the n-th upper record value can be regarded
as the special case of GOS when m = −1 and k = 1, we have the following corollary.

Corollary 4.10: Let UX
n and UY

n be the n-th upper record value based on random variables
X and Y , respectively. Then, UX

n ≤LPQE UY
n if and only if X ≤LPQE Y.

It follows from Theorem 4.8 that X(1,n,m,k) ≤LPQE Y(1,n,m,k) if X(n,n,m,k) ≤LPQE

Y(n,n,m,k) for k = 1, m ≥ −1. One may wonder whether the restriction, k = 1, can be
relaxed. Actually, the following theorem gives more.

Theorem 4.11: Let {X(r,n,m,k), r = 1, 2, · · · , n} and {Y(r,n,m,k), r = 1, 2, · · · , n} be
GOSs based on cdfs F and G, respectively. For all k ≥ 0, m ≥ −1, if X(r1,n,m,k) ≤LPQE

Y(r1,n,m,k), 1 < r1 ≤ n, then X(r2,n,m,k) ≤LPQE Y(r2,n,m,k), 1 ≤ r2 ≤ r1.

Proof: By (4.1), we have

ϕr2:n(F (x))
ϕr1:n(F (x))

=
cr2−1,n

cr1−1,n

(r1 − 1)!
(r2 − 1)!

[F̄ (x)]γr2,n−γr1,n [gm(F (x))]r2−r1

=
cr2−1,n

cr1−1,n

(r1 − 1)!
(r2 − 1)!

[F̄ (x)](r1−r2)(m+1)[gm(F (x))]r2−r1 .

Case 1: m > −1. Since r1 ≥ r2, [F̄ (x)](r1−r2)(m+1) is decreasing in x. The increas-
ing property of gm(x) = 1

m+1 [1 − (1 − x)m+1], x ∈ (0, 1) guarantees [gm(F (x))]r2−r1 is
decreasing. Thus, ϕr2:n(F (x))/ϕr1:n(F (x)) is decreasing in x.

Case 2: m = −1. The increasing property of g−1(x) = − log(1 − x), x ∈ (0, 1), guaran-
tees [g−1(F (x))]r2−r1 is decreasing. Thus,

ϕr2:n(F (x))
ϕr1:n(F (x))

=
cr2−1,n

cr1−1,n

(r1 − 1)!
(r2 − 1)!

[g−1(F (x))]r2−r1

is decreasing in x as well.
Now, ϕr2:n(F (x))/ϕr1:n(F (x)) is decreasing in x for all m ≥ −1. The assumption

X(r1,n,m,k) ≤LQE Y(r1,n,m,k) is equivalent to that, for all t ≥ 0,∫ t

0

f(r1,n,m,k)(x) log
f(r1,n,m,k)(x)

g(r1,n,m,k)(G−1
(r1,n,m,k) ◦ F(r1,n,m,k)(x))

dx

=
∫ t

0

ϕr1:n(F (x))f(x) log
ϕr1:n(F (x))f(x)

g(r1,n,m,k)(G−1 ◦ F (x))
dx

=
∫ t

0

ϕr1:n(F (x))f(x) log
f(x)

g(G−1 ◦ F (x))
dx

≥ 0.
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It follows from Lemma 4.2 that∫ t

0

f(r2,n,m,k)(x) log
f(r2,n,m,k)(x)

g(r2,n,m,k)(G−1
(r2,n,m,k) ◦ F(r2,n,m,k)(x))

dx

=
∫ t

0

ϕr2:n(F (x))f(x) log
f(x)

g(G−1 ◦ F (x))
dx

=
∫ t

0

ϕr2:n(F (x))
ϕr1:n(F (x))

ϕr1:n(F (x))f(x) log
f(x)

g(G−1 ◦ F (x))
dx

≥ 0.

This completes the proof by Lemma 4.1. �

4.3. Weighted distributions

The concept of weighted distributions is widely used for studies in reliability, biometry,
survival analysis, forestry, ecology, and several other fields. Weighted distributions arise
when the observations generated from a stochastic process are recorded with some weighted
function. See, for example, Jain, Singh, and Bagai [18], Gupta and Kirmani [17] or Nanda
and Jain [28]. Denote the failure rate of X by r. Then the failure rate for the weighted
random variable Xw associated with X and to a positive real function w is defined by

rw(t) =
w(t)

E[w(X)|X ≥ t]
r(t). (4.4)

Next, we study the sufficient conditions to have the order X ≤LPQE (≥LPQE)Xw using the
fact that X ≤disp Y if X ≤hr Y and X or Y is DFR.

Proposition 4.12: If w(t) is increasing (decreasing) in t, and if X or Xw is DFR, then
X ≤LPQE (≥LPQE)Xw.

Proof: If w(t) is increasing (decreasing) in t, then

E[w(X)|X ≥ t] =
1

F̄ (t)

∫ ∞

t

w(x)f(x) dx ≥ (≤)
1

F̄ (t)

∫ ∞

t

w(t)f(x) dx = w(t).

It follows from (4.4) that X ≤hr (≥hr)Xw and hence X ≤disp (≥disp)Xw. Thus, the desired
results are proved by Theorem 2.2 of Kang [21].

The length biased distribution is an important case of weighted distributions when
w(t) = t. They represent sampling procedures where the sampling probabilities are propor-
tional to the samples values. Denoting the length biased random variable associated with
X by Xlb, we have the following corollary from Proposition 4.12. �

Corollary 4.13: If X or Xlb is DFR, then X ≤LPQE Xlb.

The equilibrium distribution of a renewal process is another important particular case of
weighted distributions when w(t) = 1/r(t). Denote equilibrium distributed random variable
associated with X by Xe. Applying Proposition 4.12 again, we have the following corollary.

Corollary 4.14: If X is DFR, then X ≤LPQE Xe.
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The proportional odds family (POF), also known as tilt parameter family, is a semi-
parametric family useful in the study of survival and reliability data (Marshall and Olkin
[26], p.242). The proportional odds random variable associated with X, denoted by Xp, is
defined by the cdf

FXp
(t) =

F (t)
θ + (1 − θ)F (t)

, t ≥ 0,

for θ > 0, where θ is the proportional constant. Thus, the failure rate of Xp is given by

r
Xp

(t) =
1

1 + (θ − 1)F̄ (t)
r(t), t ≥ 0.

For this model, we have the following proposition by analogy with Proposition 4.12.

Proposition 4.15: If θ ≥ 1 (0 < θ ≤ 1), and if X or Xp is DFR, then X ≤LPQE

(≥LPQE)Xp.
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