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The stability of an almost inviscid compressible fluid flowing over a rigid heated
surface is considered. We focus on the boundary layer that arises. The effect of
surface heating is known to induce a streamwise acceleration in the boundary layer
near the surface. This manifests in a streamwise velocity which exhibits a maximum
larger than the free-stream velocity (i.e. the streamwise velocity exhibits an ‘overshoot’
region). We explore the impact of this overshoot on the stability of the boundary layer,
demonstrating that the compressible form of the classical Rayleigh equation (which
governs the development of short wavelength instabilities) possesses a new unstable
mode that is a direct consequence of this overshoot. The structure of this new class of
modes in the small wavenumber limit is detailed, providing a valuable confirmation
of our numerical results obtained from the full inviscid eigenvalue problem.

Key words: boundary layer stability, compressible boundary layers, high-speed flow

1. Introduction
Various paths of transition from laminar to turbulent flow have been identified

(Morkovin & Reshotko 1990) that depend sensitively on the relative size of the
disturbance to the laminar flow. In low-disturbance environments, such as aerodynamic
flight, the transition process in the boundary layer over a body generally proceeds
via a sequence of receptivity, linear growth and nonlinear breakdown. Receptivity is
the process through which disturbances, either in the form of free-stream turbulence,
wall roughness or acoustic sources, are internalised into the flow. Provided that
the disturbance is small in the boundary layer, the initial growth or decay of the
disturbance can often be adequately modelled by linear stability theory. Unstable
disturbances grow rapidly until nonlinear effects become dominant, and subsequent
secondary instabilities can then arise that induce the cascade to the smaller scales that
are the characteristic of many turbulent flows (for example see Schmid & Henningson
2001).

The work of Lees & Lin (1946) initiated the extension of linear, parallel-flow
stability theory from incompressible to compressible flows, and with it came the result
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that compressible flat-plate boundary layers were unstable to inviscid disturbances,
whereas incompressible flows are stable in the inviscid limit. Mack (1984) performed
extensive computations on the viscous and inviscid stability of various compressible
boundary layers and revealed the existence of multiple ‘Mack modes’ of instability.
This work particularly highlighted the importance of the generalised inflection point
that arises in the compressible boundary layer, playing a role analogous to the
classical inflection point of inviscid incompressible stability theory (for a detailed
discussion see Schmid & Henningson 2001).

The effect of heat transfer on the stability of compressible boundary layers has been
covered extensively in the case when the surface temperature is reduced. In this case
a second generalised inflection point appears which, at a suitably high level of wall
cooling, interacts with the first-mode instabilities (which arise as a consequence of the
first generalised inflection point) so as to cancel their effect. At such a level of cooling,
the first-mode instability is completely stabilised. Higher modes do however persist
and cannot be eliminated by the introduction of wall cooling (Lees & Lin 1946; Mack
1975; Malik 1990b; Masad, Nayfeh & Al-Maaitah 1992). Transition control strategies,
aimed at suppressing the instabilities, are based around the application of wall cooling
and are therefore not practical, resulting in the exploration of other methods of active
and passive control (see Fedorov 2011, and references contained therein).

When the heat transfer is from the surface to the fluid (i.e. the surface is heated)
a different physical scenario arises. In the case of an incompressible fluid, such
a scenario serves to modify the fluid density, which in turn induces a buoyancy
force, thus serving to couple the momentum and energy transport. In this case, the
streamwise velocity can develop so-called ‘super-velocities’; the streamwise velocity
field then attains values greater than the free-stream velocity. This ‘overshooting’ of
the free-stream value by the streamwise velocity component is a direct consequence
of the enhanced acceleration of the fluid due to the effect of thermal buoyancy,
manifesting in a temperature induced pressure (the ‘buoyancy’ force). The nature
of the spatially developing boundary layer ensures that this temperature induced
pressure is a function of both the streamwise and normal coordinates, and hence
the temperature, and thus the normal pressure gradient is also a function of both
variables. As such, an additional streamwise pressure gradient appears in the horizontal
momentum equation. Sufficiently far from the heated surface, the retarding effect on
the fluid by the skin friction will be insufficient to counterbalance the enhanced
acceleration of the flow due to the additional pressure component felt near the heated
surface, and so the velocity ‘overshoots’ its free-stream value (see Denier & Mureithi
1996; Mureithi, Denier & Stott 1997, for further details).

The situation in a compressible boundary layer is similar. In this case, the overshoot
results from the combined effect of a favourable pressure gradient and wall heating.
Physically, the favourable pressure gradient acts across the entire boundary layer
and accelerates the fluid. Heating the wall serves to reduce the fluid density and so
enhances the effect of the pressure gradient on the fluid’s acceleration, leading to a
region in the flow in which the streamwise velocity overshoots its free stream value
(a detailed discussion of this point can be found in Stewartson 1964). The existence
of such flows, in the context of the existence of solutions of the compressible
boundary-layer equations, has been demonstrated by McLeod & Serrin (1968a). A
similar overshoot phenomena can arise in compressible flow over heated yawed
cylinders (Reshotko & Beckwith 1957) and in three-dimensional flows with swirl
(Back 1969).

The effect of surface heating in hypersonic flows is readily seen in the results of the
HYTHIRM project, in which infrared imaging of the surface temperature of the US
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Space Shuttle’s was conducted during re-entry, at speeds above Mach 8 (see Gibson
et al. 2010; Zamelda et al. 2010). Although the main focus of these experiments was
to explore the efficacy of thermal imaging in measuring surface temperatures, they
also allowed for the clear identification of regions of turbulent flow, in particular,
they identified transition due to a protuberance on the shuttle surface (a ‘speed hump’
in the terminology of Gibson et al. 2010). Particularly intriguing is the presence of
a wedge shape region of turbulent flow downstream of the nose of Shuttle Discovery
(given the designation STS-119 in Gibson et al. 2010). Gibson et al. (2010), figure 8,
denotes this region as ‘turbulent flow of unknown origin’. Interestingly, this region
exists downstream of the shuttle nose, where the surface temperature is markedly
increased (see figure 11 of Gibson et al. 2010). This region of turbulent flow, clear
in the Mach 8.43 re-entry images, is not evident in the higher Mach number re-entry
images (designated STS-125 and STS-128, at Mach 14.33 and 14.73, respectively)
shown in Gibson et al. (2010). This suggests that an instability mechanism is in
operation, of unknown origin but perhaps triggered by the surface heating of the
shuttle nose, and that this instability mechanism is sensitively dependent upon the
flow Mach number.

There has long been a realisation that surface heating may play an important role
in the overall flow dynamics of re-entry vehicles. This issue first seems to have been
emphasised by Hirschel (1993) who noted the difference between terrestrial based
experiments, which are often conducted in ‘cold’ facilities, where surface heating
is not present, and real flight experiments (such as the shuttle re-entry experiments
referred to earlier). This realisation has led to the development of new methods for
prescribing non-uniform wall temperatures on models within wind tunnels (see for
example Neely, Dasgupta & Choudhury 2014). With these developments, we can
anticipate increased research into the effect of wall heating on the transition process
in compressible (and in particular hypersonic) boundary layers.

Although the instability of buoyant boundary layers (the so-called mixed, free-forced
convection boundary layers) has received considerable attention (Steinrück 1994;
Denier & Mureithi 1996; Mureithi et al. 1997; Denier, Duck & Li 2005), we are not
aware of any similar work on the impact of heat transfer (from the wall to the fluid)
on the stability of a compressible boundary layer. The aforementioned incompressible
theory demonstrates a rich and varied impact on the stability of the mixed, free-forced
convection flows, in particular, issues surrounding non-uniqueness (Steinrück 1994),
linear and fully nonlinear short waves confined to a degenerate critical layer at
the position of maximum velocity (Denier & Mureithi 1996; Mureithi et al. 1997)
and algebraically growing instabilities (Denier et al. 2005). This richness provides
some tantalising hints as to the effect such heat transfer may have on compressible
accelerating boundary layers. It is this problem we consider here, focussing on
the inviscid instability and how the classical modes of Lees & Lin (1946) and Mack
(1975, 1984) are modified through the development of a region of overshoot. We show
that this affect is appreciable, with the most dramatic change being the development
of a new family of unstable modes whose existence can be directly linked back to
the presence of a maximum in the basic streamwise velocity.

2. Formulation

We consider the uniform flow of a viscous compressible fluid flowing over a
heated rigid surface. We non-dimensionalise all length scales with respect to some
characteristic length L, and velocity scales with respect to free-stream velocity U∞,
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leading to the usual non-dimensional parameters Re, the flow Reynolds number and
M = U∞/a∞, the flow Mach number; here a∞ is the speed of sound in the fluid.
In the limit of large Reynolds number, the Navier–Stokes and enthalpy equations
can be reduced in the usual way to the boundary-layer equations (see Malik 1990a).
Generally, these require a numerical solution but some progress can be made if we
appeal to a similarity solution in which the streamwise velocity u develops in a
self-similar fashion. In this case the boundary-layer equations can be reduced to

(ccf ′′)′ + f f ′′ + β(1+ k)(g− f ′2)= 0, (2.1a)
(a1g′ + a2f ′f ′′)′ + fg′ = 0, (2.1b)

where

τ = (1+ k)g− kf ′2, cc= µ
τ
, a1= cc

Pr
, a2= 2k

1+ k

(
1− 1

Pr

)
cc, k= (γ − 1)

2
M2;

(2.2a−e)
f ′, g, τ and µ are the streamwise velocity, enthalpy, temperature and fluid viscosity,
non-dimensionalised by their values at the edge of the boundary layer, β is the
Falkner–Skan pressure gradient parameter, γ is the heat capacity ratio, cc is the
Chapman-law viscosity–temperature coefficient and Pr is the (constant) Prandtl
number. Primes denote differentiation with respect to the Mangler–Levy–Lees η
coordinate, where

dη∝ dy
τ
, (2.3)

with y being the coordinate normal to the plate. In deriving (2.1) we have assumed
that the fluid obeys the ideal gas law, which taken together with the fact that the
pressure does not vary across the boundary layer, yields ρτ = 1. In what follows we
will employ a Chapman law for the variation of the temperature with viscosity, in
which case µ = τ , allowing us to set cc ≡ 1 in (2.1). This choice does not impact
significantly upon the qualitative behaviour of the flow, but serves to considerably
simplify the governing equations, thus facilitating our computations and the asymptotic
analysis which we present in subsequent sections. The work presented here is intended
to establish the fundamental stability behaviour of boundary layers with velocity
overshoot prior to a more detailed analysis with sophisticated fluid models.

The boundary-layer equations (2.1) are solved subject to the boundary conditions

f (0)= f ′(0)= 0, g(0)= gw, f ′(η), g(η)→ 1 as η→∞, (2.4a−c)

where gw is the prescribed wall enthalpy. The equations are readily solved using
standard quadrature techniques, allowing the effects of wall enthalpy, Mach number
and other system parameters on the flow to be investigated. Solutions to these
equations were first presented by Brown & Donoughe (1951). We present typical
results, for the choice of M = 6, a wall enthalpy gw = 1.5 and a Prandtl number
Pr=0.72 in figure 1. Figure 1(a), showing the streamwise velocity f ′(η), demonstrates
the development of the region of velocity overshoot. This occurs for flows with a
favourable pressure gradient (β > 0). As this favourable pressure gradient increases,
the maximum of the streamwise velocity also increases and consequently the extent
of the region of overshoot. Increases in the Mach number or wall enthalpy (not
shown here) also serve to increase the velocity maximum, the extent of the region
of overshoot and the boundary-layer thickness. This change in the behaviour of the
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FIGURE 1. Plots of the streamwise velocity (a) and temperature (b) within the boundary
layer for the case M = 6, gw = 1.5 and Pr = 0.72. The dashed curve depicts the β = 0.7
case with the Sutherland law.

streamwise velocity profile has been well documented (see for example the discussions
and results presented in Brown & Donoughe 1951; Cohen & Reshotko 1955; Li &
Nagamatsu 1955; Reshotko & Beckwith 1957; Stewartson 1964; McLeod & Serrin
1968a,b; Bae & Emanuel 1997).

We emphasise that the overshoot is a physical manifestation of the change in the
fluid density due to the wall heating, and not the particular viscosity–temperature
law chosen. A qualitatively similar behaviour is observed if ones uses a nonlinear
temperature viscosity law. The dashed curves in figure 1 illustrate that velocity
overshoot is still a feature when using Sutherland’s law, emphasising the fact that the
changes between the Chapman and Sutherland profile are quantitative; the value of the
maximum velocity is changed, increasing slightly for the Sutherland law model, and
the position at which this maximum occurs changes, decreasing for the Sutherland
fluid. From the perspective of the current work, the most significant difference in
the predicted behaviour of the boundary layer for the Chapman versus Sutherland
law’s occurs in the very high Mach number limit. In that regime, the Sutherland
law predicts an O(1)-thick temperature adjustment layer, whereas in the case of the
Chapman law, this layer is logarithmically thin (and in both cases this layer occurs
at the edge of the boundary layer); for a detailed discussion of this, see for example
Fu, Hall & Blackaby (1993) and references contained therein. We can therefore
be confident that a change in temperature viscosity law does not impact upon the
fundamental physics driving the velocity overshoot as this occurs near the surface.

3. Linear stability analysis
We now turn our attention to the question of how, if at all, this region of overshoot

affects the stability characteristics of the flow. To proceed we consider a small
amplitude disturbance to the basic boundary-layer flow. A typical flow decomposition
takes the form

p= p̄(y)+ p̂(y) exp [i(αx−ωt)], (3.1)

where p̄ is the unperturbed flow (in this case the pressure), p̂ the perturbation
amplitude, α is the streamwise wavenumber of the disturbance and ω= αc, where c
is the complex wavespeed (to be determined). Here, we focus on inviscid perturbations
to the basic flow. Substituting these expansions into the full Navier–Stokes equations,
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linearizing about the basic flow (and appealing to a parallel flow approximation,
which is valid in this case as the inviscid instabilities have short wavelengths when
compared to the developmental length scale of the boundary layer) we obtain the
coupled system

Dv̂ = Dū
ū− c

v̂ + iα(T̄ −M2(ū− c)2)
γM2(ū− c)

p̂, (3.2a)

Dp̂ = − iαγM2(ū− c)
T̄

v̂, (3.2b)

where v̂ and p̂ are the normal velocity and pressure perturbation amplitudes, ū and T̄
are the boundary-layer velocity and temperature (i.e. frozen at a particular streamwise
location and so that all are treated as functions of y only) and D≡ d/dy. These must
be solved subject to the usual inviscid boundary conditions of no penetration at the
surface and the constraint that the disturbance is confined to the boundary layer

v̂(0)= 0, v̂ bounded as y→∞. (3.3)

We focus on the temporal stability problem and so consider real values of α with the
complex eigenvalues c, with Im(c)> 0 representing temporal growth, to be determined.

Cross-differentiation of these equations allows us to write the system as a single
second-order equation for the pressure perturbation amplitude

D2p̂−
(

2Dū
ū− c

− DT̄
T̄

)
Dp̂− α2

(
1− M2(ū− c)2

T̄

)
p̂= 0 (3.4)

with boundary conditions

Dp̂(0)= 0, p̂ bounded as y→∞. (3.5)

Alternatively we can derive a single equation for the normal velocity perturbation
amplitude as

D
{
(ū− c)Dv̂ − (Dū)v̂

T̄ −M2(ū− c)2

}
= α2 ū− c

T̄
v̂, (3.6)

to be solved subject to boundary conditions (3.3). These forms prove useful for our
subsequent asymptotic analysis. We will refer to either of these equations as the
(compressible) Rayleigh equation.

Before proceeding with a description of the major features of the eigenspectrum
of this system, we first note that the inviscid equations are singular at points where
ū = c, thus making the numerical determination of the structure of inviscid neutral
modes (i.e. those with Im(c)= 0) difficult. We also note that the eigensolutions of the
compressible Rayleigh equation occur in complex conjugate pairs; if c is an eigenvalue
with v̂ the corresponding eigenfunction, then the complex conjugate of c is also an
eigenvalue (with corresponding eigenfunction the complex conjugate of v̂).

3.1. Local analysis of the singular point at ū= c
As noted above, the Rayleigh equation is singular at the point y = yc where ū = cr,
and cr is the real part of the neutral (i.e. ci = 0) eigenvalue. In order to explore the
critical layer structure of the neutral eigenmodes, we consider two cases, namely when
the critical layer is not located at the position of the velocity maximum and the case
when it occurs precisely at the location of the velocity maximum.
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3.1.1. Case 1: c 6= ūmax

In order to develop a solution, we first note that since Y ≡ y− yc = 0 is a regular
singular point of equation (3.6) we seek an expansion for v̂ about Y = 0 in the form

v̂ = a0Yn + a1Yn+1 + · · · . (3.7)

Substitution of this expansion into (3.6) yields, at leading order in powers of Y , the
indicial equation

T̄cDūcn(n− 1)a0 = 0; (3.8)

here a subscript c denotes a quantity evaluated at the critical point. As T̄ > 0
everywhere and Dūc 6= 0, the choice n= 1 yields a solution in the form of a regular
series expansion in powers of Y:

v̂A = a0Y + a1Y2 + a2Y3 + · · · (3.9)

where the first two coefficients are given by

a1 = 1
2

(
D2ūc

Dūc

)
a0, a2 = 1

6

(
α2 + D3ūc

Dūc

)
a0. (3.10a,b)

Standard theory on the local solution of ordinary differential equations then guarantees
that there is a second linearly independent solution on the form

v̂B = v̂A log Y + b0 + b1Y + b2Y2 + · · · . (3.11)

Substituting this expression into (3.6) we find that a0 and b0 are related via the
expression

a0 = b0
T̄c

Dūc

[
D
(

Dū
T̄

)]
c

. (3.12)

This expansion can be carried to higher order, allowing us to determine b2, b3 etc in
terms of the leading-order terms b0 and b1. For the sake of brevity, we do not include
these expressions here. We note however, that if the condition[

D
(

Dū
T̄

)]
c

= 0, (3.13)

is satisfied, then from (3.12), a0 = 0 and so ai ≡ 0, for all i > 1 and the logarithmic
singularity in the second linearly dependent solution (3.11) is removed. This condition,
when satisfied, also ensures that the Reynolds stress is continuous across the critical
layer. The presence of such a generalised inflection point is a sufficient condition for
the existence of a neutral, subsonic, inviscid disturbance with wavenumber α=αsn> 0,
and that this is adjacent to unstable eigenvalues at α <αsn using the notation of Mack
(1987) for neutral wavenumbers.
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3.1.2. Case 2: c= ūmax

Suppose that the neutral mode is such that c= ūmax. Since the streamwise velocity
has a maximum at this point, Dūc = 0 and the point Y = 0 is still a regular singular
point. With the expansion for v̂ as before, we find the indicial equation is now given
by

D2ūcT̄2
c (n+ 1)(n− 2)â0 = 0, (3.14)

with two possible solutions n=−1 and n= 2 (noting that D2ūc 6= 0).
The n= 2 case yields the solution

v̂A = â0Y2 + â1Y3 + · · · (3.15)

where

â1 = 1
3

(
D3ūc

D2ūc

)
â0 (3.16)

â2 =
(

1
10
α2 + 1

12
D4ūc

D2ūc

)
â0. (3.17)

A second linearly independent solution can be written as

v̂B = v̂A log Y + b̂0Y−1 + b̂1 + b̂2Y + · · · (3.18)

which when substituted into the compressible Rayleigh equation yields, upon equating
orders of Y ,

â0 = b̂0

[
−1

2
α2 + 3

2
D2T̄c

T̄c
− 3

2
D3ūcDT̄c

D2ūcT̄c
− 5

12
D4ūc

D2ūc
+ 2

3
(D3ūc)

2

(D2ūc)2

]
. (3.19)

The difference between this case and the previous generalised inflection point case
is now evident. In order to remove the logarithmic term, the term in the brackets
in (3.19) must necessarily be zero, thus serving to (possibly) determine the neutral
wavenumber αc. However, in this case, the second linearly independent solution, given
by (3.18), still possesses an algebraic singularity.

In figure 2 we present plots of the location (scaled by δ∗, the boundary-layer
displacement thickness) of the generalised points of inflection, and the corresponding
values of the velocity at those points, for a boundary layer with gw= 1.5 as a function
of the pressure-gradient parameter β. We observe that for any flow with β > 0 (i.e. all
those exhibiting a velocity overshoot), there are two generalised points of inflection
(the solid lines in figure 2) as opposed to just one when β= 0. The lower of these (on
both plots) is positioned below the velocity maximum and moves closer to the wall
with increasing β, ultimately moving into the overshoot region when β ≈ 0.55. The
second generalised inflection point enters the boundary layer from far field (i.e the
free stream where ū= 1) at β = 0, and remains on the free-stream side of the velocity
maximum as β increases. The existence, and location, of the generalised points of
inflection have important consequences for the spectrum of unstable eigenmodes of
the compressible Rayleigh equation.
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FIGURE 2. Plots of (a) the position of the points of generalised inflection points (solid)
and the maximum velocity (dashed) and (b) the corresponding values of the velocity at
this location versus the pressure-gradient parameter β. Results are for the case of a heated-
wall (gw = 1.5) compressible (M = 6) boundary layer with Pr= 0.72.

4. The inviscid instability
In order to solve the inviscid stability problem defined by (3.6), we chose an

iterative scheme. This choice is motivated by both ease of implementation and its
ability to be coupled to the boundary-layer solver, thus allowing rapid and easy
continuation of solutions with respect to the various system parameters (in particular
β and M). Thus a classical shooting method, based upon the iterative update of the
eigenvalues using the boundary condition at the wall as the target converged solution,
is used. The scheme uses a fourth-order Runge–Kutta scheme to integrate from the
free stream, chosen at some suitably large value of y, to the wall at y= 0. To set up
the iterative scheme, we make use of the far-field form of the disturbances, which
can be obtained by substituting the free-stream boundary conditions into (3.4) and
(3.2b), to give

p̂∼ exp(−αy
√

1−M2(1− c)2)

v̂ ∼ −i
√

1−M2(1− c)2

γM2(1− c)
p̂

 as y→∞. (4.1)

These limiting values are used as initial conditions for integration from a sufficiently
large value of y (at least ten times the boundary-layer thickness). For all computational
results reported here, a variable spaced grid was used, with clustering of grid
points around the wall, and near any other areas of rapid variation (critical layers
for example). The average step size for the grid was 0.01. Newton–Raphson was
implemented for the local eigenvalue search with an error tolerance on the desired
boundary condition of O(10−10). Extensive testing of convergence was undertaken in
arriving at these values.

Our results are presented in figures 3–6 for a variety of values of the pressure-
gradient parameter β (but with identical values of the Mach number and wall
enthalpy). Consider first figure 3, where we plot the values of Im(c) and wavespeed
Re(c) versus disturbance wavenumber. Here we observe three distinct families of
eigenvalues (a continuous set of eigenvalues), each containing one or more amplified
modes (local maxima on the Im(c) plot) of disturbance. Two of these correspond to
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FIGURE 3. Upstream family (dashed), first downstream family (dotted) and new family
(solid) of inviscid eigenvalues and corresponding viscous eigenvalues (E, +, ×) for a
representative overshoot boundary layer with M = 6, gw = 1.5, β = 0.4 and Pr= 0.72.

the classical inviscid instability of a compressible boundary layer; these have been
labelled as upstream and downstream to conform to the convention set down by Mack
(1987). We show only a portion of the wavenumber spectrum (up to α= 1) as we are
concerned mainly with the presence of the new eigenmode contained within a family
of eigenvalues presented as a solid line in figure 3. This new instability exists along
with the traditional first mode and higher modes of instability. For this value of β,
the growth rate Im(ω) of the new mode is comparable to the classical modes. The
classical downstream family is however unstable for smaller disturbance wavelengths
(i.e. higher disturbance wavenumber). Considering the corresponding wavespeed in
figure 3(b), we observe that this new instability has a wavespeed greater than unity
over the entire spectrum of unstable wavelengths, approaching unity as the neutral
(i.e. critical) point is approached.

Figure 3, and subsequent figures, also show values of the eigenvalues obtained
from the numerical solution of the full viscous linearized stability equations at high
Reynolds number (R = 105 with R ∼ O(Re1/2). For details of the methodology see
Malik 1990a). These results provide an excellent comparison with, and confirmation
of, our inviscid results and also serve to demonstrate that the correct sign of Im(c)
has been chosen for the inviscid eigenvalues. The lower Im(c) values of the high
Reynolds number viscous results also confirm that the new mode of instability is
inviscidly unstable.

Considering the results presented in figure 3 in more detail, we first make the
observation that the unstable family represented by the dashed line corresponds to
the upstream family, originating from the point c = 1 − 1/M at α = 0. This family
contains only the traditional mode 1 disturbance and is unstable over a finite band
of streamwise wavenumbers, becoming neutrally stable at a value of c = cr + i0
corresponding to the velocity at the lower of the two generalised inflection points
(see figure 2a). The change in the spectrum of this mode with β can be seen from
figures 3–5. As β increases, the maximum growth rate of this mode increases and the
corresponding neutral wavenumber also increases, the neutral mode still being located
at the critical layer position defined by the lower of the two generalised inflection
points. A similar qualitative change in this first unstable mode is seen if we increase
the flow Mach number (results not shown).
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FIGURE 4. Upstream family (dashed), new family (solid) of inviscid eigenvalues and
corresponding viscous eigenvalues (E, ×) for a representative overshoot boundary layer
with M = 6, gw = 1.5, β = 0.5 and Pr= 0.72.
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FIGURE 5. Upstream family (dashed), first downstream family (dotted) and new family
(solid) of inviscid eigenvalues and corresponding viscous eigenvalues (E, +, ×) for a
representative overshoot boundary layer with M = 6, gw = 1.5, β = 0.6 and Pr= 0.72.

A second family of eigenvalues, represented by the dotted line in figure 3,
corresponds to the first downstream family of Mack (1987). There are infinitely
many downstream modes, of which only the first attains a significant growth rate.
This family arises when c= 1+ 1/M at a discrete sequence of wavenumbers αdn (the
first of which is αd1 = 0) and remains neutral until c decreases below ūmax; for the
case of β = 0.4 we find that ūmax ≈ 1.08, agreeing with the numerical value of the
neutral wavenumber.

Most significantly however is the new unstable mode present in figure 3, which is
in a new family represented by the solid line. This new mode arises as a direct result
of the velocity overshoot, as can be seen by noting that for small α, the wavespeed
approaches c= ūmax (which for β = 0.4 is approximately 1.09).

This family also exhibits a second local maximum in the growth rate. Using a
simple continuation process in β we can demonstrate that this second maximum
corresponds to the traditional Mack mode 2 disturbance. This mode 2 has critical
wavespeed approaching 1 and becomes stable at a value of c that does not correspond
to either of the generalised points of inflection, instead appearing to approach the
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FIGURE 6. Upstream family (dashed), new family (solid) of inviscid eigenvalues and
corresponding viscous eigenvalues (E, ×) for a representative overshoot boundary layer
with M = 6, gw = 1.5, β = 0.7 and Pr= 0.72.

limiting value of cr = 1. What is also clear from figure 3 is that the eigenmodes
interact, exchanging identity as the wavenumber α is varied; this is most readily seen
in figure 3(b). The viscous and inviscid results deviate slightly indicating that this
behaviour is sensitive to viscosity. This exchange of identity is explored in detail in
Mack (1987). The relationship between the new family (the solid curve and crosses)
and the upstream family (the dashed curve and open circles) becomes clearer when
we observe their similar wavespeeds (for α > 0.6) which then diverge for smaller α,
the growth rates showing a similar trend, increasing with decreasing α.

This interaction, and relationship between the unstable modes presented here, hints
at a complicated folding structure in the curves of neutral stability, something we
explore in detail in work currently being prepared for publication. The relationship
between the new mode and the ‘classical’ Mack modes is further complicated as we
increase the pressure-gradient parameter β.

Figure 4 shows eigenvalues for the case of β = 0.5, where we see that the near-
intersection of eigenvalues at α = 0.6 for β = 0.4 observed in figure 3 has occurred
by the time β has increased to 0.5. The two families have merged; the new family
now contains the new mode and the traditional mode 2 and mode 3 disturbances. The
upstream family (dashed curve) still has a finite band of instability corresponding to
the traditional mode 1 disturbance, terminating at a value of cr corresponding to the
lower of the generalised inflection points.

This interaction of the different unstable modes becomes further complicated as we
increase β yet again. In figure 5 we can see that, for β = 0.6, the mode 2 and 3
disturbances have disconnected from the new family and can now be classified in
the first downstream family. The upstream modes (dashed curve) neutral point again
corresponds to the lower most point of inflection. Comparison with the results of
figure 2 suggests that the critical values for the new mode and the Mack downstream
mode do not correspond to any distinguished point when referenced to the position
of the (two) generalised inflection points or the position of maximum velocity.

By β = 0.7, shown in figure 6, the first-mode disturbance has grown significantly
such that the upstream family has merged with the downstream family and it now
contains the second and third-mode unstable regions. Changing the flow’s Mach
number serves to modify the growth rate of this new mode, as can be seen from
the results for Mach numbers M = 5–7 which are presented in figure 7. Again, a
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FIGURE 7. Inviscid eigenvalues for the case of gw = 1.5, β = 0.7 and Mach numbers
M = 5 (solid), M = 6 (dotted) and M = 7 (dashed).
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FIGURE 8. Upstream family (dashed), first downstream family (dotted) and new family
(solid) of inviscid eigenvalues and corresponding viscous eigenvalues (E, ×) for a
representative overshoot boundary layer with M = 6, gw = 1.5, β = 0.7 and Pr= 1.

qualitatively similar behaviour is found at different Prandtl numbers; figure 8 shows
results for Pr= 1, the new mode having similar growth rates to the classical upstream
Mach mode. These results confirm that this new mode is generic in that it occurs
in boundary-layer flows favourable pressure gradients and appreciable levels of heat
transfer at the surface.

We conclude this section with the observation that the bracketed term in (3.19) does
not provide any useful reference point with regards to the neutral (or critical) points
observed in figures 4–6. Considering the particular case of β = 0.7, the bracketed part
of (3.19) reduces to

− 1
2α

2 + 1.427 (4.2)

which equals zero when α ≈ 1.69. This does not correspond to any of the neutral
wavenumbers seen in figure 6; we note that the upstream family becomes damped
around α = 1.31.

In order to explore the structure of this new mode further, we now turn our attention
to description of the small wavenumber (long wavelength) limit of (3.6).
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5. The small wavenumber limit
Lees & Lin (1946) developed series solutions for (3.6), valid in the small

wavenumber limit, in powers of α2 of the form v̂ = C1v̂1 + C2v̂2, where v̂1 and
v̂2 represent the two linearly independent solutions, given by

v̂1 = (ū− c)
(

I + α2
∫ y

0
I
(ū− c)2

T̄
dy∗ +O(α4)

)
, (5.1)

v̂2 = (ū− c)
(

1+ α2
∫ y

0

(ū− c)2

T̄
dy∗ +O(α4)

)
, (5.2)

where

I =
∫ y

0

[
T̄

(ū− c)2
−M2

]
dy∗, (5.3)

and C1 and C2 are arbitrary constants. Provided that c 6= 0, in the limit α→ 0, C2
must be zero in order to satisfy the wall boundary condition. In order to satisfy the
boundedness condition, the integral I must approach a constant. Thus the integrand
appearing in (5.3) must tend to zero as y→∞. Noting that both T̄ and ū tend to
unity as y→∞, we must therefore have M2(1− c)2= 1. Hence the neutral wavespeed
is given by

c= c0 = 1± 1
M
. (5.4)

These neutral mode solutions are termed sonic modes, since in this case the
disturbance travels downstream or upstream at the local speed of sound.

Our numerical solutions presented in the previous section demonstrate that there is
another neutral mode present as α→0, for which c→ ūmax. In general, ūmax 6=1+1/M
so v̂1 will not necessarily be bounded, violating the free-stream boundary condition.
This immediately suggests that each of the two linearly independent solutions will play
a different role in different regions of the flow. The wall boundary condition forces
us to choose the v̂1 solution whereas the boundedness conditions forces us to choose
the v̂2 solution. Thus, in the small α limit, we expect a solution structure in which

v̂ ∼


v̂1 ∼ (ū− c)I, y< yc,

V, y near yc,

v̂2 ∼ (ū− c), y> yc,

(5.5)

where yc is the position of the velocity maximum. Our aim is therefore to provide
an asymptotic description of the new unstable mode in the limit α→ 0, effectively
determining the function V in (5.5).

To investigate this behaviour for small α, we write c= ūmax+αmc1, where c1 may be
complex, and introduce a new scaled coordinate z= (y− yc)/δ, where δ=αn and n>0.
Expanding all flow quantities in a Taylor series about y= yc, (3.6) can be written as

d
dz

{[
1
2λz

2 + 1
6 D3ūcα

nz3 − αm−2nc1 +O(α2n)

T̄c +DT̄cαnz+O(α2n)

]
dv̂
dz

−
[
λz+ 1

2 D3ūcα
nz2 +O(α2n)

T̄c +DT̄cαnz+O(α2n)

]
v̂

}
=O(α2+(2/n)) (5.6)
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where a subscript c indicates a quantity evaluated at yc; for convenience we have
defined λ = D2ūc. A simple dominant balance argument serves to determine m = 2n.
We note at this point our numerical results strongly suggest m = 2/3, and hence
n = 1/3. However m, and hence n, must be determined a posteori by matching the
solution across the various distinguished asymptotic layers that arise in the flow. We
consider the solution in three regions defined as:

Region L: 0 < y � yc, in which the solution must satisfy the boundary condition
v̂(0)= 0,

Region I: |y − yc| ∼ O(δ), in which the solution must match with region L and
region R which is defined as

Region R: yc < y ∼ O(1), in which the solution must satisfy the far-field boundary
condition (4.1).

5.1. The leading order, O(α0), solution
Region L

In this region we define v̂= v̂L and note that the boundary condition to be satisfied
is v̂L(0)= 0. In this region, the stability equation (3.6) can be written as

D
{
(ū− ūmax − δ2c1)Dv̂L − (Dū)v̂L

T̄ −M2(ū− ūmax − δ2c1)2

}
= ū− ūmax − δ2c1

T̄
δ6v̂L. (5.7)

We define
v̂L = δL(vL0 + · · ·), (5.8)

where the amplitude δL will be determined relative to the amplitude in the regions I
and R. At leading order in powers of δ, (5.7) has the general solution

vL0 = A1(ū− ūmax)IL + A2(ū− ūmax), (5.9)

where

IL =
∫ y

0

[
T̄

(ū− ūmax)2
−M2

]
dy, (5.10)

and A1 and A2 are constants of integration. In order to satisfy the wall boundary
condition v̂L(0)= 0, A2 must be zero as ū− ūmax 6= 0 at y= 0. Taking the limit y→ y−c
we have

v̂L = δLA1

[
−2T̄c

3λ
(y− yc)

−1 +
(

4
9

D3ūcT̄c

λ2
− DT̄c

λ

)
+O(y− yc)

]
+ · · · . (5.11)

This is now in a suitable form to match with the solution in Region I.

Region I
In this region |y− yc| ∼O(δ). Defining z= (y− yc)/δ and setting v̂ = v̂I where

v̂I = δI(vI0 + · · ·), (5.12)

equation (5.6) yields, at leading order,

d
dz

{(
1
2
λz2 − c1

)
dvI0

dz
− λzvI0

}
≡LIvI0 = 0, (5.13)
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where we have introduced the differential operator LI for later reference. The general
solution for vI0 is given by

vI0 = B1

[
(z2 + Γ ) arctan

(
z√
Γ

)
+ z
√
Γ

]
+ B2[z2 + Γ ], (5.14)

where Γ = −2c1/λ. To match with the solution (5.11) in region L we consider the
limiting form of (5.14) as z→−∞,

vI0 ∼
[
−π

2
B1 + B2

]
z2 +

[
−π

2
Γ B1 + Γ B2

]
+
[
−B1

2Γ 3/2

3

]
z−1 + · · · . (5.15)

By setting

B2 = π

2
B1 (5.16)

the z2 and constant terms in (5.15) are identically zero, thus allowing us to match
with the leading-order behaviour of vL0. This yields

δLA1

(
−2T̄c

3λ

)
= δI+1B1

(
−2Γ 3/2

3

)
, (5.17)

serving to determine the relative amplitude of the normal velocity in the two layers,
and relating A1 and B1 via

B1 = T̄c

λΓ 3/2
A1. (5.18)

With this expression, we then have, in the limit z→∞,

vI0 = A1πT̄c

λΓ 3/2
z2 + A1πT̄c

λΓ 1/2
− 2A1T̄c

3λ
z−1 + · · · , (5.19)

which will be used to match the solution in region R.

Region R
In a similar fashion to the analysis of region L, we set vR = δRvR0, and at leading

order obtain a general solution of (5.7) in the form

vR0 =C1(ū− ūmax)IR +C2(ū− ūmax), (5.20)

where IR denotes the integral

IR =
∫ ∞

y

[
T̄

(ū− ūmax)2
−M2

]
dy. (5.21)

The leading-term expansion of vR0 as y→ y+c must match the leading term in the vI0
expansion as z→+∞. Noting that (ū− ūmax)IR ∼O((y− yc)

−1) as y→ y+c , we must
therefore choose C1 to be zero. Thus the leading-order behaviour of v̂R as y→ y+c is
therefore

v̂R = 1
2δ

RC2λ(y− yc)
2 + · · · , (5.22)
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which will match with (5.19) if v̂R ∼O(δI−2) (i.e. R= I− 2) and we choose

C2 = 2πT̄c

λ2Γ 3/2
A1. (5.23)

From (5.20) we then have

v̂R ∼ δRC2(1− ūmax)+ · · · as y→∞, (5.24)

where we have used the fact that ū→ 1 as y→∞.
To close the problem, we now turn our attention to the far-field boundary condition

(4.1). In order to consider this far-field region, we define a new stretched coordinate
ȳ= δ3y; at this scale, the right-hand side of (3.6) enters at leading order. Taking the
free-stream values of the streamwise velocity and temperature, (4.1) reduces to

d2v̂F

dȳ2
= (1−M2(1− ūmax)

2)v̂F, (5.25)

which has a bounded solution given by

v̂F = F exp(−Ω ȳ), (5.26)

where we have defined Ω2 = 1−M2(1− ūmax)
2. In the limit ȳ→ 0 we have

v̂F→ F
(

1−Ω ȳ+ Ω
2

2
ȳ2 + · · ·

)
, (5.27)

and the solution will match with region R if

F=C2(1− ūmax)≡ A1
2πT̄c

λ2Γ 3/2
(1− ūmax). (5.28)

This constitutes an entire solution for v̂F. Since the equation for v̂ is linear we can,
without loss of generality, take v̂F = O(1), this then serves to determine the relative
magnitudes of the disturbance velocity in regions L, I and R. Hence v̂R ∼ O(1),
v̂I ∼O(δ2) and v̂L ∼O(δ3).

To summarise, we have obtained the leading-order approximation for v̂ in all
regions:

v̂ ≈ A1



δ3(ū− ūmax)IL for 0< y< yc,

δ2 T̄c

λΓ 3/2

[
(z2 + Γ )

(
arctan

z√
Γ
+ π

2

)
+ z
√
Γ

]
for |y− yc| ∼O(δ),

2πT̄c

λ2Γ 3/2
(ū− ūmax) for y> yc.

(5.29)
At this stage of the analysis, c1 and n are not formally determined, in order

to do so, the asymptotic expansions must be taken to higher order. Some of
this analysis is presented in appendix A. Important however is the fact that the
leading-order analysis of the small wavenumber limit of the new instability is closed;
the leading-order wavespeed has been determined and matching of the solution across
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FIGURE 9. Numerical eigenfunction (——), leading-order asymptotic approximation in
Region L, R (– – –) and Region I (E) of an inviscid low-wavenumber eigensolution of
a disturbance to a typical overshoot boundary layer.

all the distinguished asymptotic regimes has been accomplished. This fact allows us
to make some comparison between the predictions of our asymptotic analysis and
the results of our numerical solution of the compressible Rayleigh equation. One
such comparison is presented in figure 9 where we show the numerical solution
and the first-order approximation (details of which can be found in appendix A). In
making this comparison we have taken a value of c1 from the numerically determined
eigenvalue spectrum and chosen n= 1/3, a choice that matches well with the scaling
of region I seen in the numerical solution. The close-up in the inner region I shows a
comparison of the left L, inner I and right R regions with the full numerical solution.
The comparison is very good, and provides strong validation of both the asymptotic
analysis and numerical results.

6. Discussion and conclusion
The fact that self-similar compressible boundary layers often exist only under

idealised conditions has long been accepted (see for example the discussions in Curle
1962; Stewartson 1964). Such models are however important in that they capture the
dominant physics of the flow and using such self-similar flows as a proxy for full
non-parallel boundary-layers allows us to explore the instability of such flows using
classical techniques.

We have described a new two-dimensional mode of inviscid instability in such
self-similar compressible boundary layers which exhibit a velocity overshoot. The
overshoot results from the combined effect of a favourable pressure gradient and wall
heating. Physically, the favourable pressure gradient acts across the entire boundary
layer and serves to accelerate the fluid. Heating the wall serves to reduce the fluid
density and so enhances the effect of the pressure gradient on the fluid’s acceleration,
hence leading to a region in the flow in which the streamwise velocity overshoots
its free-stream value. There are two neutral points associated with this new mode of
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instability. The first of these has a wavespeed equal to the maximum velocity in the
boundary layer and occurs at zero wavenumber. The structure of the disturbance in
this limit has been described using a small-α asymptotic analysis and this structure
agrees well with the numerically-determined eigenfunctions. These asymptotic results
presented in § 3 (and in appendix A) do not presume a self-similar flow, but simply
one which manifests a velocity overshoot as a result of the aforementioned physics
of streamwise acceleration and reduction in fluid density near the surface due to the
surface heat transfer there. The second of these neutral points corresponds to a wave
with a wavespeed such that there are two critical layers, neither of which corresponds
to a generalised point of inflection. We conjecture that this neutral mode represents
a wave trapped between the two critical layers, a conjecture that is supported by
results from a fully viscous stability analysis in work by the present authors currently
being prepared for publication. The fate of the inflectional neutral modes when the
generalised point of inflection is in the overshoot region is unclear. In this case, there
is a critical layer on either side of the velocity maximum and only one of these has
the required generalised inflection point. We hope to be in a position to report on
this problem in a future paper.

The new mode we have described will be one of the possible modes of instability
in such flows, the others being the classical first mode and the higher ‘Mack’ modes
(Mack 1984). In the large Reynolds number limit, these modes have similar growth
rates and as such, one would expect that all three modes of instability are both
observable and important, to perhaps varying degrees, in the ultimate fate of this
class of compressible boundary layers. Future advances in experimental techniques
for high speed flows, of the sort envisaged by Hirschel (1993), may be required if
the role of this new mode of instability in the transition process of high speed flows
is be fully understood.
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Appendix A. Higher-order corrections
We present details of the analysis leading to the determination of the higher-order

corrections to the eigensolution in the small wavenumber limit. We will consider the
disturbance structure in the four regions separately.

A.1. The first-order correction
Region I

We develop subsequent correction terms to the leading-order solution by first
considering region I, where the series expansion terms of vL0 as y→ y−c suggests that
a suitable expansion for v̂I is

v̂I = δ2(vI0 + δvI1 + δ2vI2 + δ3 ln δvI3l + δ3vI3 + · · ·). (A 1)

At O(δ3), (5.6) yields

LI{vI1} =DT̄cz− 1
6

D3ūcz6 d
dz

(
vI0

z3

)
, (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

62
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.627


320 A. P. Tunney, J. P. Denier, T. W. Mattner and J. E. Cater

where the differential operator LI was defined earlier. This equation admits the
general solution

vI1 = 2
λ

B4(z2 + Γ )−DT̄cB3 + 2
3

D3ūcT̄2
c

Γ 3/2
A1z3

(
arctan

z√
Γ
+ π

2

)
. (A 3)

As z→−∞ we have

vI1→
[

2
λ

(
B4 − 1

6
A1D3ūcT̄c

λΓ

)]
z2 +O(z0). (A 4)

In order to match with v̂L the O(z2) term must vanish, serving to determine the
constant B4. The next term in this series expansion is now

vI1→
[
−B3

DT̄c

λ
+ 4

9
A1D3ūcT̄c

λ2

]
z0 +O(z−2). (A 5)

The z0 term represents δ3(y− yc)
0 and can match to the second term of vL0 in (5.11),

which serves to determine the other integration constant B3. Subsequent terms in the
vI1 series expansion as z→−∞ need to be matched with subsequent correction terms
in v̂L.

As z→+∞,

vI1→
[
π

3
A1D3ūcT̄c

Γ 3/2λ2

]
z3 +O(z0), (A 6)

where the z3 term represents δ0(y − yc)
3 and matches trivially to the (y − yc)

3 term
of vR0. The z0 term is O(δ3) in region R and suggests that a correction term of this
magnitude is required in the expansion of v̂R.

Region L
The largest unmatched terms of v̂I as z→−∞ are the z−3 term in vI0 and the z−2

term in vI1, both of which are O(δ3) in region L. Letting

v̂L = δ3(vL0 + δ2vL1 + · · ·) (A 7)

and subsituting into (5.7) gives, at O(δ3)

D
{

LO{vL1} − c1

(ū− ūmax)2DIL
DvL0 − 2M2c1

(ū− ūmax)DIL
LO{vL0}

}
= 0, (A 8)

where we have defined

LO{v} = (ū− ūmax)Dv − (Dū)v
T̄ −M2(ū− ūmax)2

=D
(

v

ū− ūmax

)
(DIL)

−1. (A 9)

Solving for vL1 yields the general solution

vL1

ū− ūmax
= A3IL + A4 + A1c1

∫ y

0

[
DūIL

(ū− ūmax)2
+ DIL

ū− ūmax
+ 2M2

ū− ūmax

]
dy, (A 10)

where A3 and A4 are constants of integration. In order to satisfy the wall boundary
condition, the constant A4 must be zero. The two leading terms in the expansion as
y→ y−c match identically without additional constraints. The other integration constant
A3 appears in the (y− yc)

−1 term of the expansion as y→ y−c , which is of size δ2z−1

in Region I and hence needs to be matched with a z−1 term in vI2, one that is yet to
be determined.
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Region R (y� yc)

The largest unmatched terms of v̂I as z→+∞ is the z0 term in vI0, which is O
(
δ2
)

in region R. Extending the series to

v̂R = vR0 + δ2vR1 + δ3vR2 + · · · (A 11)

we obtain a similar equation to that of vL1 for vR1 namely.

D
{

LO{vR1} − c1

(ū− ūmax)2DIR
DvR0 − 2M2c1

(ū− ūmax)DIR
LO{vR0}

}
= 0. (A 12)

This has the general solution

vR1 =C3(ū− ūmax)IR +C4(ū− ūmax)−C2c1, (A 13)

where the constant C3 must be zero to ensure the largest term is of the correct form to
match with vI1. As was the case with vL1, the other constant of integration C4 cannot
be determined without reference to vI2.

A.2. The second-order correction
Region I

At O(δ2), (5.6) yields

LI{vI2} = B5
1
2

D2T̄cz2 − 1
6

D3ūcz6 d
dz

(
vI1

z3

)
− 1

24
D4ūcz8 d

dz

(
vI0

z4

)
. (A 14)

As z → −∞, the largest terms of vI2 are z2, z1 and z−1, which in region L are
O(δ0), O(δ) and O(δ3), respectively. The z2 has no corresponding term to match to
in region L and so must vanish, thus serving to determine one constant of integration.
The other constant is set by matching the z1 term with vL0. The z−1 term is matched
with the (y− yc)

−1 term in vL1, which yields A3 = 0.
As z→+∞, vI2 has a z4 term, a z2 term and lower-order terms. The z4 term is

O(δ0) and matches trivially with vR0. The z2 term is O(δ2) and matching with the
(y− yc)

2 term in vR1 serving to determine C4

C4 = A1
π

12λ4
√
Γ
(5D3ū2

cT̄c − 12λD3ūcDT̄c + 12λ2D2T̄c − 3λD4ūcT̄c). (A 15)

Region R
In order to determine the eigenvalue correction term c1, the solution for vR2 is

required. The equation and solutions is the same as that for vR0

vR2 =C5(ū− ūmax)IR +C6(ū− ūmax), (A 16)

however unlike vR0, we keep the first term, which can be matched with the z−1 term
in vI0, and in fact C5 ≡ A1. As y→∞ we have

vR2→
(

1
(1− ūmax)2

−M2

)
y. (A 17)
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This term, when matched with the ȳ term of v̂F, serves to determine c1

c3
1 =−

π2T̄2
c (1− ūmax)

6

2λ3(1−M2(1− ūmax)2)
. (A 18)

Provided the maximum boundary-layer velocity is subsonic (in a Lees–Lin sense), the
right-hand side of this expression is always positive and the solutions for c1 consist
of a positive real solution, and a complex conjugate pair whose real component is
negative. It is this complex conjugate pair that corresponds to the new family of
unstable modes. The nature of the inviscid stability equations is such that both the
true inviscid eigenvalue and its conjugate are valid eigenvalues; the correct eigenvalue
can only be determined by the high-Re limit of the viscous stability equations. We do
not pursue this issue here but refer the reader to work currently being prepared for
publication.
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