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When a deposited layer of granular material fully immersed in a liquid is suddenly
inclined above a certain critical angle, it starts to flow down the slope. The initial
dynamics of these underwater avalanches strongly depends on the initial volume fraction.
If the granular bed is initially loose, i.e. looser than the critical state, the avalanche
is triggered almost instantaneously and exhibits a strong acceleration, whereas for an
initially dense granular bed, i.e. denser than the critical state, the avalanche’s mobility
remains low for some time before it starts flowing normally. This behaviour can be
explained by a combination of geometrical granular dilatancy and pore pressure feedback
on the granular media. In this contribution, a continuum formulation is presented and
implemented in a three-dimensional continuum numerical model. The originality of
the present model is to incorporate dilatancy as an elasto-plastic normal stress or
pressure and not as a modification of the friction coefficient. This allows an explanation
of the two different behaviours of initially loose and dense underwater avalanches.
It also highlights the contribution from each depth-resolved variable in the strongly
coupled transition to a flowing avalanche. The model compares favourably with existing
experiments for the initiation of underwater granular avalanches. Results reveal the
interplay between shear-induced changes of the granular stress and fluid pressure in
the dynamics of avalanches. The characteristic time of the triggering phase is nearly
independent of the local rheological parameters, whereas the initial drop in pore
pressure and the surface velocity at steady state still strongly depend on them. Finally,
the multidimensional capabilities of the model are illustrated for the two-dimensional
Hele-Shaw configuration and some of the observed differences between one-dimensional
simulations and experiments are clarified.
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1. Introduction

Immersed granular flows such as debris flows, landslides or submarine avalanches are
ubiquitous in nature. They are often associated with catastrophic events leading to
infrastructure destruction and human losses. These flows belong to dense particulate
two-phase flows involving a solid phase and a fluid phase interacting one with the other.
In the case of a gravity-driven flow of cohesionless grains immersed in a fluid, the
relative motion of the fluid with respect to the solid skeleton may dramatically modify the
overall dynamics of the mixture (e.g. Iverson 1997). Therefore, modelling and predicting
interactions between the fluid and solid phases in immersed granular flows are of major
interest. Due to the complexity of the processes involved, grain–fluid interactions still
remain a real challenge and the goal of the present contribution is to propose an alternative
two-phase flow model for predicting such flows.

In a series of landslide experiments performed at the USGS large-scale facility,
Iverson et al. (2000) put in evidence the critical influence of the initial soil volume
fraction on the landslide dynamics when submitted to rainfall. An initially loose soil
flows down a slope almost instantaneously while an initially dense soil slowly creeps
for a while before the landslide is eventually triggered. The explanation behind these
observations involves two processes. First, in the absence of fluid, an initially dense
granular medium dilates when submitted to shear deformation while an initially loose
granular medium exhibits a contraction behaviour (e.g. Reynolds 1885; Mitchell & Soga
2005). In between these two initial volume fractions, there is a critical state for which
the granular medium flows without any change in the volume fraction (Schofield & Wroth
1968). Second, when dilation/contraction occurs in a saturated granular medium, due to the
incompressibility of the fluid, the variation of the pore volumes induces an inward/outward
fluid flow and a resulting fluid pore pressure gradient (negative/positive) which can
significantly affect the deformation of the soil, this mechanism being called ‘pore pressure
feedback’ (Iverson 2005). More recently, Pailha, Nicolas & Pouliquen (2008) conducted
small-scale experiments in a tiltable Hele-Shaw cell using spherical particles in a viscous
liquid. The authors varied the initial volume fraction of the granular bed and measured
the surface velocity of the bed as well as the fluid pore pressure at the bottom of
the granular bed. The experimental results reproduce the same phenomenology as the
large-scale experiments from Iverson et al. (2000) and represent the most comprehensive
dataset for the development and validation of two-phase flow models including dilatancy
effects.

The first attempt to model this behaviour based on the depth-averaged two-phase flow
equations was proposed by Pitman & Le (2005). Since then, several contributions have
been published incorporating dilatancy and pore pressure feedback into this framework.
Pailha & Pouliquen (2009) introduced a linear approximation of the dilatancy angle as
function of the volume fraction, shear rate and granular pressure. In turns, the dilatancy
angle was added as an additional frictional coefficient to compute the granular shear
stress. Their model solves for the temporal evolution of the system at a single spatial
position and has been validated against experimental data from Pailha et al. (2008). Iverson
& George (2014) essentially extended this model in two dimensions and incorporated
a slight compressibility to obtain the basal pore pressure. The proposed model has
been validated in George & Iverson (2014) for large-scale debris flow experiments
from Iverson et al. (2000). Bouchut et al. (2016) proposed a depth-averaged model
for immersed granular flows based on a thin-layer approximation. The model has been
successfully validated with the experimental data from Pailha et al. (2008) for an immersed
granular avalanche. All these models are able to reproduce the dilatant and contractant
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Two-fluid model for immersed granular avalanches

behaviour of the granular flow as a function of the initial compaction of the granular
bed.

More recently, Wang et al. (2017) and Yin et al. (2018) proposed a multidimensional
two-phase flow model including dilatancy effects for immersed granular flows using the
critical state theory in the framework of the smoothed particle hydrodynamics method.
Baumgarten & Kamrin (2019) derived a set of governing equations for fluid–sediment
mixtures capable of reproducing granular flows ranging from dense to dilute regime. Their
model was implemented in the material point method to describe the dilatant/contractant
behaviour of a granular column collapse depending on the initial volume fraction. Using
a finite volume approach, Lee & Huang (2018) developed a two-fluid model that correctly
predicts the effect of the initial volume fraction and the pore pressure feedback for
the collapse of a submerged granular column. The same model has been successfully
tested to reproduce underwater landslides (Yu & Lee 2019). Similarly, Si, Shi & Yu
(2018) introduced a two-phase model to explore the granular behaviour during the
collapsing process of underwater columns. In addition to dilatancy, their model takes
into account a cohesive effect of the fluid phase on the solid particles. However, these
multiphase flow models ignore the plastic effects on the solid pressure due to particle
rearrangements. Indeed, Mari et al. (2014) showed that these effects are crucial for fully
describing the dilatant/contractant behaviour of granular flows and the authors proposed
a frictional–viscous model for dense suspensions in which increasing frictional contacts
between particles form as the shear rate increases. Similarly, Dsouza & Nott (2020)
suggested that plastic deformations at a certain point do not occur exclusively by local
yielding and introduced a non-local constitutive model for slow granular flow. Recently,
Lee (2021) introduced a sophisticated two-phase depth-resolved model to capture the
shear-induced volume change and the pore-pressure feedback. The main contribution of
that work is to incorporate a relaxation process in the static solid pressure to include
the changes caused by grain rearrangements and compression. The present work follows
a similar yet slightly simpler approach. Namely, the compressibility of the grains is
neglected, whereas the deformation of the granular skeleton is related the changes
in granular stress in an elasto-plastic framework. Moreover, the present study extends
the analysis of granular avalanches to initially very loose beds. Although Lee (2021)
also focused on slightly loose granular avalanches, the contractant behaviour was not
investigated. In the current work, however, the contractant behaviour is studied in detail
for considerably loose beds.

The aim of the present work is to develop a multidimensional two-phase flow model
which includes dilatancy and incorporates plastic effects on the solid pressure due to
particle rearrangements. Like most recent two-phase flow models, our approach combines
critical state theory and rheology to describe the granular flow (see § 2). In order to
validate the proposed model, the underwater avalanches performed by Pailha et al.
(2008) are reproduced numerically (§ 3). Additionally, the influences of the steady-state
granular rheology parameters and the inclination angle are presented in § 3 together
with a sensitivity analysis of numerical calibration parameters and permeability. Finally,
two-dimensional (2-D) simulations corresponding to the exact experimental configuration
are also presented in § 3.

2. Mathematical formulation

In this section the Eulerian–Eulerian two-phase flow governing equations and the closures
for the drag force and the fluid and particle phase stresses are presented.
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2.1. Two-phase flow governing equations
The mass conservation equations for the solid phase and fluid phase are written as follows:

∂φ

∂t
+ ∇ · (usφ) = 0, (2.1)

∂(1 − φ)

∂t
+ ∇ · (uf (1 − φ)) = 0, (2.2)

where φ is the solid volume faction, us is the particle phase velocity and u f is the fluid
phase velocity. Hereafter S f and Ss denote the deviatoric and symmetric part of the
velocity gradient for the fluid phase and for the solid phase, respectively:

Sf = 1
2

(
∇uf + (∇uf )T

)
− 1

3 tr(∇uf ). (2.3)

Their norm is defined by ||S|| = √
2 tr(S : S), where ‘:’ denotes the tensor product.

Following Iverson (1997), the momentum conservation equations for the solid phase
and fluid phase are written as

ρsφ

[
∂us

∂t
+ ∇ · (

us ⊗ us)] = φ(ρs − ρ f )g + (1 − φ)ρ f ν f

k
(uf − us)− ∇ps + ∇ · τ s

−φ∇p f , (2.4)

ρ f (1 − φ)

[
∂uf

∂t
+ ∇ ·

(
uf ⊗ uf

)]
= (1 − φ)ρ f ν f

k
(us − uf )+ ∇ · τ f − (1 − φ)∇p f ,

(2.5)

where ρs is the solid density, ρ f is the fluid density, ⊗ is the outer product of two vectors,
p f is the excess pore pressure, ps is the solid pressure, τ s is the granular shear stress, τ f

is the fluid phase shear stress and k is the permeability of the porous medium modelled
following Ergun (1952) as

k = d2ν f (1 − φ)2

150φν f + 1.75d
∥∥uf − us

∥∥ , (2.6)

where ν f is the fluid kinematic viscosity and d is the mean particle diameter.
Similar to Revil-Baudard & Chauchat (2013), closures are proposed to model the fluid

and intergranular stresses separately. Inspired by the empirical suspension model of Boyer
& Pouliquen (2011), wherein the total stress is the sum of contact and hydrodynamic
contributions, we assume that the partial stress associated with the fluid phase corresponds
to the hydrodynamic part (of the Boyer & Pouliquen (2011) model):

τ f = 2ρ f ν f (1 − φ)
(

1 + 5
2φI−1/2

v

)
Sf . (2.7)

The viscous number Iv in (2.7) is the inverse of a normalized granular pressure, defined
as

Iv = ρ f ν f ||Ss||
ps , (2.8)
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and empirically related to the solid volume fraction by

Iv =
(

1 − φc

φ

)2

, (2.9)

where φc is the volume fraction in quastistatic shear (Iv → 0). Note that the Reynolds
shear stress terms and the turbulent suspension terms are not incorporated in this work as
only laminar flows are considered herein.

The shear stress τ s from solid contacts is described in Boyer & Pouliquen (2011) in terms
of a Coulomb-type friction law by introducing a state-dependent friction coefficientμ. It is
worth mentioning that in the context of viscous inertial flows, Boyer & Pouliquen (2011),
Trulsson, Andreotti & Claudin (2012), Amarsid et al. (2017), Baumgarten & Kamrin
(2019) and Vo et al. (2020) proposed several dimensionless numbers to characterize the
flow. Following Boyer & Pouliquen (2011), in this work the viscous dimensionless number
is considered to determine the friction coefficient for a certain shear state:

μ(Iv) = μs + �μ

I0/Iv + 1
, (2.10)

where the empirical material constants correspond to the static friction coefficient μs, the
dynamic friction coefficient �μ and the reference viscous number I0.

Thus, this allows the granular shear stress to be cast in the form

τ s = ρsνsSs, (2.11)

where νs is the frictional shear viscosity:

νs = μ(Iv)ps

ρs||Ss|| . (2.12)

Equation (2.12) introduces a singularity in ||Ss|| = 0. There is no singularity in the
original model of Boyer & Pouliquen (2011) because therein the granular pressure ps

is proportional to ||Ss||; however, such viscous scaling is only valid at steady state in a
flowing regime. Equation (2.12) is a yield condition; thus, it does not necessarily hold in
static or transient conditions (see next section), and possible singularities remain. They
are addressed by the regularization technique of Chauchat & Médale (2014), such that the
regularized form reads

νs = μ(Iv)ps

ρs
(||Ss||2 + λ2

r
)1/2 , (2.13)

and the regularization parameter is taken to be λr = 10−6 s−1.
It is noteworthy that (2.7), (2.10), (2.11) and (2.12) fully recover the Boyer & Pouliquen

(2011) model under the framework of a two-phase model.

2.2. Dilatancy model
Equations (2.8) and (2.9) together imply that in a steady flowing state, φ is a function of
ps and shear rate:

φ∞ = φc

1 + I1/2
v

. (2.14)

Transitions between various values of solid fraction are thus expected in transient
conditions, such as the onset of an avalanche, fluctuating flow rates or arrest. In quasistatic
deformations this phenomenon is often referred to as dilatancy.
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At this point, it is worth noting that (2.14) does not strictly imply a change of φ after
every increase/reduction of shear rate. There is, indeed, an implied dependency on ps

through Iv , such that the equation could be inverted to give the rate-dependent normal
stress ps∞ in isochoric simple shear (where φ is imposed) as

ps
∞ = ρ f ν f ||Ss||

(
1 − φc

φ

)−2

. (2.15)

In general conditions, both φ and ps can be variable in space and time though still
satisfying (2.15) in stationary or weakly transient regimes.

Dilatancy is classically associated with a coefficient δ, defining the instantaneous rate
of expansion under constant granular pressure ps as

− 1
φ

dφ
dt

= ∇ · us = δ||Ss||, (2.16)

where δ depends, in general, on internal state variables (at least current φ).
The dependency of internal friction on φ in softening or hardening regimes is often

related to δ (Rowe 1962). Earlier two-phase flow models for granular avalanches (Pailha
& Pouliquen 2009; Bouchut et al. 2016) partly accounted for dilatancy by defining a
φ-dependant friction invoking the dilatancy coefficient (δ). A dilatant material (δ > 0)
then led to an increase of the effective friction, while a contractant material (δ < 0) led to
a lower effective friction.

In contrast, the present work makes no a priori assumption on ps. Instead, ps is defined as
a visco-elasto-plastic material response to be integrated as part of the solution. Following
Johnson & Jackson (1987), Cheng, Hsu & Calantoni (2017) and Chauchat et al. (2017), the
total solid-phase pressure ps is defined as the sum of a viscous shear-induced contribution
ps

s and of a contribution ps
c reflecting enduring contacts:

ps = ps
s + ps

c. (2.17)

The enduring contacts term is related to the elastic compliance of the granular phase.
It depends on the difference between the actual solid fraction φ and the reference solid
fraction φpl (the dilatancy effects are embedded in the evolution of φpl hereafter). We
assume that ps

c corresponds to an elastic repulsion taking the form

0 φ < φpl

ps
c = E

(φ − φpl)
3

(φrcp − φ)5
φ � φpl,

⎫⎪⎬
⎪⎭ (2.18)

where E is an elastic modulus and φrcp is the random close packing (φrcp = 0.625 for
spheres). A similar functional dependency can be found in Johnson & Jackson (1987) yet
therein φpl is assumed to be constant and usually referred to as the random loose packing
fraction. Capturing dilatancy needs, instead, to consider initial and transient packing
fractions which differ from the random loose packing fraction.

It is worth mentioning that the initial value of φpl is used to control the initial volume
fraction (φ0). The initial volume fraction is computed as the depth-averaged volume
fraction over the bed height:

φ0 = 1
h0

∫ h0

0
φ( y, t = 0) dy, (2.19)

where h0 is the lowest wall-normal position above which φ � φtop = 0.55. Different
volume fractions can be achieved by changing the initial plastic volume fraction (φpl,t=0)
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which is kept constant during the gravitational deposition. Once the equilibrium state is
reached, the numerical sedimentation is over and φpl evolves following (2.20). Large values
(φpl,t=0 > 0.565) lead to initially dense granular beds whereas low values (φpl,t=0 < 0.54)
result in initially loose granular packings.

Following the classical decomposition of volumetric strain into elastic and plastic parts
and using (2.16) as the plastic flow rule (Roscoe, Schofield & Wroth 1958; Nova & Wood
1982) gives the evolution law for φpl as a function of the shear deformation (γ ):

dφpl

dγ
= −φplδ. (2.20)

Based on the chain rule, (2.20) can also be expressed as

∂φpl

∂t
+ us · ∇φpl = −φplδ||Ss||. (2.21)

Solid fraction φ is supposed to converge asymptotically to φ∞ (equation (2.14)) with a
first-order kinetics (as in Pailha & Pouliquen 2009). Hence in the above equation

δ = K1(φ − φ∞), (2.22)

where K1 = 4 is a calibration parameter. Although literature measurements of the
dilatancy coefficient generally fall in the range −0.4 � δ � 0.4 (Pouliquen & Renaut
1996; Iverson & George 2014; Alshibli & Cil 2018), the numerical model of this work
sets the limits −0.9 � δ � 0.9.

This model extends the critical state soil mechanics (at least in a simple form) to
a rate-dependent critical state φ∞ – whereas in other approaches φ∞ is usually a
function of ps only in quasistatic deformations of soils. In slow isochoric shear (simple
shear at constant volume), this model leads to an increase or a decrease of granular
pressure depending on the initial volume fraction which, in turn, results in pressure-driven
expansion or compaction of the solid phase under shear.

Finally, the viscous contribution ps
s to the granular pressure is defined consistently

with the stationary pressure given by (2.15). The actual pressure is supposed to converge
asymptotically to the stationary pressure with accumulated strain; hence a rate equation
similar to that formulated for φpl governs the progressive mobilization of ps

s:

dps
s

dγ
= K2φ(ps

∞ − ps
s). (2.23)

Some studies (Utter & Behringer 2004; Sun & Sundaresan 2011) have shown that
the pressure arising from shear deformation exhibits some delay in opposition to the
instantaneous deformation of the mixture. It seems, thus, reasonable to adopt different
values for K1 and K2. Here, K2 = 1 is taken.

Equations (2.20) and (2.23) together govern the changes of the visco-plastic
shear-induced pressure which, in turn, influence the motion of the solid phase and the
evolution of volume fraction in time. In the case of an initially dense bed, the typical
response of the sediment in this model can be summarized in the following sequence.

Right after the initial tilting, the granular shear stress is controlled by the static
friction μs and granular pressure ps: τ s = μsps. Since the changes in ps require enough
accumulated strain, initially the mixture remains at equilibrium.

As the flow starts to develop, ps increases following (2.20) and (2.23) (mainly the
former when flow rate is still small). The consequences are twofold: first, bed expansion,
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Description Scheme

Time discretization Backward
Gradient term discretization Gauss linear
Divergence operators Gauss limited linear, Gauss upwind
Laplacian operator Gauss linear corrected

Table 1. Numerical schemes for the interpolation of the convective fluxes.

by which the excess ps is released. At the same time the dilatant bed acts against the
macroscopic drag (equation 2.6). Second, increased ps implies a proportional increase
of the mobilized shear stress (μps) locally, which reduces the out-of-equilibrium forces
hindering the motion of the mixture downslope.

In systems controlled by drag resistance, the dissipation of excess ps is a slow
process and the corresponding equilibrium of stresses is reached before any noticeable
bed expansion occurs. This regime of deformation is termed undrained response in
poromechanics. In such a case, the dense sediment phase deforms at constant φ, only
as much as it needs to reach the equilibrium of shear stresses via the increase in ps, then it
is arrested. The changes in ps come mainly from plastic dilatancy: the difference (φ − φpl)
in (2.18) increases because φpl decreases irreversibly with accumulated shear.

On a longer time scale, the excess ps is relaxed by expansion of the granular bed, leading
unswervingly towards lower φ. When the excess ps is small enough, the avalanche starts.

It is worth noting that expansion of the sediment phase in this model is driven not only
by plastic dilatancy but also by the rate-dependent viscous term ps

s. Therefore, the negative
pore pressure is not a feature bound to the transient, quasistatic, equilibrium. For instance,
an accelerating flow rate may cause negative pore pressure even after the triggering of an
avalanche, which may delay the truly steady-state regime.

2.3. Numerical implementation
Simulations are conducted with the open-source software SedFoam (Chauchat et al. 2017),
a two-phase flow solver frequently used for sediment transport applications (Mathieu et al.
2019) based on the open-source finite volume library OpenFOAM (Jasak & Uroić 2020).
The solver is available for download at GitHub (https://github.com/SedFoam/). In the finite
volume method, partial differential equations are discretized by integrating them over
each control volume. By means of Gauss theorem, convection and diffusion terms in the
conservation equations are transformed to face fluxes. Several interpolation/discretization
techniques can be used to evaluate the face fluxes. Table 1 shows the temporal and spatial
discretization schemes used in the present work. It is worth noting that the Gauss upwind
scheme is only adopted for the divergence discretization of φpl and ps

s fields. After the
spatial and temporal discretization, the system is solved with the PIMPLE algorithm,
which combines the pressure-implicit split-operator (PISO) and the semi-implicit method
for pressure-linked equations (SIMPLE) algorithms.

3. Results and discussion

3.1. One-dimensional granular avalanche
In order to evaluate the model, the gravity-driven flow of a granular bed fully immersed
in a water–oil mixture is considered. Initially, the sediment phase is deposited by gravity
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Figure 1. Sketch of the immersed granular avalanche in (a) 1-D and (b) 2-D configurations. Details of the
boundary conditions are displayed in each case. (c) Schematic mixture velocity profiles for the 1-D and
2-D numerical simulations. Due to the geometrical constraints of the 2-D configuration, an upstream flow
is observed in the upper part of the box. The height of the 1-D domain (h1) has been adjusted to reproduce a
similar velocity profile.

Parameter Symbol SI unit Value

Solid density ρs kg m−3 2500
Fluid density ρ f kg m−3 1041
Fluid viscosity ν f m2 s−1 9.2 × 10−5

Particle diameter d m 160 × 10−6

Inclination angle θ — 25◦
Layer thickness h0 m 0.0049
Elastic modulus E Pa 0.2

Table 2. Physical and geometrical variables of the problem (Pailha et al. 2008).

at zero inclination forming a granular layer of height h0 as displayed in figure 1. Then,
the system is rapidly rotated to a specific inclination angle (θ ) and gravitational forces
accelerate the mixture. The physical and geometrical parameters have been taken from the
experimental set-up of Pailha et al. (2008) except for the elastic modulus (see table 2).

At first, one-dimensional (1-D) numerical simulations are carried out imposing periodic
boundary conditions along the streamwise direction (see figure 1a). At the top and
bottom boundaries, the velocity of both phases is set according to a homogeneous
Dirichlet boundary condition (no-slip velocity) and homogeneous Neumann boundary
conditions are prescribed for the volume fraction (zero gradient). A homogeneous
Dirichlet boundary condition is prescribed for the pore pressure at the top boundary
whereas a fixedFluxPressure (fFP) condition is imposed at the bottom. The fFP condition
is a Neumann boundary condition that sets the wall-normal pore pressure gradient at the
boundary consistently with the velocity boundary condition. All the details can be found in
the sketch presented in figure 1(a). It is worth mentioning that the height of the 1-D domain
(h1 = 0.03 m) has been adjusted to reproduce the flow conditions of the experiments.
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Rheological coefficients
μs �μ Io φc

Present model 0.425 0.34 0.004 0.585
Chèvremont et al. (2019) 0.36 0.34 0.0133 0.585
Typical range reported in literature [0.30; 0.43] [0.34; 0.39] [0.005; 0.27] [0.582; 0.587]

Table 3. Rheological coefficients used in § 3.1, coefficients used in § 3.2 obtained by Chèvremont et al.
(2019) using DEM-PVF simulations and typical ranges reported in the literature.
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Figure 2. (a) Evolution of surface particle velocity and (b) excess pore pressure with time. Experimental
curves are extracted from Pailha et al. (2008).

Indeed, experiments were conducted in a closed container (L × h2 = 1 m × 0.07 m) in
which an upstream flow was observed in the upper part of the box. Schematic velocity
profiles of the mixture (vm = φvs + (1 − φ)v f ) are plotted in figure 1(c) for a 1-D and
a 2-D numerical simulation. Due to the opposite flow directions in the container, a
zero-velocity line is observed at height h1 as shown in figure 1(c). Therefore, the height of
the 1-D box has been set to h1 with a zero velocity at the top wall. The difference between
the actual experimental geometry and the 1-D set-up is discussed in detail in § 3.5.

The μ(Iv) rheology has been discussed in many recent publications (Boyer & Pouliquen
2011; Trulsson et al. 2012; Amarsid et al. 2017; Cheal & Ness 2018; Chèvremont, Chareyre
& Bodiguel 2019) and the values of the different rheological coefficients are subject
to certain scatter (see table 3 for typical ranges). As mentioned by Pailha & Pouliquen
(2009), the shallow-water model results are sensitive to the choice of these coefficients.
In this section the rheological coefficients have been tuned to reproduce the experimental
steady-state velocity of the avalanche (see table 3). Variations of the results due to the
choice of the rheological coefficients are further discussed in § 3.2.

Figure 2 shows the temporal evolution of the surface velocity of the grains and the
evolution of the excess pore pressure at the bottom of the granular bed. Velocity is made
dimensionless by

√
gd and time by

√
d/g. In the numerical simulations, the surface

velocity is measured at the highest cell having a solid volume fraction above φtop = 0.55.
At this point it is worth mentioning that Pailha et al. (2008) classified the avalanche

behaviour in two sets: loose behaviour for φ0 < 0.58 and a dense behaviour for φ0 > 0.58.
In the current work, a shear-rate-dependent critical model is considered. Even though the
quasistatic critical volume fraction is chosen to be φc = 0.585, the critical volume fraction
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decreases gradually as the granular material starts flowing following (2.14). Expectedly,
a similar loose/dense classification is found in the numerical simulations. As a matter
of fact, after tilting the plane, an initially dense bed is barely moving and a significant
negative pore pressure develops under the granular layer. As time increases, the excess pore
pressure gradually reduces and the granular layer starts flowing normally. All dense cases
(φ0 = 0.583 and φ0 = 0.592) displayed in figure 2(a) show a slow increase of velocity
towards the stationary velocity with similar acceleration. After reaching the stationary
velocity, the excess of fluid pore pressure has fully dissipated as shown in figure 2(b). Note
that this is true for the experiments with φ0 � 0.584 but not for the configuration with
φ0 = 0.592 in which the excess pore pressure remains almost constant in time.

Figure 2 suggests that the proposed model predicts reasonably well the initiation of
the avalanche for an initially dense granular bed in terms of both surface velocity and
excess pore pressure. The model, however, gives less satisfactory results for the densest
granular layer. The results of Pailha et al. (2008) indicate that the densest granular layer
remains immobilized and dilatancy effects during the creeping phase are the source of
negative pore pressure within the mixture. The bed expansion leads to a reduction of
the dilatancy angle and, subsequently, to lower frictional resistance. Then, the velocity
starts increasing towards the steady state (never reached in the experiments of Pailha et al.
(2008) due to geometrical constraints) and the excess pore pressure gradually decreases.
In this case, the numerical model is unable to capture the constant excess pore pressure
manifested during the creeping phase. Moreover, the expansion of the granular bed and its
acceleration predicted by the numerical model occur gradually while motion of the layer
in the experiments is clearly delayed and triggered when the strain of the granular layer
is around 25 % (Pailha 2009). It should be noted that the measurements of Pailha et al.
(2008) did not include the evolution of the volume fraction along the vertical or detailed
information on the permeability. The unknown rate of pore dilation, and consequent
soil hardening, adds more complexity to the present model. However, adjustments in
permeability and dilatancy are further discussed in §§ 3.3.1 and 3.3.3 to better capture
the behaviour of the densest case.

Regarding the initially loose granular beds, rapid accelerations of the granular flow
are observed (see figure 2a). Meanwhile, positive excess pore pressures are measured
at the bottom of the granular layer (see figure 2b). Furthermore, in initially loose cases
the surface velocity reaches values higher than the stationary velocity followed by a
gradual decrease until the steady-state velocity, in agreement with the experimental results.
Indeed, Pailha & Pouliquen (2009) showed that dilatancy effects lead to a lower frictional
resistance and, therefore, to a higher transient velocity before reaching the steady-state
value. Additionally, the expulsion of the fluid during the contraction process is responsible
for the positive pore pressure values. Likewise, in the landslide studies carried out by
Iverson (2005), the authors pointed out that the rapid acceleration of loose granular layers
is accompanied by a positive pore pressure feedback that reduces the basal effective
normal stress and frictional resistance. In some cases, these stresses can vanish when
the liquefaction limit is reached. Similar to the densest case, discrepancies with the
experiments are found for the loosest granular bed. Even though there is an evident
qualitative agreement with the numerical model, peak velocities immediately after the
tilting point are significantly higher than the experimental ones. In terms of excess pore
pressure, the magnitude of the peak is well captured but the gradual relaxation is smoother
than in the experiments. The velocity overshoot predicted by the model is a consequence
of a marked reduction of the frictional resistance. Section 3.3.1 analyses the same loosest
avalanche when the dilatancy coefficient is deliberately reduced to regulate the onset and
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the acceleration of the granular layer. The evolution of the excess pore pressure, though, is
strongly influenced by the permeability. Therefore, § 3.3.3 studies the role of permeability
in the relaxation rate of the excess pore pressure.

Finally, granular beds with initial volume fraction near the critical state do not show
a clear loose/dense behaviour. A φ0 = 0.578 granular bed (see figure 2) starts flowing
without delay; however, the acceleration is much lower than that of the loose cases.
Besides, slightly negative pore pressures are measured under the granular layer. It is,
therefore, an intricate task to describe the behaviour of granular beds close to the critical
state.

Overall, there is a fairly good description of the initial and steady dynamics of
granular avalanches ranging from loose to dense behaviour. However, there is room for
improvement in terms of very dense/loose granular layers. Sections 3.3.1, 3.3.2 and 3.3.3
examine some factors that improve the performance of the model in such specific cases.

In order to gain further insight into the complex mechanical behaviour of the avalanche,
depth profiles of solid volume fraction, solid phase velocity, excess solid pressure and
excess pore pressure are presented in figures 3 and 4 for an initially dense (φ0 = 0.592)
and an initially loose (φ0 = 0.562) granular bed, respectively. The excess of solid pressure
is defined as the difference between the actual solid pressure predicted by the model and
the hydrostatic solid pressure p̃s = φ(ρs − ρ f )gh0 corresponding to the static equilibrium.
The temporal evolution from early times to the steady state is represented by the line
colours from lighter to darker.

For the initially dense case, figure 3 shows that, after the box is tilted, the shear stress that
develops inside the granular bed leads to bed expansion, i.e. the volume fraction decreases
(see figure 3a), associated with a slow acceleration of the grains, i.e. the solid-phase
velocity increases (see figure 3b). Figure 3(a) evidences a more rapid φ reduction near
the bottom in agreement with experimental observation (Pailha 2009). More specifically,
dilatancy induces a reduction of φpl following (2.20) and, subsequently, an increase of
the contact pressure ps

c (see (2.18)) as shown in figure 3(c). The increase of ps
c adds

frictional resistance hindering the motion of the solid particles. Figure 3(d) also illustrates
the pore pressure feedback mechanism and its consequences on the granular medium. At
first, the granular bed experiences minor motion (see the low velocities at the early times
of figure 3b) due to the increase of ps

c and the subsequent frictional resistance derived
from the dilatancy process. At the same time, the granular layer expands, mobilizing drag
resistance as the fluid is pumped in. This inward flow is associated with the negative
pore pressure observed in figure 3(d). The excess pore pressure (p f ) and change of
granular pressure (ps − p̃s cos θ ) increase, then dissipate, rather simultaneously, with equal
magnitudes and opposite signs, this feature becoming evident in figures 3(c) and 3(d). This
is merely an indication that the pressure in the whole mixture is constant, as expected when
there are no strong inertial effects in the normal direction.

For the initially loose granular bed, the granular medium contracts in response to the
initial shearing as illustrated in figure 4(a). During the early stage, the contact forces
between grains slightly decrease (see negative increases in the solid pressure of figure 4c)
and some direct grain contacts are lost. The lower solid pressure values observed after
tilting the plane lead to a rapid acceleration of the granular bed (see figure 4b). As
shearing goes on, the amount and magnitude of intergrain contacts build up (see the
evolution of the solid pressure towards the hydrostatic distribution corresponding to the
steady state in figure 4c). This leads to an increase of frictional forces and a reduction of
the particle velocity. The reasoning is supported by figures 4(b) and 4(c). Moreover, the
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Figure 3. (a) Evolution of volume fraction profile, (b) particle velocity profile, (c) increase of particle pressure
and (d) excess pore pressure along the vertical. Dense packing (φ0 = 0.592). Different times (t∗ = t/

√
d/g)

are displayed.

volumetric changes in the soil skeleton during the contraction process entail a marked
increase of the excess pore pressure as shown in figure 4(d). Close to the steady state,
the fluid pressure is almost restored to the hydrostatic distribution, indicating that the
fluid phase is no longer constrained to flow out of the sediment layer: compaction has
ended.

Hereinafter, a depth-averaged variable over the bed height is denoted as ψ̄ with the
following definition:

ψ̄ = 1
h0

∫ h0

0
ψ( y) dy, (3.1)

where h0 is the lowest wall-normal position above which φ � φtop. In figure 5(a), the
temporal evolution of the depth-averaged particle volume fraction (φ̄) is shown for three
different initial values corresponding to loose, critical and dense configurations: φ0 =
0.562, 0.583 and 0.592, respectively. In figure 5(b), the evolution of the depth-averaged φ̄
is plotted with the depth-averaged value of the viscous number Iv as well as the empirical
law given by (2.14). It is worth noting that I∞

v stands for the viscous number at steady state
(t → ∞). This figure reveals that, regardless of the initial state, all curves follow closely
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Figure 4. (a) Evolution of volume fraction profile, (b) particle velocity profile, (c) increase of particle pressure
and (d) excess pore pressure along the vertical. Loose packing (φ0 = 0.562). Different times (t∗ = t/
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are displayed.

the steady-state law, φ(Iv) collapsing, eventually, on the equilibrium volume fraction.
Except at the beginning of the process, very little dispersion is displayed. Indeed, the
rapid convergence is expected under this particular visco-elastic regime where the inertial
contribution plays a minor role.

The major difference between the proposed model and existing models from the
literature (Pudasaini, Wang & Hutter 2005; Pailha & Pouliquen 2009; David & Richard
2011; Bouchut et al. 2016) lies in the resolution of the pore pressure. Previous approaches
are based upon certain assumptions to determine the excess pore pressure. Herein
the excess pore pressure is obtained by full resolution of the mass and momentum
conservation equations, while the shear-induced granular pressure acts like a diffusive
source term. Additionally, a distinctive feature of the present depth-resolving multiphase
flow model compared with a depth-averaged model is to take into account dilatancy
as a modification of the solid pressure and not as an effective friction coefficient.
The results presented above suggest that the proposed model is able to capture the
full range of behaviours of the avalanche, from loose to dense initial conditions, in
a physically consistent manner. This is, undoubtedly, the main result of the present
contribution.
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Figure 5. (a) Depth-averaged volume fraction as a function of time for different initial volume fractions and
(b) φ̄–Iv relationship.

3.2. Influence of rheological coefficients
The rheological coefficients in § 3.1 have been adjusted to fit the experimental data in
terms of steady-state velocity. In this section, the influence of rheological coefficients on
the results is discussed.

A wide range of rheological coefficients has been proposed in the literature (Divoux
& Géminard 2007; Boyer & Pouliquen 2011; Gallier et al. 2014; Lecampion & Garagash
2014; Chèvremont et al. 2019) (see table 3). According to Divoux & Géminard (2007),
the main source of dispersion for the rheological coefficients is due to the grain surface
characteristics. Notwithstanding the difficulties of finding rheological coefficients valid for
a wide range of cases, the influence of such coefficients on the transient and steady state
is evaluated and discussed in this section. More particularly, a new series of numerical
simulations is performed adopting the rheological coefficients proposed by Chèvremont
et al. (2019) (see table 3).

The temporal evolutions of the surface velocity and the excess pore pressure underneath
the granular layer are shown in figure 6. Qualitatively, the new simulations using
the rheological coefficients from Chèvremont et al. (2019) reproduce the observed
experimental behaviour: the initially dense avalanche is retarded while the initially
loose avalanche accelerates instantaneously with a velocity overshoot. However, from a
quantitative point of view, the steady-state velocity (vs,sim∞ ) is overestimated by a factor of
almost 8. In order to characterize the discrepancies more objectively, the root mean square
error in time for the surface velocity is computed and shown in table 4. It is worth noting
that discrepancies between the two sets of rheological coefficients are essentially observed
in the magnitude of particle velocity and excess pore pressure drop. The initiation and
transient dynamics of the granular flow are well captured by the Chèvremont et al. (2019)
rheological coefficients and the time scale to reach the steady state is not significantly
affected compared with the results presented in § 3.1.

The results presented in this subsection suggest that rheological coefficients have a
strong effect on the evolution of the surface velocity of the granular avalanche. Less
influence is observed on the pore pressure; results remain of the same order of magnitude
but the pore pressure peaks are roughly two times larger than those measured in § 3.1. The
initial dynamics, the time scale to reach the triggering point of dense avalanche and the
time scale to reach a fully developed avalanche are essentially unaltered by changing the
rheological coefficients.
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Figure 6. (a) Evolution of surface particle velocity and (b) excess pore pressure with time using the
rheological coefficients of Chèvremont et al. (2019).

RMSE

Study case
vs∞√

gd
φ0 = 0.562 φ0 = 0.583 φ0 = 0.592

Section 3.1 0.0123 11.12 1.17 1.25
Chèvremont et al. (2019) 0.0821 77.86 48.42 30.54
Experiments 0.0120 — — —

Table 4. Root mean square error (RMSE) for different volume fractions. Parameter vs∞ is the top solid-phase
velocity when the steady state is reached.

3.3. Sensitivity analysis
The model has been successfully tested against experimental data for the initiation of
immersed granular avalanches. In this section, the sensitivity of the model results to
the numerical parameters K1 and K2 is studied, and the influence of the permeability is
discussed.

3.3.1. Sensitivity to K1
Although good agreement with the experimental results is observed, discrepancies are
found in the loosest and densest cases (see figure 2). In the loosest scenario, the excess
pore pressure is well captured but the velocities immediately after the tilting point are
much higher than those in the experiments. On the other hand, the densest case of Pailha
et al. (2008) showed that the excess pore pressure remained constant during the creeping
phase, while in the numerical simulations the granular layer starts flowing slowly almost
immediately and a gradual dissipation of the excess pore pressure is observed. Both cases
are influenced by the initial dynamics controlled by dilatancy effects. Thus, in this section,
the sensitivity to dilatancy factor K1 is examined in a series of simulations.

Figure 7 shows the results are moderately sensitive to K1. Low K1 values reduce the
velocity overshoot of the loose case; however, they also reduce the magnitude of the excess
pore pressure. Very low values (see K1 = 4 × 10−2 curve in figure 7) describe the velocity
peak remarkably well for the loosest scenario but the low impact of dilatancy underpredicts
the rapid and abrupt acceleration observed in the experiments. Concerning the densest
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Figure 7. (a) Evolution of surface particle velocity and (b) excess pore pressure with time for different K1. The
loosest cases are plotted with dashed lines while the densest cases are shown with solid lines. Experimental
curves extracted from Pailha et al. (2008) are shown in black. The increasing K1 value of numerical results is
displayed with blue curves from lighter to darker.

0
0.5

0.6

0.7

0.8

0.9

0.02

0.04

0.06

0.08

25 000 50 000 75 000 100 000 125 000 150 000

t/�d/g (–)

v
� /

�g
d 

 (–
)

ps s/
ρ

f g
h 0

 (–
)

ps c/
ρ

f g
h 0

 (–
)

0
0

25 000 50 000 75 000 100 000 125 000 150 000

t/�d/g (–)

Pailha et al. (2008)
φ0 = 0.562

SedFoam
φ0 = 0.562 - K2 = 1 × 101

φ0 = 0.592 - K2 = 1 × 101

φ0 = 0.562 - K2 = 1 × 100

φ0 = 0.592 - K2 = 1 × 100

φ0 = 0.562 - K2 = 1 × 10–1

φ0 = 0.592 - K2 = 1 × 10–1

K2↑

K2↑

K2↑

K2↑

φ0 = 0.592

(a) (b)

0
0

0.005

0.010

0.015

0.020

0.025

0.030

–0.10

–0.05

0

0.05

0.10

25 000 50 000 75 000 100 000 125 000 150 000

pf /
ρ

f g
h 0

 (–
)

0 25 000 50 000 75 000 100 000 125 000 150 000

(c) (d )

Figure 8. (a) Evolution of surface particle velocity and (b) excess pore pressure with time for different K2. The
loosest cases are plotted with dashed lines while the densest cases are shown with solid lines. Experimental
curves extracted from Pailha et al. (2008) are shown in black. (c,d) The increasing K2 value of numerical results
is displayed with arrows and blue curves from darker to lighter.

scenario, a large K1 value leads to a larger negative excess of pore pressure peak. The
acceleration of the granular layer matches the experimental curve (see slopes of φ0 =
0.592 in figure 7 once the avalanche starts flowing normally) but the triggering point
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Figure 9. (a) Evolution of surface particle velocity and (b) excess pore pressure with time for different
permeabilities. The loosest cases are plotted with dashed lines while the densest cases are shown with solid
lines. Experimental curves extracted from Pailha et al. (2008) are shown in black. The increasing permeability
of numerical results is displayed with arrows and blue curves from darker to lighter.

occurs earlier than in the experiments. Overall, figure 7 suggests low K1 values better
predict the loose behaviour and larger K1 values provide a reasonable description of dense
granular avalanches.

3.3.2. Sensitivity to K2
In this section the influence of K2 in (2.23) is analysed. The parameter K2 controls the rate
at which the shear-induced pressure converges to its equilibrium. Figures 8(a) and 8(b)
show there are no strong changes in terms of excess pore pressure and solid-phase velocity.
The results in figure 8(d) show that small K2 values mean a lower shear-induced pressure
which takes longer to develop. Whereas larger K2 values correspond to a rapid build-up.
Nonetheless, almost no influence is observed in the granular avalanche dynamics. It is
worth remembering here that numerical simulations presented in this work take place
under a viscous dense regime. Therefore, it is not surprising that the contact pressure is
much more dominant than the shear-induced pressure (at least seven times larger according
to figure 8c,d).

3.3.3. Sensitivity to permeability
Changes in permeability not only result in variations of the excess pore pressure, but also
in different dynamics worth discussing. When the permeability from (2.6) is multiplied by
a certain factor (in figure 9, 2

3 and 1
5 ) the mobility of the layer is significantly reduced for

the densest case. The increase of the creeping phase comes with larger peaks in the excess
pore pressure. The dilatancy factor K1 can be adjusted to better fit the experimental pore
pressure; however, under these conditions the evolution of the surface velocity is poorly
represented by the numerical model.

3.4. Slope influence
In this section the evolution of the granular flow for three different initial volume fractions
(φ0 = 0.562, 0.580, 0.590) and three different inclination angles (θ = 25◦, 28◦, 30◦) is
examined.
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Figure 10. Evolution of surface particle velocity with time for (a) θ = 25◦, (b) θ = 28◦ and (c) θ = 30◦; and
excess pore pressure with time for (d) θ = 25◦, (e) θ = 28◦ and ( f ) θ = 30◦.

Figure 10 shows the behaviour of the avalanche in terms of surface velocity and excess
pore pressure at the bottom for different inclination angles and different initial volume
fractions. Obviously, increasing the bed slope leads to a larger stationary solid velocity.
Even though greater negative pore pressure values develop under the granular bed (see
figure 10), the additional friction due to dilatancy is not enough to delay the motion of the
gravity-driven flow. Another interesting feature observed in figure 10 is that the time to
reach the steady state does not seem to be much affected by the bed slope.

In contrast to the previous results, for which all the final volume fractions converge
to a single value (see figure 5), different volume fractions are predicted when the steady
state is reached for different slopes (see figure 11a). The evolution of the solid volume
fraction depends on the shear rate and granular pressure; thus, different inclinations,
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Eq. (2.14)
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Figure 11. (a) Volume fraction as a function of time and (b) φ̄–Iv relationship for different inclination angles.
Here φ0 = 0.580.
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Figure 12. (a) Minimum fluid pore pressure measured in dense granular avalanches as a function of the
inclination angle. Three initial volume fractions are considered (φ0 = 0.555, φ0 = 0.580 and φ0 = 0.590).
(b) Dependency of Ib on the slope (θ ) when the granular flow is fully developed. Experimental points taken
from Pailha & Pouliquen (2009) correspond to dense cases.

corresponding to different Iv , influence not only the dynamics but also the fully developed
granular flow. Figure 11(b) shows that all the φ̄–Iv relationships collapse on the solid
volume fraction law given by (2.14). Even though the three curves share the same starting
point (Iv = 0), different terminal volume fractions are found depending on the slope of the
plane. As expected, larger inclination angles lead to increasing dimensionless shear rate
or Iv number, and looser steady states. Overall, figure 11 evidences that the solid volume
fraction relaxes towards an equilibrium volume fraction that depends only on the viscous
number.

Results from § 3.1 show an excellent agreement with the experimental data for a
wide range of initial volume fractions at θ = 25◦. In figure 12, the proposed two-fluid
model is compared with experimental results reported in Pailha & Pouliquen (2009) for
different inclination angles. As expected, the pore pressure drop increases in magnitude
with increasing inclination angle. Both trends are confirmed in figure 12(a) in which the
numerical results are in reasonable agreement with the experimental data (only two points
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Loose granular avalanche – φ0 = 0.566 Dense granular avalanche – φ0 = 0.592

t∗ = 5000 t∗ = 5000

t∗ = 20 000

t∗ = 40 000

t∗ = 40 000

t∗ = 60 000

t∗ = 60 000

t∗ = 150 000

Solid volume fraction (–)

0 0.146 0.293 0.439 0.585 0.555 0.567 0.585 0.005 0.010 0.015 0.0200

Velocity field vm/�gd  (–)

(b)(a)

Figure 13. Evolution of solid morphology, velocity field and flow streamlines throughout the numerical
simulation. Initially (a) loose (φ0 = 0.566) and (b) dense (φ0 = 0.592) granular beds are compared. For the
sake of clarity the arrows of the velocity field are not displayed within the granular bed.

for initially dense granular layers are available in Pailha & Pouliquen (2009)). The drop
in pore pressure can be derived analytically by postulating a stable state, as suggested by
Mutabaruka et al. (2014). Following Pailha & Pouliquen (2009), Iverson & George (2014)
and Mutabaruka et al. (2014), the effective friction is obtained as the sum of the static
friction coefficient μs and the dilatancy coefficient δ; thus, the Coulomb yield criterion
can be written as

τ s � (μs + δ)ps. (3.2)

Since the changes in ps and p f are of same magnitude but with opposite sign, ps =
p̃s − p f , where p̃s is the static granular pressure (p̃s = cos θφ(ρs − ρ f )gh0 at the bottom
of the layer), (3.2) can be rewritten as

τ s � (μs + δ)(p̃s − p f ). (3.3)
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Loose granular avalanche – φ0 = 0.566 Dense granular avalanche – φ0 = 0.592
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0–0.100 0.075 0.150 0.200
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Figure 14. Evolution of excess pore pressure field throughout the numerical simulation. Initially (a) loose
(φ0 = 0.566) and (b) dense (φ0 = 0.592) granular beds are compared.

If inertial effects are negligible in the streamwise direction, then the shear stress must
balance gravitational forces, i.e. τ s = p̃s tan θ , and (3.3) can be rewritten as

tan θ � (μs + δ)

(
1 − p f

p̃s

)
. (3.4)

The last term on the right-hand side of this equation reflects an additional strength
associated with negative pore pressure.

Equation (3.4) may be rewritten to express the excess pore pressure as a function of the
other parameters:

p f � p̃s cos θ
(

tan θ
μs + δ

− 1
)
. (3.5)

The two black lines and the blue shaded region in figure 12(a) indicate the excess pore
pressure drop predicted by (3.5) (values assuming the equality) using φ0 = 0.585 and φ0 =
0.592 with the corresponding dilatancy coefficient δ = 0 and δ = 0.028, respectively.
Although (3.4) is based on a simplified force balance where dynamic contributions
are neglected, figure 12(a) shows that the analytic approach is in agreement with the
experimental and numerical results. It is worth noting that the analytical approach is only
valid for an initially dense granular bed. For an initially loose bed, inertial effects arise
rapidly and the bed becomes unstable almost instantaneously after tilting the plane.
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Figure 15. (a) Evolution of surface particle velocity and (b) excess pore pressure after a 2-D simulation to
reproduce the experimental set-up.

In figure 12(b) the bulk viscous number at steady state, defined as

Ib = 2ν fρ f ‖us‖
((ρs − ρ f )gh2

0φc cos θ)
, (3.6)

is plotted as a function of the inclination angle for experiments and numerical simulations.
The linear trend observed in the experiments is well predicted by the two-fluid
model.

3.5. Two-dimensional granular avalanche
In this section, a 2-D numerical investigation is carried out by solving the
multidimensional two-phase flow equations described in § 2. The numerical domain
is shown in figure 1(b). The geometrical parameters and boundary conditions are set
to reproduce precisely the experimental set-up of Pailha et al. (2008) consisting of a
Hele-Shaw cell. The velocities of both phases are set to zero at all boundaries (lateral,
top and bottom) while a fFP condition is imposed for the excess pore pressure on all
boundaries. A homogeneous Neumann boundary condition (zero gradient) is imposed for
all the other quantities.

The series of snapshots shown in figure 13 illustrate how gravitational forces drag
the solid phase down the slope while the upper part of the domain occupied by fluid
only is forced to flow upslope due to mass conservation. The mixture velocity (vm =
φvs + (1 − φ)v f ) field displayed in figure 13 evidences the presence of the flux loop
in the vicinity of the bottom corner of the Hele-Shaw cell. Unlike the 1-D avalanches,
where periodic conditions were imposed on the upstream and downstream faces, in
this domain the streamwise extent is finite; therefore, solid particles are continuously
transported downslope leading to a progressive reduction of the granular bed height
upstream whereas grains accumulate at the bottom corner. The two series of snapshots
shown in figure 13 illustrate the dynamics of initially loose and dense granular beds. In
the loose case, the solid phase accelerates very quickly, whereas in the dense avalanche,
dilatancy effects delay the motion of the granular medium. As shown in figure 14, the
excess pore pressure rapidly jumps to positive values in the loose case and negative values
in the dense case, in agreement with 1-D numerical simulations and experimental results.
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Dense granular avalanche – φ0 = 0.592

t∗ = 5000
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t∗ = 150 000

Solid volume fraction (–)

0 0.15 0.30 0.45 0.60

Figure 16. Evolution of solid-phase morphology and velocity field for a dense granular avalanche.

Additionally, figure 14 shows increasing pore pressures at the bottom corner of the
container. As described earlier, particles are accumulating in this region and the incoming
grains along with the downward fluid flow contribute to compact this area; hence, the
impact of the avalanche leads to positive excess pore pressure that expels the pore
fluid.

Finally, figure 15 shows the same quantities as figure 2: the temporal evolution of the
surface velocity and the excess pore pressure at the bottom of the granular bed for three
initial volume fractions (loose: φ0 = 0.566; critical: φ0 = 0.580; and dense: φ0 = 0.592)
measured at the same point as in the experiments (see curves with open symbols in
figure 15). In this figure, 1-D simulation results are also plotted (filled symbols in figure 15)
to illustrate the comparison between the 1-D and 2-D approaches. The agreement with the
experimental curves for the 2-D simulations is similar compared with the 1-D approach
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Loose granular avalanche – φ0 = 0.566
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Figure 17. Evolution of solid-phase morphology and velocity field for a loose granular avalanche.

though the avalanche accelerates slightly faster in the 2-D case. An interesting feature
is observed for the initially loose granular bed: the surface velocity does not decelerate
down to the steady-state value. This is due to the lack of particle availability at the
upstream side of the container resulting in a progressive reduction of the granular bed
thickness (see the evolution of the solid phase in figure 17 in the upper part of the domain,
significantly different from the dense case displayed in figure 16). This is consistent
with the experiments from Pailha et al. (2008) for which the measurements stop around
t∗ ≈ 35 000 because the length of the container is not long enough to reach a steady
state for the loose granular beds. The same phenomenon occurs in the 2-D numerical
simulations: around t∗ = 50 000 the thickness of the granular bed significantly decreases
and the numerical estimation of the surface velocity becomes unpractical as observed in
figure 15(a).
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4. Conclusions

In the present contribution, multidimensional, depth-resolving two-phase flow equations
have been formulated to incorporate dilatancy effects. Following most existing
depth-averaged models, our approach relies on the μ(Iv) rheology for the granular shear
stress and a modified version of the shear-rate-dependent critical state theory for granular
materials introduced by Pailha & Pouliquen (2009) for the particle pressure. Unlike
existing models, the proposed formulation incorporates dilatancy effects due to local
rearrangements of the grains as a modification of the contact solid pressure and not as
a modification of the apparent friction angle. Consequently, the geometrical microscopic
changes arise as increases/reductions of the enduring solid contact pressure, leading to
increased/decreased granular shear resistance depending on the initial compaction of the
granular medium, dense/loose respectively.

Numerical simulations using this new dilatancy model have been performed to
reproduce the immersed granular avalanche experiments from Pailha et al. (2008). The
qualitative agreement between the numerical simulations and the experimental results
demonstrates the consistency of the model in capturing the coupling between the pore
pressure feedback mechanism and the avalanche dynamics for both loose and dense initial
states. An analysis of the evolution of the solid pressure, the fluid excess pore pressure,
the particle velocity and the volume fraction along the wall-normal direction for different
initial volume fractions allowed a better understanding of the details of the mechanical
behaviour of the avalanche in this complex particulate two-phase flow. In the initially dense
case, the initial rearrangement of the grains leads to a decrease of the volume fraction
associated with an increase of the solid-phase pressure (enduring contact contribution).
Consequently, the granular shear stress increases slowing down the development of the
avalanche. The dynamics of the granular rearrangement is controlled by the dissipation
of the excess pore pressure which depends on viscosity and permeability of the bed. In
the initially loose case, the initial rearrangements of the grains lead to an increase of
the volume fraction and a reduction of the solid pressure (enduring contact contribution).
Therefore, the granular shear stress decreases and the avalanche accelerates much faster
than in the critical state. The time needed by the granular flow to adjust to the applied
solicitation is also controlled by the dissipation of the excess pore pressure in the granular
bed. This vision is quite different from earlier models and allows one to reproduce, at least
qualitatively, the dynamics of the avalanche in both dense and loose initial states.

Variations of rheological coefficients have shown that the steady-state surface velocity
of the avalanche is very sensitive but the overall dynamics of the avalanche, triggering
time and time to reach the steady state are almost not affected.

The sensitivity analysis conducted in this work provides a more comprehensive picture
of which parameters can be adjusted to reproduce the experimental behaviour of granular
avalanches at the limits of the wide spectrum given by Pailha et al. (2008). Dilatancy
prefactor K1 and permeability strongly affect the initial dynamics of granular avalanches,
whereas negligible impact is observed for changes in K2, a calibration parameter that
controls the relaxation rate of the shear-induced pressure. Low K1 values lead to a smooth
overshoot for the loosest avalanche (φ0 = 0.562) but the excess pore pressure developed at
the bottom is much smaller than for the experimental observations. Regarding the densest
granular avalanche (φ0 = 0.592), variations of K1 result in different magnitudes of the
pore pressure peak but none of them is able to describe the constant negative excess
pore pressure manifested in the experiments. On the contrary, slight variations of the
permeability capture the continuous excess pore pressure observed in the densest case
to the detriment of the velocity prediction.

925 A13-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

66
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.666


Two-fluid model for immersed granular avalanches

The influence of the inclination angle for different initial volume fractions has been
investigated and the numerical results are in very good agreement with the experimental
data in terms of excess pore pressure drop and steady-state surface velocity. A simple
model has been proposed to predict the excess pore pressure drop in the dense case
which fits well with the available experimental data and numerical simulation results.
Interestingly, the time needed by the avalanche to reach the steady state does not seem
to depend much on the inclination angle.

Finally, to illustrate the multidimensional capability of the numerical model, the exact
2-D configuration of the experiments has been reproduced numerically. The differences
from the 1-D simulations presented earlier are small and can be explained by the limited
availability of particles, especially in the initially loose case. These multidimensional
simulations represent a first proof of concept that the proposed model is well suited to
perform two- or three-dimensional granular flow problems in which dilatancy effects play
a crucial role such as granular collapse or burial of objects.
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