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Flexible ring flapping in a uniform flow
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An improved version of the immersed boundary (IB) method for simulating an initially
circular or elliptic flexible ring pinned at one point in a uniform flow has been
developed. The boundary of the ring consists of a flexible filament with tension and
bending stiffness. A penalty method derived from fluid compressibility was used to
ensure the conservation of the internal volume of the flexible ring. At Re = 100,
two different flapping modes were identified by varying the tension coefficient for
a fixed bending stiffness, or by changing the bending coefficient for a fixed tension
coefficient. The optimal tension and bending coefficients that minimize the drag force
of the flexible ring were found. Visualization of the vorticity field showed that the
two flapping modes correspond to different vortex shedding patterns. We observed the
hysteresis property of the flexible ring, which exhibits bistable states over a range of
flow velocities depending on the initial inclination angle, i.e. one is a stationary stable
state and the other a self-sustained periodically flapping state. The Reynolds number
range of the bistability region and the flapping amplitude were determined for various
aspect ratios a/b. For a/b = 0.5, the hysteresis region arises at the highest Reynolds
number and the flapping amplitude in the self-sustained flapping state is minimized. A
new bistability phenomenon was observed: for certain aspect ratios, two periodically
flapping states coexist with different amplitudes in a particular Reynolds number range,
instead of the presence of a stationary stable state and a periodically flapping state.

Key words: drag reduction, flow-structure interactions, swimming/flying

1. Introduction
Systems involving flexible bodies interacting with a surrounding fluid flow are

commonplace, e.g. flying birds, swimming fish and flapping flags on the macro-
scale and cells swimming in blood on the micro-scale. The mechanics of elastic
bodies immersed in a viscous flow has been studied by many researchers in biology,
bioengineering and chemical engineering. Analysing fluid–structure interactions helps
us to understand how fish, birds and cells move in fluids such as water, air and blood.
More importantly, these results have potential applications in biomimetic engineering,
bioengineering and industrial engineering.

In their study of a typical fluid–flexible body interaction problem, Zhang et al.
(2000) visualized the motion of flexible filaments in a flowing soap film by using a
two-dimensional flag-in-the-wind model. They found two distinct stable states for a
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single filament that depend only on the initial inclination angle: the stretched-straight
state and the self-sustained flapping state. This study inspired several numerical
simulations of the interactions between flexible filaments and viscous fluid flows (e.g.
Zhu & Peskin 2002; Farnell, David & Barton 2004; Yu 2005; Huang, Shin & Sung
2007). However, in contrast to the assumptions of these studies, there is usually some
fluid volume inside the thin skins of organisms. For instance, the interior of a fish
mostly consists of water, as is widely known. Cells consist of cell membranes and
protoplasm; protoplasm is mostly fluid cell sap. Thus, to understand the motions of
living bodies and cells, previous models for fluid–flexible body interactions need to
be extended. To simplify these systems, we can treat them as consisting of a flexible
ring filled with fluid in a fluid flow. Unlike the flapping of a filament in a viscous
flow, flexible rings interacting with a surrounding fluid flow have been subjected
to only a few studies. Jung et al. (2006) carried out an experimental study on a
deformable ring in a flowing soap film. They observed the bistability phenomenon
of the ring by varying the initial angle of the ring and the 2-pair (2P) mode of the
wake flow of the ring. In their study the fluid was free to pass over the ring so
the volume of the ring was changing. Shoele & Zhu (2010) numerically studied the
flow-induced vibrations of an initially circular flexible ring without bending rigidity
at a much lower Reynolds number. They identified the transverse pitching–flexible
bending motion and the longitudinal tapping motion by using mode decomposition.
By varying the tension coefficient, they found resonance between the fluid and the
ring and observed abrupt jumps in the hydrodynamic loads. However, vortex shedding
patterns undergoing resonance remain similar to those of a highly flexible ring and a
nearly rigid ring. Only 2-single (2S) modes were displayed, unlike the experimental
observations of Jung et al. (2006). They attributed such a difference to the low
Reynolds number considered in the simulation.

Despite Shoele & Zhu’s (2010) work on the flexible ring flapping in fluid flow,
several aspects remain unclear. First, the different flapping behaviours have not
been related to the vortex shedding patterns. Second, the effect of the bending
rigidity and the initial reference shape of the ring have not been taken into account.
Third, the hysteresis or the bistability property of the flexible ring observed in the
experiment of Jung et al. (2006) has not been investigated numerically. To clarify
the above issues, we simulated the flapping motions of a flexible ring containing
fluid in a uniform flow. To this end, we made a small change to the traditional
immersed boundary (IB) method by combining it with the penalty method for volume
conservation, which uses proportional control and integral control derived from the
fluid compressibility. In the formulation of the ring motion, we included the bending
force, which enables us to simulate an initially elliptic ring rather than a circular
one. The flapping phenomena and vortical structures of the flexible ring in a uniform
flow were investigated numerically in the Reynolds number range 5 6 Re 6 120. We
determined the variations of the flapping amplitude, drag coefficient, lift coefficient,
Strouhal number and vortical structures of the flexible ring with the tension coefficient
(k), the bending coefficient (γ ) and the aspect ratio (a/b). The hysteresis property of
the flexible ring was also observed and analysed. In the next section, we introduce
the problem formulation and numerical method, and the penalty method for volume
conservation is derived. Then in § 3, we present the numerical results, with particular
focus on the flapping modes and the hysteresis property of the flexible ring. Finally,
conclusions are drawn in § 4.
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FIGURE 1. Schematic of an initially elliptic flexible ring in a uniform flow.

2. Computational model
2.1. Problem formulation

A schematic diagram of the computational model and the coordinate system is
shown in figure 1. An initially elliptic flexible ring with one point pinned in
space is subjected to a uniform incoming flow. The fluid motion is defined in
Eulerian coordinates, and the origin is located at the pinned point of the ring. The
incompressible viscous flow is governed by the Navier–Stokes (NS) equation and the
continuity equation,

ρ0

(
∂u
∂t
+ u ·∇u

)
=−∇p+ µ∇2u+ f , (2.1)

∇ ·u= 0, (2.2)

where u is the velocity vector, p is the pressure, ρ0 is the fluid density, µ is the
dynamic viscosity of the fluid, and f is the Eulerian momentum force acting on
the surrounding fluid due to the immersed boundary, as constrained by the no-slip
boundary condition.

The motion of the flexible ring is described with Lagrangian variables and can be
expressed as

ρ1
∂2X
∂t2
= ∂

∂s

(
k

(∣∣∣∣∂X∂s

∣∣∣∣− 1
)
∂X
∂s

/∣∣∣∣∂X∂s

∣∣∣∣)− ∂2

∂s2

(
γ (κ − κ0)

∂2X
∂s2

/∣∣∣∣∂2X
∂s2

∣∣∣∣)− F,

(2.3)

where s is the Lagrangian coordinate along the ring, X = (X(s, t),Y(s, t)) is the
position, k is the tension coefficient of the ring, γ is the bending coefficient,
κ = ∣∣∂2X/∂s2

∣∣ is the curvature with κ0 its initial reference value, and ρ1 denotes the
additional boundary density. The last term −F represents the Lagrangian momentum
force acting on the ring due to the surrounding fluid. According to (2.3), the stressless
reference state of the ring is set to be its initial undeformed shape in the present
study. We would like to point out that in Shoele & Zhu (2010), the reference state for
tension is the zero-length state, i.e. T = k |∂X/∂s|. Thus the ring is always prestressed
initially using Shoele and Zhu’s formulation and is much stiffer than ours for the same
k, which may cause a serious difference in the results when coupling with the fluid, as
can be seen in the next section. Moreover, the boundary condition at the pinned point
is given by

X = (0, 0) ,
∂2X
∂s2
= (0, 0) . (2.4)
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We selected the fluid density ρ0, the ring diameter D in the case of a circular ring
or the equivalent diameter of an elliptic ring, and the uniform incoming flow velocity
U∞ as the characteristic density, length and velocity, respectively. Thus we introduced
the following characteristic scales: D/U∞ for the time, ρ0D for the boundary mass,
ρ0U2

∞ for the pressure and the Lagrangian momentum force F, ρ0U2
∞/D for the

Eulerian momentum force f , ρ0U2
∞D for the tension coefficient k, and ρ0U2

∞D3

for the bending coefficient γ . For convenience, in the remainder of this paper the
dimensionless quantities are written in the same form as their dimensional counterparts.
After non-dimensionalization, (2.1) and (2.3) take the following dimensionless forms:

∂u
∂t
+ u ·∇u=−∇p+ 1

Re
∇2u+ f , (2.5)

ρ
∂2X
∂t2
= ∂

∂s

(
k

(∣∣∣∣∂X∂s

∣∣∣∣− 1
)
∂X
∂s

/∣∣∣∣∂X∂s

∣∣∣∣)− ∂2

∂s2

(
γ (κ − κ0)

∂2X
∂s2

/∣∣∣∣∂2X
∂s2

∣∣∣∣)− F,

(2.6)

with Re = ρ0U∞D/µ and ρ = ρ1/ρ0D, while the continuity equation (2.2) keeps its
original form.

Coupling of the fluid and the ring is formulated according to the IB method in terms
of the momentum forces F and f . The Lagrangian force F can be calculated along the
IB by using the feedback law (Goldstein, Handler & Sirovich 1993)

F= α
∫ t

0
(Uib − U) dt + β(Uib − U), (2.7)

where α and β are large negative free constants, Uib is the fluid velocity calculated by
interpolation at the IB, and U is the velocity of the ring given by U = ∂X/∂t, with
X as determined by (2.6). The Lagrangian and Eulerian variables were transformed by
using the smoothed approximation of the Dirac delta function δ. In detail, the fluid
velocity is interpolated at the immersed boundary, as expressed by

Uib(s, t)=
∫
Ω

u(x, t)δ(X(s, t)− x) dx. (2.8)

Here, we use the four-point smoothed delta function introduced by Peskin (2002).
Meanwhile, the Lagrangian force is spread to the nearby Eulerian grids by using the
following expression:

f (x, t)=
∫
Γ

F(s, t)δ(x− X(s, t)) ds. (2.9)

Note that the smoothed delta function is two-dimensional for both the velocity
interpolation (2.8) and the force spread (2.9), while the integral is two-dimensional
for the former but only one-dimensional for the latter. Thus the Eulerian momentum
force f is singular and might cause a pressure jump in the fluid across the ring. In the
simulation, f is actually distributed over several Eulerian grids in width by using the
smoothed delta function.

2.2. Volume conservation
Since the fluid inside the ring is incompressible and enclosed by the ring, the internal
volume of the flexible ring is expected to be conserved. However, the problem of
volume leakage arises when the traditional IB method is used for solving fluid–flexible
body interactions because of its use of the smoothed approximation to the Dirac delta
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FIGURE 2. Changes in the interior volume of a flexible ring with k = 10 and γ = 0.01 in a
uniform flow without volume conservation.

function. Figure 2 shows the evolution of the volume of a flexible ring in a uniform
flow and the instantaneous shapes without any treatment for volume conservation. A
tension coefficient of k = 10 and a bending coefficient of γ = 0.01 were used in this
case. From figure 2 we can see that the volume of the ring converges at 18 % of its
initial value, which means that 82 % of the initial volume penetrates from the inside of
the flexible ring to the outside. The instantaneous shape in figure 2 at t = 2000 shows
a severe volume leakage when the vibration of the ring is stabilized, which makes the
result unacceptable.

Several methods for volume conservation have been proposed by using the
projection approach or incorporating the jump conditions in stress at the interface,
which require more complicated implementations and computational time (Cortez &
Minion 2000; Li & Lai 2001; Peskin & Printz 2002). Recently, Peng, Asaro & Zhu
(2010) proposed a penalty method derived from fluid compressibility that aims to
improve the conservation of cell volume during deformation. Here we adopt a similar
approach to that of Peng et al. due to its simplicity in implementation.

The fluid compressibility β is defined as

β =− 1
V

∂V

∂p
, (2.10)

where V denotes the fluid volume inside the ring in the present study and p denotes
the pressure. The pressure gradient can be expressed as

∂p=− 1
β

∂V

V
. (2.11)

Then integrating (2.11) yields ∫
∂p=− 1

β

∫
1
V
∂V, (2.12)

1p=− 1
β

ln
(

V

V0

)
, (2.13)

where 1p denotes the pressure difference between the interior and exterior of the ring,
and V0 denotes the initial interior volume of the ring. By assuming a small change in
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FIGURE 3. Changes in the volume of the flexible ring with no control, P control, and
PI control.

volume V from V0, (2.13) can be approximated by

1p= 1
β

(
1− V

V0
+ 1

2

(
1− V

V0

)2

+ · · ·
)
≈ 1
β

(
1− V

V0

)
, (2.14)

using Taylor’s expansion. Moreover, to represent historical effects, we can also add an
integral term to (2.14), which becomes

1p= 1
β

(
1− V

V0

)
+ 1
β

∫ t

0

(
1− V

V0

)
dt′, (2.15)

where t is the present time. The pressure difference 1p computed from (2.15) is then
used to calculate the penalty force for volume conservation,

FA(s)=1pen, (2.16)

where en denotes the local normal unit in the direction from the interior to the
exterior of the ring. This calculated penalty force is then added to the structure motion
equation as an external force term, i.e.

ρ
∂2X
∂t2
= ∂

∂s

(
k

(∣∣∣∣∂X∂s

∣∣∣∣− 1
)
∂X
∂s

/∣∣∣∣∂X∂s

∣∣∣∣)
− ∂2

∂s2

(
γ (κ − κ0)

∂2X
∂s2

/∣∣∣∣∂2X
∂s2

∣∣∣∣)− F+ FA. (2.17)

Figure 3 shows the time histories of the changes in volume with and without the
penalty method for volume conservation, where ‘P control’ denotes the result obtained
with the penalty method using (2.14) and ‘PI control’ denotes that obtained using
(2.15). As shown in figure 3, the P control and PI control results show significantly
improved volume conservation. For P control, a small volume leakage is still observed
during the initial stage, which can be corrected by taking into account the historical
effect, i.e. the PI control. Hence we adopt PI control in the following simulations.

2.3. Numerical method and validation
The numerical description of the fluid–ring interaction system has three components,
i.e. the fluid solution, the solid solution, and the coupling scheme. For the fluid motion,
the NS equations are solved with the fractional step method on a staggered Cartesian
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h 1t CD Cl,rms St

Case 1 1/32 2.0× 10−3 1.55 0.28 0.177
Case 2 1/64 2.0× 10−3 1.53 0.28 0.178
Shin et al. 1/64 6.0× 10−3 1.44 0.35 0.168
Lai and Peskin 1/64 1.8× 10−3 1.52 0.29 0.155
Lai and Peskin 1/128 9.0× 10−4 1.45 0.33 0.165
Uhlmann 1/128 3.0× 10−3 1.50 0.35 0.172

TABLE 1. Drag and lift coefficients and the Strouhal number of a rigid cylinder in a
uniform flow at Re= 100.

grid (Kim, Baek & Sung 2002). Fully implicit time advancement is employed; the
Crank–Nicolson scheme is used for the discretization of the diffusion and convection
terms. The decoupling of the velocity and pressure is achieved by using block LU
decomposition in conjunction with approximate factorization. The ring motion is
defined in the Lagrangian coordinates on a staggered grid system, with the tension
force defined on the interfaces and the other variables defined on the nodes. The
motion equation of the ring is discretized in space by using the finite difference
method and is advanced in time by using a semi-implicit scheme in which the tension
force term is treated implicitly and the bending force term is treated explicitly. The
fluid and solid solvers are then coupled by using the IB method in an explicit way,
without iteration at each time step. The details of the numerical method can be found
in Huang et al. (2007).

First, we simulated flow over a rigid circular cylinder. In this case, the momentum
force F was calculated with (2.7) by specifying U = 0. The Reynolds number was set
at 100, based on the uniform flow velocity and the cylinder diameter (D). The fluid
domain size was Lx/D= 32 and Ly/D= 16 in the x and y directions, respectively, with
the corresponding grid numbers Nx = 1024 and Ny = 512. The number of Lagrangian
points along the cylinder surface was 128. A comparison of the present results with
data from other numerical studies and experiments is provided in table 1, including the
root mean squares (r.m.s.) of the lift coefficient Cl,rms, the mean drag coefficient CD,
and the Strouhal number; good agreement is evident.

Next we considered the free vibration of a flexible ring immersed in an ambient
quiescent fluid. The initial shape of the ring was set at r(θ, 0)= R(1+ ε cos qθ), where
R is the radius in the equilibrium state, q is an integer representing the wavenumber
around the ring, and ε � 1. In this simulation, the fluid domain size is 8.0 × 8.0,
scaled by the ring diameter 2R, with a grid number of 256 × 256, and the number of
Lagrangian points along the ring is also 128. The ring is released when the simulation
starts and undergoes a standing-wave vibration with the prescribed wavenumber q.
To compare with the result of Shoele & Zhu (2010), in the simulation we used the
same formulation of the tension force as theirs, i.e. T = k∂X/∂s, and set the same
dimensionless tension coefficient, i.e. kR/ρ0ν

2 = 2.51 × 105. Figure 4 shows the time
history of the radial position of a point r(θ, t) on the ring with θ = π, and we can
find excellent agreement with the result of Shoele & Zhu (2010). Moreover, by fitting
the curve in figure 4 to the form R(1 + εeαt cosβt cos qθ) using the method of least
squares, we obtained the decay rate α and the frequency β, i.e. αR2/ν = −46.5 and
βR2/ν = 1029.4, which also coincide with the numerical result of Shoele & Zhu
(2010) as well as the analytical solution of Cortez et al. (2004).
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Shoele & Zhu (2010)
Present
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0 4020 60

FIGURE 4. The radial position of a point on the ring at θ = π with initial disturbance
r(θ, t = 0)= R(1+ ε cos qθ) in a quiescent fluid, together with the result of previous research
(Shoele & Zhu 2010) with q= 4, ε = 0.05 and kR/ρ0ν

2 = 2.51× 105.

3. Results and discussion
3.1. Flapping modes

In this section we first consider an initially circular flexible ring, i.e. R = a = b
(figure 1). The ring with one point pinned in space that is set as the origin of the
coordinates is subjected to a uniform flow. The computational parameters, including
the Reynolds number, the domain size and the corresponding grid number, are the
same as those for the simulation of flow over a circular cylinder presented in
the previous section, except that the number of Lagrangian points along the ring
is increased to 256. The flapping phenomena and the wake flow of the ring were
examined by varying the tension coefficient (k), the bending coefficient (γ ) and the
aspect ratio (a/b). In our simulations, the tension coefficient k ranges from 6 to 400,
while the bending coefficient γ ranges from 0 to 0.25.

3.1.1. Identification of flapping modes
Figure 5 shows the mean drag coefficient (CD) of the flexible ring as a function

of the tension coefficient for various bending coefficients. It is clearly seen that most
curves can be divided into two regions: the drag coefficient decreases at first as k
increases since the ring becomes stiffer and more resistive to deformation, and then
abruptly jumps to a high value at a critical k. The jump of CD as k increases has
also been reported by Shoele & Zhu (2010), where a relatively narrow peak of CD

was observed, and they attributed it to the fluid–structure resonance. Here we refer
to this phenomenon as the mode transition, since CD stays relatively stable above the
critical k in our simulations, and more evidence is presented later. Superposition of the
instantaneous ring shapes of four selected cases, i.e. k = 7, 10 and 11 with γ = 0.01
and k = 10 with γ = 0, is shown in figure 6. We can see the obvious difference
between the two modes before and after the jump of CD as k increases, e.g. k = 10 and
11 for γ = 0.01 (figure 6b,c), which are termed the ‘ordinary mode’ and the ‘energetic
mode’ respectively in the present study. Moreover, from figure 6(a,d) it is shown
that a decrease of k or γ also induces significant changes in the span of flapping as
compared with the ordinary mode, which will be discussed later.

To study the two flapping modes in more detail, the time histories of the drag
coefficient (Cd), the lift coefficient (Cl) as well as the transverse position of the
mid-point of the ring (ym) are plotted in figure 7 for the four cases corresponding
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FIGURE 5. Variation of the mean drag coefficient of a flexible ring as a function of the
tension coefficient for various bending coefficients.
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(c) (d)(b)

FIGURE 6. Instantaneous shapes of a flexible ring with: (a) k = 7, γ = 0.01; (b) k = 10,
γ = 0.01; (c) k = 11, γ = 0.01; and (d) k = 10, γ = 0.

to figure 6. By comparing the two cases of k = 10 and 11 for γ = 0.01, as the
representatives of the ordinary and energetic modes respectively, it is surprisingly seen
that the oscillation amplitudes of the drag and lift coefficients are much augmented
for the energetic mode (figure 7b,c), more significantly than the increases in the
flapping amplitude and the mean drag coefficient (figure 5). A quantitative comparison
is listed in table 2. Notably, no beating behaviours of Cd and Cl are seen during
the mode transition (figure 7), unlike Shoele & Zhu’s (2010) results, indicating
that fluid–structure resonance does not occur in the present system. Furthermore, the
frequency spectra of Cl obtained by Fourier transform for the above-mentioned four
cases are plotted in figure 8, where we can see that the frequency of the first harmonic
(f1) corresponds to the flapping period and the second one (f2) corresponds to the
oscillation in Cl caused by elastic vibration of the ring. It is interesting to note that the
second harmonic is dominant for the ordinary mode of flapping (figure 8b), while the
first harmonic is dominant for the energetic mode (figure 8c). As a result, there is an
obvious difference in the phase relation between Cl and ym for the two flapping modes,
as can be seen in figure 7(b,c). Figure 9 shows the variation of the phase difference
1φ between the maximum Cl and the maximum ym with k for various γ . We can
see a jump of 1φ due to mode transition, which is ∼0.6π for the ordinary mode and
−0.1π for the energetic mode.
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FIGURE 7. Time histories of the drag and lift coefficients and the transverse position of the
mid-point of the ring for Re = 100: (a) k = 7, γ = 0.01; (b) k = 10, γ = 0.01; (c) k = 11,
γ = 0.01; and (d) k = 10, γ = 0.

k 7 10 11 10
γ 0.01 0.01 0.01 0.0

CD 2.4906 2.2201 2.7513 3.1186
Cd,rms 0.5072 0.1920 0.9455 0.9330
Cl,rms 0.4274 0.2391 0.7314 0.5736
St 0.1977 0.1901 0.1713 0.1707

TABLE 2. Drag and lift coefficients and the Strouhal number of a flexible ring in a uniform
flow with different k and γ at Re= 100.

As further evidence for the explanation of such differences between the two flapping
modes, the vorticity contours together with the ring shapes at the instants when
the lift coefficient reaches its two positive peaks are plotted in figure 10, with
those corresponding to the negative peaks omitted for the reason of symmetry. The
two peaks are denoted by A and B, respectively, as shown in the left column of
figure 10. For the ordinary mode (figure 10b), two single counter-rotating vortices
are shed alternately from the flapping ring during each period, which is classified
as the 2S mode (Williamson & Roshko 1988). Different from the classical cylinder
wake, however, the flexible ring causes more complicated dynamics. In figure 10(b),
instant A denotes the maximum Cl but a small negative ym, while instant B denotes
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FIGURE 8. Frequency spectra of the lift coefficient of the flapping ring for Re= 100:
(a) k = 7, γ = 0.01; (b) k = 10, γ = 0.01; (c) k = 11, γ = 0.01; and (d) k = 10, γ = 0.
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FIGURE 9. Variation of the phase difference between the maximum lift coefficient and
the maximum transverse position of the mid-point of the ring as a function of the tension
coefficient for various bending coefficients.

the second maximum Cl near the negative peak of ym. The vorticity contours show
that a positive vortex is shed from the lower side of the ring at instant B due to
the transverse flapping motion, resulting in a local maximum Cl, while at instant
A the vortex is still attached and growing at the lower side of the ring, indicating
that the maximum Cl is attributed to elastic vibration of the ring by recalling the
dominant harmonic shown in figure 8. For the energetic mode (figure 10c), a pair
of counter-rotating vortices at instant A are shed from the leading and trailing edges,
respectively, although one is dominant while the other is weak and elongated, which
is not entirely separated and dissipated fast downstream. Thus we did not see the
2P mode of vortices far downstream due to the low Reynolds number in the present
simulations, but near the ring the vortex pattern is 2P-like (Williamson & Roshko
1988). We see that it is the 2P-like pattern of vortex shedding that causes significant
increases of Cd and Cl as compared with the ordinary mode (figure 7b,c). At instant
B of the energetic mode (figure 10c), the local maximum of Cl is induced by elastic
deformation of the ring by noting that the instantaneous vorticity field is similar to that
of the ordinary mode at instant A (figure 10b).
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FIGURE 10. Instantaneous vorticity contours over the flapping ring at the instants when the
lift coefficient reaches its two positive peaks labelled A and B for Re = 100: (a) k = 7,
γ = 0.01; (b) k = 10, γ = 0.01; (c) k = 11, γ = 0.01; and (d) k = 10, γ = 0.

Figure 11(a) shows the variation of the Strouhal number with the tension coefficient
k for various bending coefficients, γ = 0.001, 0.01 and 0.02. It is interesting to see
that the Strouhal number is abruptly decreased due to mode transition and remains
almost constant for the energetic mode, which is close to that of the wake flow over
a rigid circular cylinder, i.e. St ≈ 0.17, although the values vary slightly with the
bending rigidity. Figure 10(b) shows the variation of the amplitude of the perimeter
oscillation during flapping (Ap) with the tension coefficient k. Except for a jump at the
critical k, Ap varies linearly inversely to k for both the ordinary and energetic modes
due to the linear constitutive law adopted for the tension force (equation (2.3)).

3.1.2. Other effects
Exceptions found in figure 5 are the cases with small bending coefficients, i.e.

γ = 0 and 0.0001, where no jump of CD as k increases was detected. To facilitate
comparison, a case of k = 10 and γ = 0 is selected, with its instantaneous shapes
shown in figure 6(d), the time histories of Cd, Cl and ym in figure 7(d), the frequency
spectrum of Cl in figure 8(d), and the vorticity contours in figure 10(d). Generally
speaking, we can see that the flapping motion of k = 10 and γ = 0 is consistent
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FIGURE 11. (a) Strouhal number and (b) amplitude of perimeter variation of a flexible ring
as functions of the tension coefficient for various bending coefficients.

with that of k = 11 and γ = 0.01. Without the bending rigidity, the ring easily adapts
to the streamlines of the surrounding flow and thus the transverse flapping motion
is dominant over the elastic vibration, resulting in the energetic mode. Note that in
Shoele & Zhu (2010) the jump of CD was present for the ring without bending rigidity
(figure 12 of their paper), since the ring is prestressed and much stiffer than ours for
the same k due to the different formulation of the tension force.

Further observations on figure 5 shows that, as k decreases in the regime of
the ordinary mode motion, the mean drag coefficient CD is gradually increased to
become comparable to that of the energetic mode. Further decrease in k causes some
difficulties in numerical computation since the ring is elongated too much. Taking
k = 7 and γ = 0.01 as an example, the flapping span and especially the oscillation
amplitudes of the drag and lift coefficients are much increased as compared with those
of the energetic mode (see figures 6a and 7a). Moreover, the phase difference 1φ
between the maximum Cl and the maximum ym is shifted to about zero as seen in
figures 6(a) and 9. However, the pattern of vortex shedding remains the 2S mode
(figure 10a), consistent with the ordinary mode. The reason for the shift in 1φ is
the enhanced transverse flapping due to the decrease of k, which increases the vortex
strength around the ring and results in the maximum Cl near the maximum ym position.
Nevertheless, the contribution to Cl is still dominant by the elastic vibration of the ring
as dictated by figure 8(a).

Figure 12 shows the variation of the drag coefficient of the flexible ring with the
bending coefficient γ for various tension coefficients, k = 8, 9 and 10. For each
tension coefficient, as the bending coefficient increases, the drag coefficient of the
flexible ring decreases at first, then abruptly increases and stays relatively stable
after mode transition. This trend is similar to that of the tension effect as shown in
figure 5. Hence, transition of the flapping modes can be induced by changes of not
only the tension coefficient but also the bending coefficient. Combining figures 5 and
12, we see that there exists an optimal bending coefficient that minimizes the drag
coefficient, which for k = 9 and γ = 0.015 is at Re = 100 in the present simulations.
The instantaneous shapes of the ring corresponding to the two flapping modes by
varying the bending coefficient are seen on figure 12(b). Similar patterns of both
modes are displayed with those shown in figure 6(b,c). Moreover, variation of the
phase difference 1φ between the maximum Cl and the maximum ym as a function
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FIGURE 12. (a) Variation of the mean drag coefficient of a flexible ring with the bending
coefficient for various tension coefficients; (b) instantaneous shapes of a flexible ring with
k = 10 and different bending coefficients.

–0.2

0

0.2

0.4

0.6

0.005 0.010 0.015 0.020 0.025 0.030

FIGURE 13. Variation of the phase difference between the maximum lift coefficient and
the maximum transverse position of the mid-point of the ring as a function of the bending
coefficients for various tension coefficients.

of γ is plotted in figure 13. Similar to figure 9, it is clearly shown that 1φ is ∼0.6π
for the ordinary mode but is shifted to −0.1π for the energetic mode, indicating the
change in the vortex shedding pattern due to mode transition.

In figure 14, the variation of the mean drag coefficient CD with the tension
coefficient is plotted for various aspect ratios (a/b, see figure 1). It is seen that
the drag coefficient is decreased as a/b decreases since the ring becomes thinner,
while a minimum CD is obtained at about a/b = 0.5 and then is increased slightly as
a/b decreases further (see the inset of figure 14) since CD is mainly determined by the
flapping amplitude for a slender ring. It is also observed that the mode transition does
not occur for the cases of small aspect ratios, i.e. a/b= 0.25 and 0.5 in figure 14. The
instantaneous shapes indicate the ordinary mode of flapping for a/b = 0.25 and 0.5 as
shown in figure 14(b). On the other hand, after transition to the energetic mode for the
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FIGURE 14. (a) Variation of the mean drag coefficient of a flexible ring with the tension
coefficient for various aspect ratios; (b) instantaneous shapes of a flexible ring with k = 10
and different bending coefficients. Inset: variation of the mean drag force with the aspect ratio
with k = 10.

cases of large aspect ratios, i.e. a/b= 0.8 and 1.0, the drag coefficient is insensitive to
the aspect ratio.

3.2. Hysteresis property
We now reduce the Reynolds number in our simulation, and the ring will finally stop
flapping and retain a stationary stable state, while in a certain range of the Reynolds
number the ring exhibits hysteresis behaviour. Hysteresis behaviour of the ring in
fluid flow has been observed in the experiment of Jung et al. (2006), but has not
been reported numerically. On the other hand, extensive studies have shown hysteresis
behaviour or bistability of a flexible filament or flag in fluid flow, both experimentally
and numerically (Zhang et al. 2000; Shelley, Vandenberghe & Zhang 2005; Connell &
Yue 2007; Huang et al. 2007; Alben & Shelley 2008; Eloy et al. 2008).

To scrutinize the hysteresis phenomenon of the ring, we performed simulations by
varying the Reynolds number and the initial inclination angle (θ0). Figure 15 shows
the variation of the flapping amplitude with the Reynolds number for various aspect
ratios, i.e. a/b = 0.10, 0.25, 0.40, 0.50, 0.67, 0.80 and 1.0, and for each case two
initial inclination angles are compared, i.e. θ0 = 0 and π/24. For a/b = 0.25, the
ring exhibits a stationary stable state for both θ0 = 0 and π/24 when Re < 30, and a
periodically flapping state independent of the initial inclination angle when Re > 50.
When the Reynolds number is between 30 and 50, a bistability region appears for
which the ring is stationary and stable for θ0 = 0 but flaps periodically for θ0 = π/24,
indicating the hysteresis behaviour. The hysteresis region arises for a/b = 0.67 at
higher Reynolds numbers than that for a/b = 0.25, and the flapping amplitude is
smaller. For a/b = 1.0 the lower limit of the hysteresis region is similar to that for
a/b = 0.25, but the region becomes narrow. The statistics for the Reynolds number
range of the hysteresis region and the flapping amplitude for various aspect ratios
are plotted in figure 16. Below the hysteresis region, the ring remains stationary and
stable regardless of the initial inclination angle, whereas it is always flapping above
the hysteresis region. The Reynolds number at which the hysteresis region commences
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FIGURE 15. Variations of the flapping amplitude of the mid-point of a flexible ring with the
Reynolds number for various aspect ratios. The shapes of the flexible ring for a/b = 0.5 with
θ0 = 0 and θ0 = π/24 are depicted.
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FIGURE 16. Variations of (a) Reynolds number range of the bistability region and (b) the
flapping amplitude of the mid-point of the ring at Re= 100 as functions of the aspect ratio.

increases and then decreases as the aspect ratio increases, and reaches its maximum
at about a/b = 0.50 (figure 16a). On the other hand, the flapping amplitude decreases
and then increases as the aspect ratio increases, and reaches its minimum at about
a/b= 0.50 (figure 16b). The results indicate that the aspect ratio of a/b= 0.50 is most
stable to keep the stationary state of the ring, which is consistent with the result of CD

shown in figure 14.
Vorticity contours for a/b = 0.25 and Re = 50 are shown in figure 17(a), where we

can see the bistable states of the ring. It is interesting to note that both the gliding
and fluttering motions are commonly seen for flying or swimming animals, which
may have some intrinsic relations with the hysteresis property displayed here. Hence,
investigation on the passive flapping behaviour may help us to understand active flying
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FIGURE 17. Instantaneous vorticity contours of a uniform flow over initially elliptic flexible
rings for k = 10 and γ = 0.01: (a) a/b= 0.25, Re= 50; (b) a/b= 0.67, Re= 80.

or swimming motions in nature (Zhang et al. 2000; Liao et al. 2003; Müller 2003;
Jung et al. 2006). An unexpected phenomenon is observed for a/b= 0.67 in figure 15:
above the common bistability region there is another hysteresis loop within a certain
range of the Reynolds number, where the ring exhibits two periodically flapping states
with different amplitudes, instead of one stationary stable state and one periodically
flapping state. Vorticity contours for a/b = 0.67 and Re = 80 are seen in figure 17(b).
The present results indicate that there may exist multiple periodically flapping states of
flying or swimming, which need further evidence to confirm in real life.

The hysteresis loop displayed in figure 15 is a common feature of the viscoelastic
system. Here the flexible ring behaves as an elastic material and the fluid viscosity
has a damping function, whereas the vortex shedding from the ring can be regarded
as a periodic external force. From the stability point of view, the fluid viscosity sets
a certain threshold of disturbance energy for the setting up of flapping. Thus, given a
higher initial inclination angle, the critical Reynolds number is reduced, resulting in
subcritical stability of the system. The hysteresis property can be described by using
Landau’s equation arising from nonlinear stability of viscous flow (Landau & Lifshitz
1987), i.e.

1
2

dA2
m

dt
= ωiA

2
m − aA4

m − bA6
m, (3.1)

where Am denotes the flapping amplitude of the mid-point, ωi denotes the exponential
growth rate due to linear stability, while a and b are the Landau constants, which
depend on the system property. The linear stability is caused by setting a = b = 0.
The growth rate ωi is approximately proportional to (Re − Recr) as Re is close to Recr

because ωi is zero for Re = Recr, where Recr denotes the critical Reynolds number
beyond which the system is unstable for infinitesimal initial perturbation. Here we
assume a < 0 and b > 0. Equation (3.1) dictates the temporal variation of the flapping
amplitude Am by setting an infinitesimal or finite-amplitude initial value, which can be
rewritten as

1
2

dA2
m

dt
=−bA2

m(A
2
m − r1)(A

2
m − r2), (3.2)
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FIGURE 18. Schematic of the hysteresis property. The vertical arrays denote the convergence
direction of the flapping amplitude.

where

r1,2 =− a

2b
±
√

a2

4b2
+ ωi

β
. (3.3)

Equation (3.2) indicates that Am converges to different values depending on its initial
amplitude, which is shown schematically in figure 18. The upper branch (solid) and
the lower branch (dashed) in figure 18 are plotted according to (3.3). For Re > Recr,
the flapping amplitude converges to the upper branch for arbitrary initial values.
However, for Re′cr < Re < Recr, the flapping amplitude converges to the upper branch
only for finite initial amplitudes above the lower branch, and decays to zero for those
below the lower branch. Furthermore, to explain the hysteresis loop above the critical
Reynolds number where two periodically flapping states with different amplitudes are
present as seen in figure 15 for a/b= 0.67, a higher-order term −cA8

m needs to be put
into (3.1). Using this model and following a similar analysis as above, the solution
converges to two different finite amplitudes depending on its initial condition.

To further demonstrate the hysteresis property observed in a/b = 0.67, the phase
relations between the transverse position and the transverse velocity of the mid-point
of the ring at various Reynolds numbers are plotted in figure 18. At Re = 50, the
phase trajectory remains a point at the origin for θ0 = 0 but converges to a circle
for θ0 = π/24, whose radius denotes the flapping amplitude. At Re = 70, the phase
trajectory consists of two circles of different radii for θ0 = 0 and π/24, corresponding
to the multiple periodically flapping states. At Re= 90, the phase trajectory starts from
the origin for θ0 = 0, and is trapped in an intermediate radius for a while, and finally
converges to a circle identical to that for θ0 = π/24. The intermediate state can be seen
from the dense part of the trajectory, which has the same radius as the stable state
at Re = 70. As the Reynolds number is further increased to 120, the phase trajectory
moves smoothly towards the final stable state, which is the same for both θ0 = 0 and
π/24.

4. Conclusions
The flapping of a flexible ring in a uniform flow was simulated by using an

improved version of the immersed boundary method combined with the penalty
method to ensure the conservation of the interior ring volume. Both the tension
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FIGURE 19. Phase maps of the mid-point of a flexible ring of a/b= 0.67 at four different
Reynolds numbers: (a) θ0 = 0; and (b) θ0 = π/24.

and bending forces were considered in the formulation of the ring motion equation.
Validation of the proposed method was performed by simulating the flow over a rigid
circular cylinder and a freely vibrating ring in an ambient quiescent flow. It was
interesting to see that different formulations of the tension force between our work and
that of Shoele & Zhu (2010) caused various differences in the results of the fluid–ring
coupling system, while our inclusion of the bending rigidity made it possible for us to
consider different initial reference shapes rather than the circular one. For an initially
circular flexible ring immersed in a uniform flow, different flapping modes were
observed by varying the tension or bending coefficients of the ring, which are termed
the ‘ordinary mode’ and the ‘energetic mode’ in the present study. It was shown that
the mode transition leads to abrupt changes in the drag coefficient, lift coefficient,
Strouhal number, perimeter and deformation of the ring. From the frequency spectra
we saw that the first harmonic is dominant for the energetic mode while the second
harmonic is dominant for the ordinary mode, which correspond to the transverse
flapping motion and the elastic vibration of the ring respectively. It was also found
that the phase difference between the maximum lift coefficient and the maximum
transverse position of the mid-point of the ring has a jump due to the transition of
flapping modes. Visualization of the vorticity field showed that the ordinary mode
corresponds to the classical 2S mode of vortex shedding, while the energetic mode of
flapping produces the 2P-like pattern in the near wake. Moreover, for sufficiently small
k or γ , the flapping motion also displays some differences, resulting in significant
changes in the drag and lift coefficients. For small k the ring motion remains the
ordinary mode, while for small γ the flapping persists in the energetic mode. When
either k or γ is fixed, the optimal tension and bending coefficients that minimize the
drag force on the ring can be obtained before the mode transition. An overall optimal
value was found at k = 9 and γ = 0.015 for Re = 100 in the present simulations.
The effect of the aspect ratio of the ring was then studied. It was shown that the
drag coefficient generally decreases as a/b decreases and the mode transition does
not occur for a/b 6 0.5. However, the drag coefficient is insensitive to a/b once the
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energetic mode is formed at large a/b. In our simulations we observed the hysteresis
property of the flexible ring, which exhibits bistable states over a range of Reynolds
number depending on the initial inclination angle, i.e. one stationary and the other
periodically flapping. The variations with aspect ratio in the Reynolds number range
of the hysteresis region and the flapping amplitude were investigated. We found that,
as the aspect ratio increases, the Reynolds number at which the hysteresis region
commences increases and the flapping amplitude of the periodically flapping state
decreases. Both trends reach their maximum or minimum values for a/b= 0.50. Apart
from ordinary bistable states, we also observed another bistability phenomenon, i.e. the
presence of two periodically flapping states with different amplitudes depending on the
initial inclination angle. The phase relation between the transverse position and the
velocity of the mid-point of the ring was examined to further investigate the hysteresis
property.
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