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A model of a laminar viscous conducting flow, near a dielectric disc in a uniform
magnetic field and in the presence of external rotation, is considered, where there is
a uniform suction and an axial temperature gradient between the flow and the disc’s
surface. It is assumed that the parameters of the suction or the magnetohydrodynamic
(MHD) interaction are such that the nonlinear inertial terms, related to the circulation
flow, are negligible in the differential equations of the MHD boundary layer on a
rotating disc. Analysis of the motion and energy equations, taking the dependence
of density on temperature into account, is carried out using the Dorodnitsyn
transformation. The exact analytical solution for the boundary layer and heat transfer
equations is obtained and analysed, neglecting the viscous and Joule dissipation. The
dependence of the flow characteristics in the boundary layer on the rate of suction
and the magnetic field induction is studied. It is shown that the direction of the
radial flow in the boundary layer on a disc can be changed, not only by variation
of the ratio between the angular velocities in the external flow and the boundary
layer, but also by changing the ratio of the temperatures in these two flows, as well
as by varying the hydrodynamic Prandtl number. The approximate calculation of a
three-dimensional flow in a rotating cylinder with a braking disc (or lid) is carried
out, demonstrating that a magnetic field slows the circulation velocity in a rotating
cylinder.

Key words: boundary layer control, compressible boundary layers, magnetohydrodynamics

1. Introduction
Studies of the rotational flow of an incompressible fluid were pioneered in the 1950s

(Batchelor 1951, 1958). Understanding the problem of a medium’s rotation in bounded
volumes has numerous practical applications and continues to be discussed in the
literature (cf. Duck 2012). Research on flow and heat transfer in rotating gases is
also important for many industrial applications, particularly in isotope separation by
the gas centrifuge method (Villani 1979).

† Email address for correspondence: VDBorisevich@mephi.ru

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-2779-9815
mailto:VDBorisevich@mephi.ru
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.568&domain=pdf
https://doi.org/10.1017/jfm.2017.568


Circulation control in MHD rotating flows 329

There has also been increased interest recently in the study of rotating conductive
gases for various scientific and industrial applications. Earlier studies established that
it is possible to control the intensity of the heat exchange process between the medium
and a solid containment surface (Sparrow & Cess 1962; Borisevich & Potanin 2015).
By rotating the conductive gas electromagnetically with sufficient speed, it is possible
to separate elemental and isotopic species radially. This capability offers an advantage
over the conventional gas centrifuge method where there are no suitable compounds
of the element (Fetterman & Fisch 2009).

The problem of rotational instability for a rotating conductive medium in the
presence of a magnetic field must also be considered. In application to astrophysics
and experimental observation of the so-called magnetorotational instability, this issue
has been under investigation since the end of the 1960s (Velikhov 1959; Ji, Goodman
& Kageyama 2001; Flanagan et al. 2015; Plihon et al. 2015). It should be noted that,
in laboratory testing of various kinds of instabilities in rotating flows, interaction with
bounding surfaces leads to the emergence of secondary flows. The latter produced
a masking effect on the mechanism of instability evolution, due to viscous friction
and an imbalance between the centrifugal force and the pressure gradient in the
vicinity of stationary physical boundaries (Khalzov, Smolyakov & Ilgisonis 2010).
The excitation of secondary flows can be interpreted as a special kind of ‘instability’
of the rotational flow associated with axial non-uniformity of the centrifugal forces
near a braking surface.

The hydrodynamic characteristics of a rotational flow between two discs in the
presence of suction from a porous surface were studied numerically in Pearson (1965).
The study of a magnetic field’s influence on the flow’s stability near a rotating disc
in a stationary gas has also been undertaken (Thomas & Davies 2013). In this paper
we apply an analytical approach to consider the effect of a strong uniform suction
and magnetic field on the laminar magnetohydrodynamic (MHD) flow near a rotating
dielectric disc. The system under consideration includes the presence of an external
flow with almost rigid rotation and an axial temperature gradient, taking into account
the centrifugal effects in the boundary layers.

The analysis presented here is limited to three-dimensional rotating laminar flow and
does not address the problems of conventional stability and turbulization (Lingwood
1995). Our approach has been adopted for the following reasons: the problem of
conventional hydrodynamic stability is far beyond the scope of this study, and for the
specific issue under investigation, we assume that strong suction, or an applied strong
magnetic field, provides a stabilizing effect (Lingwood 1997; Jasmine & Gajjar 2005).
As a consequence, we believe the problem of hydrodynamic stability is reduced in
importance.

The model presented here provides a mechanism for numerical simulation that
enables flow and heat transfer analysis in various two- and three-dimensional problems
of hydro- and gas dynamics. However, finding the analytic solution still plays an
important scientific research role, since it enables the analysis of various physical
phenomena in the problem under investigation.

2. Statement of the problem

The aim of this work is to study the interaction of the MHD rotating flow in a
closed cylinder with solid boundary surfaces. If the solid surfaces are stationary, or
rotating with velocities differing from that of a rotating flow, a variety of physical
phenomena exist that are associated with the viscous drag effects in the boundary
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FIGURE 1. Schematic of a boundary layer on a rotating disc. Here ω0 is the angular
velocity of a disc, ω1 is the angular velocity of an external flow, δ is the boundary layer
thickness, B is a uniform axial magnetic field, and r and z are radial and axial coordinates,
respectively.

layers. Similar phenomena exist in a plasma centrifuge intended for isotope separation.
Plasma centrifuges are considered as a prospective isotope separation technology
when there are no suitable gaseous compounds for separation in a conventional
gas centrifuge. In this case, the separation process is carried out in a stationary
cylinder, which is fully enclosed at each end, causing a circulating flow in the form
of two vortices. While the effect of the two vortices tends to reduce the azimuthal
velocity in the volume outside the boundary layers, it also facilitates multiplication
of the radial separation effect in the axial direction. In the case of the experimental
study of instabilities in rotating plasma, its interaction with stationary end surfaces
is an undesirable process that prevents identification of the instability type. All the
above-mentioned problems are related to a rotating flow in the presence of a fixed
disc, or one that is rotating at a velocity (Fetterman & Fisch 2009; Rax & Gueroult
2016).

Initially, we consider the general case of a dielectric disc of infinite radius, rotating
with an angular velocity ω0 in the presence of a uniform axial magnetic field B. A
conducting medium rotates above the disc with an angular velocity ω1 (figure 1). For
ω0 = 0, the conducting medium (plasma) rotates above the stationary surface.

For the above arrangement, we assume that there is uniform suction from the
boundary layer through the disc’s porous surface and an axial temperature gradient.
Consideration of such a problem for an infinite flow domain can be employed
when carrying out an engineering calculation of rotational flows that are limited by
stationary and rotating surfaces. Such an arrangement is used for the analysis of the
boundary layer characteristics in the region of an inviscid core in a rotating cylinder
with a braking end surface, or lid (Potanin 2013). Neglecting viscous and Joule
dissipation, as well as the induced magnetic field, the equations for the hydrodynamic
and thermal boundary layers on the disc can be written in a form that has been used
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by previous researchers (King & Lewellen 1964; Gorbachev & Potanin 1969):

vr
∂vr

∂r
+ vz

∂vr

∂z
−
v2
ϕ

r
=−

1
ρ

∂p
∂r
+

1
ρ

∂

∂z

(
η
∂vr

∂z

)
−
σB2vr

ρ
, (2.1)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+
vrvϕ

r
=

1
ρ

∂

∂z

(
η
∂vϕ

∂z

)
−
σB2

ρ
(vϕ −ω1r), (2.2)

∂

∂r
(ρrvr)+

∂

∂z
(ρrvz)= 0, (2.3)

vr
∂T
∂r
+ vz

∂T
∂z
=

1
ρcp

∂

∂z
κ
∂T
∂z
, (2.4)

µp= ρRT. (2.5)

Here z is an axial coordinate, measured from the disc surface; vϕ, vr and vz are
the azimuthal, radial and axial components of the flow velocity, respectively; ρ
is density; p is pressure; T is temperature; η, κ and σ are the dynamic viscosity,
thermal conductivity and electrical conductivity; cp is specific heat capacity at constant
pressure; µ is the molar mass; and R is the universal gas constant. Note that these
equations are valid in the framework of the MHD approximation.

The system of equations (2.1)–(2.5) should be solved with the following boundary
conditions:

z= 0, vr = 0, vϕ =ω0r, vz =−k, T = T0, (2.6a−e)

z→∞, vr→ 0, vϕ→ω1r, T→ T1, (2.7a−d)

where T0 is the temperature on the disc, T1 is the temperature in the external flow,
and k is the rate of suction.

In deriving (2.1) and (2.2), the azimuthal symmetry and the negligible presence of
Hall currents are taken into account in the following Ohm’s law expressions:

jr = σ(Er − vϕBz), jϕ =−σvrBz, jz = σEz, (2.8a−c)

where Er and Ez are the radial and axial components of the electric field intensity.
The projections of the magnetic field strength Er and Ez in (2.8) are the internal
characteristics that are associated with charge separation in the main plasma volume.
In particular, the field Er is similar to that generated in the plasma of a hydromagnetic
capacitor (Baker et al. 1959).

Also, we assume that the radial component Er does not change with the z coordinate
within the boundary layer on a dielectric disc. Therefore, the radial component of
the electric field strength outside of the boundary layer in the external flow can
be calculated as E∞r = −ω1rBz for the external flow (King & Lewellen 1964). This
follows from the relative thinness of the boundary layer and the boundary conditions
for the tangential component of the electric field. Simultaneously, the current density
in the boundary layer is not equal to zero and varies in accordance with the conditions
(2.8) and the dependence vϕ(z).

While there is an absence of radial current flow in the core, the closing of radial
current paths in the boundary layers occurs through the sidewall layer and the
conductive cylindrical wall, in which the axial current does not interact with the axial
magnetic field.
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Equations (2.1)–(2.5) do not contain the equation of motion in the z direction, as the
latter is used only to determine a weak pressure dependence on the axial coordinate
in the boundary layer (Dorfman 1963; King & Lewellen 1964). The last terms on the
right-hand side of (2.1) and (2.2) are associated with the azimuthal and radial electric
currents in the boundary layer (Gorbachev & Potanin 1969). Note that neglecting
viscous and Joule dissipation with respect to convective heat transfer in the energy
equation (2.4) is valid under the following conditions:

ω2
0r2/cpT∗� 1, ω2

0r2N∗/cpT∗� 1, (2.9a,b)

where N∗=σ ∗B2/ρ∗ω0, and T∗, σ ∗ and ρ∗ are the characteristic temperature, electrical
conductivity and density of a gas in the flow, respectively. The magnetic parameter
N∗ denotes the ratio of the electromagnetic and centrifugal forces (King & Lewellen
1964).

The parameters ω2
0r2/cpT∗ and ω2

0r2N∗/cpT∗ are proportional to the ratio of
the kinetic energy of the medium’s rotation and the Joule heat release for the
period 2π/ω0 to the thermal energy. To demonstrate this by example, we make an
estimation of these parameters for weakly ionized argon plasma at a temperature
of T∗ = 103 K. Assuming the Poisson constant γ = 5/3, the angular velocity
ω0 = 100 s−1, R0 = 0.05 m, N∗ = 5 and cp = 500 J kg−1 K−1, we obtain the values
ω2

0r2/cpT∗ ≈ 5 × 10−5 and ω2
0r2N∗/cpT∗ ≈ 3 × 10−4. We evaluate the validity of

neglecting the induced magnetic field, which is determined by the magnetic Reynolds
number Re∗m = µ0σ

∗ω0R2
0, where µ0 is the magnetic constant. For σ ∗ = 103 S m−1,

the magnetic Reynolds number Re∗m ≈ 3× 10−4. By substituting the following values
for the characteristic dynamic viscosity η∗ = 10−4 kg m−1 s−1, ρ∗ ≈ 1 kg m−3,
ω0 = 100 s−1 and R0 = 5 × 10−2 m, the hydrodynamic Reynolds number is
Re = ρω0R2

0/η ≈ 3 × 103. According to Dorfman (1963), the estimated value for
the Reynolds number corresponds to the laminar character of a flow.

While it may seem that a kinematic viscosity factor ν= η/ρ should be contained in
the above inequalities, the condition for neglecting viscous dissipation in comparison
with convective heat transfer has to comprise the boundary layer thickness δ≈

√
ν/ω0

and the axial velocity vz ≈
√
νω0. This outcome leads to the conditions identified

above in (2.9). The expressions for the electromagnetic forces in (2.1) and (2.2) are
justified elsewhere (King & Lewellen 1964).

Under the conditions B→ 0 and ∂p/∂r→ 0, equations (2.1)–(2.5) are reduced to
the system studied in earlier work (Dorfman 1963) for the case of a non-conductive
and non-rotating external flow (ω1 = 0).

The azimuthal currents are continuous, due to the symmetry of the system. However,
the issue of radial electric current continuity is more complex. Based on earlier
studies, we assume that the continuity of the radial current takes place through an
external circuit (King & Lewellen 1964). In our study, we consider the case where the
compressibility factor α =µω2

1r2/2RT∗ is relatively small, allowing us to neglect the
radial distribution of the medium’s density (the so-called Boussinesq approximation).
However, the pressure dependence on the radial coordinate is substantial and does not
contradict this assumption. In addition, we assume that the thermal flow on and out
of the disc are independent of the radial coordinate. Note that, in this case, we only
consider the ‘compressibility’ associated with a change in the medium’s temperature
in the axial direction, but not the action of the centrifugal force. In fact, we consider
the case of a relatively small Mach number M =

√
2α/γ . For an argon plasma and

the above kinematic and geometrical parameters, the Mach number M is equal to
∼10−2. It is for this reason that it is inappropriate to apply the obtained results to
the analysis of the gas dynamics in a conventional gas centrifuge used for isotope
separation (Borisevich et al. 2011).
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3. The technique to solve the model problem
Following Dorodnitsyn (1942), we introduce the transformation method as follows:

Z0 =
1
ρ1

∫ z

0
ρ(z) dz, (3.1)

where the constant ρ1 is the density of the gas in the external flow. The axial
component of the transformed velocity takes the following form:

vz1 = vz
ρ

ρ1
+ vr

∂Z0

∂r
. (3.2)

By the introduction of a new variable Z0 and a modified velocity vz1, we can
consider the axial change in the medium density caused by a temperature gradient.

We transform the system of equations (2.1)–(2.4), assuming the following:

vr = rF(Z0), vϕ = rG(Z0), T = T0 + (T1 − T0)t(Z0). (3.3a−c)

The pressure gradient in the boundary layer equates to that in the main flow by the
following relationship:

∂p
∂r
= ρ1ω

2
1r. (3.4)

The above relationship plays an important role in the flow dynamics near a disc.
The force associated with the pressure gradient, which is directed towards the axis,
depends on the gas density in the external flow ρ1, as well as on the angular velocity
ω1. The centrifugal force is directed to the periphery and is determined by the axial
distribution of the density ρ(Z0) and the azimuthal velocity vϕ(Z0).

It is assumed that the dynamic viscosity (η1) and the thermal conductivity (κ1)
in the external flow change in proportion to the first power of the temperature
(i.e. η = η1(T/T1), κ = κ1(T/T1)). The approximate power dependences of viscosity
on temperature were taken from a previous study (Shidlovskii 1960) where they
have been applied for calculation of the laminar boundary layer on a rotating disc.
Following later work (Chandrasekhar & Nath 1989), we also assume that the gas
electrical conductivity is inversely proportional to temperature (i.e. σ = σ1(T1/T),
where σ1 is gas conductivity far away from the disc surface). This relationship is not
apparent with a conventional gas discharge, but in principle it can be implemented
with non-self-sustained discharges. In this case, we find a self-similar solution to
the problem, which allows the system of equations (2.1)–(2.4) to be rewritten in the
following form:

F2
+ vz1F′ −G2

=−ω2
1

(
1
n
+

(
1−

1
n

)
t
)
+ ν1F′′ −

σ1B2

ρ1
F, (3.5)

2FG+ vz1G′ = ν1G′′ −
σ1B2

ρ1
(G−ω1), (3.6)

2F+ v′z1 = 0, (3.7)
vz1t′ = χ1t′′, (3.8)

where χ1= κ1/ρ1cp is the thermal diffusivity, ν1= η1/ρ1 is the kinematic viscosity in
the external flow and n= T1/T0. The prime denotes the derivative with respect to the
Z0 variable.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.568


334 V. D. Borisevich, E. P. Potanin and J. Whichello

By using this approach, the system of differential equations in partial derivatives
(2.1)–(2.4) can be transformed into a system of ordinary differential equations (3.5)–
(3.8) that are similar to those used for an incompressible fluid. It is worth emphasizing
once again that we are considering the ‘compressibility’ associated with change in gas
temperature. To solve the system of equations (3.5)–(3.8) we substitute the following
function vz0= vz1+ k1, where k1= ρ0k/ρ1 and ρ0 is the density of the conducting gas
near the disc surface.

Considering the case where there is large suction (vz1� k1) and taking (3.7) into
account (Dorfman 1963), we have a new set of equations:

−
G2

ν1
+
ω2

1

ν1n
[1+ (n− 1)t] = F′′ +

F′

l
−

F
l2
1
, (3.9)

G′′ +
G′

l
−

G
l2
1
=−

ω1

l2
1
, (3.10)

t′′ +
t′

l2
= 0, (3.11)

where l= ν1/k1, l1 =
√
ρ1ν1/σ1B2 and l2 = χ1/k1.

By introducing the dimensionless functions g = G/ω0, f = F/ω0 and the variable
Z = Z0

√
ω0/ν1, as well as the dimensionless parameters m = ω1/ω0, K1 = k1/

√
ν1ω0

and N = σ1B2/ρ1ω0, where the latter is the magnetic parameter in the external flow,
we obtain the following set of equations:

−g2
+m2

[
1
n
+

(
1−

1
n

)
t
]
= f ′′ +K1f ′ −Nf , (3.12)

g′′ +K1g′ −Nf =−mN, (3.13)
t′′ +K1Prt′ = 0, (3.14)

where Pr = ν1/χ1 is the Prandtl number. Note that the system of gas dynamic
equations (3.12) and (3.13) is still nonlinear because it includes the main centrifugal
term in (3.12).

4. The procedure to calculate temperature profiles and radial gas flow near an
infinite disc
Integrating the system of equations (3.12)–(3.14), we find the following expressions:

t(Z)= 1− exp(−K1PrZ), (4.1)

g(Z)=m+ (1−m) exp

−K1

2
−

√
K2

1

4
+N

 Z

 , (4.2)

where t(Z) and g(Z) are the dimensionless expressions for profiles of temperature and
azimuthal velocity, respectively.

The function f (Z) is determined by solving the following differential equation:

f ′′ +K1f ′ −Nf = −

m+ (1−m) exp

−
K1

2
+

√
K2

1

4
+N

 Z

2

+
m2

n
[n+ (1− n) exp(−K1PrZ)]. (4.3)
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FIGURE 2. The profiles of dimensionless temperature t(Z) in a boundary layer with
respect to the suction parameter K and the Prandtl number Pr. For the solid lines 1–3,
K = 1 and Pr= 0.5, 0.7 and 1.0, respectively. For the dotted line 4, K = 2 and Pr= 1.0.

The solution for f (Z) is as follows:

f (Z) = exp(−K0Z)

{
m2(n− 1)

(Pr(Pr− 1)K2
1 −N)n

[1− exp(K0Z − PrK1Z)]

+
(1−m)2

(2K1K0 + 3N)
[1− exp(−K0Z)] +

2m(1−m)Z√
K2

1 + 4N

}
, (4.4)

where K0 =K1/2+
√

K2
1/4+N.

From (4.2), we can calculate the coefficient of friction torque, acting on one side
of the disc, as

CM =
2M

πρ1R4
0(ν1ω

3
0)

1/2
= (1−m)

(
nK
2
+

√
n2K2

4
+N

)
, (4.5)

where M = 2πη0
∫ R

0 r2
|∂vϕ/∂z|z=0 dr and K =K1(ρ1/ρ0).

In the limiting case when N → 0, equation (4.5) agrees with the dependence
obtained for the case of no magnetic field (Borisevich & Potanin 1987). For N→ 0,
n → 1 and m → 0, the resulting solution transforms into the form that has been
discussed in Dorfman (1963) and Borisevich & Potanin (1985).

We can now analyse the influence of suction and the impact of a magnetic field
on the spatial distributions of temperature, azimuthal and radial flow in the boundary
layer near the surface of an infinite disc. The calculated results of temperature
distributions for various values of the Prandtl number Pr and the parameter of
suction K are shown in figure 2.

By increasing the Prandtl number, the temperature gradient near the disc also
increases, leading to an increase in heat transfer. In addition, a comparison of
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FIGURE 3. Dependences of the Nusselt number Nu on the magnetic parameter N in the
absence of suction obtained by the analytic solution found in this study (solid curve 1)
and the numerical solution from (Sparrow & Cess 1962) (dotted curve 2).

curves 3 and 4 demonstrates that for the same Prandtl number there is an increase in
suction, resulting in a steeper temperature profile in the boundary layer.

At this point, we introduce the Nusselt number, which characterizes the heat transfer
intensity on the surface of the disc by the following expression:

Nu=
q(0)

(T0 − T1)κ1

(
ν1

ω0

)1/2

, (4.6)

where q(0)=−κ0(dT/dz)(0) is the heat flux density on the disc.
Note that the approach is also valid for a system with no suction, but with strong

magnetic field, which corresponds to large values of the N parameter. The solid line
(curve 1) in figure 3 shows the calculated results of the Nusselt number, neglecting
the influence of the gas density axial gradient on the gas dynamic characteristics in
the absence of suction (k= 0) and for large values of the magnetic parameter in the
external flow N. The dotted line (curve 2) in figure 3 shows the results of a numerical
calculation of the Nusselt number under the same conditions and for arbitrary values
of N (Sparrow & Cess 1962). As one can see from a comparison of these two datasets,
the analytical and numerical solutions provide a satisfactory agreement for large values
of N.

Using (3.3) and (4.1), we obtain the simple dependence of the Nusselt number on
the ratio of the temperatures in the external flow and near the disc with the parameter
of suction K in the limiting case K2

1 � 4N:

Nu→ nKPr, (4.7)

indicating that the intensification of heat transfer is caused by two mechanisms:
suction and temperature gradient.

Now we consider the gas dynamic characteristics of a flow. The solid lines in
figure 4 demonstrate the calculated results for the profiles of the azimuthal flow near
a rotating disc, where m= 1.5, N = 2, n= 2 for different values of the K parameter.
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FIGURE 4. Dependences of the dimensionless azimuthal velocity g with respect to the Z
coordinate for m = 1.5, N = 2, n = 2 and various values of K: for the solid lines 1–3,
K = 2, 0.6 and 0.2, respectively; for the dotted line 4, m= 1.5, N = 2, n= 1.5, K = 2.

The dotted line shows the velocity profile for the same values of the m and N
parameters and for n= 1.5 and K = 2. It follows from the results of the calculation
that an increase in suction leads to the growth of the axial velocity gradient on the
disc. Additionally, with an increase of the temperature difference between the external
flow and the disc for the constant parameter K, the velocity gradient also increases.

For analysis of the circulation phenomenon, we recall that, if one neglects the
change in density over the Z coordinate (n = 1 means that the temperatures on the
disc and in the external flow are equal), the direction of radial flow in the boundary
layer on the disc changes sign, depending on the value of the parameter m. For n= 1
and Z� 1 the solution (4.4) is transformed as follows:

f ≈ (1−m)ZU, where U =
6m(K2

1 +
√

K2
1 + 4N)+ 2mN

2K1(K1 +
√

K2
1 + 4N)+ 3N

> 0. (4.8)

When m = ω1/ω0 < 1 (i.e. the disc rotates faster than the external flow), the
magnitude of the centrifugal force in the boundary layer on the rotating disc ρv2

ϕ/2,
directed along the r axis, exceeds the force associated with the radial pressure gradient
fr = −∂p/∂r = −ρω2

1r, directed in the opposite direction to the r axis. Hence, the
radial flow is positive. However, if m> 1 (i.e. the disc rotates slower than the external
flow), the radial pressure gradient exceeds the centrifugal force and the flow within
the vicinity to the disc will be directed to the axis. Circulation flow behaviour and
its dependence on the parameter m are confirmed by the calculated results presented
in figure 5. The solid lines 1–4 in the graph show the profiles of the radial velocity
near the disc, in the absence of a magnetic field (N = 0), for different values of the
parameter m and for n= T1/T0 = 2.

The fact that the radial flow velocity does not disappear when m= 1 is due to the
change in density over the axial coordinate for n= 2. However, in the case where the
value of n=m= 1, the radial flow is absent. The dotted line 5 shows the flow profile
in the presence of a magnetic field (m= 1.75, N = 0.5). Upon comparison with solid
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FIGURE 5. Profiles of the dimensionless radial velocity f in the boundary layer on the
disc for K = 1, n = 2, Pr = 1, N = 0 and various values of the m parameter: for the
solid lines 1–4, m= 0.5, 1, 1.5 and 1.75, respectively: for the dotted line 5, m= 1.75 and
N = 0.5.
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FIGURE 6. Dependences of the dimensionless radial velocity f with respect to the Z
coordinate for K = 1, n= 0.5, Pr= 1, N = 0 and various values of the m parameter: for
the solid lines 1–4, m= 0.5, 1, 1.5 and 1.75, respectively; for the dotted line 5, m= 1.75
and N = 0.5.

line 4, where there is no magnetic field (m= 1.75, N = 0), it becomes clear that the
presence of a magnetic field facilitates slowing the flow in the boundary layer due to
the electromagnetic force fr = jϕB retarding the radial flow.

For the inverse ratio of the temperatures in the external flow and near the disc (n=
0.5 in figure 6), the density of the gas in the boundary layer on the disc is already
lower than that in the external flow and the radial flow directed to the opposite side.
There is an exception to this case when m= 0.5.

This result leads us to conclude that, even when the value of the parameter m 6= 1,
we can achieve a significant retardation of the radial flow by variation of the thermal
parameters. This result has an important practical value regarding a decrease in the
influence of the end surfaces on the rotating medium in limited spaces. The dotted
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FIGURE 7. (a) Profiles of the radial velocity f near a disc for m = 1.5, n = 2, Pr = 1,
N = 1 and with various values of the parameter K: for curves 1–3, K = 0.2, 0.4 and 0.6,
respectively. (b) Profiles of the radial velocity f near a disc for K = 1, m= 1.5, n= 0.5,
Pr = 1 and with various values of the parameter N: for curves 1–4, N = 0, 0.2, 0.4 and
1, respectively.

lines in figures 4 and 5 correspond to the results of calculations allowing conclusions
to be drawn regarding the influence of a magnetic field on the intensity of the radial
flow. These figures demonstrate that a magnetic field retards the secondary flow by
the action of the radial electromagnetic force [ j,B]r.

Note that suction, as well as a magnetic field, contributes to the reduction of
the radial flow in the boundary layer, irrespective of whether the parameter n is
greater than or less than unity. This statement illustrates the dependences shown in
figure 7(a,b), where the results of calculation for the radial velocity are presented for
the case when the external flow rotates faster than the disc and the Prandtl number
Pr is equal to 1.

The radial velocity profile f (Z) for various values of the parameter K and N = 1 is
shown in figure 7(a), while figure 7(b) illustrates the change of this profile for K = 1
and different values of the magnetic parameter N. The results obtained allow us to
draw a conclusion about the influence of the temperature effects on the radial motion
of a medium close to the disc. For example, if the parameter n = 2 and where the
external flow rotates faster than the disc (m= 1.5) due to an increase of gas density
near the disc, the centrifugal force dominates the force associated with the pressure
gradient, resulting in the gas flow being directed towards the periphery (figure 7a).

The above dependences are obtained for the case when the Prandtl number is equal
to unity and the thicknesses of the thermal and hydrodynamic boundary layers are
similar. To understand the reasons for particular flow behaviour with a change of the
Prandtl number, we recall that the thickness of the thermal boundary layer is inversely
proportional to the Pr number. In addition, the Prandtl number for ordinary gases
differs insignificantly from unity while it may differ considerably from unity for a
conducting gas (Dresvin & Amouroux 2007). Figure 8(a) presents the calculated radial
velocity profiles for different values of the Prandtl number and m = 1.5 (i.e. where
the disc rotates slower than the external flow) and n= 0.5 (i.e. where the gas in the
boundary layer on the disc has lower density than that in the main flow).

From the results discussed above, it can be observed that reducing the Prandtl
number results in a velocity flow increase in the boundary layer. This process is
conditioned by the expansion of the zone of less dense gas in the vicinity of the disc.
A more complicated picture for the radial velocity distribution near a disc takes place
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FIGURE 8. (a) Profiles of the radial velocity f near a disc for N = 0.5, K = 1, m= 1.5,
n= 0.5 and various values of the Prandtl number Pr: for curves 1–3, Pr= 0.5, 0.7 and 1,
respectively. (b) Profiles of the radial velocity f near a disc for N = 0.2, K = 1, m= 0.5,
n= 0.5 and for the same Prandtl numbers as in figure 8(a).

for m= 0.5, due to competition between the centrifugal force and the force connected
to the pressure gradient at different distances from the disc (see figure 8b).

5. Control of a circulation flow in a rotating cylinder with a retarding lid
Consider the flow of a conducting gas in a cylinder with height L, rotating with

angular velocity ω0, which has a lid rotating in the same direction as the cylinder but
with a lower angular velocity ω2 <ω0. Assume for simplicity that there is no suction
in this case and that a large axial magnetic field is present. Suppose the cylinder wall
is made of metal, while the upper and lower ends are closed by dielectric materials.
To simplify the theoretical analysis, we divide the entire system of a rotating flow
in the cylinder into the following three areas: the near-rigid inviscid rotating core,
the thin Ekman boundary layers on the rotating discs, and the viscous layer on the
internal sidewall of the cylinder. The assumption about the formation of a quasi-solid,
non-viscous core is confirmed by published calculations (Tuliszka-Sznitko, Zielinski &
Majchrowski 2009). The scheme of such a partition has been described in detail in
Potanin (2013).

The inviscid core flow rotates with an angular velocity Ω , which is less than ω0
and more than ω2. Assume that the solution derived above for an infinitely extended
disc is valid for the radius R1<R0. To solve for the radius R1 and the angular velocity
Ω , we calculate an approximate solution for the azimuthal velocity component in the
core flow by the following set of equations:

vC
ϕ =Ωr, for r 6 R1, (5.1)

vS
ϕ =Ωr−

(Ω −ω0)R0

(R0 − R1)2
(r− R1)

2, for R0 > r > R1, (5.2)

where vC
ϕ and vS

ϕ are the azimuthal velocity components in the core flow and in the
layer on a sidewall of the cylinder, respectively.

The solution for the axial velocity component in the layer on the cylinder wall vz
is found from the condition of equilibrium for all forces acting on the environment
in the axial direction as follows:

1
r

d
dr

r
dvz

dr
=−Qr2, (5.3)

where Q= ρω2
0/(2ηL

√
S)(1/2+m+mp− p2/2), p=ω2/ω0 and m=Ω/ω0.
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FIGURE 9. Dependence of the dimensionless azimuthal velocity in an inviscid core m
on the dimensionless azimuthal velocity of the lid p for the parameter of magnetohydro-
dynamic interaction N = 2.

By integrating (5.3) with the boundary conditions

vz(R1)=−w0 and vz(R0)= 0, (5.4a,b)

where w0 is the absolute value of the axial velocity in the core flow, one obtains

vC
z =−W0, W0 = 2

√
νω0

[
(1−m)2

N
√

N
+

m(1−m)

N
√

N

]
, for r 6 R1, (5.5a,b)

vS
z (r)=

Q
16
(R4

0− r4)+

(
(R4

0 − R4
1)Q

16 ln(R0/R1)
+

w0

ln(R0/R1)

)
ln(r/R0), for R0 > r>R1. (5.6)

To define R1 and m, we balance the frictional forces acting on the rotating volume
outer boundary layers and the continuity of a circulation flow (Potanin 2013).

The system of equations to solve for R1 and Ω now take the following form:

(1− 3m)
√

N + p
√

N =
l2

Re1/2
L

(m− 1)
1+ x1

1− x1
, (5.7)

Re1/2
L x2

1D =
1
4

{
(1− x2

1) dU

32
√

N
−
(1− x6

1) dU

96
√

N
+

[
(1− x4

1) dU
√

N16 ln x1
+

2Re1/2
L D

ln x1

]}

×

(
1+ x2

1

(
ln x1 −

1
2

))
, (5.8)

where U= 1/2+m+mp− 1/2p2, D= (1−m)2/(6N
√

N)+ (m(1−m))/(N
√

N), x1 =

R1/R0, ReL = (ω0L2)/ν, d= (ω2
0R4

0)/2ν
2 and l= L/R0 is the aspect ratio.

Figure 9 is a plot of the dimensionless azimuthal velocity in the core flow m with
respect to the dimensionless rotation velocity of the lid p for N = 2. Other values
used for the cylinder geometry and the conducting medium’s physical properties are
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FIGURE 10. Dependence of the dimensionless axial velocity in a core flow W0/
√
νω0 on

the N parameter for the dimensionless azimuthal velocity of a lid p= 0.4.

as follows: R0= 0.05 m, L= 0.01 m, ν= 4.5× 10−4 m2 s−1 and ω0= 100 s−1 (ReL=

22.2, d= 1.54× 105 and l= 0.2).
Figure 10 is a plot of the dimensionless axial velocity W0/

√
νω0 in a core flow with

respect to the parameter of magnetohydrodynamic interaction N. Other values used for
the cylinder parameters and for the conducting medium’s physical properties are the
same as those used above for figure 9.

Figure 10 demonstrates the reduction of the axial flow circulation for an increasing
magnetic field, due to the action of the radial electromagnetic force in the boundary
layers.

The approach used in this paper to calculate the three-dimensional flows in a
rotating cylinder with a braking lid can also be used for the case when there is an
absence of a magnetic field. For this purpose it is necessary to perform the calculation
of the boundary layers on the upper and lower discs, taking all nonlinear inertial
terms in the equations of motion into account.

6. Conclusions
The motivation for this research was to investigate and understand the possibility

of controlling a circulation flow in a boundary layer on a rotating disc by means
of three drives, i.e. the viscous friction force in the boundary layer, the temperature
gradient and suction. We believe that the dependences obtained in this research will
be useful in further work aimed at determining the optimal parameters of a new type
of a plasma centrifuge for mass separation.

In the first part of this paper we have solved the problem of circulation control of
the MHD flow on a rotating disc of infinite radius. The mathematical modelling is
performed by means of an analytical approach demonstrating that the direction of the
radial flow in the boundary layer on a disc, and ultimately the circulation flow, can
be changed by varying the viscous friction force in the boundary layer (which can be
termed ‘mechanical drive’) or due to the action of the axial temperature gradient
(which can be termed ‘thermal drive’). We have also examined the possibility
of implementation of the simultaneous action of both drives, in one or opposite
directions, to control the intensity of a circulation flow.
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Subsequently, we have considered the rotational motion of a conductive viscous
fluid in a rotating cylinder with a top retarding lid in the presence of a uniform axial
magnetic field. An approximate analytical solution has been developed, considering
the nonlinear centrifugal term in the motion equations.

The obtained results of calculation for the infinite rotating disc for strong suction
can be applied for the case of either a conventional non-conductive gas (N = 0)
or sufficiently dense plasma in a magnetic field (N 6= 0). In the former case, the
calculation data can be used for the qualitative analysis of the thermal and mechanical
drive circulation in physical systems that have retarding lids. In the latter case, for
a conductive gas in a magnetic field, the calculation data allow us to evaluate
circulation intensity in a plasma countercurrent centrifuge in the presence of retarding
lids, thereby providing a means of adjustment to achieve the optimum flow regime.

The most interesting outcome of this study is the identification of the possibility
that a significant retardation of the circulation flow can be achieved by means of
adjustments to the axial temperature gradient. This result will be important for
experimental detection of rotating plasma instability, since it provides the means for
eliminating the masking effect of the stationary lids in a practical machine.

Acknowledgements
This research is partially funded by the MEPhI Academic Excellence Project

(contracts nos. 02.a03.21.0005 and 27.08.2013).

REFERENCES

BAKER, W. R., BRATENAHL, A., DESILVA, A. W. & KUNKEL, W. B. 1959 Viscous effects in
highly ionized rotating plasmas. In Ionization Phenomena in Gases, Volume II; Proceedings of
the Fourth International Conference held August 17–21, at the Institute of Physics in Uppsala,
Sweden (ed. N. Robert Nilsson), North-Holland.

BATCHELOR, G. K. 1951 Note on a class solutions of the Navier–Stokes equations representing
steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths 4, 29–41.

BATCHELOR, G. K. 1958 On steady laminar flow with closed streamlines at large Reynolds number.
J. Fluid Mech. 1, 177–190.

BORISEVICH, V. D., BORMAN, V. D., SULABERIDZE, G. A., TIKHOMIROV, A. V. & TOKMANTSEV,
V. I. 2011 Physical Foundations of Isotope Separation in a Gas Centrifuge (ed. V. D. Borman),
Texbook for Universities. MEPhI Publ. House (in Russian).

BORISEVICH, V. D. & POTANIN, E. P. 1985 Boundary layer on a disk rotating in a uniform axial
flow with suction. Fluid Dyn. 20, 647–651.

BORISEVICH, V. D. & POTANIN, E. P. 1987 Effect of suction on laminar compressive flow and
heat transfer close to a disk rotating in a gas. J. Appl. Mech. Tech. Phys. 28, 207–211.

BORISEVICH, V. D. & POTANIN, E. P. 2015 Magnetohydrodynamic phenomena and heat transfer
near a rotating disk. J. Engng Phys. Thermophys. 88 (6), 1513–1521.

CHANDRASEKHAR, A. & NATH, G. 1989 Unsteady rotating compressible flow over a rotating infinite
disk with a magnetic field. Acta Technica CSAV 1, 58–70.

DORFMAN, L. A. 1963 Hydrodynamic Resistance and Heat Loss of Rotating Solids. Oliver & Boyd.
DORODNITSYN, A. A. 1942 Boundary layer in a compressible gas. Z. Angew. Math. Mech. 6,

449–486 (in Russian).
DRESVIN, S. V. & AMOUROUX, J. 2007 Heat and mass transfer in plasma jets. In Transport

Phenomena in Plasma (ed. A. Fridman & Y. Cho), Advances in Heat Transfer, vol. 40.
Elsevier/Academic Press.

DUCK, P. W. 2012 Spin-up problems of stratified rotating flows inside containers. J. Fluid Mech.
712, 3–6.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.568


344 V. D. Borisevich, E. P. Potanin and J. Whichello

FETTERMAN, A. J. & FISCH, N. J. 2009 Wave-driven countercurrent plasma centrifuge. Plasma
Sources Sci. Technol. 18, 045003.

FLANAGAN, K., CLARK, M., COLLINS, C., COOPER, C. M., KHALZOV, I. V., WALLACE, J. &
FOREST, C. B. 2015 Prospects for observing the magnetorotational instability in the plasma
Couette experiment. J. Plasma Phys. 81, 345810401.

GORBACHEV, L. P. & POTANIN, E. P. 1969 Calculation of a MHD-boundary layer on disks.
Magnetohydrodynamics 5, 60–62.

JASMINE, H. A. & GAJJAR, J. S. B. 2005 Convective and absolute instability in the incompressible
boundary layer on a rotating disk in the presence of a uniform magnetic field. J. Engng
Maths 52 (4), 337–353.

JI, H., GOODMAN, J. & KAGEYAMA, A. 2001 Magnetorotational instability in a rotating liquid metal
annulus. Mon. Not. R. Astron. Soc. 325, L1.

KHALZOV, I. V., SMOLYAKOV, A. I. & ILGISONIS, V. I. 2010 Equilibrium magnetohydrodynamic
flows of liquid metals in magnetorotational instability experiments. J. Fluid Mech. 644,
257–280.

KING, W. S. & LEWELLEN, W. S. 1964 Boundary layer similarity solutions for rotating flows with
and without magnetic interaction. Phys. Fluids 7, 1674–1680.

LINGWOOD, R. J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech.
299, 17–33.

LINGWOOD, R. J. 1997 On the effects of suction and injection on the absolute instability of the
rotating disk boundary layers. Phys. Fluids 9, 1317–1328.

PEARSON, C. E. 1965 Numerical solutions for the time-dependent, viscous flow between two rotating
coaxial disks. J. Fluid Mech. 21, 623–633.

PLIHON, N. et al. 2015 Flow dynamics and magnetic induction in the von-Kármán plasma experiment.
J. Plasma Phys. 81, 345810102.

POTANIN, E. P. 2013 Three-dimensional gas flow in a rotating cylinder with a retarding cover. Fluid
Dyn. 1, 68–76.

RAX, J.-M. & GUEROULT, R. 2016 Rotation and instabilities for isotope and mass separation.
J. Plasma Phys. 82, 595820504.

SHIDLOVSKII, V. P 1960 Laminar boundary layer on an infinite disk rotating in a gas. Z. Angew.
Math. Mech. 24 (1), 161–164 (in Russian).

SPARROW, E. M. & CESS, R. D. 1962 Magnetohydrodynamic and heat transfer about a rotating
disk. Trans. ASME J. Appl. Mech. 29, 181–187.

THOMAS, C. & DAVIES, C. 2013 Global stability of the rotating-disc boundary layer with an axial
magnetic field. J. Fluid Mech. 724, 510–526.

TULISZKA-SZNITKO, E., ZIELINSKI, A. & MAJCHROWSKI, W. 2009 LES of the non-isothermal
transitional flow in rotating cavity. Intl J. Heat Fluid Flow 30, 534–548.

VELIKHOV, E. P. 1959 Stability of the perfectly conducting fluid flow between rotating cylinders in
a magnetic field. Sov. Phys. JETP 9, 995–998.

VILLANI, S. (Ed.) 1979 Uranium Enrichment. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.568

	Circulation control in magnetohydrodynamic rotating flows
	Introduction
	Statement of the problem
	The technique to solve the model problem
	The procedure to calculate temperature profiles and radial gas flow near an infinite disc
	Control of a circulation flow in a rotating cylinder with a retarding lid
	Conclusions
	Acknowledgements
	References


