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Numerical simulations of wall-bounded acceleration-skewed oscillatory flows are here
presented. The relevance of this type of boundary layer arises in connection with
coastal hydrodynamics and sediment transport, as it is generated at the bottom of sea
waves in shallow water. Because of the acceleration skewness, the bed shear stress
during the onshore half-cycle is larger than in the offshore half-cycle. The asymmetry
in the bed shear stress increases with increasing acceleration skewness, while an
increase of the Reynolds number from the laminar regime causes the asymmetry first
to decrease and then increase. Low- and high-speed streaks of fluid elongated in
the streamwise direction emerge near the wall, shortly after the beginning of each
half-cycle, at a phase that depends on the flow parameters. Such flow structures
strengthen during the first part of the accelerating phase, without causing a significant
deviation of the streamwise wall shear stress from the laminar values. Before the
occurrence of the peak of the free stream velocity, the low-speed streaks break down
into small turbulent structures causing a large increase in wall shear stress. The
ratio of the root-mean-square (r.m.s.) of the fluctuations to the mean value (relative
intensity) of the wall shear stress is approximately 0.4 throughout a relatively wide
interval of the flow cycle that begins when breaking down of the streaks has occurred
in the entire fluid domain. The acceleration skewness and the Reynolds number
determine the phase at which this time interval begins. Both the skewness and the
flatness coefficients of the streamwise wall shear stress are large when elongated
streaks are present, while values of approximately 1.1 and 5.4 respectively occur
just after breaking has occurred. The trend of both the relative intensity and the
flatness of the spanwise wall shear stress are qualitatively similar to those of the
wall shear in the streamwise direction. As a result of the acceleration skewness, the
period-averaged Reynolds stress does not vanish. Consequently, an offshore directed
steady streaming is generated which persists into the irrotational region.

Key words: coastal engineering, surface gravity waves, turbulent boundary layers

† Email address for correspondence: pscandu@dica.unict.it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:pscandu@dica.unict.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2016.641&domain=pdf
https://doi.org/10.1017/jfm.2016.641


Acceleration-skewed oscillatory flows 577

1. Introduction
Oscillating flows are relevant in several hydrodynamic phenomena of both

engineering and environmental interest such as unsteady flows in pipes and water wave
propagation. Most of the knowledge about fundamental physical aspects of oscillating
boundary layers comes from studies on the sinusoidally oscillating boundary layer,
which is also known as the Stokes layer. Systematic experiments on the Stokes
layer were carried out by Jensen, Sumer & Fredsøe (1989) covering a wide range
of Reynolds numbers. Transition to turbulence was detected at Re ≈ 105, where
Re is the Reynolds number based on the peak of the free stream velocity and on
half the amplitude of fluid displacement in the irrotational region. Later, Vittori &
Verzicco (1998) carried out a numerical study in order to understand how transition to
turbulence in a Stokes layer is affected by wall imperfections. Flow perturbations due
to wall imperfections has also been examined by Scandura (2013), who showed that
important deviations from the laminar Stokes solution are generated in the boundary
layer when imperfections characterized by a slope as low as 10−4 are added to an
originally flat wall. The largest flow destabilization is provided by imperfections with
a dimensionless wavelength L/δ equal to approximately 2π/0.36, where δ =√2ν/σ
is the conventional thickness of the oscillating boundary layer, ν is the kinematic
viscosity and σ is the angular frequency of fluid oscillations. This finding shows why
two-dimensional instabilities are detected in several experiments even at sub-critical
Reynolds numbers (Carstensen, Sumer & Fredsøe 2010). Costamagna, Vittori &
Blondeaux (2003) studied vortex structures in a Stokes layer and concluded that the
streak instability is the most important mechanism that sustains turbulence. Large
eddy simulations of the Stokes layer were carried out by Salon, Armenio & Crise
(2007) who reproduced an experimental test of Jensen et al. (1989). One of the main
conclusions of this work is that there are intervals of the flow cycle where turbulence
shows features similar to those of a steady wall-bounded flow. The same test of
Jensen et al. (1989) was also simulated by Pedocchi, Cantero & Garcia (2011), by
means of direct numerical simulation, focusing primarily on the turbulent kinetic
energy balance. The effect of the initial condition on the transition to turbulence in a
Stokes layer has been studied by Ozdemir, Hsu & Balachandar (2014), who reported
that sustainable transition depends on the Reynolds number but also on the initial
condition.

Near the coast, the characteristics of the oscillating boundary layer at the bottom
of sea waves mostly depend on the wave shape, which undergoes important changes
during wave propagation from deep to shallow waters. In deep waters the wave shape
is close to a sinusoid, consequently a Stokes boundary layer should be produced at
the bottom, however, no motion is induced near the sea bed because of the large
depth. At intermediate depths, because of nonlinearities, the crests become narrow
and sharp and the through broad and flat, thus giving rise to skewed waves. Such
a wave shape induces a velocity skewness in the boundary layer as the magnitude
of the onshore velocity under the crest is larger than that of the offshore velocity
under the trough. When the waves reach the shallow water region they also become
asymmetric, with a steep front and a gently sloping rear face (Elgar, Guza & Freilich
1988), thereby acquiring a sawtooth shape. Under asymmetric waves the magnitude
of the near bed onshore acceleration is larger than that of the offshore acceleration,
therefore the time development of the velocity is characterized by an acceleration
skewness. In the field, wave skewness and asymmetry coexist near the coast and have
a strong impact on both the hydrodynamics and the sediment transport. In this context,
several studies have been carried out to understand the physical processes that occur in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.641


578 P. Scandura, C. Faraci and E. Foti

the bottom boundary layer, most often by considering wave skewness and asymmetry
in isolation from each other, in order to simplify the framework and facilitate the
interpretation of the results. Some of these studies were mainly focused on sediment
transport processes, while others were more focused on the hydrodynamics.

Experiments on velocity-skewed oscillatory flows on a sandy bed were carried
out by Ribberink & Al-Salem (1995) in an oscillatory water tunnel. The authors
reported that the net sediment transport during the cycle is onshore directed although
a net-wave-averaged horizontal velocity develops having opposite direction to that
of wave propagation. The effect of velocity skewness has been introduced into a
mathematical model of the turbulent wave boundary layer by Trowbridge & Madsen
(1984), who showed that for long waves in shallow waters an offshore current
occurs. Both Dibajnia & Watanabe (1998) and O’Donoghue & Wright (2004) found
that velocity skewness increases the transport of sediment towards the coast, but
they also found that it may give rise to an offshore transport of fine sediments.
Holmedal & Myrhaugh (2006) and Fuhrman, Fredsøe & Sumer (2009) reproduced
the experimental results of Ribberink & Al-Salem (1995) by means of a numerical
model. Insights into the physical mechanism responsible for steady streaming in a
velocity-skewed oscillatory flow has also been provided by Scandura (2007). The
reliability of the most employed turbulent closure models in predicting the features of
a velocity-skewed oscillatory flow has been analysed by Cavallaro, Scandura & Foti
(2011). In this study, a ranking of the models was provided but it was also noted that
their performance mostly depends on the flow quantity under investigation. Blondeaux
et al. (2012) developed a mathematical model to reproduce the hydrodynamics and
the sediment transport within the bottom boundary layer under velocity-skewed waves.
According to their model, sediment transport is onshore directed while the steady
streaming can be onshore or offshore directed, depending on the flow parameters.

The first to recognize that acceleration skewness has an important role in driving
onshore sediment transport was Madsen (1974). The author reported that the pressure
gradient induced by the wave passage may be of sufficient magnitude to induce
bed instability. Several years later, King (1990) carried out experiments in a U-tube
which proved that acceleration skewness gives rise to onshore sediment transport.
Drake & Calantoni (2001) and Calantoni & Puleo (2006) developed and applied a
three-dimensional discrete particle model to describe sheet flow sediment transport
under acceleration-skewed waves. Nielsen & Callaghan (2003) developed a method
to predict the sediment transport rates accounting both for acceleration skewness
and boundary layer streaming. Hsu & Hanes (2004) applied a two-phase model to
examine the effect of wave shape on sheet flow sediment transport. Their results
indicated that both asymmetric and skewed waves provide onshore sediment transport.
Laboratory experiments in a U-tube were performed by Watanabe & Sato (2004),
who also confirmed that the wave-averaged sediment transport does not vanish under
an acceleration-skewed oscillatory flow. More recently, experiments have been carried
out by van der A et al. (2010), Silva et al. (2011) and Dong, Sato & Liu (2013) who
showed that the net sediment transport has the direction of the largest acceleration
and that the phase lag of the bed shear stress plays an important role in determining
the direction and the magnitude of the sediment flux. Abreu et al. (2013) developed
a new parametrization for the bed shear stress in oscillatory flows by introducing an
index of skewness and a waveform parameter.

A detailed experimental study on the hydrodynamics of acceleration-skewed
oscillatory boundary layers on a rough wall has been carried out by van der A
et al. (2011). This study clearly shows that the acceleration skewness induces an
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asymmetry of the wall shear stress between the two half-cycles. The existence of
a steady streaming having the opposite direction to that of the largest acceleration
is also detected in their study. In the field, the mass transport generated outside the
bottom boundary layer may also have an effect on the transport of fine sediments,
which can be easily brought far away from the bottom (Scandura & Foti 2011;
Scandura, Foti & Faraci 2012).

Within the context described above, the present paper analyses results of direct
numerical simulations of wall-bounded acceleration-skewed oscillatory flows. The
range of Reynolds numbers partially overlaps with that of van der A et al. (2011),
but unlike the previous investigation, the bottom is assumed smooth. The reason for
limiting the present study to the case of a smooth wall is due to the formidable
computational task posed by a direct numerical simulation on a real rough wall.
However, we feel that the present study provides interesting insights which might
be of help to formulate models of sediment transport under sea waves; moreover it
provides a good basis for advancing the study to the case of rough a wall.

The paper is organized as follows. In § 2 the problem is formulated and the
numerical approach is briefly described along with some tests on the numerical code.
In § 3.1 the ensemble average of the wall shear stress and of the velocity profiles are
discussed. In § 3.2 the characteristics of the turbulent structures in the near-wall region
are analysed. The turbulent kinetic energy and the Reynolds stress are analysed in
§ 3.3. Section 3.4 is mainly devoted to the analysis of the wall shear stress statistics.
Finally, conclusions are drawn in § 4.

2. Formulation of the problem and numerical approach
We consider a prototype of the oscillatory flow induced by sawtooth waves near

a flat bottom. Hereinafter an asterisk denotes a dimensional variable. As a reference
a Cartesian coordinate system with the x∗ and z∗ axes lying on the bottom, the x∗
axis pointing onshore and the y∗ axis pointing outward from the bottom is introduced.
The velocity components along the x∗, y∗ and z∗ axes are denoted as u∗, v∗ and
w∗ respectively. When writing the governing equations, for convenience the axes of
the reference system and the velocity components are denoted as (x∗1, x∗2, x∗3) and
(u∗1, u∗2, u∗3) respectively. We assume that at the outer edge of the boundary layer the
fluid oscillates along the x∗ direction as (van der A et al. 2011):

u∗ = u∗maxα

N∑
n=1

(2ξ − 1)n−1

n
sin(nσ ∗t∗), (2.1)

where t∗ is the time, σ ∗ = 2π/T∗ is the angular frequency, T∗ is the period, α is a
coefficient such that the maximum of u∗ in (2.1) is equal to u∗max and ξ is a parameter
whose value is chosen as specified below. The degree of acceleration skewness
of the free stream velocity is measured by the acceleration skewness parameter
β = u̇∗t∗=0/(u̇

∗
t∗=0 − u̇∗t∗=T∗/2), where a dot denotes a time derivative evaluated at t∗ = 0

or at t∗ = T∗/2. In general u̇∗t∗=0 is equal to the maximum acceleration during the
cycle, while u̇∗t∗=T∗/2 approximates the minimum of the acceleration only when N is
large. Therefore, for sufficiently large N, it is possible to write β = u̇∗max/(u̇

∗
max− u̇∗min).

When N = 1 we get β = 0.5 for any value of ξ . For N > 1, ξ = β when N is
even, while ξ = (u̇∗t∗=0 − ασ ∗u∗max)/(u̇

∗
t∗=0 + u̇∗t∗=T∗/2) for odd values of N. For large

N, ξ tends to β without distinction between even and odd values of N. Here N is
chosen to be 20, as it is sufficiently large to assume that ξ = β = u̇∗max/(u̇

∗
max − u̇∗min).
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At the outer edge of the boundary layer the pressure gradient consistent with the free
stream velocity given by (2.1) reads:

∂P∗

∂x∗
=−%∗u∗maxασ

∗
20∑

n=1

(2β − 1)n−1 cos(nσ ∗t∗), (2.2)

where %∗ is the fluid density and ∂P∗/∂x∗ is the pressure gradient that drives the flow.
The following dimensionless variables are introduced:

t= t∗σ ∗, (x, y, z)= x∗, y∗, z∗

δ∗
, (u, v,w)= u∗, v∗,w∗

u∗max

, p= p∗

%∗u∗2max

, (2.3a−d)

where p∗ is the pressure due to the flow in the boundary layer, δ∗ is the thickness of
the laminar boundary layer defined as δ∗=√2ν∗/σ ∗ and ν∗ is the kinematic viscosity
of the fluid. The bottom shear stresses along the x and z directions are denoted as
τx and τz respectively and they are made dimensionless in the same manner as the
pressure.

The continuity and the Navier–Stokes equations in dimensionless form can be
written as follows:

∂uj

∂xj
= 0, (2.4)

∂ui

∂t
+ Rδ

2
∂uiuj

∂xj
=−δ1,i

Rδ
2
∂P
∂x1
− Rδ

2
∂p
∂xi
+ 1

2
∂2ui

∂xj∂xj
, (2.5)

where δ1,i is the Kronecker delta and repeated subscripts denote a summation with j
ranging from 1 to 3. The dimensionless pressure gradient ∂P/∂x1, that appears on the
right-hand side of the Navier–Stokes equation, can be written as follows (see (2.2)):

∂P
∂x1
=−2α

Rδ

20∑
n=1

(2β − 1)n−1 cos(nt). (2.6)

Equations (2.4)–(2.6) show that the flow is characterized by two dimensionless
parameters, i.e. the acceleration skewness β and the Reynolds number Rδ = u∗maxδ

∗/ν∗.
It is worth pointing out that the Reynolds number Re= u∗2max/(σ

∗ν∗) can be introduced
in place of Rδ since the two Reynolds numbers are linked by means of the relation
Re= R2

δ/2. In the case of a laminar flow, the integration of (2.4), (2.5), with ∂P/∂x1
given by (2.6), provides the following expression for the streamwise velocity:

u= α
N=20∑
n=1

(2β − 1)n−1

n
[sin(nt)− e−

√
ny sin(nt−√ny)]. (2.7)

The flow considered in this study is turbulent during most of the wave cycle, hence
the Navier–Stokes equations must be integrated numerically. The employed numerical
approach is based on centred second-order finite differences on a staggered grid. The
time advancement employs a fraction-step method which is a variant of that described
by Kim & Moin (1985). In order to compute the intermediate non-solenoidal velocity
field, the viscous terms are discretized by the Crank–Nicholson scheme and the
convective terms by a third-order Runge–Kutta scheme. The Poisson equation for the
pressure, obtained by imposing mass conservation, is solved by applying the Fourier
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transform along the x and z directions. The domain of integration has sizes Lx, Ly and
Lz in the x, y and z directions respectively. On the wall (y= 0) the no-slip condition
is imposed (u, v,w)= (0, 0, 0), while at the top of the computational domain (y= Ly)
a free shear stress condition is introduced (∂(u,w)/∂y, v)= (0, 0, 0). Finally, the flow
is assumed to be homogeneous along the directions parallel to the wall, therefore,
periodic boundary conditions are introduced along the x and the z axes. The grid
spacing is uniform along the x and z directions, while along the y direction the grid
is clustered near the wall where large gradients exist. The distribution of the grid
points along the y direction is computed by means of a hyperbolic tangent function.

Six cases of acceleration-skewed oscillatory flow obtained by combining two values
of the Reynolds number (Rδ = 1100, 1414) with three values of the β parameter
(β = 0.60, 0.75, 0.85) are here considered. In addition, 10 simulations were carried
out for β = 0.75 and Reynolds numbers ranging between the laminar regime and
Rδ = 1100 in order to gain insights about the trend of the wall shear stress asymmetry.
Details about these simulations are given in § 3.1.

The ensemble average is denoted by enclosing the symbol of the quantity between
brackets 〈·〉, with the exception of τx for which the symbol τ0 is used. By exploiting
the statistical homogeneity of the flow in the (x, z) planes, the ensemble average is
evaluated by performing spatial averages along the two periodic directions, followed
by a phase average over 14 cycles, with the exception of β = 0.75 and Rδ = 1100 and
Rδ = 1414, for which 33 and 24 cycles respectively were used for phase averaging.
The larger amount of cycles for the previous simulations, allowed us to verify that
14 cycles were sufficient to get reliable ensemble averages. In the previous study by
Salon et al. (2007), 14 cycles were also used for phase averaging.

The initial condition of the simulation was given by the laminar velocity profile
at t = 0 (see (2.7)). In order to trigger transition to turbulence, wall imperfections
of small amplitude, similar to those described in Scandura (2007), were introduced.
Generally, transition to turbulence was achieved within the first two cycles. After
transition occurred, the wall imperfections were removed and the simulation was
continued on a perfectly smooth wall. This procedure, involving wall imperfections
to initiate turbulence, was adopted only for the first numerical simulation carried
out for a given value of β, which in all cases was for Rδ = 1100. For the other
simulations the flow field provided by a previous simulation has been used as initial
condition. This approach was never applied by using a flow field characterized by
a different value of β, since it would cause a very slow convergence towards the
flow representative of the β value under consideration. For all the cases, the flow
was independent on the initial condition after 10 cycles from the beginning of the
simulation, hence the first 10 cycles have not been included in the computation of
the ensemble average.

The dimensions of the computational domain Lx and Lz were chosen to be 50
and 25 respectively for all the computations, while the dimension Ly was set equal
to 35 for Rδ = 1100 and 40 for Rδ = 1414. The adequacy of these dimensions has
been controlled by ensuring that the spatial autocorrelation function of the velocity
components decays within half of the computational domain. The dimensions of the
numerical grid nx, ny and nz along the x, y and z directions respectively, were chosen
to be (nx, ny)= (200, 180) for all the computations, while nz= 240 for Rδ = 1100 and
nz = 320 for Rδ = 1414. The increase of nz is necessary since the near-wall turbulent
structures (see § 3.2) are elongated in the streamwise direction and become thinner
when the Reynolds number increases. When Rδ increases, a grid refinement is also
required in the wall-normal direction, within the boundary layer, which in this study
was obtained by a slight increase of the grid clustering near the wall.
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FIGURE 1. Comparison between the wall shear stress measured in test 7 of Jensen et al.
(1989) (markers) and that computed by means of the present numerical code (continuous
line) for β = 0.5 and Rδ = 1120 (a); comparison between the wall shear stress computed
by means of (2.7) (continuous line) and the wall shear stress computed by means of the
present numerical approach (markers) for β = 0.75 and Rδ = 500 (b).

In terms of spatial resolution, the most demanding numerical simulation is that
characterized by Rδ = 1414 and β = 0.85. At the phase of the peak of the wall
shear stress, the minimum wall-normal grid spacing in wall units is 1y+ = 1, while
along the x and z direction the resolution is 1x+= 19.8 and 1z+= 6.19. In terms of
Kolmogorov length scale, η, evaluated by considering the peak of the turbulent kinetic
energy dissipation at the wall, the grid spacings for this simulation take the following
values: 1xη = 13.1, 1yη = 0.7 and 1zη = 4.1. The best spatial resolution is achieved
for the flow characterized by Rδ = 1100 and β = 0.60, for which the grid spacing
in wall units is 1x+ = 14.70, 1y+ = 0.78, 1z+ = 6.12 and in terms of Kolmogorov
length scale is 1xη=10.2, 1yη=0.54, 1zη=4.25. As pointed out by Moin & Mahesh
(1998), in a direct numerical simulation it is not necessary that the smallest resolved
spatial scale is equal to η, values of order 10 are also acceptable. The adequacy of
the grid resolution for Rδ = 1414 is highlighted by the decay of the energy spectra at
high wavenumbers shown in figure 16. Indeed, it can be observed that the energy at
high wavenumbers is approximately five orders of magnitude smaller than that at low
wavenumbers.

In order to demonstrate the correctness of the numerical code, test number 7 of
Jensen et al. (1989) (β = 0.5, Rδ = 1120) has been simulated and results of the
time development of the ensemble-averaged wall shear stress are compared with the
experimental measurements in figure 1(a). This test has been simulated using the
same computational domain and the same numerical grid adopted for Rδ = 1100 as
the spatial resolution requirements of the two cases are similar. Indeed, in terms of
wall units the resolution is: 1x+ = 14.8, 1y+ = 0.79, 1z+ = 6.2, while in terms of
Kolmogorov length scale it is: 1xη = 9.95, 1yη = 0.53, 1zη = 4.14. The computation
of the ensemble average is based on 14 cycles. Figure 1(a) shows that there is a
fairly good agreement between the experimental measurements and the numerical
results. The slight discrepancies that emerge during the second half-cycle are due to
the small asymmetry of the flow produced by the U-tube employed by Jensen et al.
(1989). The result in figure 1(a) supports the adequacy of both the numerical grid and
of the number of cycles used to compute the ensemble average. Figure 1(b) shows
a comparison between the wall shear stress in acceleration-skewed oscillatory flow,
provided by the analytical solution given by (2.7), and the wall shear stress computed
by means of the numerical code. It can be observed that the two approaches provide
indistinguishable results one from each other.
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FIGURE 2. (a) Free stream velocity and acceleration for three different values of β. The
maximum dimensionless velocity has been fixed to 1 in all the cases; thin lines: velocity;
thick lines: acceleration; (b) time development of the streamwise velocity component u, in
a position in the y= 0.42 plane. For Rδ = 1414 the trends are offset by −1.

3. Numerical results and discussion
In figure 2(a) both the free stream velocity and the acceleration determined by (2.7)

are shown. The positive and the negative peaks of the velocity are equal to each other
while the positive peak of the acceleration is larger than the negative one. The phases
t+ and t−, at which the positive and the negative peaks of the free stream velocity
occur respectively, take the following values: t+ = 1.38 and t− = 4.9 for β = 0.6;
t+ = 1.04 and t− = 5.24 for β = 0.75; t+= 0.785 and t− = 5.5 for β = 0.85. It can be
noted that when β increases the phase of the positive peak of the velocity shifts back,
while the phase of the negative peak shifts forward. In figure 2(b) a realization of the
streamwise velocity component during a period, in the y = 0.42 plane, is shown for
β = 0.75 and for the two Reynolds numbers here considered along with the velocity
that would occur if the flow were laminar. During the first stage of the accelerating
phase the velocity shows only small fluctuations. Large turbulent fluctuations suddenly
emerge before the end of the accelerating phase and persist during a large part of
the deceleration. Turbulence almost disappears in the vicinity of flow reversal but it
suddenly emerges again before the end of the accelerating phase of the negative half-
cycle. During the following decelerating phase the turbulence decays again and the
flow recovers a laminar-like behaviour. An increase of Rδ anticipates the onset of the
turbulence, while, as regards the persistency of the turbulence up to the vicinity of the
flow reversal, the increase of the Reynolds number does not have a similar important
effect. The intermittent appearance of turbulence is typical of oscillatory flows, it has
been previously detected both in Stokes boundary layers (Jensen et al. 1989; Vittori
& Verzicco 1998; Costamagna et al. 2003; Salon et al. 2007) and in wall-bounded
velocity-skewed oscillatory flows (Scandura 2007; Cavallaro et al. 2011).

3.1. Ensemble-averaged wall shear stress and velocity profiles
In figure 3(a,b) the time development of the ensemble-averaged wall shear stress τ0
is shown for both turbulent and laminar flow. During the first stage of the positive
half-cycle, because of the large flow acceleration, the vorticity produced at the wall
has a short time to spread, leading to a large near-wall velocity gradient (Nielsen &
Callaghan 2003). Consequently, the positive peak of the wall shear stress is larger than
the negative one, as shown in figure 3(a,b). The asymmetry of the wall shear stress
can be evaluated through the asymmetry parameter Aτ0 defined as:

Aτ0 =
τ0max + τ0min

τ0max
, (3.1)
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FIGURE 3. Time development of the ensemble-averaged wall shear stress during a cycle.
(a) Rδ = 1100, (b) Rδ = 1414. Thin lines: laminar flow; thick lines: turbulent flow.

Rδ β

0.60 0.75 0.85 0.60 0.75 0.85

Aτ0 Γτ0

1100 0.045 0.14 0.16 0.06 0.147 0.231
1414 0.070 0.177 0.272 0.069 0.176 0.30

Asymmetry in laminar flow

0.183 0.423 0.581 0.216 0.595 0.969

TABLE 1. Asymmetry parameters Aτ0 and Γτ0 of the bottom shear stress.

where τ0max and τ0min are the maximum and the minimum values of the wall shear
stress during the cycle. Another measure for the asymmetry is given by Γτ0 which is
defined as follows:

Γτ0 =
M3

σ 3
τ0

, where M3 = 1
2π

∫ 2π

0
τ 3

0 dt and στ0 =
√

1
2π

∫ 2π

0
τ 2

0 dt. (3.2)

Table 1 shows that Aτ0 and Γτ0 have similar trends as functions of the flow parameters,
even though there are quantitative differences between themselves. It can be observed
that the asymmetry increases both with acceleration skewness and Reynolds number,
however, in laminar flow it is larger than in turbulent flow. This finding shows that
a Reynolds number threshold, below which the asymmetry decreases with Rδ and
above which it increases, exists for Reynolds number smaller than those considered in
table 1, thus suggesting that the asymmetry has a minimum. Following these results,
the effect of the Reynolds number on the asymmetry of the wall shear stress in the
range between the laminar regime and Rδ = 1100 was investigated. A series of 10
numerical simulations was therefore performed for Rδ< 1100 and β= 0.75 in order to
describe the trend of the asymmetry. For all these simulations the same computational
domain and grid size adopted for Rδ = 1100 were employed. The ensemble average
was computed by phase averaging over 35 cycles.

In figure 4(a), where the trends of Aτ0 and Γτ0 are shown, it can be observed
that when the Reynolds number decreases below 1100, Aτ0 decreases and attains the
minimum at approximately Rδ = 925. On the other hand Γτ0 does not show important
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FIGURE 4. Asymmetry parameters Aτ0 and Γτ0 as functions of the Reynolds number (a);
ensemble-averaged wall shear stress (b). β = 0.75.

variations as long as Rδ is larger than approximately 900. A decrease of Rδ below
900 causes an increase of both Aτ0 and Γτ0 . For Rδ = 650 the flow is found to be
laminar, therefore the asymmetries take the values reported in table 1 for laminar flow.
In order to illustrate why the asymmetry in turbulent flow may be much smaller than
in laminar flow, figure 4(b) shows the trend of the wall shear stress for Reynolds
numbers 750, 800, 925 and 1050 along with the laminar wall shear stress. The
quantity τ0 × Rδ in figure 4(b) is the wall shear stress scaled by %∗ν∗u∗max/δ

∗, which
use turns out to be advantageous since all the curves in laminar flow collapse on each
other. At Rδ = 750 the flow is already in the intermittently turbulent regime, hence,
turbulence develops during the decelerating phase of the positive half-cycle, causing
the appearance of a secondary peak in the wall shear stress. Turbulence also develops
during the decelerating phase of the negative half-cycle, hence a small secondary
peak also appears at approximately t = 5.5. These peaks do not exceed the main
ones, therefore the asymmetry Aτ0 still depends on the main ones. For such a low
Reynolds number the main peaks of τ0 are slightly smaller than in laminar flow and
to a greater extent this occurs in the positive half-cycle, therefore a decrease of Aτ0

with respect to the laminar flow is observed. When the Reynolds number increases up
to 800, the secondary peak of the first half-cycle becomes close to the main one but
in the negative half-cycle it exceeds the main one, therefore a decrease of Aτ0 with
respect to Rδ = 750 occurs. The smaller decrease of Γτ0 with respect to Aτ0 is due to
the increase of the second peak in the positive half-cycle which provides a positive
contribution to Γτ0 but it does not affect Aτ0 . A further increase of the Reynolds
number causes an increase of the secondary peaks which finally become the only
one of each half-cycle. In particular, for Rδ = 925 a large decrease of the asymmetry
with respect to that in laminar regime is detected. The proximity of the two peaks,
combined with the circumstance that τ0max in turbulent flow is substantially larger
than in laminar flow, explains such a result (see (3.1)).

When Rδ takes larger values, the onset of turbulence shifts back in time during the
cycle. Hence, in the positive half-cycle the peak of the wall shear stress occurs when
the laminar wall shear stress is larger, thus causing an increase of τ0max with respect to
lower Rδ. In the negative half-cycle the trend of the laminar wall shear stress is rather
constant near the peak, therefore the magnitude of τ0min increases to a lesser extent
with respect to τ0max. Overall, these effects induce an increase of the asymmetry when
Rδ increases beyond a value of approximately 925. It is much more difficult to explain
the trend of Γτ0 especially in the range Rδ = 900–1100, where important qualitative
differences with respect to Aτ0 are observed. Such differences are, however, easy to
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FIGURE 5. Ensemble-averaged velocity profiles at different phases during the period
(a) β=0.6, (b) β=0.75, (c) β=0.85. Continuous line: Rδ=1100; dashed line: Rδ=1414.

Rδ β

0.60 0.75 0.85
ymax ymin ymax ymin ymax ymin

1100 7.03 9.03 5.95 9.67 4.59 10.39
1414 9.40 10.31 7.87 12.36 6.03 12.86

Laminar flow

2.2 2.5 1.88 2.8 1.64 3.04

TABLE 2. Distances from the wall ymax and ymin of the maximum and of the minimum
velocity respectively during the cycle. According to the present scaling, in laminar flow
ymax and ymin do not depend on the Reynolds number.

accept as Aτ0 only depends on the peaks of the wall shear stress while Γτ0 depends
on the overall trend. The increase of the asymmetry with Rδ qualitatively agrees with
the experimental findings of van der A et al. (2011).

In figure 5(a,b,c) the ensemble-averaged velocity profiles are shown for β = 0.60,
0.75 and 0.85 respectively. In these figures the velocity profiles are plotted at the
phases t = 0, 2.35, 3.14, 3.92 and at two additional phases depending on the β

parameter and characterized by the maximum and the minimum value respectively of
the free stream velocity during the cycle. Comparing figure 5(a–c) we observe that
the distance ymax from the wall of the position of maximum velocity decreases with
β as a result of the increased acceleration. On the other hand, the distance ymin of
the position of minimum velocity increases with β. Such an increase occurs because
in the negative half-cycle the vorticity has a longer time to spread far from the wall
when β increases (Nielsen & Callaghan 2003). Table 2 shows the distances ymax and
ymin, which can be assumed as a measure of the thickness of the boundary layer. It
can be noted that as the Reynolds number increases both ymax and ymin increase. This
result is somewhat expected as generally turbulent diffusivity increases with Rδ. The
data in table 2 also allow for assessment of the thickness of the boundary layer in
turbulent flow and to compare it with that in laminar flow.
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FIGURE 6. Amplitudes |〈u〉1|, |〈u〉2| and |〈u〉3| (a,c,e) and phases φ1, φ2 and φ3 (b,d, f )
of the first three harmonic components of the ensemble-averaged velocity profiles for
Rδ = 1100.

In figure 6 the amplitude |〈u〉n| and the phase φn of the first three harmonic
components of the ensemble-averaged velocity are plotted. Far from the wall, where
the flow is irrotational, the amplitudes are given by (2.1). Within the boundary layer
the amplitudes vary and vanish at the bottom where the no-slip condition is satisfied.
A comparison among the first components in figure 6(a), shows that the smaller is
β the larger is the component. For the second and the third harmonic components
(figure 6c,e), the comparison shows the opposite. The trends along the y-axis of the
first and of the second component are qualitatively similar to each other both in
terms of amplitudes and phases for all the considered values of β (figure 6a–d). On
the other hand, the third component shown in figure 6(e) exhibits large fluctuations
near the bottom which increase as β decreases. Analogous fluctuations can also be
observed in figure 6( f ) as regards the phase. Present results have several points in
common with those reported in figure 5 of van der A et al. (2011), including the
large oscillations of the profile of the harmonic components for low values of β.
Analogous results are observed for Rδ = 1414.

In figure 7 the ensemble-averaged velocity profiles in semi-log plot are shown at 16
phases for Rδ = 1100. Note that the logarithm of the absolute value of the velocity is
plotted, therefore near flow reversal, a discontinuity in the first derivative may appear
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FIGURE 7. Ensemble-averaged velocity profiles in semi-log plot during the period for
Rδ = 1100. Thin dashed line: 〈u〉+ = log(y+)/0.41+ 5.

such as at t = 0 and t = 7π/8. In this figure the length is expressed in wall units
(y+ = yRδ

√
τ0) while 〈u〉+ is the ensemble-averaged velocity made dimensionless by

means of the instantaneous friction velocity (〈u〉+ = 〈u〉/√τ0). As shown in figure 7,
logarithmic layers are not detected in the early stage of the accelerating phase. A
logarithmic layer emerges between π/8 and π/4 for β = 0.85 and between π/4
and 3π/8 for β = 0.75 and β = 0.6. During the decelerating phase the logarithmic
velocity profile persists up to 5π/8 and completely disappears near flow reversal. In
the negative half-cycle a logarithmic layer emerges first for β= 0.60 at about t= 3π/2
and later even for β = 0.75 and β = 0.85. Therefore, in the negative half-cycle the
situation is reversed with respect to the positive one. Once again the logarithmic
layer persists during most of the decelerating phase. Figure 7 shows that the equation
〈u〉+ = log(y+)/k + A, with k = 0.41 and A = 5, is in a fairly good agreement with
present results where a logarithmic layer is detected. For a sinusoidally oscillating
flow Jensen et al. (1989) reported that the constants of the log-law at Rδ = 3464 are
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FIGURE 8. Ensemble-averaged velocity profiles in semi-log plot during the period for
Rδ = 1414. Thin dashed line: 〈u〉+ = log(y+)/0.41+ 5.

k = 0.4 and A = 5, while Salon et al. (2007) for Rδ = 1790 reported k = 0.41 and
A phase dependent, with A = 5 for 2π/3 < t < 5π/6. Therefore, present results are
consistent with those found by previous investigations on unsteady flows. Figure 8
shows the semi-log plot of the velocity profiles for Rδ = 1414. It can be noted that an
increase of Rδ shifts back the phase of occurrence of a logarithmic layer. Compare
for example figures 7 and 8 at t=π/4.

3.2. Turbulent structures
Flow visualizations of the near-wall region of a steady turbulent boundary layer
(Kline et al. 1967; Corino & Brodkey 1969) have shown that it is characterized by
low- and high-speed streaks of fluid, mostly aligned with the streamwise direction and
having a mean spacing of approximately 100ν∗/u∗τ , where u∗τ is the friction velocity.
These turbulent structures are now recognized to be ubiquitous features of wall
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turbulent flows and essential in the process of generation and sustenance of turbulence
(Schoppa & Hussain 2002). Low-speed streaks have also been observed in sinusoidally
oscillating boundary layers by Fishler & Brodkey (1991), Costamagna et al. (2003)
and Salon et al. (2007). As shown in the following, the time development of the
wall shear stress is strongly affected by the dynamics of the streaks, thus any insight
on these turbulent structures contributes to a better understanding of the spatial and
temporal distribution of the turbulent skin friction.

In figure 9 the fluctuation u′ of the streamwise velocity component, computed by
subtracting to the local velocity u the streamwise velocity averaged in the (x, z) plane,
is shown at four phases during the first half-cycle, in the plane placed at y= 0.16, for
Rδ = 1100 and β = 0.60, 0.75 and 0.85. In terms of wall units, the position of the
plane corresponds to y+ ≈ 10 at the phase of the peak of τ0. Figure 9 shows that no
streaks can be detected at the beginning of the cycle. Focusing attention on β = 0.60
(a–d), the streaks emerge between t=0 and t=π/8 and in the interval π/8−π/4 they
attain a well-developed state, spanning the entire fluid domain. Between t=π/4 and
t= 3π/8 the streaks begin to meander and interact among themselves until they break
down and split into short segments, which mostly remain aligned with the streamwise
direction. The onset of breaking occurs during the accelerating phase, i.e. before the
peak of the free stream velocity. The breaking propagates in space causing a rapid
increase of the plane-averaged wall shear stress. When β increases both the phase of
appearance and breaking of the streaks are shifted back. The panel in figure 9, for
β = 0.75 and t=π/4, shows that breaking down of streaks is in progress in the fluid
domain, since it is occurring in certain areas of the domain while outside these areas
the streaks still show an elongated shape. The low-speed streaks disappear near the
flow reversal and reappear during the accelerating phase of the negative half-cycle (not
shown). Both the reappearance and the breakdown occur earlier for lower values of
β, therefore, in this regard, in the negative half-cycle the situation is reversed with
respect to the positive one.

There is a general consensus in the scientific community that the streaks are
generated by a sequence of streamwise vortices, which follow each other and pump
low-speed fluid away from the wall and high-speed fluid towards the wall. While
these vortices are advected downstream, they leave behind a streak of low-speed fluid
(Robinson 1991; Hamilton, Kim & Waleffe 1995; Moin & Mahesh 1998; Schoppa
& Hussain 2002). Within this framework, theories have been developed to describe
the regeneration mechanism of turbulence according to which the low-speed streaks
instability generates new vortical structures which in turn sustain the streaks (Schoppa
& Hussain 2002).

In order to gain insights about the process that leads to the streak appearance and
breakdown in the flow under investigation, the low-speed regions along with the vortex
structures are shown in a three-dimensional plot in figure 10 at six phases during the
first half-cycle for Rδ=1100 and β=0.75. The vortex cores are identified by means of
the method of Jeong & Hussain (1995), according to which they are localized in the
regions characterized by two negative eigenvalues of the symmetric tensor D2 +Ω2,
where D and Ω denote the symmetric and antisymmetric parts of the velocity gradient
tensor respectively. Therefore, negative values of the second eigenvalue λ2 (λ1 > λ2 >

λ3) identify the vortex cores.
Figure 10(a) shows the turbulent structures a short time after the free stream

velocity reverses its direction. Several vortices, remnant of the previous half-cycle
and devoid of any type of organization, can be observed along with blobs of fluid
characterized by low streamwise velocity. Because of the shear of the mean flow,
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FIGURE 9. Low-speed streaks for Rδ = 1100 in the plane y= 0.16. Darker areas denote
the low-speed streaks. (a–d) β = 0.60; (e–h) β = 0.75; (i–l) β = 0.85.

several vortex structures are tilted towards the x direction and stretched, causing an
increase of the streamwise vorticity component. These vortices affect the wall-normal
distribution of streamwise momentum through the ejection of slow fluid away from
the wall, according to the previously described mechanism. Thus for example a newly
formed streak with the tip at about (x, z)≈ (10, 15.3) can be observed in figure 10(a).
As the flow evolves, the streaks and the streamwise vortices grow and strengthen
as shown in figure 10(b), where the previously mentioned streak has the tip at
approximately (x, z) ≈ (30, 15.3). The growth occurs through a mechanism that
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FIGURE 10. Evolution of the low-speed streaks and of the vortex structures during the
first half-cycle for Rδ = 1100 and β = 0.75. Darker regions denote the low-speed streaks;
grey regions are the isosurfaces of second eigenvalue λ2 and denote the vortex cores;
(a–e): λ2=−0.007, u′=−0.08; ( f ) λ2=−0.04, u′=−0.16; (a) 3π/64, (b) 5π/64, (c) π/8
(d) 3π/16, (e) 13π/64, ( f ) π/4.
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feeds both the vortices and the streaks. Because of the y gradient of the u velocity
component, the wall-normal vorticity induced by the presence of the streaks is
tilted in the x direction, thus it feeds the streamwise vortex structure. However, as
shown by the analysis of Schoppa & Hussain (2002), the main contribution to the
production of streamwise vortices comes from the stretching of sheets of streamwise
vorticity because of ∂u/∂x velocity gradient induced by the streak waviness in (x, z)
planes. These authors also identified a ‘streak transient growth mechanism’ able to
amplify x-dependent disturbances and thus able to produce large streamwise velocity
gradients. Once the streamwise vortices have grown substantially, in turn they sustain
the streaks through the ejection mechanism. This explains why in figure 10(c) the
streaks are surrounded by vortices. These turbulent structures gradually develop
during the accelerating phase up to t ≈ 3π/16 when an explosive growth of both
streaks and vortices accompanied by a random motion occurs (see figure 10d). More
specifically, the low-speed streaks in the left part of figure 10(d) (0< z< 12) undergo
a wavy motion followed by the development of several vortices, some of them being
quasi-longitudinal in shape while others have the shape of arches that wrap around
the low-speed streaks. The ensemble of all these turbulent structures is called a
turbulent spot and has been studied experimentally by Carstensen et al. (2010) for
the case of a Stokes layer. According to these experiments, the turbulent spots are
areas characterized by large turbulent fluctuations, separated by the rest of the space
by sharp fronts. The authors found that the spots first emerge in the form of two
longitudinal streaks which then break into small turbulent structures. Figure 10(c,d)
show that a similar phenomenon occurs in this flow as the turbulent spot appears in
0< z< 12 where two low-speed streaks are initially present in figure 10(c). Breaking
of the low-speed streaks is then associated with the emergence of turbulent spots.
Here, this can be better demonstrated by a comparison between figures 9 and 10.
In figure 10(c) no turbulent spots are detected, hence in figure 9( f ), at t = π/8, the
streaks are still intact. The turbulent spot that for the first time appears in figure 10(d),
affects almost the entire fluid domain in figure 10( f ). In figure 9(g), at the same
instant of figure 10( f ) (t = π/4), the streaks are broken down over a large part of
the domain.

In addition to the turbulent spots, Carstensen et al. (2010) detected two-dimensional
vortex structures, denoted as vortex tubes, produced as a result of the flow instability
due to an inflection point in the laminar velocity profile (Carstensen et al. 2010;
Scandura 2013). An inflection point is also apparent in the mean velocity profiles of
the turbulent flow shown in figure 5, however, vortex tubes have not been observed
here. The reason for this result is most likely due to the fact that in turbulent flow,
the wall-normal gradient of 〈u〉 at the inflection point is much smaller than in laminar
flow, therefore, the instability is not triggered.

Figure 11 shows the fluctuating velocity components (u′, v′,w′) along the spanwise
direction, at x = 12.5 and y = 0.16, for β = 0.75, Rδ = 1100 and t = π/8, when
low-speed streaks are present in the flow. Figure 11(a) is cropped from figure 9, for
β = 0.75 and t = π/8, and shows the streaks in the range 12< x< 13. The vertical
velocity component is very low at y = 0.16, therefore in figure 11 it has been
magnified by 10 times in order to make it comparable with the others. The trend of
u′ shows nine low-speed streaks which mostly occur in concomitance with positive
values of v′. This shows that the low-speed streaks are generated by an upward
motion of slow fluid, in agreement with the previously described mechanism that
involves streamwise vortices. Unlike the wall-normal component, w′ does not appear
to be well correlated with u′. However, it can be observed that close to each position
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FIGURE 11. (a) Low- and high-speed streaks in the range 12< x<13; darker areas denote
low-speed streaks: see figure 9 for the contour map legend. (b) Trend of the velocity
fluctuations along the spanwise direction at x = 12.5 and y= 0.16. Rδ = 1100, β = 0.75,
t=π/8.

where the vertical velocity vanishes, the spanwise velocity has a local maximum or a
local minimum. This is a feature of the flow field generated by a streamwise vortex,
as can be easily checked.

Studies concerning steady turbulent boundary layers and channel flows have shown
that the spacing ∆+ between low-speed streaks ranges from 80 to 120 wall units
(Pope 2000). For a sinusoidally oscillating flow Costamagna et al. (2003) reported
∆+ = 127 at Rδ = 800 while Salon et al. (2007) reported ∆+ = 110 at Rδ = 1790.
Of course, because of the flow unsteadiness, the spacing between low-speed streaks
varies during the cycle. In this study ∆+ has been determined by computing the
spanwise autocorrelation function of the fluctuating streamwise velocity component u′.
An estimate of the low-speed streak spacing is given by two times the separation at
which the correlation attains the minimum. In figure 12 the streaks spacing expressed
in wall units (∆+ = 1√τ0Rδ), computed by phase averaging over all the available
cycles, is shown when low-speed streaks are detected, even though they are broken
into short segments, not spanning the entire fluid domain. As shown in figure 9, no
low-speed streaks are observed in a neighbourhood of the flow reversal, therefore
in figure 12 no data are reported at t = 0 and t = π. Figure 12(a) shows that at
t = π/8 the spacing increases both for β = 0.60 and β = 0.75. Such an increase is
due to the merging of neighbouring streaks. An analogous increase of ∆+ is not
observed for β = 0.85 because of the large acceleration that characterizes this case,
which anticipates the break up of the streaks. After breaking, the spacing takes values
within 100− 110 up to t≈ 3π/4. For Rδ = 1414 (figure 12b) no increase of the streak
spacing is observed at the beginning of the positive half-cycle as a larger Reynolds
number shifts back the onset of breaking. Even for Rδ = 1414 the spacing is within
100–110 just after the streaks break. The spacing however increases towards the
end of the decelerating phase because of the coalescence of neighbouring streaks,
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FIGURE 12. Mean spacing between two low-speed streaks during the period.
(a) Rδ = 1100; (b) Rδ = 1414.

thus assuming a value of approximately 125 at t = 3π/4. This phenomenon is more
important for conditions characterized by a slower deceleration such as β = 0.75, 0.85.

In the negative half-cycle the streaks can be already observed at t = 9π/8 with a
large spacing in between that persists for a longer time in comparison to the positive
half-cycle. This result is due to the low acceleration of the negative half-cycle which
leaves more time to the streaks before reaching the instability condition which causes
them to break. After breaking has occurred the spacing decreases up to a value of
approximately 110. In summary, when the streaks are broken into short segments the
spacing is in the range of 100–110 wall units, while in the other phases the spacing
ranges between 100–200 wall units.

3.3. Turbulent kinetic energy and Reynolds stress

The contour plot of the turbulent kinetic energy k= (〈u′2〉+ 〈v′2〉+ 〈w′2〉)/2 in the (t, y)
plane is shown in figure 13. It can be noted that during the accelerating phase of the
positive half-cycle the turbulent kinetic energy becomes large near the wall first and
then away from it. This is a consequence of the closeness to the wall of the peak of
production of turbulent kinetic energy, as illustrated in figure 14. Indeed, large values
of k appear away from the wall only after convection and diffusion have acted for a
sufficiently long time. The intense production of k that occurs during the accelerating
phase, generates both large time derivatives and large y gradients near the wall. During
the decelerating phase, because of the decrease of production, both the time derivative
and the y gradient become relatively small.

The peaks of the turbulent kinetic energy fall in the range y= 0.2–0.3, and precede
the peaks of the free stream velocity, both during the positive and the negative half-
cycle. In the positive half-cycle the larger is β the sooner the maximum of k occurs,
while the opposite is observed in the second half-cycle. An increase of β brings the
maximum of the negative half-cycle closer to that of the next positive half-cycle. For
Rδ = 1100 the peaks of the turbulent kinetic energy range from 0.0134 to 0.0157,
while for Rδ = 1414 they range from 0.0094 to 0.0139. The ratio of the first peak
to the second one increases both with acceleration skewness and Reynolds number
and ranges from 1.04 to 1.48. Even though the maximum of k occurs in the positive
half-cycle, during the negative half-cycle the turbulent kinetic energy spreads at larger
distances from the wall than in the positive half-cycle. This result is explained by the
longer duration of the acceleration phase of the negative half-cycle, which leaves more
time for the turbulent kinetic energy to spread away from the wall.
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FIGURE 13. Turbulent kinetic energy k as a function of the time t and of the y coordinate.
Contour interval: 10−3. (a,c,e) Rδ= 1100; (b,d, f ) Rδ= 1414; (a,b) β= 0.60; (c,d) β= 0.75;
(e, f ) β = 0.85.

A quantitative assessment of the mechanisms affecting the turbulent kinetic
energy can be provided by means of the turbulent kinetic energy budget, which
in dimensionless form reads:

∂k
∂t
= −Rδ

2
〈u′1u′2〉

∂〈u1〉
∂x2
− Rδ

2
∂

∂x2

(
1
2
〈u′ju′ju′2〉

)
− Rδ

2
∂〈p′u′2〉
∂x2

+ ∂

∂x2
〈u′jsj,2〉 − 〈sj,`sj,`〉, (3.3)

where sj,` = (∂u′j/∂x` + ∂u′`/∂xj)/2. The terms contributing to the right-hand side
of (3.3) from left to right are: production of turbulent kinetic energy, turbulent
convection, pressure transport, viscous diffusion and dissipation ε. In figure 14,
where such terms are shown at 16 phases during the cycle for Rδ = 1100 and
β = 0.75, it can be observed that all these contributions are important in a thin layer
near the wall, approximately 1.5δ∗ thick. The pressure transport term is always much
smaller than the other terms, while viscous diffusion and turbulent convection are
both important and of the same order of magnitude, except near the wall, where
the turbulent convection vanishes. In order to provide a comprehensive picture of
the time variation during the period of production and dissipation of the turbulent
kinetic energy, (3.3) have been integrated between y = 0 and y = Ly and the results
have been reported in figure 15(a,b) as a function of time. Here Ip and Iε denote the
integral of turbulence production and dissipation respectively, which are the only two
terms, belonging to the right-hand side of (3.3), that do not vanish after integration.
Figure 15(a) shows that turbulence production and dissipation rapidly increase at
the beginning of the cycle, first for large β. During the decelerating phase Ip and
Iε decay and both take low values in the central part of the period. In the negative
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FIGURE 14. Terms of the turbulent kinetic energy budget at 16 phases during the wave
cycle for β = 0.75 and Rδ = 1100.

half-cycle they increase again but, in contrast to the positive one, such an increase
is more rapid for lower values of β. The increase of the Reynolds number expands
the fraction of the cycle in which production and dissipation are both important, as
it can be observed by comparing figure 15(a) with figure 15(b).

In figure 15(c,d) the quantity Iε + Ip is shown along with the trend of the time
derivative of the turbulent kinetic energy integrated along the y direction ∂Ik/∂t.
Because of the form of (3.3) and of the boundary conditions, ∂Ik/∂t must be equal
to Iε + Ip. Indeed, figure 15(c,d) shows that these quantities are in a fairly good
agreement. The small discrepancies arise from unavoidable artificial dissipative effects
due to the numerical scheme adopted for the time advancement of the governing
equations. Figure 15(c) shows that during the accelerating phase of the positive
half-cycle ∂Ik/∂t increases rapidly, attains a maximum and then decreases up to
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FIGURE 15. (a,c) Rδ= 1100, (b,d) Rδ= 1414. (a,b) Production and dissipation of turbulent
kinetic energy integrated along the y direction. Here Ip and Iε denote the integral of
production and dissipation respectively. (c,d) The lines denote Ip + Iε while the markers
denote the time derivative of the turbulent kinetic energy integrated along the y direction
∂Ik/∂t.

a minimum. The rapid increase begins when the low-speed streaks still have an
elongated shape (see figure 9), while the maximum occurs near the onset of streaks
breaking. Prior to this event, the flow quantities, such as the wall shear stress, are
scarcely affected by the turbulence. After the streaks begin to break, small-scale
vortices characterized by a large dissipation of turbulent kinetic energy are generated,
therefore the time derivative of the spatially integrated turbulent kinetic energy rapidly
decreases.

In the negative half-cycle the trend of ∂Ik/∂t shows differences with respect to the
first half-cycle due to the acceleration skewness. For example, the first peak is smaller
than that in the positive half-cycle, but later larger values than those of the positive
half-cycle occur. Figure 15(d) shows that for Rδ = 1414 the value of ∂Ik/∂t related to
the first maximum and those at later phases in the same half-cycle are closer to each
other than those at Rδ = 1100. The anticipation of streaks breaking during the cycle
due to the larger Reynolds number explains such a result as ∂Ik/∂t has a shorter time
to grow.

Insights about the distribution of the turbulent kinetic energy among the different
spatial scales and for the three velocity components are given in figure 16 where the
one-dimensional longitudinal and transverse energy spectra along the x direction at
y = 1 are shown for Rδ = 1414 and β = 0.75. The equations of the Kolmogorov
spectra that characterize the inertial sub-range of a statistically stationary homogeneous
isotropic turbulence (Pope 2000) are also shown in figure 16. Such equations have the
following dimensionless form:

E11 = c
(

Rδ
2

)−2/3

ε2/3k−5/3
x , E22 = E33 = c1

(
Rδ
2

)−2/3

ε2/3k−5/3
x , (3.4a,b)
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FIGURE 16. Energy spectra along the streamwise direction at six phases during the
positive half-cycle for Rδ = 1414 and β = 0.75. The straight lines are described by (3.4).

where c ≈ 0.49 and c1 ≈ 0.65. The dissipation ε is evaluated at the specified y
position. Figure 16 shows that the spectra match the Kolmogorov spectra within
a short range of wavenumbers. The shortness of such a range is justified by the
relatively low Reynolds number. For E11 the agreement with (3.4) is fairly good for
all the phases shown in figure 16, while for E22 and E33 an agreement occurs at the
phases of well-developed turbulence (π/4, 3π/8), but even at t= 0 for E22 and during
the deceleration for E33. It is interesting to note that according to (3.4), where an
inertial sub-range is present, the spectra E22 and E33 are equal to each other, therefore
significant differences between them may arise only for wavenumber that are quite
far away from the inertial sub-range. Figure 16 also shows that at low wavenumbers
the longitudinal spectrum E11 is larger than the E22 and E33 spectra. For large kx E11

is still the largest, apart from t = 0 and t = 7π/8 where E33 is slightly larger than
E11. A comparison between E33 and E22 shows that for small kx the former is larger
than the latter, while at large wavenumbers they are close to each other. Therefore,
it emerges that E22 takes smaller values than the other spectra, especially close to
the phases of flow reversal. The spectra do not change significantly in the interval
π/4− 3π/8, thus suggesting that despite the flow unsteadiness, the contribution to the
turbulent intensity from the different spatial scales is rather constant in time during
this range of phases.
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FIGURE 17. Reynolds stress 〈u′v′〉 as a function of the time t and of the y coordinate.
Black lines: positive values, grey lines: negative values. Contour interval: 2 × 10−4.
(a,c,e) Rδ = 1100; (b,d, f ) Rδ = 1414; (a,b) β = 0.60; (c,d) β = 0.75; (e, f ) β = 0.85.

In figure 17 the space–time contour plot of the Reynolds stress 〈u′v′〉 during the
flow cycle is shown. Here comments similar to those already made for the turbulent
kinetic energy could be repeated. The peaks of the Reynolds stress fall in the range
y= 0.44–0.70 and precede those of the free stream velocity both during the positive
and the negative half-cycle. The negative peaks range from −0.0028 to −0.0024
while the positive ones range from 0.0022 to 0.0024. In the negative half-cycle large
absolute values of the Reynolds stress are found at distances further away from the
wall compared to those in the positive half-cycle, similarly to the turbulent kinetic
energy shown in figure 13.

One of the important consequences of acceleration skewness is that the period
average of the Reynolds stress 〈u′v′〉 does not vanish. In figure 18(a–c), where
the period-averaged Reynolds stress profiles are shown, it can be observed that the
magnitude of 〈u′v′〉 is large near the wall and rapidly decreases as y increases. In
the presence of a non-vanishing 〈u′v′〉, the balance of the period-averaged momentum
is satisfied thanks to the viscous stress generated by a steady streaming in the
boundary layer (Scandura 2007). The trend of the steady streaming is shown
in figure 18(d–f ). It can be observed that for the smallest value of acceleration
skewness the difference between the two Reynolds numbers is not significant, while
it becomes more apparent when the acceleration skewness is larger. Interestingly,
for large β an increase of the Reynolds number causes a decrease both of the
period-averaged Reynolds stress and of the steady streaming. On the basis of this
result one might infer that for very large Reynolds numbers the steady streaming
vanishes, as in a laminar flow. However, to draw plausible conclusions in this
regard, data at much larger Reynolds number than those here considered are
necessary.
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FIGURE 18. (a–c) Period average of the Reynolds stress 〈u′v′〉; (d–f ) period average of
the ensemble-averaged streamwise velocity 〈u〉.

3.4. Wall shear stress statistics
In § 3.1 the wall shear stress has been analysed mainly focusing on its ensemble
average. Here the analysis is extended with the aim of gaining insights about its
spatial distribution and statistics. In figure 19 the spatial distribution of the streamwise
and spanwise components of the wall shear stress fluctuations for Rδ = 1100 and
β = 0.75 are shown at four phases during the positive half-cycle. The fluctuations
along the streamwise direction τ ′x are computed by subtracting from the wall shear
stress τx its spatial average, while the fluctuations in the spanwise direction are equal
to the wall shear stress τz, since the spatial average vanishes. Figure 19(a,b) show
small areas characterized by large fluctuations, outside of which the wall shear stress
takes values close to those in laminar flow. A comparison between figure 10(d–f )
(0< z<12) and figure 19(a–c) respectively, shows that within a turbulent spot the wall
shear stress fluctuations are large. Moreover, comparing figure 19(c,g) with figure 9
for β = 0.75 and t=π/4, it can be observed that large fluctuations of the wall shear
stress are detected where breaking of the low-speed streaks has occurred. Therefore,
the areas characterized by large fluctuations shown in figure 19 are the imprint of the
turbulent spot and they also correspond to the areas where the low-speed streaks are
broken into short segments.

A comparison between figure 3(a) for β = 0.75 and figure 10 shows that the
rapid increase of the ensemble-averaged wall shear stress begins with the appearance
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FIGURE 19. Wall shear stress fluctuations for Rδ = 1100 and β = 0.75. (a,e) t = 3π/16;
(b, f ) t= 13π/64; (c,g) t=π/4; (d,h) t= 9π/32. Streamwise wall shear stress fluctuations
τ ′x : (a) (min, max) = (−0.0012, 0.0042); (b) (−0.0015, 0.0097); (c) (−0.0027, 0.0156);
(d) (−0.0033, 0.0125). Spanwise wall shear stress τz: (e) (min, max) = (−0.002, 0.0019);
( f ) (−0.0045, 0.0068); (g) (−0.0058, 0.0041); (h) (−0.0074, 0.0074). Black lines: positive
values; grey lines: negative values. Contour interval: 5× 10−4. The fluid oscillates along
the x direction.

of the turbulent spots (t ≈ 3π/16) and ends when they spread in the whole fluid
domain, which occurs at approximately t = 9π/32. Since within the turbulent spots
the fluctuations of the wall shear stress are large, in the presence of a wall made up
by loose material, the mobilization of clusters of sediments has a high probability to
occur. However, defining the condition of incipient motion of such sediments would
be particularly difficult because the turbulent spots are randomly distributed in the
space and they do not appear exactly at the same phase in every cycle. Concerning
the spatial distribution of the spanwise wall shear stress, from figure 19 it seems to
emerge that τz takes significant values mainly where τ ′x is positive. This issue will be
addressed in the following by means of a more objective approach.

The statistical parameters here considered to characterize the wall shear stress are:
the relative intensity Rx = στx/τ0, where στx = 〈τ ′2x 〉1/2 is the r.m.s. of the wall shear
stress fluctuations, the skewness coefficient Sx = 〈τ ′3x 〉/σ 3

τx
and the flatness coefficient
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FIGURE 20. Relative intensity Rx = στx/τ0 of the wall shear stress along the x direction
during the wave period. (a) Rδ = 1100, (b) Rδ = 1414.

Fx = 〈τ ′4x 〉/σ 4
τx

along with the relative intensity Rz = στz/τ0 and the flatness coefficient
Fz = 〈τ ′4z 〉/σ 4

τz
of the spanwise component of the wall shear stress. In the following

the time development of these statistics is examined in the light of the low-speed
streaks dynamics previously discussed and of knowledge about these statistics for
steady flows. Figure 20 shows the trend of the relative intensity Rx during a period.
Both in the positive and in the negative half-cycle a time interval exists in which
|Rx| shows weak variations around a value close to 0.4. Such a time interval begins
when the breakage of the low-speed streaks has occurred in all the fluid domain and
ends near the flow reversal, when Rx diverges because of the vanishing of the wall
shear stress. Comparing figure 20(a) with figure 20(b), it can be noted that when
the Reynolds number increases the relative intensity is fairly constant in a longer
time interval, while the value of the constant does not appreciably change. In the
negative half-cycle (figure 20a), just after the flow reversal, another range of phases
characterized by weak variations of |Rx| around a value of 0.15 is observed. More
specifically, for β = 0.85 and t in the range 3.3–4.2, |Rx| varies within 0.12–0.16.
Such a time interval corresponds to the phases in which the low-speed streaks are
substantially straight and span all the computational domain, as shown in figure 9.
Figure 20(b) shows that the width of this time interval decreases with Reynolds
number as a larger portion of the cycle is occupied by well-developed turbulence,
characterized by low-speed streaks that have already undergone the breaking process.
A time interval with the previous characteristics also exists during the positive
half-cycle, but it is very short because of the high acceleration, which quickly
leads to the streaks instability and breaking. In the time that elapses between the
two mentioned time intervals of rather constant value of Rx, the relative intensity
increases, reaches a maximum and then stabilizes onto a value of about 0.4. Values
of Rx close to 0.4 have also been reported by investigations on steady turbulent
flows (Alfredsson & Johansson 1988; Durst, Jovanovic & Sender 1995; Obi et al.
1996). Therefore, it is expected that the turbulence exhibits characteristics similar to
those of a steady flow when values of Rx close to 0.4 are observed during a time
interval.

The relative intensity Rz = στz/τ0 of the wall shear stress in the spanwise direction
is shown in figure 21. It can be observed that Rz has the same order of magnitude as
Rx and a similar trend. When the streaks exhibit an elongated shape, |Rz| takes values
in the range 0.04–0.1, while after streaks breaking has occurred, it takes a value of
approximately 0.25.
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FIGURE 21. Relative intensity Rz = στz/τ0 of the wall shear stress along the z direction
during the wave period. (a) Rδ = 1100, (b) Rδ = 1414.
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FIGURE 22. Skewness coefficient Sx of the wall shear stress along the x direction during
a wave period. (a) Rδ = 1100, (b) Rδ = 1414.

Figure 22 shows that the skewness Sx of the wall shear stress in the streamwise
direction is positive during the first half-cycle and negative during the second one. The
rapid increase of Sx occurs during the final stage of the elongated streaks development,
while the peak of Sx occurs at the onset of streaks breaking. In the positive half-
cycle, when the breaking has occurred in all the fluid domain, Sx takes a value of
approximately 1.1, then it slowly decreases attaining values slightly smaller than 1
before undergoing a rapid decrease near the flow reversal. On the other hand, in
the negative half-cycle Sx almost immediately stabilizes to a value close to −1 after
streaks breaking has occurred. An increase of Rδ causes a decrease of the peaks of
Sx as the phase at which the streak breaking starts shifts back during the cycle, thus
Sx has a shorter time to grow. Several studies (Alfredsson & Johansson 1988; Durst
et al. 1995; Obi et al. 1996) reported that in steady turbulent flows the asymmetry
of the wall shear stress takes values approximately equal to 1. The agreement of the
present results with steady flow data confirms that there is a part of the cycle where
the turbulence approximately evolves through a succession of quasi-steady states, as
already suggested by the trend of Rx.

The trend of the flatness coefficient Fx is shown in figure 23. It is worth pointing
out that the oscillations shown by Fx are due to the strong effect on this statistic
of large values of the wall shear stress fluctuations. In order to smooth out such
oscillations, the ensemble average should be computed on a very large number of
flow cycles, at huge computational costs. Therefore, for the flatness coefficient even
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FIGURE 23. Flatness coefficient Fx of the wall shear stress along the x direction during
a wave period. (a) Rδ = 1100, (b) Rδ = 1414.
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FIGURE 24. Flatness coefficient Fz of the wall shear stress along the z direction during
a wave period. (a) Rδ = 1100, (b) Rδ = 1414.

trends contaminated by spikes have been accepted. As already observed for Sx, the
rapid increase of Fx begins when the streaks still retain an elongated shape in the
streamwise direction, while the peak of Fx occurs at the onset of the streak breaking.
After breaking has occurred in the whole fluid domain, Fx takes a values of 5.4.
However, afterwards Fx slowly decreases and takes a value of approximately 4.7 at
t=π/2. An increase of the Reynolds number causes a decrease of the peaks in Fx for
the same reason already explained regarding the skewness. As shown in figure 24, the
trend of the flatness coefficient Fz is qualitatively similar to Fx but Fz is larger than Fx

especially when elongated streaks are present. During these phases Fz can take values
up to 40 in the positive half-cycle and up to 80 in the negative one. In figure 24
the larger values of Fz have been left outside from the range shown along the y-axis
in order to focus more closely on the phases of well-developed turbulence, where Fz

takes values of approximately 6.7. It can be also observed that when the Reynolds
number increases the time intervals during which Fz is fairly constant increases. This
is a common feature of all the statistics that have been examined here.

The probability density function of the dimensionless fluctuating wall shear stress
τ ′x/στx is shown in figure 25 for β=0.75 and Rδ=1100. During the positive half-cycle
negative fluctuations have a larger probability of occurrence than positive ones, the
opposite is observed during the negative half-cycle. This behaviour is congruent with
the trend of Sx during the cycle, shown in figure 22. For practical applications, such
as those related to sediment transport predictions, it is useful to have an analytical
expression describing the probability density of τ ′x/στx at every phase. In this respect
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FIGURE 25. Probability density functions (p.d.f.) of the wall shear stress fluctuations
along the x direction, τ ′x/στx , at 16 phases during the cycle for Rδ = 1100 and β = 0.75.
Continuous lines show the numerical results while dashed lines show the log-normal
probability density function that best fits to the numerical results.

the three parameter log-normal distribution fits rather well to the numerical results, as
shown in figure 25. The log-normal distribution is given by the following expression:

plog(τ
′
x/στx)=

1

(τ ′x/στx − τl)σy

√
2π

exp

[
−1

2

(
log(τ ′x/στx − τl)−µy

σy

)2
]
, (3.5)

where µy and σy are the mean and the standard deviation of log(τ ′x/στx − τl)

respectively and τl is the location parameter. The parameters of (3.5) have been
estimated by using the method outlined by Yevjevich (1982). Equating the skewness
of the probability distribution to that of the numerical data Sx, the following expression
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for exp(σ 2
y ) is obtained:

exp(σ 2
y )=

[
1+ Sx

2
(Sx +

√
4+ S2

x)

]1/3

+
[

1+ Sx

2
(Sx −

√
4+ S2

x)

]1/3

− 1. (3.6)

Then the parameters µy and τl are determined as follows:

µy = 1
2

log

[
σ 2
τ ′x/στx

exp(σ 2
y )[exp(σ 2

y )− 1]

]
, (3.7)

τl =µτ ′x/στx − exp(µy + 0.5σ 2
y ), (3.8)

where µτ ′x/στx and στ ′x/στx are the mean and the standard deviation of τ ′x/στx respectively.
Figure 25 shows that the most important discrepancies between the numerical results
and the log-normal distribution occur at t=π/4, t= 11π/8 and t= 3π/2, which fall
in the time intervals in which elongated streaks are present. Some discrepancies are
also observed near the flow reversal at t= 0 and t= 7π/8.

The probability density function of τz/στz shown in figure 26, is symmetric with
respect to τz = 0, since the probability of exceeding a value τz > 0 is equal to the
probability of not exceeding the value −τz. In figure 24 the existence of time intervals
in which the flatness of the wall shear stress is large was observed. This fact is
reflected in the distribution of τz/στz , which shows sharp peaks at some phases. Such
a result is due to the high probability of finding values of τz in a small neighbourhood
of τz= 0 when breaking of low-speed streaks has not yet occurred over the entire fluid
domain. The probability density function of τz/στz can be described with a fairly good
approximation by means of (3.9),

p(τz/στz)=
1√

2γ − 3B(γ − 1/2, 1/2)

[
1+

(
τz/στz√
2γ − 3

)2
]−γ

, (3.9)

which is a modification of the Pearson type VII distribution (Johnson, Kotz &
Balakrishnan 1995). In (3.9) the condition that the variance of τz/στz is equal to 1 is
already imposed, B is the beta function and γ is the parameter of the distribution,
which must be larger than 3/2. Here, γ has been determined by means of the
maximum likelihood method. Figure 26 shows that the numerical results are in a
fairly good agreement with (3.9), except at the phases π/4 and 3π/2, in which the
breaking of streaks is in progress and the probability density exhibits a sharp peak.
It is worth highlighting that the flatness provided by (3.9) is finite only if γ is larger
than 5/2 and that in figure 26 this condition is violated at t = π/4, t = 11π/8 and
t= 3π/2. In order to improve the description of the numerical results at phases π/4
and 3π/2, a generalization of the normal distribution can be employed,

p(τz/σz)= 1
2
αΓ 1/2(3/α)
Γ 3/2(1/α)

exp

[
−
(
Γ (1/α)
Γ (3/α)

)−α/2
(|τz/σz|)α

]
, (3.10)

where Γ is the gamma function and α is the parameter of the distribution. Equation
(3.10) is shown by markers in figure 26 at the phases π/4 and 3π/2. It can be
observed that the agreement with the numerical data is improved compared to that of
(3.9). However, the results at t= 13π/8 show that the shape of the probability density
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FIGURE 26. Probability density functions (p.d.f.) of the wall shear stress τz/στz along the
z direction at 16 phases during the cycle for Rδ = 1100 and β = 0.75. Continuous lines
show the numerical results while dashed lines show the Pearson distribution type VII (3.9)
that best fits to the numerical results. The curves denoted by dots at the phases π/4 and
3π/2 are described by (3.10).

may be rather complicated, indeed at this phase (3.9) provides a good description of
the probability density except in a neighbourhood of τz/σz = 0, where the probability
density shows a sharp peak and could be better described by (3.10).

Finally, we tackle the issue arisen in connection with figure 19, concerning
the observation that large values of the spanwise wall shear stress seem to occur
simultaneously with positive fluctuations of the streamwise wall shear stress. In order
to address this issue, we write the probability density function as follows:

p(τz)=ψ1 +ψ2, (3.11)
ψ1 = p(τz | τ ′x > 0)× p(τ ′x > 0), (3.12)
ψ2 = p(τz | τ ′x < 0)× p(τ ′x < 0), (3.13)
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FIGURE 27. Trend of the functions ψ1 and ψ2 (see (3.11)–(3.13)) at 16 phases during
the cycle for Rδ = 1100 and β = 0.75; continuous lines: ψ1; dashed lines: ψ2.

where the vertical bar means ‘conditioned to’. The functions ψ1 and ψ2 are the
contributions to the probability density function of τz of events characterized by
τ ′x > 0 and τ ′x < 0 respectively. The function ψ1 and ψ2 are plotted in figure 27
in order to gain insights about the contributions of the two kind of events to the
probability density of τz. Figure 27 shows that, in the positive half-cycle, small
values of the spanwise wall shear stress occur more frequently in concomitance
with negative fluctuations of the streamwise wall shear stress, while large values
occur more frequently simultaneously with positive fluctuations. Such behaviour is
amplified when the breaking of streaks is in progress, as occurring at phases π/4
and 3π/2. Note that in the negative half-cycle the role of the functions ψ1 and ψ2 is
inter-changed with respect to the positive half-cycle. Another result that emerges from
figure 27 is that, in the positive half-cycle, the peakedness of the probability density
function is mainly due to values of the wall shear stress occurring simultaneously
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with negative fluctuations of the streamwise wall shear stress, while the opposite is
observed in the negative half-cycle.

4. Conclusions

In this paper the hydrodynamics of wall-bounded acceleration-skewed oscillatory
flows has been studied by means of numerical integration of the Navier–Stokes
equations. Even though the flow is not velocity skewed in the irrotational region, it
becomes velocity skewed in the boundary layer, causing an asymmetry between the
peaks of the wall shear stress in the two half-cycles. Such an asymmetry increases
with acceleration skewness while an increase of Reynolds number from the laminar
regime causes first a decrease and then an increase. For β = 0.75 the minimum value
of the asymmetry is at approximately Rδ = 925.

During the accelerating phase, the near-wall region is characterized by turbulent
structures consisting in low- and high-speed streaks of fluid. As long as the streaks
remain substantially straight and aligned with the flow direction, they do not cause
significant deviations of the wall shear stress from the laminar values. Before the end
of the accelerating phase, the streaks become unstable and break into short segments
which eventually coalesce during the decelerating phase. The break up does not occur
everywhere at the same instant, but in a progressive manner and it is accompanied by
a rapid increase of the wall shear stress.

The time derivative of the turbulent kinetic energy, integrated over the boundary
layer, increases during the accelerating phase up to a maximum which occurs near
the start of the streaks breaking. Just after the onset of breaking, small-scale turbulent
structures, characterized by a remarkable dissipative capability, are generated, resulting
in a significant decrease of the time derivative of turbulent kinetic energy. Because
of the acceleration skewness, the period-averaged Reynolds stress does not vanish.
Under such a circumstance the balance of the period-averaged momentum is satisfied
as a result of the viscous stress generated by a steady streaming directed against
the largest acceleration. Such a steady streaming increases with acceleration skewness
and decreases with Reynolds number. In water tunnels used in several investigations
related to the present subject (Jensen et al. 1989; van der A et al. 2011), because of
the finite longitudinal dimension of the facility, the overall flow rate due to the steady
streaming is balanced by a return current. While the steady streaming is driven by
the gradient of the period-averaged Reynolds stress, the return current is driven by
a pressure gradient. Due to this fundamental difference between the two flows, the
steady streaming does not exert a friction on the wall while the return current does
induce a steady friction in opposite direction of the steady streaming.

The relative intensity Rx and the skewness Sx of the streamwise wall shear stress
take values of approximately 0.4 and 1 respectively during relatively large time
intervals that begin when the streaks breaking has occurred in the entire fluid domain.
The width of such time intervals increases with the Reynolds number while the phase
of the onset depends on both the Reynolds number and the acceleration skewness. The
agreement between these statistical parameters and those observed in steady turbulent
flows, allows to infer that during the these time intervals the turbulence approximately
evolves through a succession of quasi-steady states. The relative intensity Rz of the
wall shear stress in the spanwise direction has the same qualitative behaviour and
the same order of magnitude as Rx, but in general Rx is larger than Rz. The flatness
coefficient of both the streamwise and spanwise component of the wall shear stress
is large, especially when elongated streaks are present in the flow. After streak break
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down the flatness takes values of approximately 5.4 and 6.7 for the streamwise and
spanwise components respectively. The analysis has also shown that the peak of
the skewness occurs at the onset of the streak breaking. Since the turbulent spots
(Carstensen et al. 2010) are those regions of the fluid domain where breaking has
already occurred, the peak of Sx also defines the onset of the turbulent spots during
the flow cycle.

The probability density function of the wall shear stress in the streamwise direction
is well described by a log-normal distribution. The probability density of the wall
shear stress in the spanwise direction can be well approximated by a Pearson type VII
distribution, except during streak breaking, when the coexistence of quasi-laminar and
turbulent regions generates a sharp peak in the probability density. When this occurs,
a generalized normal distribution provides a better agreement with the numerical
data than the Pearson distribution. Finally, it is shown that low absolute values of
the spanwise wall shear stress occur more frequently in concomitance with negative
fluctuations of the streamwise wall shear stress, while large values occur more
frequently simultaneously with positive fluctuations.

Present findings are a first order of approximation of the flow under real field
conditions, where the spatial variability due to the sea waves may have an impact
on the boundary layer. In addition, when the bed is rough, the low-speed streak
development and breaking as well as the statistics of the wall shear stress may
be different from those of a smooth bed. Therefore, including these effects in the
analysis of the boundary layer represents an interesting development of this work
aimed at providing results closer to field conditions.
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