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An Awkward Symmetry: The Tension
between Particle Ontologies and

Permutation Invariance*

Benjamin Jantzen†‡

Physical theories continue to be interpreted in terms of particles. The idea of a particle
has required modification for successive theories but remains central to scientific ex-
planation. Particle ontologies also have the virtue of explaining basic epistemic features
of the world and so remain appealing for the scientific realist. However, particle on-
tologies are untenable when coupled with the empirically necessary postulate of per-
mutation invariance—the claim that permuting the roles of particles in a representation
of a physical state results in a representation of the same state. I demonstrate that any
permutation invariant theory is incompatible with a particle ontology.

1. Introduction. A prominent realist interpretation of physics consists of
the following claims: (i) material objects are composed of particles, (ii) these
particles belong to a finite number of types, and (iii) particles of the same
type are perfectly indistinguishable. These assumptions are manifest in
the explanatory language of physics, chemistry, and molecular biology. I
maintain that they are mutually inconsistent.

At the scale of everyday experience, we perceive discrete objects to which
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we attribute properties; it is no great imaginative leap to posit similar
entities at microscopic scales. The discrete nature of many phenomena—
the ‘atoms’ in a graphite lattice discovered by scanning tunneling mi-
croscopy, the tracks in bubble chambers, the integer multiples of electric
charge on oil droplets—are easily accounted for and imagined in terms
of particles and their properties. Doing so has proven scientifically fruitful.
Richard Feynman declared that the greatest scientific content one could
pack into a single sentence was the claim that “all things are made of
atoms—little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being
squeezed into one another” (Feynman, Leighton, and Sands 1963, 1–2).
As the next section demonstrates, there is good reason for the scientific
realist to take Feynman’s words at face value.

For Newtonian mechanics, both macroscopic objects and microscopic
particles are distinguished by continuously varying properties of mass and
shape. However, to be compatible with modern physics, the particles we
posit have to differ from the Newtonian conception in one seemingly
minor way—they must belong to a limited number of types. How many
types depends on the level of analysis: in chemistry, the relevant types are
the atomic elements; in particle physics, they are the quarks, leptons, and
so on, of the Standard Model. But at any level, the particles of a type
are presumed to be perfectly indistinguishable—interchanging the role of
two such particles in a representation of a physical state is posited to
result in a (possibly distinct) representation of the identical state. Such
state representations are said to satisfy ‘permutation invariance’ (PI). If
these physical state representations correspond to complete descriptions
of the world, PI entails that two particles of a kind are exactly indistin-
guishable with respect to every possible observable property.1

I show that the empirical need for PI is disastrous for particle ontologies.
A demonstration of the mutual inconsistency of PI and particles is given
in section 7. To get there requires a clear statement of the class of particle
ontologies (sec. 3), a clarification of the way in which theories are pre-
sumed to be interpreted (sec. 5), and a rigorous formulation of PI in
theory-independent terms (sec. 6).

2. The Appeal of Particle Ontologies. A basic claim of all particle on-
tologies is that the world is composed of objects, and each object is largely
independent of the rest with respect to the attributes it bears. This coarse
assertion is supported by an inference to the best explanation. The in-

1. I have indicated that PI is not a postulate of classical physics. I should note that
it is formally possible, although anachronistic, to impose PI on a classical theory (see
Bach 1997; Saunders 2006).
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ference begins by noting a prominent epistemic fact: with limited knowl-
edge about some piece of the world, we can project with success the future
state of that piece. Not only is science predictively successful, but its
predictions require knowledge of only a tiny fraction of all facts con-
cerning the current state of the world. For example, we need only know
the angle of a cannon’s barrel relative to the ground and the velocity of
the ball as it exits the muzzle to figure precisely where to look for the
shot when it lands. We need not take account of, say, the relative position
of every star in our galaxy or the density of seawater off the coast of
Greenland. I will call the fact that the future of a piece of the world can
be predicted from limited facts about the current state of the world ‘Ep-
istemic Divisibility’ (EDiv).2

To continue the argument, we note that in a world composed of on-
tologically independent objects, predicting the future attributes of one
object would not require knowledge of the state of most others in the
world. In other words, EDiv would be true. Take, for instance, Newton’s
account of material corpuscles, which he posited to be “solid, massy, hard,
impenetrable, moveable Particles . . . [that] are moved by certain active
Principles, such as is that of Gravity” (1966, 102–3). Whether the inter-
actions are thought to be mediated by direct contact or a force such as
gravity, each particle in this view is independent of those far enough away
from it to exert a negligible force. To predict the future of some limited
region of the universe in some interval Dt, it is only necessary to know
about the particles close enough to interact with the particles in that region
during Dt. Thus, the number of particles we need to know about is some
modest fraction of all the particles there are, and EDiv follows naturally.

However, if the world is not composed of independent entities—if, for
instance, the world is such that the attributes of one object are linked to
those of all or most others—then the truth of EDiv would be at best
extremely improbable. We can thus conclude that an ontology of inde-
pendent objects is the best explanation of the epistemic facts, at least at
this coarse level of explanation.3 Of course, not all ontologies that entail
EDiv are particle ontologies. However, as we will see in section 4, particle

2. As an empirical generalization, EDiv does not assert that for every piece of the
world under all possible conditions we can make a reliable prediction from severely
limited facts. EDiv is the weaker claim that we can do so in the overwhelming majority
of cases.

3. This argument is a version of the ‘miracle argument’ for scientific realism (see, e.g.,
Musgrave 2007) and suffers similar weaknesses (see, e.g., Magnus and Callender 2004).
In particular, it is implausible to assert a determinate probability for the truth of EDiv,
given some particular ontology, but no more so than to assert the improbability of a
theory’s empirical success, given its falsity.
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ontologies have featured prominently in the interpretation of scientific
theories and thus have special appeal for the scientific realist.

3. A Minimal Particle Ontology. Those ontologies of discrete particles
that entail EDiv are the collective target of my argument. In order to
proceed further, we need a precise characterization of the ontologies in
this class. I claim that what follows is the logically weakest particle on-
tology that can support EDiv:

minimal atomism (MA)

i) Every material object can be divided into a collection of discrete
objects (called ‘particles’) each belonging to one of a finite num-
ber of kinds; particles of the same kind have in common a
nonempty set of state-independent properties.4

ii) Every nonempty set of particles possesses at least one state-
dependent monadic property.5

iii) For every set S of particles and for every j O S, it is the case
that for most physically possible conditions, the state-dependent
monadic properties of j are approximately independent of the
properties of most subsets of the complement of j in S over a
finite interval of time.

A few points of clarification are in order. First, by “state-independent”
properties I mean those that do not change in value for a particle within
or across physically possible worlds. Conversely, by “state-dependent” in
MA ii, I mean those properties that can assume different values at different
times for a given particle (or set of particles) in a single possible world
or different static values for particles of the same type in different possible
worlds—in other words, those properties that are not state-independent.
Second, MA i does not entail the existence of fundamental mereological
simples—it does not imply that there exists some ontologically funda-
mental set of indivisible particles. Everything I have to say about particles
would hold even if these particles were discovered to have internal struc-
ture and so too the particles composing them, ad infinitum. By “physically
possible” in MA iii, I mean roughly that, for whatever physical theory

4. Particle ontologies developed as interpretations of scientific theories typically include
the additional assumption that there exist only countably many particles.

5. Here and throughout I refer to the monadic properties of particles and their ag-
gregates. It is possible (although much more complicated) to spell out a notion of
‘minimal particle ontology’ that admits only the existence of relational properties. The
strict relationist is invited to read ‘monadic’ as shorthand for whatever sort of relational
properties we predicate of an isolated object, perhaps with respect to an observer.
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we take to be true of the world, the relevant condition obtains in the
possible world described by one of the theory’s models. This notion will
be made clearer in section 5. The notion of property independence, also
mentioned in MA iii, is of central importance. To say that the properties
of particle x do not depend on the properties of particle y is to say that
it is physically possible for x to assume (almost) any of the properties it
might have borne had y not existed and vice versa. More will be said
about this notion in section 5. Finally, the quantification over “most”
physically possible conditions and subsets is admittedly vague but nec-
essary if MA is to entail EDiv. It will turn out that we do not need to
make the idea of “most” very precise since PI precludes satisfying MA
under any physically possible conditions for any subset of the complement
of j when S contains only particles of the same type.

It is straightforward to show that MA is sufficient for establishing the
fact of EDiv. Let S be the set of all particles in the world, and let j O

S be the set of particles composing some material object. From MA i we
know j is nonempty, and from MA ii we know that j bears at least one
state-dependent property. From MA iii we know that—under most con-
ditions in which we might find the world—the properties of j are ap-
proximately independent of most subsets in the complement of j in S
(denoted jC). This means that, to predict the future properties of j, it is
almost always sufficient to know about the properties of j and at most
a minority of the subsets of jC. That is, it is sufficient to know about the
properties of a limited subset of all the objects in the world, and so EDiv
obtains.

To give a more intuitive demonstration, suppose that we are interested
in the whereabouts of the cannonball some time t after a cannon is fired.
Assuming that MA obtains, then we know from MA i that the universe
consists of discrete particles, some of which comprise the cannonball in
question. From MA iii we know that under most physically possible
conditions the properties of the cannonball (e.g., momentum) will not
appreciably depend on the state of most other particles or composite
objects in the universe. In fact, with the exception of the volume of air
through which it eventually moves and the globe of the earth that attracts
both air and ball, this is the case. Thus, we need only know about the
state of the ball and a particular volume of air in order to predict the
ball’s next location. Of course, which objects will actually be independent
of the cannonball depends on which physical theory is true. MA does not
tell us what the right physics is, just that a tractable physics is possible.
It guarantees that for many ways of slicing up most physically possible
worlds into material objects (i.e., lots of different ways of partitioning the
particles that make up material bodies), there is a lack of dependence
between some small portion of the universe and the rest. This ontological
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independence underwrites an epistemic independence and allows us to
predict the state history of that small portion without having to know
about everything else. In this way, EDiv follows from MA.

It is important to note that EDiv fails to follow if we drop any of the
propositions in MA—the assumptions really are minimal. For instance,
without MA i, there is no guarantee that the universe can be divided at
all. Without this guarantee, the remaining propositions do not imply any
sort of independence between parts of the material universe since the
material universe might have no parts. Without MA ii, it might be the
case that the only monadic properties possessed by particles or composites
of particles are state independent, such as mass. If this were the case, MA
iii would be trivially satisfied, but there would be no sense in talking about
the changing state of a portion of the universe. Every material portion
would in itself possess only trivial state-independent properties. The re-
lations in which that portion stands might change, but EDiv asserts that
there are features of each part of the world that can be said to change
in time without reference to other parts of the world. Thus, without MA
ii, EDiv does not follow. Finally, MA iii ensures that, under most con-
ditions, most portions of the world are approximately independent of one
another—an ontological fact that underwrites the epistemic independence
asserted by EDiv.

It is also worth stressing that MA iii is not a locality condition. As a
metaphysical claim, locality is the assertion that spacelike-separated space-
time regions, particles, events, and so on, are independent of one another.
But there are other ways in which the world might be divided into in-
dependent units. Consider, for example, one of Dalton’s early theories in
which the atoms of a gas are posited to be centers of repulsion and each
atom exerts a repulsive force only on atoms of the same element (Nash
1950, 19–20). In our postquantum sophistication, we might imagine a
related theory in which atoms only interact with atoms of the same element
but for which nonlocal interactions (or nonlocal correlations) between
atoms of the same element are the rule. Since there would be no interaction
between distinct elements, the world would still divide into units that are
independent in the sense that MA (and by extension EDiv) requires. One
would not need to know what state the oxygen is in to predict the future
of the carbon. The upshot is that a locality constraint is just one way of
satisfying MA iii, but it is not the only way. In this sense, MA is much
weaker than a particle ontology with a locality condition.

4. Scientific Atomism and MA. MA constitutes the core of the historical
series of interpretations that might be called ‘scientific atomism’ and re-
mains a viable interpretation of quantum theories as long as PI is not
imposed. In section 2, I mentioned Newton’s corpuscular theory and
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indicated how, as an instance of MA, it entails EDiv. By the end of the
nineteenth century, the impenetrable corpuscles of Newton had been re-
placed by centers of electromagnetic force. ‘Atoms’ in this later view are
composite objects made of particles with positive and negative charge,
and particle interactions are mediated by electromagnetic fields. The
charged particles, like the corpuscular atoms before them, still exist in-
dependently of one another in the sense that the state of a given particle
is only significantly affected by spatially nearby particles. To predict the
future of a portion of the universe, it is still sufficient to know about only
a relative handful of fundamental particles and their attendant properties.
This revised interpretation of physical theory again provides an ontolog-
ical basis for EDiv and, like Newton’s view, is an instance of MA.

Even quantum mechanics (QM) can be given an interpretation com-
patible with MA. On the face of it, this is an unlikely proposition. After
all, QM does not permit the attribution of properties to particles in the
same way that classical mechanics does—under the standard interpreta-
tion, relatively few properties are definitely possessed by a composite
system at any one time, and it is not clear that any are possessed by its
constituent parts.6 Furthermore, particles have no definite position. In
essentially all physical states, particles like waves are ‘spread out’ through
space. Many authors have argued from such nonclassical features of quan-
tum physics to the conclusion that QM is not a particle theory. For
instance, Erwin Schrödinger argued that putative quantum particles can-
not be individuated by definite space-time trajectories and so cannot be
particles in the sense of individuals with transtemporal identities.7 Other
proponents of the ‘Received View’ (French and Krause 2006, 115) of
quantum particles emphasize features of quantum statistics that—when
coupled with the assumption that all physically distinct states are equi-
probable—suggest there is no fact of the matter as to which quantum
particle bears which properties. This implies that the putative particles
fail to possess identities at any one time and thus cannot be particles in
the sense of individuals with definite properties. Like all other prior ar-
guments against quantum particles, however, both of these approaches
assume more than is necessary to entail EDiv. As Steven French argues
(see, e.g., French 1989; French and Krause 2006), consistent particle on-
tologies can be found that retain particle identities and yet comport with
the physics. One need not assume that particles are individuated by tra-
jectory or that all distinct configurations of the world are equiprobable

6. According to a rather conservative but standard interpretation of QM, “a system
in the state W has a value for the observable F if and only if W assigns probability 1
to one of the possible values of F” (Dickson 2007, 285).

7. See Bitbol (2007) for an overview of Schrödinger’s arguments.
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in order to account for EDiv in terms of particles. The question of interest
is whether the weakest particle ontology and the benefits it brings for the
realist can be maintained for quantum theories or for alternative theories
that respect PI.

I contend that—as long as we leave out PI—interpretations of QM that
retain MA are still available. Such an interpretation would require us to
adopt a more liberal notion of property or what it means to bear a
property. For instance, if one understands particles as hangers for prob-
ability distributions over property values (as opposed to determinate prop-
erty values), then it is still possible to conceive of an inventory of particles
as a partial description of the world in accord with MA.8 The ‘particles’
in this case are just those things that bear distributions over property
values—they are those ontological units that are found to manifest some
particular property value when a measurement is made but for which no
determinate value pertains. So, for instance, I might imagine a universe
empty, save for two noninteracting particles with nearly exact momenta.
Each of these ‘particles’ is as nonlocalized as can be—they are distributed
evenly throughout all of space. But we can view each as a particle in the
sense required by MA. We can hang property distributions on each, and
we can ask whether any physical circumstances are possible in which the
distributions over property values for one particle—which are in principle
measureable—are independent of those of the other particle. We can sen-
sibly ask whether the properties of a portion of the world described by
a quantum system are independent of the properties (or property distri-
butions in the proposed view) of other systems. This is only a cursory
gloss of the sort of interpretation of QM that would be necessary to retain
the particle ontology of MA and in this way explain EDiv.

The ultimate point I wish to make is that there is nothing about the
structure of quantum theories without PI that precludes a particle on-
tology. However, assuming strict PI in any theory renders that theory
incompatible with a particle interpretation.

5. Connecting Metaphysics with Physics. In the preceding sections, I ar-
gued that MA is an appealing ontology for the realist because it accounts
for the fact of EDiv. I also argued informally that MA is a viable inter-
pretation of particle theories that lack PI. In this section, I provide a more
rigorous way to connect the theories of mathematical physics with meta-
physical interpretations. The idea is to construct an exact means of de-
ciding whether a given theory is compatible with a given interpretation.

8. This is a strong claim akin to asserting the existence of vague properties. The point
is not to defend such an interpretation but to show that a plausible or at least consistent
interpretation exists.
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If our metaphysical accounts of the world are to have content, it must
be the case that physical theories constrain the metaphysical possibilities;
some ontologies must be false if certain physical theories are empirically
adequate. There is a way to make this relationship of constraint precise.

Let me begin by saying a little about how I am conceptually carving
up theories and their interpretations. By a ‘theory’ I mean a specification
of a mathematical space along with one or more laws. The latter act as
constraints that, when supplied with supplementary conditions that cor-
respond to the particular physical system to be represented, pick out a
particular subset of the mathematical space. So, for example, Hamilton’s
equations of motion, given a specification of particle number n and initial
positions and momenta, pick out a single trajectory in 6n-dimensional
phase space (modulo some technical conditions).

A ‘model’ of a theory is a mathematical structure compatible with the
laws and some particular set of boundary conditions. For instance, New-
ton’s laws of motion when coupled with suitable boundary conditions
pick out a trajectory in a continuous phase space. The postulates of QM,
given a Hamiltonian and initial state, pick out a ray within a Hilbert
space in the time-independent case and a trajectory through such rays in
the time-dependent case. What I am calling ‘models’ of a theory are what
physicists often call ‘solutions’.

An ‘interpretation’ of a theory is a set of property attributions over a
set of objects. The interpretation of a theory is supposed to be a description
of the way the world is. Some of the elements of the interpretation refer
to objects in the world, while others correspond to the properties of these
objects. I do not mean to insist that interpretations be expressible in first-
or second-order formal languages. Rather, I intend only that an inter-
pretation be a structure for which distinct elements directly correspond
to distinct entities and property instances in the world. I will call a part
of an interpretation that refers to just one object and its associated prop-
erties a ‘specification’.

With this taxonomy in hand, we can talk about how one might go
about binding various metaphysical theses to physical theories. The idea
is to treat interpretations of a theory as descriptions of physically possible
worlds. If we fix the manner in which interpretations are extracted from
models of a theory, then the class of models represents the class of possible
worlds. MA iii is now a constraint on physically possible worlds and thus
on models of a theory. We now have a way of specifying mathematical
features that any physical theory must have if it is to be compatible with
MA iii. Loosely speaking, it must be physically possible under most con-
figurations of the world for one particle to assume any of the physical
states open to a lonely particle, irrespective of what most of the others
are doing. That is, under most possible conditions, our physicist can
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change the boundary conditions and produce another apparently lonely
one-particle state, irrespective of what state the other particles in the
universe happen to occupy.

In the case of just two particles, MA iii can be put as follows: the theory
must support a pair of sets of models that correspond to nontrivial sets
of one-particle specifications such that each specification in one set can
be combined with any specification from the other set to get what are
approximately the specifications corresponding to a two-particle model
of the theory. For example, it is easy to produce a set of models in classical
mechanics, each of which represents a molecule of gas moving with a
different velocity within a small volume of space to my left, and another
set of models that represent an exactly similar molecule flitting about to
my right. Choose one model from the first set and one from the second.
The union of the two corresponding interpretations contains specifications
of molecules that are approximately the same as we would have gotten
by interpreting a model of the theory that takes both molecules into
account. This is because the molecules interact only weakly at such a
distance (using realistic potentials), and so each has nearly (but not quite)
the same properties it would have had in the absence of the other. In this
case, it looks like the one-particle models account for all of the possible
experiments I could do on either particle, although in fact there are two
particles. That is precisely what EDiv demands.

There remain two vague notions in the conditions laid out above: that
of a ‘nontrivial’ set of specifications and that of ‘approximate’ specification
equivalence. What we need in order to clarify these notions is a measure
of the difference or distance between any two specifications—we need to
impose a metric on the space of possible one-particle specifications. It
does not matter what metric, so long as it is a metric (i.e., it is positive-
definite, symmetric, and obeys the triangle inequality). Given such a mea-
sure of distance, we can then choose a threshold separation, �, a minimum
distance at or below which we call two specifications approximately the
same. Clearly there is arbitrariness in picking such a threshold. There are
some plausible guides we could use, such as the practical distinguishability
of states. But we need not settle on a particular value since it ultimately
will not matter what value we choose.

The threshold � and the metric to which it refers give us a way to clarify
the relation of approximate equivalence: two specifications are approxi-
mately the same just if they are within a distance � of one another. They
also give us a way to cash out the notion of a nontrivial set of specifi-
cations: to say that a set of one-particle specifications is nontrivial is just
to say that its diameter (the greatest distance between two specifications
in the set) is large compared to �. According to what we have taken to
constitute approximate similarity, any set that is not large compared to
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� would contain ‘approximately’ one specification. One can think of � as
setting a natural scale with respect to which the rest of the properties of
the space of possible specifications are spelled out. While the selection of
� is arbitrary, the remaining properties are not.

In summary, for a theory T to be compatible with MA iii, there must
exist three sets of models of T—call them a, b, and g—with the following
properties:

1. The models in a are interpreted as representing the properties of a
single particle. Let Sa be the set of all one-particle specifications
extracted from the interpretations corresponding to the models in
a. The set Sa is large with respect to the threshold �.

2. The models in b are likewise interpreted as representing a single
particle. Let Sb be the set of all specifications in the interpretations
of the models of b. The set Sb is also large compared to �.

3. The models in g are interpreted as representing the properties of
two particles. For every ordered pair of specifications in Sa # Sb,
there exists an interpretation of a model in g that contains approx-
imately both of these specifications (that approximately attributes
each of these specifications to one particle in the interpretation).9

In section 7, I show that insisting on symmetrization renders these con-
ditions unsatisfiable. In this way, PI sharply precludes particle interpre-
tations.

6. Permutation Invariance and Perfect Indistinguishability. It is my central
claim that PI and MA are mutually inconsistent for any physical theory.
To show this requires precisely formulating PI in a manner general enough
to apply beyond the quantum mechanical framework in which the pos-
tulate was introduced. To construct such a statement, I will begin with
the principle as it is given in QM and then excise the details pertaining
specifically to that theory.

In the physics literature, a typical statement of PI runs as follows:

(PIQM1): Dynamical states represented by vectors which differ only
by a permutation of [particles of the same type] cannot be distin-
guished by any observation at any instant of time. (Messiah and
Greenberg 1964, 250)

The “vectors” in this statement refer to vectors in a Hilbert space. PIQM1

9. The sets Sa and Sb are subsets of a common set of all possible single-particle spec-
ifications. From the interpretation of each model in g, it is possible to extract an
ordered pair of specifications, the elements of which are members of the same common
set of single-particle specifications.
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is effectively a restriction on what counts as an observable. Which sets of
vectors represent states is fixed by the following two assumptions: “(1) Two
vectors representing the same state must give the same expectation value
with respect to all observables; and (2) Two vectors representing distinct
states must give different expectation values for at least one observable”
(Hartle and Taylor 1969, 2045). From these assumptions, it follows that
vectors represent the same physical state if and only if they are indistin-
guishable with respect to all observables. Coupled with PIQM1, these as-
sumptions entail that any two state representations differing only by a
permutation are in fact representations of the same physical state. So we
can rewrite PIQM1 in my terminology as follows:10

(PIQM2): Physical states are invariant under permutations of those
parts of the state representation that correspond to particles of the
same type.

But PIQM2 no longer contains explicit reference to the particular formalism
of QM. Noting that ‘state representations’ are what I have been calling
‘models’ of QM, and assuming there exists a function taking models to
interpretations, we can now state the principle of PI in a precise, theory-
independent fashion:

(PI): If the interpretation Int of a model M of a theory describes
multiple particles of the same type, then permuting the parts of M
that individually correspond to descriptions of those particles in Int
results in a model M ′ with the identical interpretation Int.

10. I have glossed over a great deal of technical detail. Suppose that H1 is the Hilbert
space corresponding to the states of one particle. For N distinguishable particles (for
which PI does not apply), the states of the system are given by the vectors of the outer
product Hilbert space: HN p H1 � H1 � . . . � H1 (N times). PI along with conditions
1 and 2 imply that ‘states’ of indistinguishable particles must be represented by the
subspaces of HN corresponding to the irreducible (unitary) representations of the per-
mutation group. Operating on one of the vectors in such a subspace yields a (possibly
distinct) vector in the same subspace. It can be shown that HN decomposes into a direct
sum of subspaces, each corresponding to an irreducible representation of the permu-
tation group. The one-dimensional subspaces correspond to either completely sym-
metric or completely antisymmetric states (vectors that are either invariant or change
sign under the action of a permutation operator). The former describe the states of
so-called bosons (e.g., photons), while the latter describe the ‘fermions’ (e.g., electrons).
In principle, the remaining higher-dimensional subspaces in the decomposition of HN

could describe the states of one or another type of particle. The states of such particles—
called ‘paraparticles’—would exhibit more complex symmetries and thus, for instance,
more complicated statistics in large ensembles. But only bosons and fermions are
believed to exist. For an overview of the relevant formalism, see Messiah and Greenberg
(1964) and Hartle and Taylor (1969).
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Note that in all of the above formulations PI refers to the interpretation
of a model in that it refers to permuting those parts of a model that
correspond to particles.11 There is thus an implicit but essential assumption
contained within PI about the manner in which models are mapped to
interpretations. In the most general process of interpretation, there is a
function from the class of models of a theory to the class of interpreta-
tions—to every model there corresponds exactly one interpretation.12 PI
further assumes that the function taking models to interpretations is a
composite of functions mapping pieces of each model to pieces of an
interpretation. Specifically, each model is supposed to contain one or more
mathematical parts that are taken to correspond directly to the descrip-
tions of individual particles within the interpretation of the model, that
is, each part corresponds to a specification. For instance, if a model of
the hydrogen atom in QM contains a ket (a vector) from the Hilbert space
used to represent a single electron and a ket from the space used to
represent a proton, then these should correspond in the interpretation to
the specifications of an electron and a proton. Importantly, it must be the
case that the same electron ket corresponds to the same electron speci-
fication across all models and interpretations. So if the mathematical
component corresponding to an electron produces a particular specifi-
cation in the interpretation of one model, it should yield the same spec-
ification in the interpretation of any other model that contains that com-
ponent.

An example from classical physics might help to clarify this idea. Sup-
pose we are interested in the physics of pendulums. In the simplest case,
the motion of a single pendulum can be represented in terms of two
variables: an angular position and an angular momentum. A model of
Hamilton’s equations of motion for a single pendulum is a trajectory
through the two-dimensional phase space built from these two variables.
Interpretation of such a model is straightforward. At any given time, we
consider a point on the trajectory and read one coordinate as yielding
the position of the bob and the other as giving its momentum. The math-
ematical piece that corresponds to our pendulum is just the entire model—
the trajectory in two-dimensional phase space. In classical physics without
PI, it is easy to build models of composite systems. If we want to model
two pendulums, whether coupled or not, we need only move to a four-

11. The ‘parts’ of a model include mathematical structures produced from the model
as an intermediate in interpretation. For instance, in QM the standard approach to
assigning properties to individual particles is to construct a reduced-density operator
for each. These reduced-density operators would constitute ‘parts’ of the original model.

12. Multiple models may share the same interpretation.
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dimensional phase space built from four coordinates: the position and
momenta of the two pendulum bobs. Models of the theory are now tra-
jectories through this phase space. In our interpretation, however, we have
specifications for not one but two pendulums. The mathematical pieces
that correspond to these specifications are just the projections of the four-
dimensional trajectory onto each of the two-dimensional momentum-angle
spaces. As long as that projection is the same as the trajectory we had
originally (it will not be if the pendulums are coupled), then the specifi-
cation for that pendulum—the description of its properties—should re-
main the same.

However one is inclined to interpret the postulate, PI is an empirically
essential component of QM.13 Quite generally, states that are permutation
invariant give rise to so-called interference terms when the Born rule is
applied, terms that do not necessarily obtain for nonsymmetric states.14

These interference terms produce widely different predictions for such
phenomena as the cross-sections of particle collisions, the structure of
atoms, and the statistical mechanics of systems of large numbers of par-
ticles. By way of illustration, consider the simple example of two non-
interacting particles in a one-dimensional box. If the particles are of dif-
ferent kinds (a neutron and a proton, say), then the probability density
of finding both at the same point x in the box is given in terms of wave
functions by Fwproton(x)F2 Fwneutron(x)F2. If the particles are of the same type
such that PI applies, this probability density is either 0 (for particles that
satisfy PI with antisymmetric states) or twice as great (for those that satisfy
PI with symmetric states). PI imposes strong, empirically verified restric-
tions on measurement frequencies. Conversely, no states are observed for
particles of the same type that do not conform to PI.

7. Proving an Inconsistency. A model is a mathematical structure. Parts
of this structure are presumed to correspond to individual particles. If we
call the part of a structure corresponding to one particle the ‘role’ of that
particle, then corresponding to any model of a theory there is an indexed
set of particle roles. When the model is interpreted, each role is mapped
to a specification of the corresponding particle. So to any model there
also corresponds an indexed set of particle specifications. If two models
share the same interpretation, then the indexed set of particle specifications
corresponding to each model must be identical (although the set of roles
may not be).

13. It is unclear how the postulate could be eliminated from quantum field theory
where it manifests in the commutation relations among creation and annihilation op-
erators.

14. For an introductory overview, see Shankar (1994), 269–78.
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As an example, consider two classical particles moving in one dimension
such that in the chosen coordinate system they are each confined to the
interval [0, 1]. The motion of the particles can be described in the two-
dimensional configuration space of points (x1, x2) with 0 ≤ x1 ≤ 1 and
0 ≤ x2 ≤ 1. Let’s suppose that models of the relevant mechanics of this
system are just points in the configuration space, for example, (0.5, 0.1).
For each particle, there is a corresponding ‘role’ in this model: for the
first particle, it is the real number 0.5, and for the second it is 0.1. Fur-
thermore, the interpretation, Int, of this model contains two specifications,
s1 and s2. Specification s1 asserts that the first particle is at a position 0.5,
and s2 asserts the second particle is at 0.1. If another model of the theory
has an interpretation Int ′ containing specifications (s3, s4) that is identical
to Int, then the specification of particle one in the first interpretation must
be identical to the specification of particle one in the second (so s1 p s3)
and likewise for the second particle (so s2 p s4).

To be a little more precise, let A be the set of particle roles for a given
model M. Let n be the total number of particles represented by M, and
let N be the set of natural numbers {1, 2, . . . , n}. Let f : N r A be a
surjective function mapping the index of the jth particle in the system to
its role in M. A model can thus be seen as giving an ordered n-tuple of
particle roles, where the jth role is given by f ( j). Corresponding to each
model, there is also an indexed set of particle specifications that can be
obtained by interpreting the roles of the model. If we let S be the set of
all one-particle specifications and interp : A r S be the interpretation
function taking roles to specifications, then the jth specification in the
ordered n-tuple of particle specifications corresponding to M is just
interp( f ( j)). If M1 and M2 are models representing the same number of
particles and f1 and f2 are the respective indexing functions labeling particle
roles for each, then these models have the same interpretation only if for
all j, interp( f1( j)) p interp( f2( j)).

What consequence does PI have? Let Pi be a permutation of N (a
bijection from N to itself). Then a ‘permutation of particle roles’ for a
model is just the ordered n-tuple for which the jth role is given by f (Pi( j)).
Suppose that we are only concerned with models for which all particles
are of the same type (e.g., all electrons). Then PI requires that any per-
mutation of particle roles for such a model result in a model with the
identical interpretation. In the formalism given here, that means that for
all permutations Pi and for all j in N, interp( f ( j)) p interp( f (Pi( j))). But
this holds if and only if interp( f ( j)) p constant. That is, this holds only
if all particle specifications are the same. Since the model is interpreted
piecewise with each role corresponding to a distinct specification of a
particle, PI forces every particle in the interpretation of a model to bear
the same description.
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Attributing to every particle of a type in a system the same set of
properties is a problem if we are to satisfy MA iii. For the latter, we need
two sets of one-particle specifications—call them S1 and S2—each of which
is large compared with a given threshold �. We must be able to select an
arbitrary specification from each of these sets—call these s1 and s2—and
be able to locate a pair of specifications in the interpretation of a two-
particle model, one of which is within � of s1 and the other within � of
s2. Now, suppose that we choose s1 and s2 such that the distance between
them—denoted d(s1, s2)—is greater than 2�. Such a choice must be open
to us because both sets are large compared to �. From PI we know that
every interpretation of a two-particle model contains a pair of identical
specifications, and we will call this shared specification s*. By the triangle
inequality for metrics, it must be the case that

d(s , s ) ≤ d(s*, s ) � d(s*, s ).1 2 1 2

By supposition, d(s1, s2) 1 2�, so

2� ! d(s*, s ) � d(s*, s ).1 2

But this means that there is no way to choose a single state s* such that
d(s*, s1) ≤ � and d(s*, s2) ≤ �. Because PI forces every particle to receive
the same specification, it is impossible to satisfy MA iii—symmetrization
prevents particles from possessing the sort of independence of properties
that could explain EDiv.

I have stated it in the abstract, but the argument can be formulated
within specific theories. Take QM, for example. To see how the argument
works there, we first need to be clear on what constitutes the theory and
how models of the theory are to be interpreted. To be as inclusive as
possible, I will consider the set of quantum state representations to be
the full set of density operators on a given Hilbert space. Doing so admits
as viable representations both the usual ‘pure’ states equivalent to rays
in the Hilbert space and the ‘mixed’ states equivalent to convex combi-
nations of pure states. The theory then consists of the von Neumann
Equation (ih̄ �r/�t p [r, H])—which specifies a trajectory through the set
of density operators—along with the usual postulates for extracting ex-
pectation values and measurement probabilities. For simplicity, I will ig-
nore time dependence and focus just on the time-independent solutions
of the von Neumann Equation for suitably specified boundary conditions.
In that case, models are just single-density operators.

How should these models be interpreted? What objects are specified by
the models, and how should we assign properties to them? In the case of
a single-particle system, we can interpret each density operator as spec-
ifying the properties possessed by a particle in the weak sense I suggested
in section 4. In this view, particles do not necessarily possess definite values
of properties but rather probability distributions over possible values for
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each property (or equivalently, a definite expectation value with respect
to every observable). Such a view relaxes the eigenvector-eigenvalue link
and allows us to interpret mixed states as representing the properties of
single particles.

With respect to the space of density operators on a Hilbert space, there
are many metrics in the literature to which we might appeal. To make
the argument easy to visualize geometrically, I will take the distance d(ri,
rj) between any two density operators ri and rj to be given by twice the
standard ‘trace distance’ (see, e.g., Nielsen and Chuang 2000, sec. 9.2.1):

d(r , r ) p TrFr � rF.i j i j

The expression TrFAF stands for the trace norm on A (see Omnès 1994,
245). Each density operator specifies a unique set of distributions with
respect to property values, so there is a one-to-one correspondence be-
tween one-particle density operators on the Hilbert space and specifica-
tions in the interpretations of one-particle models. This means we can
transfer the trace-distance metric onto the space of specifications and
define the distance between any two specifications as the distance between
the corresponding density operators.

If we consider the case of two-dimensional particle states, using the
trace distance to measure the difference between specifications makes the
inconsistency argument easy to visualize. For instance, we might consider
just the spin degree of freedom of a spin-half particle. In that case, we
can represent all possible density operators with a vector r in three-di-
mensional Euclidean space. Specifically, each density operator r can be
uniquely represented in the form (I � )/2, where I is the identityr 7 j

operator, r is a vector unique to r with krk ≤ 1, and j is a fixed vector
(the vector of Pauli matrices). There is thus a one-to-one correspondence
between the density operators and the points of a sphere called the ‘Bloch
sphere’. Points on the surface of the Bloch sphere for which krk p 1
correspond to pure states, while the points in the interior of the sphere
correspond to mixed states. In this representation, the distance d(ri, rj)
between two density operators ri and rj corresponds to the Euclidean
distance between the two points in the sphere corresponding to those
operators. That is, d(ri, rj) p kri � rjk.

To visualize the argument in the Bloch sphere, pick a threshold distance
� small compared to its diameter. Now choose a pair of vectors r1 and r2

corresponding to operators in the space of one-particle models such that
kri � rjk 1 2�. According to MA iii, we must be able to find a two-particle
model that—when interpreted—yields two copies of a single-particle spec-
ification corresponding to a vector r* that is within � of both r1 and r2.
This means that r1 and r2 must lie within a ball of radius � centered on
r* (see fig. 1). Obviously, if this is the case it cannot also be true that r1
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Figure 1.

and r2 are more than 2� apart since the diameter of the ball is 2�, and
we arrive at a contradiction. Given PI and the trace-distance metric on
the space of quantum models, MA iii is not satisfiable.

8. Objections. There are a number of claims in my argument with which
one might take issue. I will start with the most specific and work to the
most general. To begin with, one might complain that QM itself ought
to belie any concern that symmetrization must always ruin the indepen-
dence of systems. J. J. Sakurai puts the objection this way: “There is no
need to antisymmetrize [the state vector] if the electrons are far apart and
the overlap [between wave functions] is negligible. This is quite gratifying.
We never have to worry about the question of antisymmetrization with
10 billion electrons, nor is it necessary to take into account the antisym-
metrization requirement between an electron in Los Angeles and an elec-
tron in Beijing” (1994, 365–66). Sakurai is, of course, exactly right so long
as we restrict our attention to the outcome of possible measurements,
none of which can make reference to which electron is which. Empirically,
the single-particle measurements one can gather are predicted just as well
by a one-particle model of the theory as by a 10 billion–particle model
under the conditions Sakurai describes. However, if one wants to attribute
properties to individual particles on the basis of these possible measure-
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ments, if one wants to interpret the quantum state in terms of a collection
of particles satisfying MA, then it does matter whether there is an electron
in Beijing as well as Los Angeles (LA). Suppose wB(x) is the wave function
of an isolated electron in Beijing, and wLA(x) is the wave function of one
in LA. Ignoring the spin degree of freedom for simplicity, the only two-
electron state admitted by QM with PI is wB(x1) wLA(x2) � wB(x2) wLA(x1).
In the standard approach to attributing properties to particles individually,
we compute the marginal probability distribution for the Beijing electron
by integrating out the states of the other particle and vice versa. The result
is, of course, a pair of identical distributions over space—both electrons
are attributed the same probability of being found in any given volume
of space. Importantly, both are attributed a probability of 0.5 to be found
in either Beijing or LA, a property that would not have been attributed
to, say, the LA electron if the Beijing electron did not exist. Because the
properties that are attributable to particles depend on whether there are
additional particles of the same kind in the world, one does not have the
option to choose not to symmetrize on occasion—there would be an
enormous difference in the properties attributed. If we want to be realists
and think that the theory of QM does more than rescue the phenomena,
then one cannot ignore the fact that the content of one’s interpretation
depends on the number of particles of the same kind supposed to exist.

Second, one might simply dismiss my result as old news. After all, there
are plenty of folks who have provided good arguments to believe that
neither QM nor quantum field theory can be interpreted in terms of
individual particles. However, each of their arguments is grounded in a
commitment to one of various mutually exclusive accounts of ‘particle’.
These are diverse arguments subject to diverse objections. Since they each
posit incompatible metaphysical principles, the convergence of these ar-
guments ought not to increase our confidence in the conclusion. The
argument I have provided takes on minimal metaphysical baggage—just
what is required to account for an undeniable epistemic fact. If you reject
the metaphysics that has been brought on board, then a great many realist
interpretations must go with it. Furthermore, my argument is not specific
to QM; it applies to any theory in which PI can be stated and is presumed
true.

Finally, one might object that MA is not as weak as it sounds or that
it fails to capture one or more necessary conditions of the ‘correct’ notion
of particle. To this line of argument, I say that I am more than willing
to adjust my terminology. I am not interested in developing a conceptual
analysis of the terms ‘particle’ or ‘atomism’, nor do I intend to exhaus-
tively catalog the many ways in which these terms have been employed.
Rather, I am interested in those ontologies—call them what you will—
which claim that the material world is discretely divisible into entities that
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bear properties in a manner that can sustain EDiv. I have given reasons
to think that what I have called MA does in fact line up with various
scientific conceptions of atomism. But even if this fails to be the case, the
argument I have presented rules out a very large and very appealing class
of ontologies.

9. Consequences. The general incompatibility between PI and MA means
we have to give up one of the three propositions with which I began this
article. PI itself appears unassailable, as without it the particle theories
we have (e.g., QM) are empirically inadequate. That leaves MA, the view
of the universe as a discretely divisible entity made up at one or more
levels of particles belonging to a handful of types. It is no trivial affair
to jettison this view, no matter how many have impugned it before. A
great deal of scientific explanation in such fields as physical chemistry
could no longer be taken literally, and it is difficult to see what should
replace it.

Furthermore, giving up MA means giving up the most successful meta-
physical account of EDiv at hand. But herein lies the positive value of
the incompatibility result presented here. It is clear that we need an al-
ternative to MA. For scientific realism to remain plausible, any successful
alternative must comport with the epistemic facts. Any metaphysical ac-
count that fails to underwrite EDiv or that directly contradicts it is empty
at best and patently false at worst. We thus have a guide for producing
viable alternatives to a particle ontology. The imposition of PI leads the
proponent of MA to contradiction partly because discrete particles were
identified as the property bearers. One might instead ascribe properties
to a different set of objects that can nonetheless be identified with com-
ponents of the models of our best theories of matter and that satisfy
conditions similar to MA. I do not have the space here to pursue these
alternatives, but I can suggest what one possibility looks like in outline—
it is a sort of space-time substantivalism. The relevant property-bearing
substances, rather than particles, are taken to be regions of space-time.
The properties once attributed to particles in quantum states would be
attributed to one or more regions of space-time. PI would no longer
obtain, at least not as a statement about the permutation symmetry of
property bearers. Rather, it would have to be seen as a restriction on the
possible properties attributable to space-time regions. As long as it could
be shown that there are conditions under which the properties attributable
to one region are independent of the others, EDiv will obtain. And Sakurai
(among many others) already pointed out that such independence can
obtain. As long as we treat the outcomes of putative one-particle mea-
surements as properties of the space-time regions occupied by our in-
struments, then the electron in Beijing really does not matter for the
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electron in LA. I do not know if this is the way to go; space-time sub-
stantivalism may be problematic for other reasons related to theoretical
symmetry. Nonetheless, the result reported here provides a clear guide for
developing such alternatives.
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