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1. Introduction

Let L/Qp be a finite extension with ring of integers o = oL , and denote by K ⊃ L a
completely and discretely valued extension of L (whose absolute value extends that
of L). This paper is about admissible locally L-analytic representations of the group
G = GL2(L) on K -vector spaces, cf. [38]. By the theory of Schneider and Teitelbaum,
the category of these representations is (anti-)equivalent to the category of modules M
over the locally analytic distribution algebra D(G, K ) of G which are coadmissible when
considered as modules over the locally analytic distribution algebra D(H, K ), for any
compact open subgroup H ⊂ G. Let V be an admissible locally analytic representation of
G and put M = V ′ := Homcont

K (V, K ), which is then a D(G, K )-module. In [14] Emerton
has highlighted the role played by the subspaces VH◦−an ⊂ V of rigid-analytic vectors

for certain rigid-analytic subgroups H◦ ⊂ GLrig
2,L , where the latter is the rigid-analytic

group associated to the algebraic group GL2,L over L. The rigid-analytic groups which
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we consider here are the wide open principal congruence subgroups G(k)◦ which have
the property that G(k)◦(Cp) = 1+$ k M2(mCp ), where mCp is the maximal ideal of the
valuation ring of Cp and $ ∈ o is a uniformizer. Following the work of Emerton we show
in Lemma 5.2.4 that the continuous dual Mk = (VG(k)◦−an)

′ is then a finitely presented
module over the analytic distribution algebra Dan(G(k)◦, K ) = (O(G(k)◦)⊗̂L K )′.

The first main result of this paper is a localization theory for finitely presented
modules over the rings Dan(G(k)◦, K ). For technical reasons we actually restrict our
attention to modules on which the universal enveloping algebra of gl2,L acts via the
character θ0 which is the central character of the trivial one-dimensional representation.
We therefore consider here the central reduction Dan(G(k)◦, K )θ0 . Now, in order to
develop the localization theory, we make use of certain semistable integral models Xn of
the projective line X0 = P1

o over o1. Denote by Xn the formal completion of Xn along

its special fiber. In § 3, we define and study sheaves D̃(m)
n,k (for k > n) of differential

operators on Xn . When m = 0 the sheaf D̃(0)
n,k is generated by the pull-back of pkTX0 and

the structure sheaf, where TX0 is the relative tangent sheaf of X0 over S = Spec(o). By

p-adic completion, the sheaf D̃(m)
n,k gives rise to a sheaf of p-adically complete differential

operators on Xn which we denote by D̃ (m)
n,k . Then we consider the inductive limit

D̃†
n,k = lim

−→
m

D̃ (m)
n,k

and we put D̃†
n,k,Q = D̃†

n,k ⊗ZQ. The main result of § 4 is that Xn is D̃†
n,k,Q-affine. By

this we mean that every coherent D̃†
n,k,Q-module M is generated (over D̃†

n,k,Q) by its

global sections, and that H i (Xn,M ) = 0 for all i > 0, cf. [3]. In particular, the global

sections functor H0(Xn,−) gives an equivalence of categories of coherent D̃†
n,k,Q-modules

and finitely presented modules over H0(Xn, D̃
†
n,k,Q

)
. Moreover, and this is where the

connection with representation theory is made, the latter ring is canonically isomorphic
Dan(G(k)◦)θ0 .

This D-affinity result for the sheaves D̃†
n,k,Q partly generalizes the work of Huyghe

in [23], where she shows D†
Q-affinity for all projective spaces, and, moreover, considers

differential operators with coefficients. The sheaf of arithmetic differential operators
considered in [23] is identical to our sheaf D̃†

0,0,Q on the smooth model X0. The proofs

which lead to D̃†
n,k,Q-affinity of Xn are in general easy variations of the proofs given

by Huyghe in the case when (n, k) = (0, 0). In many cases we follow her strategy and
arguments word for word, and we do not claim any originality here. In some cases we
have chosen to slightly expand her arguments. And we have decided to first discuss
properties of the sheaves of rings D̃ (m)

n,k (in § 3) and then discuss coherent modules over
these sheaves (in § 4), whereas in [23] this is often done in a more parallel way.

In § 5 we pass to the limit over all n and come back to representations of the
non-compact group G = GL2(L). The sheaves D̃†

n,n,Q assemble to a sheaf of infinite order

differential operators D̃†
∞,Q on the space X∞ = lim

←−n
Xn . The space X∞ has a natural

1When L = Qp these schemes had already been studied in [33].
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GL2(L)-action extending the GL2(o)-action on any of the formal schemes Xn , and D̃†
∞,Q

is equivariant with respect to this action. In this situation, the above equivalences of
categories for each Xn assemble to an equivalence of categories between admissible locally
analytic GL2(L)-representations with trivial infinitesimal character and a full subcategory
of equivariant D̃†

∞,Q-modules.
We remark at this point that some of our constructions are related – in the case of

the smooth formal model – to the work of Ardakov and Wadsley, cf. [2], and the work of

one of us, [34]. Indeed, the family of sheaves of completed differential operators D̃ (0)
0,k,Q,

as defined here, is essentially the same family of sheaves as considered in these papers.
Furthermore, the sheaf D̃†

∞,Q is a kind of Arens–Michael completion of the sheaf of
algebraic differential operators, and as such closely related to the work of Ardakov and
Wadsley, cf. [1]. We would also like to point out that our constructions made here, and the
arguments used in proofs of the main results, carry over to more general, not necessarily
semistable, models, and also to general reductive groups and their flag varieties [24].

In § 6 we compute the equivariant D̃†
∞,Q-modules for a class of examples including

smooth representations, principal series representations and representations coming from
the p-adic upper half plane.

In § 7 we give an application of our methods and show that representations coming
from certain equivariant line bundles (the structure sheaf and the sheaf of differential

forms) on Drinfeld’s first étale covering Σ1
f
−→ Σ0, cf. [13], of the p-adic upper half

plane Σ0 are admissible. Here is a sketch of the arguments for the case of the structure
sheaf. Our aim is to show that M := H0(Σ1,O) is a coadmissible D(GL2(oL))-module. A
crucial step toward this goal is to show M = lim

←−
Mn where Mn is a finitely generated

Dan(G(n)◦)-module. Together with some additional compatibility property, cf. § 7.5,
Emerton’s reformulation of ‘admissibility’ in terms of analytic distribution algebras, cf.
[14], will then ensure that M is a coadmissible D(GL2(oL))-module.

There is a natural admissible covering Σ0(0) ⊂ Σ0(1) ⊂ Σ0(2) ⊂ . . . of Σ0 by affinoids
Σ0(n), and an induced covering of Σ1 by the preimages Σ1(n) = f −1(Σ0(n)). We let Mn =

H0(Σ1(n),O)† be the space of overconvergent rigid-analytic functions on Σ1(n). Our aim
is to ‘sheafify’ this space in a suitable way. A key role is played by specialization maps
spΣ̂i
: Σi → Σ̂i (i = 0, 1) to formal models Σ̂0 and Σ̂1 of Σ0 and Σ1, respectively, and the

fact that the covering map f extends to a morphism f̂ between the formal models. If vn :

Σ̂1(n) ↪→ Σ̂1 is the open embedding, then Berthelot has defined in such a setting a sheaf
v

†
nO on Σ1, cf. [6, § 4], which is supported on Σ1(n). We then consider the sheaf Mn =

f̂∗((spΣ̂1
)∗v

†
nO). This sheaf is supported on the closure Σ̂0(n)cs of Σ̂0(n)s = spΣ̂0

(Σ0(n)).
This closed subset, with its induced reduced subscheme structure, is isomorphic to the
special fiber of Xn (after base change to Fp). More is true: we show that Mn carries the

structure of a coherent D̃†
n,n,Q-module. This is proved by making use of results of Caro

[8], Noot-Huyghe/Trihan [28], Shiho [39] and Tsuzuki [43] on the coherence of the direct
image in crystalline cohomology. The upshot is then that, by our localization theory,
H0(Xn,Mn) = H0(Σ1(n),O)† = Mn is a finitely generated Dan(G(n)◦)-module.

We therefore see that, in this instance, techniques and results from the theory of
crystalline cohomology and arithmetic D-modules can be successfully applied in the
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context of locally analytic representation theory, and we hope that this develops into a
systematic and fruitful interaction between these fields.

Notation. L is a finite extension of Qp, with ring of integers o, uniformizer $ . We let q
denote the cardinality of the residue field o/($) which we also denote by Fq .

2. The integral models Xn and their formal completions Xn

2.1. Construction via blowing up

The integral models Xn have been discussed in detail in [33] in the case when o = Zp. Since

the generalization to the ring of integers o of the finite extension L/Qp is straightforward,

we only briefly recall the construction. Let3 ⊂ L⊕2 be a lattice, and let X = X0 = Proj(3)
be the smooth model of P1

L = Proj(L⊕2) associated to 3. While it is eventually useful to

note that all constructions in §§ 2–4 can be done canonically for an arbitrary lattice 3

we henceforth consider only the case when 3 = o⊕ o is the standard lattice.

Blowing up X0 in the Fq -rational points of its special fiber (i.e., blowing up the

corresponding ideal sheaf) gives a model X1 whose special fiber has q + 2 irreducible

components, all of which are isomorphic to P1
Fq

. Exactly one of these components

intersects transversely every other irreducible component, and we call it the ‘central’

component, whereas the other components are called the ‘outer’ components. The smooth

Fq -rational points lie only on the outer components, and blowing up X1 in these smooth

Fq -valued points of its special fiber produces the model X2. In general, Xn+1 is obtained

by blowing up the smooth Fq -rational points of the special fiber of Xn . For n > n′ we

denote the blow-up morphism from Xn to Xn′ by

prn,n′ : Xn −→ Xn′ .

The morphism prn,0 : Xn → X = X0 is often denoted by pr when n is clear from the

context.

Let Xn be the completion of Xn along its special fiber. Xn has an open affine covering

by ’dumbbell’ shaped formal schemes of the form

Spf
(
o〈x, z〉

[
1

xq−1− 1
,

1
zq−1− 1

]∧/
(xz−$)

)
,

(where (.)∧ denotes the $ -adic completion) together with formal affine lines Â1
o =

Spf(o〈t〉) (which are only needed for the ‘outermost’ components). As above we denote

the blow-up morphisms by prn,n′ . Removing the smooth Fq -rational points from Xn
gives an open subscheme X◦n ⊂ Xn . The morphism prn+1,n : Xn+1 → Xn induces then an

isomorphism from the preimage pr−1
n+1,n(X

◦
n) to X◦n , so that we can consider X◦n as an open

subscheme of Xn+1, which is actually contained in X◦n+1. The inductive limit lim
−→n

X◦n is a

formal model of the p-adic upper half plane over L, cf. § 6.4.1.

2.2. Group actions on Xn

2.2.1. The group schemes G(k). Put

G(0) = G = GL2,o = Spec
(
o

[
a, b, c, d,

1
1

])
,
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where 1 = ad − bc, and the comultiplication is the one given by the usual formulas. For

k > 1 let ak , bk , ck , and dk denote indeterminates. Define an affine group scheme G(k)
over o by setting

O(G(k)) = o

[
ak, bk, ck, dk,

1
1k

]
, where 1k = (1+$ kak)(1+$ kdk)−$

2kbkck,

and let the comultiplication

O(G(k)) −→ O(G(k))⊗oO(G(k)) = o

[
ak, bk, ck, dk, a′k, b′k, c′k, d ′k,

1
1k
,

1
1′k

]
be given by the formulas

ak 7→ ak + a′k + $
kaka′k + $

kbkc′k,
bk 7→ bk + b′k + $

kakb′k + $
kbkd ′k,

ck 7→ ck + c′k + $
kcka′k + $

kdkc′k,
dk 7→ dk + d ′k + $

kdkd ′k + $
kckb′k .

These group schemes are connected by homomorphisms G(k)→ G(k− 1) given on the

level of algebras as follows:

ak−1 7→ $ak, bk−1 7→ $bk, ck−1 7→ $ck, dk−1 7→ $dk,

if k > 1. For k = 1 we put

a 7→ 1+$a1, b 7→ $b1, c 7→ $c1, d 7→ 1+$d1.

For a flat o-algebra R the homomorphism G(k)→ G(0) = G induces an isomorphism of

G(k)(R) with a subgroup of G(R), namely

G(k)(R) =
{(

a b
c d

)
∈ G(R)

∣∣∣∣ a− 1, b, c, d − 1 ∈ $ k R
}
.

Of course, the preceding formulas defining the group schemes are derived formally from

this description by setting a = 1+$ kak , b = $ kbk , c = $ kck , and d = 1+$ kdk .

2.2.2. The rigid-analytic groups G(k)rig and G(k)◦. Let Ĝ(k) be the completion of

G(k) along its special fiber G(k)Fq . This is a formal group scheme over Spf(o). Its generic

fiber in the sense of rigid geometry is an affinoid rigid-analytic group over L which we

denote by G(k)rig. We have for any completely valued field L ′/L (whose valuation extends

the p-adic valuation)

G(k)rig(L ′) =
{(

a b
c d

)
∈ G(oL ′)

∣∣∣∣ a− 1, b, c, d − 1 ∈ $ koL ′

}
.

Furthermore, we let Ĝ(k)◦ be the completion of G(k) in the closed point corresponding to

the unit element in G(k)Fq . This is a formal group scheme over Spf(o) (not of topologically

finite type). Its generic fiber in the sense of Berthelot, cf. [11, § 7.1], is a so-called ‘wide

open’ rigid-analytic group over L which we denote by G(k)◦. We have for any completely

valued field L ′/L (whose valuation extends the p-adic valuation)

G(k)◦(L ′) =
{(

a b
c d

)
∈ G(oL ′)

∣∣∣∣ a− 1, b, c, d − 1 ∈ $ kmoL′

}
.
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Proposition 2.2.3. (i) For k > n the natural action of GL2,L on P1
L extends to an action

of the group scheme G(k) on Xn.

(ii) For k > n the formal group scheme Ĝ(k) acts on Xn. The action of the special fiber

Ĝ(k)s on the special fiber Xn,s of Xn is trivial if k > n.

Proof. (i) Since there is a morphism of group schemes G(k)→ G(n) for k > n, we may

restrict to k = n. We use induction on n, the case of n = 0 being obvious. Suppose the

claim holds for n− 1. Let π : Xn → Xn−1 be the blow-up morphism and let Y ⊂ Xn−1 be

an arbitrary open affine subscheme stable under G(n− 1). Let I ⊂ O(Y ) be the ideal

whose blow-up gives rise to π−1(Y ). Then $ ∈ I . Let A = O(G(n)) and B = O(Y ).
Denote by Is, As and Bs the reductions mod $ . Let c : B → B⊗ A be the comorphism

corresponding to the G(n− 1)-action on Y and let c′ be its reduction mod $ . The

special fiber of the natural o-morphism G(n)→ G(n− 1) factors through the unit section

Spec Fq → G(n− 1)s of the group scheme G(n− 1)s . This means c′(b′) = b′⊗ 1 for all

b′ ∈ B ′ and hence

c(I ) ⊂ I ⊗ A+$(B⊗ A) = I ⊗ A.

Since c is a ring homomorphism, this implies inductively c(I m) ⊂ I m
⊗ A for all m. This

yields an induced comorphism c : R(I )→ R(I )⊗ A where R(I ) :=
⊕

m>0 I m denotes the

blow-up algebra. Hence, the group scheme G(n) acts naturally on π−1(Y ) = Proj(R(I )).
This implies the claim.

(ii) This follows from (i) by passing to formal completions.

2.3. A very ample line bundle on Xn

Let pr : Xn → X = X0 be the blow-up morphism, and let In ⊂ OX be the ideal sheaf that

is blown up. We have In ⊗ZQ = OX⊗ZQ from which we deduce the existence of some

N = N (n) ∈ Z>0 such that2

pNOX ⊂ In ⊂ OX. (2.3.1)

Put S =
⊕

s>0 Is
n , then Xn is glued together from schemes Proj(S(U )) for affine open

subsets U ⊂ X. On each Proj(S(U )) there is an invertible sheaf O(1), and these glue

together to give an invertible sheaf O(1) on Xn which we denote OXn/X(1) (cf. the

discussion in [21, Ch. II, § 7].) This invertible sheaf is in fact the inverse image ideal

sheaf pr−1(In) ·OXn , cf. [21, Ch. II, 7.13]. From (2.3.1) conclude that

pNOXn ⊂ OXn/X(1) ⊂ OXn and OXn ⊂ OXn/X(−1) ⊂ p−NOXn . (2.3.2)

And for any r > 0 we get

pr NOXn ⊂ OXn/X(1)
⊗r
⊂ OXn and OXn ⊂ OXn/X(−1)⊗r

⊂ p−r NOXn . (2.3.3)

Lemma 2.3.4. Let 0 6 n′ 6 n.

(i) (prn,n′)∗(OXn ) = OXn′
.

(ii) For all i > 0 one has Ri (prn,n′)∗(OXn ) = 0.

2In fact, these inclusions hold for N (n) = n, but we will not need this.
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Proof. (i) The morphism prn,n′ : Xn → Xn′ is a birational projective morphism of

noetherian integral schemes, and Xn′ is normal. The assertion then follows exactly as

in the proof of Zariski’s Main Theorem as given in [21, Ch. III, Corollary 11.4].

(ii) We note that Ri (prn,n′)∗(OXn ) vanishes when i > 1, by [21, Ch. III, 11.2]. So we

only consider the case i = 1 now. Using the Leray spectral sequence for the higher direct

images under the composite maps prn−1,n−2 ◦ prn,n−1, together with (i), we see that it

suffices to show that R1(prn,n−1)∗(OXn ) = 0. The sheaf in question certainly vanishes on

X◦n−1, because the restriction of prn,n−1 is an isomorphism

(prn,n−1)
−1(X◦n−1)

'
−→ X◦n−1.

The question is local, and by what we have just seen, it suffices to consider the stalk of

the sheaf R1(prn,n−1)∗(OXn ) at a smooth Fq -rational point P of the special fiber of Xn−1.

Let x be a local coordinate at P, so that P corresponds to the ideal (x,$) ⊂ o[x]. Put

R = o[x], R′ = o[x, z]/(xz−$), R′′ = o[x, t]/(x −$ t).

Blowing up Spec(R) in the ideal (x,$) gives a scheme which is covered by

V0 = Spec(R′) and V1 = Spec(R′′),

where these schemes are glued together via the relation zt = 1. For f ∈ o[x] \ (x,$) we

consider the open affine subset D f = Spec(R f ) ⊂ Spec(R), which is an open neighborhood

of P. The family of all D f forms a fundamental system of open neighborhoods of P. The

preimage (prn,n−1)
−1(D f ) is then the same as the blow-up of D f in P, i.e.,

(prn,n−1)
−1(D f ) = Spec(R′f )∪Spec(R′′f ).

We now compute H1((prn,n−1)
−1(D f ),OXn ) as Čech cohomology. What we then have to

show is that the canonical map

R′f ⊕ R′′f −→ R′f

[
1
z

]
= R′′f

[
1
t

]
, ( f1, f2) 7→ f1− f2,

is surjective. An element in the group on the right-hand side can be written as a finite sum∑
j∈Z a j t j with a j ∈ R f . Then we have f1

def
=

∑
j<0 a j t j

=
∑

j>0 a− j z j
∈ R′f and f2

def
=

−
∑

j>0 a j t j
∈ R′′f . This shows the surjectivity of the map in question and the vanishing

of H1((prn,n−1)
−1(D f ),OXn ). This in turn means that the stalk of R1(prn,n−1)∗(OXn ) at

P vanishes, and hence R1(prn,n−1)∗(OXn ) = 0.

Lemma 2.3.5. There are a0, r0 ∈ Z>0 such that the line bundle

Ln = OXn/X(1)⊗ pr∗(OX(a0)) (2.3.6)

on Xn has the following properties:

(i) Ln is very ample over Spec(o), and it is very ample over X;

(ii) for all r > r0, all d ∈ Z, and all i > 0

Ri pr∗(L⊗r
n ⊗ pr∗(OX(d))) = 0;
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(iii) for all r > r0, all d > 0, and all i > 0

H i (Xn,L⊗r
n ⊗ pr∗(OX(d))) = 0.

Proof. (i) Choosing a0. By [21, Ch. II, Example 7.14(b)], the sheaf

Ln = OXn/X(1)⊗ pr∗(OX(a0)) (2.3.7)

is very ample on Xn over Spec(o) for suitable a0 > 0. We fix such an a0. By [19, 4.4.10(v)]

it is then also very ample over X, and hence (i) is fulfilled.

(ii) Finding r0. By [21, Ch. III, 5.2, 8.8] there is r0 > 0 such that for all r > r0, and all

i > 0, one has

H i (Xn,L⊗r
n ) = H i (Xn,L⊗r

n ⊗ pr∗(OX(−1))) = 0 (2.3.8)

and

Ri pr∗(L⊗r
n ) = 0. (2.3.9)

We fix an r0 with the properties (2.3.8) and (2.3.9). By [21, Ch. III, Example 8.3] we

have for all i > 0

Ri pr∗(Xn,L⊗r
n ⊗ pr∗(OX(d))) = Ri pr∗(L⊗r

n )⊗OX(d). (2.3.10)

Hence (2.3.9) and (2.3.10) together give (ii) when i > 0.

(iii) Consider the exact sequence

0→ OX(−1)→ O⊕2
X → OX(1)→ 0, (2.3.11)

cf. [21, Ch. II, Example 8.20.1]. Tensoring with OX(d) gives

0→ OX(d − 1)→ (OX(d))⊕2
→ OX(d + 1)→ 0. (2.3.12)

Because the sheaves in this sequence are locally free, taking the pull-back to Xn gives the

exact sequence

0→ pr∗(OX(d − 1))→ (pr∗(OX(d)))⊕2
→ pr∗(OX(d + 1))→ 0. (2.3.13)

Tensoring with L⊗r
n gives the exact sequence

0→ L⊗r
n ⊗ pr∗(OX(d − 1))→ (L⊗r

n ⊗ pr∗(OX(d)))⊕2
→ L⊗r

n ⊗ pr∗(OX(d + 1))→ 0.
(2.3.14)

The proof of (iii) is now by induction on d, starting with d = 0 and using (2.3.8).

3. The sheaves D̃ (m)
n,k on Xn

3.1. The sheaves T̃ (m)
n,k

Let go denote the Lie algebra of the group scheme G(0) = GL2,o over o. For k > n the

scheme Xn is equipped with a right action of the group scheme G(k). This gives rise to a

map

Lie(G(k)) = $ kgo→ H0(Xn, TXlog
n
) (3.1.1)

from the Lie algebra $ kgo of G(k) to the global sections of the relative logarithmic

tangent sheaf TXlog
n

of Xn [33]. Denote by T̃n,k the OXn -submodule of TXlog
n

generated by

the image of (3.1.1). Denote by TX the relative tangent sheaf on X = X0 over Spec(o).
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Lemma 3.1.2. (i) T̃n,k = $
k(prn,0)

∗(TX). More generally, for n′ 6 n one has

T̃n,k = $
k−k′(prn,n′)

∗(T̃n′,k′),

where the latter is to be considered as a subsheaf of TXlog
n
⊗o L.

(ii) T̃n,k is locally free of rank one over OXn .

Proof. (i) We note that (prn,0)∗(TXlog
n
) is a subsheaf of TX, and, in fact, we have inclusions

$ nTX ⊂ (prn,0)∗(TXlog
n
) ⊂ TX,

where the inclusion on the left follows from [33, 5.2]. For k > n there is a commutative

diagram
Lie(G(k)) = $ kgo −→ H0(Xn, TXlog

n
)

↓ ↓

Lie(G(0)) = go � H0(X, TX)

with injective vertical arrows. The assertion follows.

(ii) Immediate consequence of (i).

3.2. The sheaves D̃(m)
n,k

Let D̃(m)
0,0 be the sheaf of level m differential operators on the scheme X0 which is smooth

over o, cf. [5, 2.2.1]. This sheaf is filtered by the subsheaves D̃(m)
0,0;d of differential operators

of order less or equal to d. We then let t be a variable and consider the Rees algebra

R(m)t =
⊕

d>0 D̃
(m)
0,0;d td which is a sheaf of rings on X0 with its obvious multiplication. For

any a ∈ o, sending t to a gives a homomorphism of sheaves of o-algebras R(m)t → D̃(m)
0,0 .

Given k ∈ Z>0 and setting a = $ k , we denote the image of this homomorphism by D̃(m)
0,k .

In order to describe this and the sheaves to be introduced below explicitly, we fix an open

affine covering X0 = U0 ∪U1 with U0 = Spec(o[x]), U1 = Spec(o[y]), and where xy = 1 on

the intersection U0 ∩U1 = Spec(o[x, x−1
]) = Spec(o[y, y−1

]). Then, if ∂x and ∂y denote

the derivatives with respect to x and y, respectively, then local sections of D̃(m)
0,k over

U ⊂ U0 are of the form
∑N

d=0 ad
q(m)d !

d! ($
k∂x )

d with ad ∈ OX0(U ). Here, q(m)d denotes the

quotient of the euclidean division of d by pm , cf. [5]. The same holds for local sections

over V ⊂ U1 with ∂x replaced by ∂y .

For any n ∈ Z>0 and k ∈ Z>n we put

D̃(m)
n,k = pr∗n,0

(
D̃(m)

0,k
)
= OXn ⊗pr−1

n,0(OX0 )
pr−1

n,0
(
D̃(m)

0,k
)
.

While this is even defined – as an OXn -module – when 0 6 k 6 n, we claim that this sheaf

is a subsheaf of rings of pr∗n,0(DX0 ⊗Q) when k > n. To see this we use the formulas for

local coordinates on Xn as given in [33, 4.3.5]. Arguing inductively and using the fact

that the blow-up morphism prn,n−1 : Xn → Xn−1 is an isomorphism over the open subset

X◦n−1, cf. [33], it suffices to consider a local coordinate x (n)a on one of the ‘outermost’
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components D(n)a . The special fiber of the latter scheme is an affine line over Fq all of

whose Fq -rational points have been removed except one, and this is the point where the

coordinate x (n)a vanishes. Because of the action of the group GL2(o) we may assume that

x (n)a is related to the coordinate x introduced above by the equation x = $ n x (n)a . (The

prime p has to be replaced by $ in the formulas in [33, 4.3.5].) It then follows that

q(m)d !

d!
($ k∂x )

d .(x (n)a )i =

{
q(m)d !

( i
d

)
$ (k−n)d(x (n)a )i−d d 6 i,

0 d > i,

and this shows that OXn is stable under all differential operators in pr−1
n,0
(
D̃(m)

0,k
)

when

k > n. This in turn proves that D̃(m)
n,k is indeed a sheaf of rings when k > n.

The sheaf D̃(m)
n,k is filtered by the subsheaves D̃(m)

n,k;d of operators of order less than or

equal to d, and we denote the corresponding graded sheaf
⊕

d D̃
(m)
n,k;d/D̃

(m)
n,k;d−1 by gr

(
D̃(m)

n,k
)
.

Proposition 3.2.1. (i) For n′ 6 n one has (prn,n′)
∗
(
D̃(m)

n′,k

)
= D̃(m)

n,k .

(ii) For n′ 6 n one has (prn,n′)∗
(
D̃(m)

n,k
)
= D̃(m)

n′,k .

(iii) There is a canonical isomorphism of graded sheaves of algebras

gr
(
D̃(m)

n,k
)
' Sym(T̃n,k)

(m)
=

⊕
d>0

q(m)d !

d!
T̃ ⊗d

n,k .

(iv) The canonical homomorphism of graded rings

gr
(
H0(Xn, D̃(m)

n,k )
)
−→ H0(Xn, gr

(
D̃(m)

n,k
))

is an isomorphism.

(v) The rings gr
(
H0(Xn, D̃(m)

n,k )
)

and H0(Xn, D̃(m)
n,k ) are noetherian.

(vi) There is a basis of the topology U of Xn, consisting of open affine subsets, such that

for any U ∈ U, the ring H0(U, D̃(m)
n,k ) is noetherian.

Proof. (i) This follows directly from the definition of D̃(m)
n,k .

(ii) The sheaves D̃(m)
0,k;d are locally free of finite rank, and so are the sheaves D̃(m)

n′,k;d , by

(i). We can thus apply the projection formula, together with Lemma 2.3.4, and get

(prn,n′)∗
(
D̃(m)

n,k;d

)
= D̃(m)

n′,k;d .

The assertion follows because the direct image commutes with inductive limits on a

noetherian space.

(iii) We consider the exact sequence on X

0 −→ D̃(m)
0,k;d−1 −→ D̃(m)

0,k;d −→ Symd(T̃0,k)
(m)
−→ 0. (3.2.2)

(Exactness is straightforward in this case.) Now we apply (prn,0)
∗ and use (i).
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(iv) We start again with the case n = 0 and note that

Symd(T̃0,k)
(m)
=

q(m)d !

d!
T̃ ⊗d

0,k =
q(m)d !

d!
$ kdT ⊗d

X ' OX(2d). (3.2.3)

Now we use the exact sequence (3.2.2) and induction on d to conclude that the sheaves

D̃(m)
0,k;d have vanishing higher cohomology. Hence applying H0(−) to the sequence (3.2.2)

gives an exact sequence and therefore the assertion when n = 0. Using point (ii) we reduce

the case for arbitrary n to the case when n = 0.

(v) We note that H0(Xn, gr
(
D̃(m)

n,k
))
= H0(X, gr

(
D̃(m)

0,k
))

. Furthermore, by (3.2.3) we

have gr
(
D̃(m)

0,k
)
' gr

(
D̃(m)

0,0
)
. Because it is well-known that H0(X, gr

(
D̃(m)

0,0
))

is a finitely

generated H0(X, gr
(
D̃(0)

0,0
))

-algebra, and because the latter ring is known to be noetherian

(isomorphic to o[x, y, z]/(xz− y2)), the ring H0(X, gr
(
D̃(m)

0,0
))

is noetherian, and so

is H0(X, gr
(
D̃(m)

0,k
))

. Now we apply (iv) and can conclude that gr
(
H0(Xn, D̃(m)

n,k )
)

is

noetherian. But then H0(Xn, D̃(m)
n,k ) is noetherian as well.

(vi) Take U small enough such that T̃n,k |U is free over OU . Then gr
(
H0(U, D̃(m)

n,k )
)
'

SymO(U )(O(U )[T ])(m), which is known to be noetherian [23, Proposition 1.3.6]. It follows

that H0(U, D̃(m)
n,k ) is noetherian too.

3.2.4. Twisting by Ln. Recall the very ample line bundle Ln from Lemma 2.3.5. In

the following we always use this line bundle to ‘twist’ OXn -modules. If F is a OXn -module

and r ∈ Z we thus put F(r) = F ⊗OXn
L⊗r

n .

Some caveat is in order when we deal with sheaves which are equipped with both a left

and a right OXn -module structure (which may not coincide). For instance, if Fd = D̃(m)
n,k;d

then we let

Fd(r) = D̃(m)
n,k;d(r) = D̃(m)

n,k;d ⊗OXn
L⊗r

n ,

where we consider Fd = D̃(m)
n,k;d as a right OXn -module. Similarly we put D̃(m)

n,k ⊗OXn
L⊗r

n ,

where we consider D̃(m)
n,k as a right OXn -module. Then we have D̃(m)

n,k (r) = lim
−→d

Fd(r). When

we consider the associated graded sheaf of D̃(m)
n,k (r), it is with respect to the filtration by

the Fd(r). The sheaf D̃(m)
n,k (r) is a coherent left D̃(m)

n,k -module.

Proposition 3.2.5. (i) H0(Xn,Sym(pr∗n,0($
kOX(1)⊕2))(m)

)
is a finitely generated

o-algebra, and in particular noetherian.

(ii) For any r ∈ Z the H0(Xn,Sym(pr∗n,0($
kOX(1)⊕2))(m)

)
-module

H0(Xn,Sym
(
pr∗n,0($

kOX(1)⊕2)
)(m)

(r)
)

is finitely generated.

(iii) For any r ∈ Z the H0(Xn,Sym(T̃n,k)
(m))-module H0(Xn,Sym(T̃n,k)

(m)(r)
)

is finitely

generated.

Proof. (i) We note first that by Proposition 3.2.1

H0(Xn,Sym
(
pr∗n,0($

kOX(1)⊕2)
)(m))

= H0(X,Sym
(
$ kOX(1)⊕2)(m)).
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We also note that

Sym($ kOX(1)⊕2)(m) ' Sym(OX(1)⊕2)(m).

The remaining arguments are exactly as in the proof of [23, 4.2.1].

(ii) We first note that

H0(Xn,Sym
(
pr∗n,0($

kOX(1)⊕2)
)(m)

(r)
)

is isomorphic to

H0(X,Sym
(
$ kOX(1)⊕2)(m)

⊗ (prn,0)∗
(
L⊗r ))

which is in turn isomorphic to

H0(X,Sym
(
OX(1)⊕2)(m)

⊗ (prn,0)∗
(
L⊗r )).

It follows from (2.3.3) that

(prn,0)∗(L⊗r ) ⊂ OX(r · a0).

Therefore,

H0(X,Sym
(
OX(1)⊕2)(m)

⊗ (prn,0)∗
(
L⊗r ))

can be considered as a submodule of

H0(X,Sym
(
OX(1)⊕2)(m)

⊗OX(r · a0)
)
.

By [23, 4.2.1], the latter is a finitely generated module over H0(X,Sym(OX(1)⊕2)(m)
)
. As

this ring is noetherian, cf. (i), the submodule considered before is finitely generated too.

(iii) We note first that by Proposition 3.2.1

H0(Xn,Sym(T̃n,k)
(m))
= H0(X,Sym(T̃0,k)

(m))
and

H0(Xn,Sym(T̃n,k)
(m)(r)

)
= H0(X,Sym(T̃0,k)

(m)
⊗ (prn,0)∗

(
L⊗r )).

We have obvious quotient maps coming from taking d = 1 in (2.3.12)

H0(X,Sym
(
$ kOX(1)⊕2)(m))� H0(X,Sym(T̃0,k)

(m))
and

H0(X,Sym
(
$ kOX(1)⊕2)(m)

⊗ (prn,0)∗
(
L⊗r ))� H0(X,Sym(T̃0,k)

(m)
⊗ (prn,0)∗

(
L⊗r )),

and the module structure of H0(X,Sym(T̃0,k)
(m)
⊗ (prn,0)∗

(
L⊗r )) over

H0(X,Sym(T̃0,k)
(m)) comes from the module structure of

H0(X,Sym
(
$ kOX(1)⊕2)(m)

⊗ (prn,0)∗
(
L⊗r ))

over H0(X,Sym($ kOX(1)⊕2)(m)
)

via these quotient maps. Assertion (iii) now follows

from assertion (ii).
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3.3. Global sections of D̃(m)
n,k , D̃ (m)

n,k , and D̃†
n,k,Q

3.3.1. Divided power enveloping algebras. We denote by U (m)
$ k (go) the

o-subalgebra of U (g) = U (go)⊗o L generated by the elements

q(m)ν1
!
($ ke)ν1

ν1!
· q(m)ν2

!$ kν2

(
h1

ν2

)
· q(m)ν3

!$ kν3

(
h2

ν3

)
· q(m)ν4

!
($ k f )ν4

ν4!
. (3.3.2)

We considered the same algebra in [33, 2.7] where it is denoted by U (m)(pkgZp ) (there

we have $ = p). Because this latter notation is potentially misleading, we have changed

it here. We denote by Û (m)
$ k (go) the p-adic completion of U (m)

$ k (go). In the following the

subscript θ0 indicates the same central reduction as in [33, § 3].

Proposition 3.3.3. There is a canonical injective homomorphism of o-algebras

ξ
(m)
n,k : U

(m)
$ k (go)θ0 → H0(Xn, D̃(m)

n,k ), (3.3.4)

and H0(Xn, D̃(m)
n,k ) is a finitely generated module over U (m)

$ k (go)θ0 via ξ
(m)
n,k . In particular,

the ring H0(Xn, D̃(m)
n,k ) is noetherian. Moreover, coker(ξ (m)n,k ) is annihilated by a finite power

of p.

Proof. By Proposition 3.2.1 we have H0(Xn, D̃(m)
n,k ) = H0(X0, D̃(m)

0,k ). The remaining

arguments are as in [33, 3.7].

Now let D̃ (m)
n,k be the p-adic completion of D̃(m)

n,k , which we always consider as a sheaf

on the formal scheme Xn . We also put D̃ (m)
n,k,Q = D̃ (m)

n,k ⊗ZQ, and

D̃†
n,k = lim

−→
m

D̃ (m)
n,k , (3.3.5)

and

D̃†
n,k,Q = D̃†

n,k ⊗ZQ = lim
−→
m

D̃ (m)
n,k,Q. (3.3.6)

Recall the analytic distribution algebra Dan(G(k)◦) of the rigid-analytic group G(k)◦
in the sense of Emerton, cf. [14, Ch. 5]: the space G(k)◦ admits a countable increasing

admissible covering by affinoids and so the vector space of global sections O(G(k)◦) has

a natural Fréchet topology. The continuous linear dual

Dan(G(k)◦) := Homcont
L (O(G(k)◦), L),

equipped with the strong topology and the algebra structure coming from dualizing

the comultiplication in O(G(k)◦), is then a topological L-algebra. For example, a group

element g ∈ G(k)◦(L) gives rise to the linear form f 7→ f (g) in Dan(G(k)◦) as does any

Lie algebra element x ∈ g via f 7→ d
dt f (exp(tx))|t=0. In fact, the latter map identifies the

distribution algebra with the direct limit of noetherian rings

Dan(G(k)◦) = lim
−→
m

Û (m)
$ k (go)Q

with flat transition maps. The ring Dan(G(k)◦) is therefore coherent (cf. [14, Proposition

5.2.3/Corollary 5.3.12] where our U (m)
$ k (go) is denoted by A(m)).
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Proposition 3.3.7. (i) There is a basis of the topology U of Xn, consisting of open affine

subsets, such that for any U ∈ U, the ring H0(U, D̃ (m)
n,k ) is noetherian.

(ii) The transition map D̃ (m)
n,k,Q→ D̃ (m+1)

n,k,Q is flat.

(iii) The sheaf D̃†
n,k,Q is coherent.

(iv) The ring H0(Xn, D̃
(m)
n,k,Q) is canonically isomorphic to the noetherian L-algebra

Û (m)
$ k (go)Q,θ0 .

(v) The ring H0(Xn, D̃
†
n,k,Q) is canonically isomorphic to the coherent L-algebra

Dan(G(k)◦)θ0 .

Proof. (i) Let U be open affine and such that T̃n,k |U is free over OU . Then use that

H0(U, D̃ (m)
n,k ) is the p-adic completion of H0(U, D̃(m)

n,k ). (The proof is similar to the

one given in Proposition 4.2.1.) Because the latter is noetherian, cf. Proposition

3.2.1, the former is noetherian as well.

(ii) Can be proved as in [5, § 3.5].

(iii) Follows from (i) and (ii).

(iv) Follows from Propositions 4.2.1(iii) and 3.3.3. (Note that using Proposition 4.2.1

here does not introduce a circular argument.)

(v) Follows from (iv) and the discussion preceding the proposition.

4. Localization on Xn via D̃†
n,k,Q

The general line of arguments follows fairly closely [23]. The numbers k > n > 0 are fixed

throughout this section, and pr = prn,0 : Xn → X = X0 is the blow-up morphism.

4.1. Cohomology of coherent D̃(m)
n,k -modules

Lemma 4.1.1. Let E be a quasi-coherent OXn -module on Xn. Then, for all i > 2 one has

H i (Xn, E) = 0.

Proof. Since E is the inductive limit of its coherent OXn -submodules, and because

cohomology commutes with inductive limits on a noetherian space, we may assume that

E is coherent. Let f : Xn → Spec(o) be the structure morphism. The sheaves R j f∗(E) are

coherent on Spec(o), cf. [21, Ch. III, 8.8], and have thus vanishing cohomology in positive

degrees. But since the fibers of f are one-dimensional one has R j f∗(E) = 0 for j > 2, cf.

[21, Ch. III, 11.2]. We can now conclude by the Leray spectral sequence for f .

Proposition 4.1.2. Let r0 be as in Lemma 2.3.5. Then, for all r > r0 and all i > 1 one

has

H i (Xn, D̃(m)
n,k (r)

)
= 0. (4.1.3)

Proof. Note that

gr0
(
D̃(m)

n,k (r)
)
= F0(r) = L⊗r

n . (4.1.4)
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For d > 0 we consider the exact sequence

0→ Fd−1 → Fd → grd
(
D̃(m)

n,k
)
→ 0 (4.1.5)

from which we deduce the exact sequence

0→ Fd−1(r)→ Fd(r)→ grd
(
D̃(m)

n,k
)
(r)→ 0 (4.1.6)

because tensoring with a line bundle is an exact functor. It thus follows that

grd
(
D̃(m)

n,k (r)
)
'

q(m)d !

d!
$ dkpr∗(TX)⊗L⊗r

n ' pr∗(OX(2d))⊗L⊗r
n .

Hence by Lemma 2.3.5 we find that the higher cohomology of this sheaf vanishes for all

d > 0. Using the sequence (4.1.6) we can then deduce by induction on d that for all i > 0

H i (Xn,Fd(r)) = 0.

Because cohomology commutes with inductive limits on a noetherian scheme we obtain

the asserted vanishing result.

Proposition 4.1.7. Let E be a coherent D̃(m)
n,k -module.

(i) There is r1(E) ∈ Z such that for all r > r1(E) there is s ∈ Z>0 and an epimorphism

of D̃(m)
n,k -modules (

D̃(m)
n,k (−r)

)⊕s
� E .

(ii) There is r2(E) ∈ Z such that for all r > r2(E) and all i > 0

H i (Xn, E(r)) = 0.

Proof. (i) As Xn is a noetherian scheme, E is the inductive limit of its coherent subsheaves.

There is thus a coherent OXn -submodule F ⊂ E which generates E as a D̃(m)
n,k -module,

i.e., an epimorphism of sheaves D̃(m)
n,k ⊗OXn

F α
−→ E , where D̃(m)

n,k is considered with its

right OXn -module structure. Next, there is r1(E) such that for all r > r1(E) the sheaf

F(r) = F ⊗OXn
L⊗r

n is generated by its global sections. Hence there is s > 0 and an

epimorphism O⊕s
Xn
� F(r), and thus an epimorphism of OXn -modules (OXn (−r))⊕s � F .

From this morphism get an epimorphism of D̃(m)
n,k -modules(

D̃(m)
n,k (−r)

)⊕s
= D̃(m)

n,k ⊗OXn
(OXn (−r))⊕s � D̃(m)

n,k ⊗OXn
F α
−→ E .

(ii) We prove this by descending induction on i . When i > 1 there is nothing to show,

cf. Lemma 4.1.1. We now deduce it for i = 1. Using (i) we find an epimorphism of

D̃(m)
n,k -modules

β :
(
D̃(m)

n,k
)⊕s
� E(r1(E)).

By Proposition 3.2.1, the kernel R = ker(β) is a coherent D̃(m)
n,k -module and we have an

exact sequence

0→ R→
(
D̃(m)

n,k
)⊕s
→ E(r1(E))→ 0,
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which gives for any t ∈ Z the exact sequence

0→ R(t)→
(
D̃(m)

n,k (t)
)⊕s
→ E(t + r1(E))→ 0. (4.1.8)

Now choose r2(E) = max{r0+ r1(E), r2(R)}, where r0 is as in Proposition 4.1.2. Then we

can conclude from the long exact cohomology sequence associated to (4.1.8) that for

r > r2(E)
H1(Xn, E(r)) = 0.

Proposition 4.1.9. Fix r ∈ Z.

(i) There is c1 = c1(r) ∈ Z>0 such that for all i > 0 the sheaf Ri pr∗
(
D̃(m)

n,k (r)
)

on X is

annihilated by pc1 . Furthermore, it is a skyscraper sheaf, and it is a coherent module

over D̃(m)
0,k .

(ii) There is c2 = c2(r) ∈ Z>0 such that for all i > 0 the cohomology group

H i (Xn, D̃(m)
n,k (r)) is annihilated by pc2 . Furthermore, it is a finitely generated module

over H0(Xn, D̃(m)
n,k ).

(iii) Let E be a coherent D̃(m)
n,k -module. There is c3 = c3(E) ∈ Z>0 such that for all i > 0

the cohomology group H i (Xn, E) is annihilated by pc3 . Furthermore, it is a finitely

generated module over H0(Xn, D̃(m)
n,k ).

Proof. (i) The direct image functor commutes with inductive limits, and we thus consider

the sheaves

D̃(m)
n,k;d(r) = D̃(m)

n,k;d ⊗OXn
L⊗r

n ,

where, as before, we consider D̃(m)
n,k;d as a right OXn -module. Because the fibers of pr are

of dimension zero or one, we have

Ri pr∗
(
D̃(m)

n,k;d(r)
)
= 0

for i > 1, by [21, Ch. III, 11.2]. Now let i = 1. Using the projection formula and

Proposition 3.2.1 we deduce that

R1pr∗
(
D̃(m)

n,k;d(r)
)
= D̃(m)

0,k;d ⊗ R1pr∗(L⊗r
n )

= D̃(m)
0,k;d ⊗OX(r · a0)⊗ R1pr∗

(
OXn/X(1)

⊗r ). (4.1.10)

By (2.3.2) and Lemma 2.3.4 we can conclude that R1pr∗
(
OXn/X(1)

⊗r ) is a torsion sheaf,

and because it is coherent, it is thus annihilated by a pc1 for some c1 = c1(r) > 0.

Furthermore, because pr is an isomorphism from pr−1(X \X(Fq)) to X \X(Fq), the sheaf

R1pr∗
(
D̃(m)

n,k;d(r)
)

is supported on X(Fq). It follows from (4.1.10) that

R1pr∗
(
D̃(m)

n,k (r)
)
= D̃(m)

0,k ⊗OX(r · a0)⊗ R1pr∗
(
OXn/X(1)

⊗r ),
which shows that it is a coherent D̃(m)

0,k -module.
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(ii) By Lemma 4.1.1 there is nothing to show for i > 1. In order to compute H1 we

consider the exact sequence of low-degree terms for the Leray spectral sequence for the

morphism pr and the sheaf D̃(m)
n,k;d(r) on Xn :

0→ H1(X, D̃(m)
0,k;d ⊗ pr∗(L⊗r

n )
)
→ H1(Xn, D̃(m)

n,k;d(r)
)

→ H0(X, D̃(m)
0,k;d ⊗ R1pr∗(L⊗r

n )
)
→ 0. (4.1.11)

In order to show the first assertion in (ii) we use (i) and are thus reduced to showing that

H1(X, D̃(m)
0,k ⊗ pr∗(L⊗r

n )
)

is annihilated by a power of p. We first show that it is a finitely generated o-module,

and then use the fact that coherent D̃(m)
0,k,Q-modules have vanishing higher cohomology,

by [3]. We put Fd = D̃(m)
0,k;d and

Fd,r = D̃(m)
0,k;d ⊗OX pr∗(L⊗r

n ),

where, as before, we consider D̃(m)
0,k;d as a right OX-module3. More generally, when G is a

OX-module, we put Gr = G⊗ pr∗(L⊗r
n ). We let d, e > 0 and consider the exact sequence

0 −→ Fd −→ Fd+e −→ Fd+e/Fd −→ 0. (4.1.12)

Because the sheaves in this sequence are locally free, tensoring with pr∗(L⊗r
n ) gives an

exact sequence

0 −→ Fd,r −→ Fd+e,r −→ (Fd+e/Fd)r −→ 0. (4.1.13)

and thus an exact sequence

0 −→ (Fd+e/Fd)r −→ (Fd+e+1/Fd)r −→ (Fd+e+1/Fd+e)r −→ 0. (4.1.14)

It follows from (4.1.12), together with Proposition 3.2.1, that the sheaf on the right of

(4.1.14) is isomorphic to

q(m)d !

d!
T̃ ⊗(d+e+1)

0,k ⊗ pr∗(L⊗r
n ) =

q(m)d !

d!
$ k(d+e+1)T ⊗(d+e+1)

X ⊗ pr∗(L⊗r
n )

' OX(2(d + e+ 1))⊗ pr∗(L⊗r
n ).

Let d0 be such that for all d > d0 the sheaf OX(2(d + 1))⊗ pr∗(L⊗r
n ) is acyclic. Using

this fact and (4.1.14), we see by induction on e that all sheaves Fd0+e,r/Fd0,r , where

e > 0, are acyclic as well. The long exact cohomology sequence associated to (4.1.13)

shows that, for all e > 0, the canonical map

H i (X,Fd0,r ) −→ H i (X,Fd0+e,r ) (4.1.15)

is an isomorphism for i > 2 and surjective for i = 1. This proves that

H i (X, D̃(m)
0,k ⊗ pr∗(L⊗r

n )
)

3We note that, with the convention introduced above, the sheaf Fd (r) is not the same as Fd,r .
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is a finitely generated o-module, as cohomology commutes with inductive limits on a

noetherian scheme, and Fd0 is coherent over OX.

By Proposition 3.2.1 the sheaf D̃(m)
0,k ⊗ pr∗(L⊗r

n ) is a coherent D̃(m)
0,k -module which is

quasi-coherent as OX-module. By [3], coherent D̃(m)
0,k,Q-modules which are quasi-coherent

as OX,Q-modules have vanishing higher cohomology. This implies that

H1(X, D̃(m)
0,k ⊗ pr∗(L⊗r

n )
)

is annihilated by a power of p. Analogous to (4.1.11) we have an exact sequence

0→ H1(X, D̃(m)
0,k ⊗ pr∗(L⊗r

n )
)
→ H1(Xn, D̃(m)

n,k (r)
)

→ H0(X, D̃(m)
0,k ⊗ R1pr∗(L⊗r

n )
)
→ 0.

As we have just seen, the cohomology group on the left is a finite group of p-power order.

Now we consider the cohomology group on the right. Because R1pr∗(L⊗r
n ) is a skyscraper

sheaf, the canonical homomorphism

H0(X, D̃(m)
0,k
)
⊗o H0(X, R1pr∗(L⊗r

n )
)
−→ H0(X, D̃(m)

0,k ⊗ R1pr∗(L⊗r
n )

)
,

is easily seen to be surjective. This shows that H0(X, D̃(m)
0,k ⊗ R1pr∗(L⊗r

n )
)

is a

finitely generated module over H0(X, D̃(m)
0,k ), but the latter is equal to H0(Xn, D̃(m)

n,k ),

by Proposition 3.2.1. Therefore, H1(Xn, D̃(m)
n,k (r)

)
is also a finitely generated

H0(Xn, D̃(m)
n,k )-module.

(iii) The proof proceeds by descending induction on i . For i > 2 there is nothing to

show by Lemma 4.1.1. Using Proposition 4.1.7 we obtain a surjection of D̃(m)
n,k -modules

β :
(
D̃(m)

n,k (−r)
)⊕s
� E for suitable s and r . The D̃(m)

n,k -module R = ker(β) is coherent

too, by Proposition 3.2.1. Because the statement is true for i = 2 (for all coherent

D̃(m)
n,k -modules, hence for R), we get from the exact sequence

H1(Xn,
(
D̃(m)

n,k (−r)
)⊕s)
→ H1(Xn, E)→ H2(Xn,R) = 0,

together with part (ii), that the assertion is true for i = 1.

Proposition 4.1.16. Fix r ∈ Z.

(i) The canonical injective homomorphism

H0(Xn, D̃(m)
n,k;d(r)

)/
H0(Xn, D̃(m)

n,k;d−1(r)
)
−→ H0(Xn, grd

(
D̃(m)

n,k (r)
))

is an isomorphism for d � 0.

(ii) The canonical map of graded abelian groups

gr
(
H0(Xn, D̃(m)

n,k (r)
))
−→ H0(Xn, gr

(
D̃(m)

n,k (r)
))

is injective and its cokernel is finitely generated over o.
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Proof. The arguments are similar to those used in the proof of Proposition 4.1.9 (ii). As

there, put

Fd,r = D̃(m)
0,k;d ⊗OX pr∗(L⊗r

n ).

Note that H0(Xn, D̃(m)
n,k;d(r)

)
= H0(X,Fd,r ), by Proposition 3.2.1. From (4.1.13) we see

that there is a map of exact sequences

0 → Fd−1,r → Fd,r →
(
Fd/Fd−1

)
r → 0

↓ ↓ ↓

0 → Fd,r → Fd+1,r →
(
Fd+1/Fd

)
r → 0

where the vertical arrow on the right is the zero map. From this we get a map of long

exact sequences

0 // H0(Fd−1,r ) //

��

H0(Fd,r ) //

��

H0((Fd/Fd−1)r ) //

σd

��

H1(Fd−1,r )

τd

��
0 // H0(Fd,r ) // H0(Fd+1,r ) // H0((Fd+1/Fd)r ) // H1(Fd,r )

(4.1.17)

(We write H i (−) for H i (X,−) here.) There is d0 such that for all d > d0 one has

H1(X, (Fd/Fd−1)r ) = 0

and the map H1(Fd−1,r )→ H1(Fd,r ) is thus surjective for d > d0. Hence H1(Fd0−1,r )→

H1(Fd,r ) is surjective for d > d0. For d > d0 consider the submodules

N ′d = ker(H1(Fd0−1,r )→ H1(Fd,r ))

and

Nd = ker(H1(Fd,r )→ H1(Fd+1,r )).

The submodules N ′d form an increasing sequence, and since H1(Fd0−1,r
)

is noetherian, this

sequence must be stationary, i.e., there exists d1 > d0 such that N ′d = N ′d+1 for all d > d1.

But then Nd = 0 for all d > d1, and the maps H1(Fd,r )→ H1(Fd+1,r ) are isomorphisms
for d > d1. Now we consider the map τd in (4.1.17). For d > d1+ 1 the map τd is an

isomorphism, by what we have just seen. Since the map σd in (4.1.17) is the zero map,

we conclude that the map H0((Fd/Fd−1)r
)
→ H1(Fd,r ) is the zero map for d > d1+ 1,

and the sequence

0 −→ H0(Fd−1,r ) −→ H0(Fd,r ) −→ H0((Fd/Fd−1)r ) −→ 0

is therefore exact. This proves (i), and (ii) follows immediately from (i).

Corollary 4.1.18. Let E be a coherent D̃(m)
n,k -module. Then H0(Xn, E) is a finitely generated

module over H0(Xn, D̃(m)
n,k ).

https://doi.org/10.1017/S1474748016000396 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000396


Locally analytic representations of GL(2, L) via semistable models of P1 145

Proof. Using Proposition 4.1.7 we get an exact sequence of coherent D̃(m)
n,k -modules

0 −→ R −→
(
D̃(m)

n,k (−r)
)⊕s
−→ E −→ 0,

passing to the long exact cohomology sequence gives

0→ H0(Xn,R)→ H0(Xn,
(
D̃(m)

n,k (−r)
)⊕s)
→ H0(Xn, E)

δ
−→ H1(Xn,R).

By Proposition 4.1.9 the group on the right is a finitely generated H0(Xn, D̃(m)
n,k )-module.

Because H0(Xn, D̃(m)
n,k ) is noetherian, cf. Proposition 3.2.1, it follows that im(δ) is

also finitely generated over this ring. We are therefore reduced to showing that

H0(Xn, D̃(m)
n,k (−r)

)
is a finitely generated H0(Xn, D̃n,k)-module. This is the case if

gr
(
H0(Xn, D̃(m)

n,k (−r)
))

is a finitely generated gr
(
H0(Xn, D̃(m)

n,k
))

-module. We know that

H0(Xn, gr
(
D̃(m)

n,k
)
(−r)

)
is a finitely generated H0(Xn, gr

(
D̃(m)

n,k
))

-module, by Propositions 3.2.5 and 3.2.1.

By Proposition 3.2.1 we have H0(Xn, gr
(
D̃(m)

n,k
))
= gr

(
H0(Xn, D̃(m)

n,k )
)
, and the injective

canonical map

gr
(
H0(Xn, D̃(m)

n,k (−r)
))
−→ H0(Xn, gr

(
D̃(m)

n,k
)
(−r)

)
is a homomorphism of gr

(
H0(Xn, D̃(m)

n,k )
)
-modules. Because the latter ring is noetherian,

we conclude that gr
(
H0(Xn, D̃(m)

n,k (−r)
))

is a finitely generated gr
(
H0(Xn, D̃(m)

n,k
))

-module.

4.2. Cohomology of coherent D̃ (m)
n,k,Q-modules

Proposition 4.2.1. 4 Let E be a coherent D̃(m)
n,k -module on Xn and Ê = lim

←− j
E/p j+1E its

p-adic completion, which we consider as a sheaf on Xn.

(i) For all i > 0 one has H i (Xn, Ê) = lim
←− j

H i (Xn, E/p j+1E).

(ii) For all i > 0 one has H i (Xn, Ê) = H i (Xn, E).
(iii) H0(Xn, Ê) = lim

←− j
H0(Xn, E)/p j+1 H0(Xn, E).

Proof. (i) Put E j = E/p j+1E . Let Et be the subsheaf defined by Et (U ) = E(U )tor, where

the right-hand side denotes the group of torsion elements in E(U ). This is indeed a

sheaf (and not only a presheaf) because Xn is a noetherian space. Furthermore, Et

is a D̃(m)
n,k -submodule of E . Because the sheaf D̃(m)

n,k has noetherian rings of sections

over open affine subsets of Xn , cf. Proposition 3.2.1, the submodule Et is a coherent

D̃(m)
n,k -module. Et is thus generated by a coherent OXn -submodule F of Et . The submodule

F is annihilated by a fixed power pc of p, and so is Et . Put G = E/Et , which is again

4Statement and proof are as in [23, 3.2].
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a coherent D̃(m)
n,k -module. Using Proposition 4.1.9, we can then assume, after possibly

replacing c by a larger number, that

(a) pcEt = 0,
(b) for all i > 0 : pc H i (Xn, E) = 0,
(c) for all i > 0 : pc H i (Xn,G) = 0.

Let j, ` be integers which are greater or equal to c. Denote by ν` : G → E the map induced

by multiplication by p`+1, so that we have an exact sequence

0 −→ G ν`
−→ E −→ E` −→ 0, (4.2.2)

where E j = E/p j+1E . Consider the morphism of two such sequences

0 // G
ν`+ j //

p j

��

E //

id
��

E`+ j //

��

0

0 // G ν` // E // E` // 0

(4.2.3)

We get hence a morphism of long exact sequences

H i (Xn,G)
H i (ν`+ j ) //

p j

��

H i (Xn, E)
α`+ j //

id
��

H i (Xn, E`+ j ) //

λ`+ j,`
��

H i+1(Xn,G)

p j

��
H i (Xn,G)

H i (ν`) // H i (Xn, E)
α` // H i (Xn, E`)

β` // H i+1(Xn,G)
(4.2.4)

Because we assume j > c the vertical map on the right is the zero map, and hence

β` ◦ λ`+ j,` = 0, which means that im(λ`+ j,`) is contained in im(α`). Since λ`+ j,` ◦α`+ j =

α`, we find that im(λ`+ j,`) = im(α`) for all j > c. Therefore, the projective system

(H i (Xn, E j )) j , with the transition maps given by the λ j ′, j with j ′ > j , satisfies the

Mittag–Leffler condition for any i > 0.

We now want to apply the proposition [20, Ch. 0, 13.3.1]. The transition maps

of the system (E j ) j are obviously surjective, which gives the third condition of that

proposition. Moreover, if U ⊂ Xn is an open affine subset, then we have H i (U, E j ) = 0
for i > 0, because E j is quasi-coherent over OXn . This implies the second condition of

that proposition. It follows that the exact sequence

0 −→ E`
p j

−→ E`+ j −→ E j −→ 0

stays exact after taking sections over U . Hence the system (H0(U, E j )) j satisfies the

Mittag–Leffler condition, which, together with the vanishing of higher cohomology on U
observed before, means that the first condition of [20, Ch. 0, 13.3.1] is fulfilled. Because

we have proven above that the system (H i (Xn, E j )) j satisfies the Mittag–Leffler condition

for any i > 0, it now follows from [20, Ch. 0, 13.3.1] that for all i > 0

H i (Xn, Ê) = lim
←−

j

H i (Xn, E/p j+1E).

Hence we have proved the first assertion.
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(ii) For the second assertion we consider again the diagram (4.2.4) and notice that the

maps H i (ν`) are zero maps for i > 0 and ` > c, and thus α` is an isomorphism onto its

image, for these i and `. Therefore, the projective limit of the (H i (Xn, E j )) j is equal to

H i (Xn, E) when i > 0.

(iii) As above, we let `, j > c be integers, and we consider the exact sequence

0→ Et → E p`+1

−→ E`→ 0.

This sequence splits into two exact sequences

0→ Et → E u
−→ G → 0 and 0→ G ν`

−→ E → E`→ 0.

The long exact cohomology sequences to these sequences begin as follows:

0 → H0(Xn, Et ) → H0(Xn, E)
u
−→ H0(Xn,G) → H1(Xn, Et )

0 → H0(Xn,G)
ν`
−→ H0(Xn, E) → H0(Xn, E`) → H1(Xn,G).

From the second of these exact sequences and the morphism of exact sequences (4.2.3)

we obtain the following morphism of exact sequences

0 // H0(Xn,G)
ν`+ j //

p j

��

H0(Xn, E)
α`+ j //

id
��

H0(Xn, E`+ j ) //

λ`+ j,`
��

H1(Xn,G)

p j

��
0 // H0(Xn,G)

ν` // H0(Xn, E)
α` // H0(Xn, E`)

β` // H1(Xn,G)
(4.2.5)

The composition ν` ◦ u is equal to the multiplication by p`+1, and we get therefore a

canonical surjection

σ` : H0(Xn, E)/p`+1 H0(Xn, E)� H0(Xn, E)/ν`(H0(Xn,G)).

The homomorphisms σ` form a morphism of projective systems. Because ν` is injective,

we have a canonical isomorphism

ker(σ`) = ν`(H0(Xn,G))/p`+1 H0(Xn, E)
= ν`(H0(Xn,G))/ν`(u(H0(Xn, E)))
' H0(Xn,G)/u(H0(Xn, E)) = coker(H0(u)),

and coker(H0(u)) embeds into H1(Xn,G) which is annihilated by pc. Furthermore, the

morphism of exact sequences

0 // Et //

p j

��

E
p`+ j+1

//

p j

��

E //

id
��

E`+ j //

��

0

0 // Et // E
p`+1

// E // E` // 0
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induces a morphism of short exact sequences

0 // coker(H0(u)) //

p j

��

H0(Xn, E)/p`+ j+1 H0(Xn, E) //

��

H0(Xn, E)/ν`+ j (H0(Xn,G) //

��

0

0 // coker(H0(u)) // H0(Xn, E)/p`+1 H0(Xn, E) // H0(Xn, E)/ν`(H0(Xn,G) // 0

The projective limit lim
←−`

ker(σ`) vanishes thus, and the system (σ`)` induces an

isomorphism

lim
←−
`

H0(Xn, E)/p`+1 H0(Xn, E)
'
−→ lim
←−
`

H0(Xn, E)/ν`(H0(Xn,G)

and, by looking at (4.2.5), we see that the right-hand side is in turn canonically isomorphic

to lim
←−`

H0(Xn, E`) = H0(Xn, Ê), by assertion (i).

Corollary 4.2.6. The ring H0(Xn, D̃
(m)
n,k ) is noetherian.

Proof. This follows from (iii) of the preceding proposition together with Proposition

3.3.3.

Proposition 4.2.7. Let E be a coherent D̃ (m)
n,k -module.

(i) There is r1(E ) ∈ Z such that for all r > r1(E ) there is s ∈ Z>0 and an epimorphism

of D̃ (m)
n,k -modules (

D̃ (m)
n,k (−r)

)⊕s
� E .

(ii) There is r2(E ) ∈ Z such that for all r > r2(E ) and all i > 0

H i (Xn,E (r)) = 0.

Proof. (i) Because E is a coherent D̃ (m)
n,k -module, and because H0(U, D̃ (m)

n,k ) is a noetherian

ring for all open affine subsets U ⊂ Xn , cf. Proposition 3.3.7, the torsion submodule

Et ⊂ E is again a coherent D̃ (m)
n,k -module. As Xn is quasi-compact, there is c ∈ Z>0 such

that pcEt = 0. Put G = E /Et and G0 = G /pG . For j > c one has an exact sequence

0→ G0
p j+1

−→ E j+1 → E j → 0.

We note that the sheaf G0 is a coherent module over D̃ (m)
n,k /pD̃ (m)

n,k . Because the canonical

map of sheaves of rings on Xn

D̃(m)
n,k /pD̃(m)

n,k −→ D̃ (m)
n,k /pD̃ (m)

n,k (4.2.8)

(note that the source is a sheaf on Xn which is supported on the special fiber and thus

considered a sheaf on Xn) is an isomorphism, G0 can be considered as a module over the

sheaf on the left-hand side of (4.2.8), and thus as a D̃(m)
n,k -module. It is then automatically

a coherent D̃(m)
n,k -module. Hence we can apply Proposition 4.1.7 and deduce that there is
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r2(G0) such that for all r > r2(G0) one has H1(Xn,G0(r)) = 0. The canonical maps

H0(Xn,E j+1(r)) −→ H0(Xn,E j (r)) (4.2.9)

are thus surjective for r > r2(G0) and j > c. Similarly, Ec is a coherent module over

D̃(m)
n,k /pcD̃(m)

n,k -module, in particular a coherent D̃(m)
n,k -module. By Proposition 4.1.7 there

is r1(Ec) such that for every r > r1(Ec) there is s ∈ Z>0 and a surjection

λ :
(
D̃(m)

n,k /pcD̃(m)
n,k
)⊕s
� Ec(r).

Let r1(E ) = max{r2(G0), r1(Ec)}, and assume from now on that r > r1(E ). Let e1, . . . , es
be the standard basis of the domain of λ, and use (4.2.9) to lift each λ(et ), 1 6 t 6 s, to

an element of

lim
←−

j

H0(Xn,E j (r)) ' H0(Xn, Ê (r)),

by Proposition 4.2.1(i). But Ê (r) = Ê (r), and Ê = E , as follows from [5, 3.2.3(v)]. This

defines a morphism
(
D̃ (m)

n,k
)⊕s
−→ E (r) which is surjective because, modulo pc, it is a

surjective morphism of sheaves coming from coherent D̃ (m)
n,k -modules by reduction modulo

pc, cf. [5, 3.2.2(ii)].

(ii) We deduce from Propositions 4.1.2 and 4.2.1 that for all i > 0

H i (Xn, D̃
(m)
n,k (r)

)
= 0,

whenever r > r0, where r0 is as in Lemma 2.3.5. We prove the statement in (ii) by

descending induction on i . When i > 2 there is nothing to show because Xn is a

one-dimensional noetherian space. We now deduce it for i = 1. Using (i) we find an

epimorphism of D̃ (m)
n,k -modules

β :
(
D̃ (m)

n,k
)⊕s
� E

(
r1(E )

)
.

The kernel R = ker(β) is a coherent D̃ (m)
n,k -module and we have an exact sequence

0→ R →
(
D̃ (m)

n,k
)⊕s
→ E (r1(E ))→ 0,

which gives for any t ∈ Z the exact sequence

0→ R(t)→
(
D̃ (m)

n,k (t)
)⊕s
→ E (t + r1(E ))→ 0. (4.2.10)

Now choose r2(E ) = max{r0+ r1(E ), r2(R)}, where r0 is as before. Then we can conclude

from the long exact cohomology sequence associated to (4.2.10) that for r > r2(E )

H1(Xn,E (r)) = 0.

Proposition 4.2.11. Let E be a coherent D̃ (m)
n,k -module.

(i) There is c = c(E ) ∈ Z>0 such that for all i > 0 the cohomology group H i (Xn,E ) is

annihilated by pc. Furthermore, it is a finitely generated module over H0(Xn, D̃
(m)
n,k ).

(ii) H0(Xn,E ) = lim
←− j

H0(Xn,E )/p j H0(Xn,E ).
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Proof. (i) There is nothing to show for i > 2. We now deduce the case i = 1 from the

case i = 2. Use Proposition 4.2.7(i) to find a surjection of D̃ (m)
n,k -modules

β :
(
D̃ (m)

n,k (−r)
)⊕s
� E .

Let R = ker(β) which is again a coherent D̃ (m)
n,k -module. Applying the long exact

cohomology sequence to the exact sequence

0 −→ R −→
(
D̃ (m)

n,k (−r)
)⊕s
−→ E −→ 0

we find that H1(Xn, D̃
(m)
n,k (−r)

)⊕s
surjects onto H1(Xn,E ). By Proposition 4.2.1 we have

H1(Xn, D̃
(m)
n,k (−r)) = H1(Xn, D̃(m)

n,k (−r)),

and this is annihilated by a finite power of p, by Proposition 4.1.9. Furthermore,

H1(Xn, D̃(m)
n,k (−r)) is a finitely generated H0(Xn, D̃(m)

n,k )-module, by Proposition 4.1.9, and

hence a finitely generated H0(Xn, D̃
(m)
n,k )-module.

(ii) Let Et ⊂ E be the subsheaf of torsion elements and G = E /Et . Then the discussion

in the beginning of the proof of Proposition 4.2.1 shows that there is c ∈ Z>0 such that

pcEt = 0. Part (i) gives that pc H1(Xn,E ) = pc H1(Xn,G ) = 0, after possibly increasing c.

Now we can apply the same reasoning as in the proof of Proposition 4.2.1(iii) to conclude

that assertion (ii) is true.

Proposition 4.2.12. Let E be a coherent D̃ (m)
n,k -module. Then H0(Xn,E ) is a finitely

generated H0(Xn, D̃
(m)
n,k )-module.

Proof. By Proposition 4.2.7 there is an exact sequence of coherent D̃ (m)
n,k -modules

0 −→ R −→
(
D̃ (m)

n,k (−r)
)⊕s
−→ E −→ 0.

The long exact cohomology sequence begins as follows

0→ H0(Xn,R)→ H0(Xn,
(
D̃ (m)

n,k (−r)
)⊕s)
→ H0(Xn,E )→ H1(Xn,R).

By Proposition 4.2.11 the group on the right is finitely generated over H0(Xn, D̃
(m)
n,k ).

Because H0(Xn, D̃
(m)
n,k ) is noetherian, cf. Corollary 4.2.6,

im(H0(Xn,E )→ H1(Xn,R))

is finitely generated over H0(Xn, D̃
(m)
n,k ) as well. It follows from Corollary 4.1.18 and

Proposition 4.2.1 that the group

H0(Xn,
(
D̃ (m)

n,k (−r)
)⊕s)

is finitely generated over H0(Xn, D̃
(m)
n,k ), and so is then H0(Xn,E ).
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4.2.13. Let Coh(D̃ (m)
n,k ) (respectively Coh(D̃ (m)

n,k,Q)) be the category of coherent

D̃ (m)
n,k -modules (respectively D̃ (m)

n,k,Q-modules). Let Coh(D̃ (m)
n,k )Q be the category of coherent

D̃ (m)
n,k -modules up to isogeny. We recall that this means that Coh(D̃ (m)

n,k )Q has the same

class of objects as Coh(D̃ (m)
n,k ), and for any two objects M and N one has

HomCoh(D̃ (m)
n,k )Q

(M,N ) = HomCoh(D̃ (m)
n,k )
(M,N )⊗ZQ.

Proposition 4.2.14. (i) The functor M 7→MQ =M⊗ZQ induces an equivalence

between Coh(D̃ (m)
n,k )Q and Coh(D̃ (m)

n,k,Q).

(ii) For every coherent D̃†
n,k,Q-module M there is m > 0 and a coherent D̃ (m)

n,k,Q-module

Mm and an isomorphism of D̃†
n,k,Q-modules

ε : D̃†
n,k,Q⊗D̃ (m)

n,k,Q
Mm

'
−→M .

If (m′,Mm′ , ε
′) is another such triple, then there is ` > max{m,m′} and an

isomorphism of D̃ (`)
n,k,Q-modules

ε` : D̃
(`)
n,k,Q⊗D̃(m)

n,k,Q
Mm

'
−→ D̃ (`)

n,k,Q⊗D̃(m′)
n,k,Q

Mm′

such that ε′ ◦
(
idD̃†

n,k,Q
⊗ ε`

)
= ε.

Proof. (i) This is [5, 3.4.5]. Note that the sheaf D̃ (m)
n,k satisfies the conditions in [5, 3.4.1],

by Proposition 3.3.7. We point out that the formal scheme X in [5, § 3.4] is not supposed

to be smooth over a discrete valuation ring, but only locally noetherian, cf. [5, § 3.3].

(ii) This is [5, 3.6.2]. In this reference the formal scheme is supposed to be noetherian

and quasi-separated, but not necessarily smooth over a discrete valuation ring.

Corollary 4.2.15. Let E be a coherent D̃ (m)
n,k,Q-module. Then H0(Xn,E ) is a finitely

generated H0(Xn, D̃
(m)
n,k,Q)-module.

Proof. By Proposition 4.2.14 there is a coherent D̃ (m)
n,k -module F such that F ⊗ZQ ' E .

Now we can apply Proposition 4.2.12 to F .

Theorem 4.2.16. Let E be a coherent D̃ (m)
n,k,Q-module (respectively D̃†

n,k,Q-module).

(i) There is r(E ) ∈ Z such that for all r > r(E ) there is s ∈ Z>0 and an epimorphism

of D̃ (m)
n,k,Q-modules (respectively D̃†

n,k,Q-modules)(
D̃ (m)

n,k,Q(−r)
)⊕s
� E

(
respectively

(
D̃†

n,k,Q(−r)
)⊕s
� E

)
.

(ii) For all i > 0 one has H i (Xn,E ) = 0.
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Proof. (a) We first show both assertions (i) and (ii) for a coherent D̃ (m)
n,k,Q-module E . By

Proposition 4.2.14(i) there is a coherent D̃ (m)
n,k -module F such that F ⊗ZQ = E . We use

Proposition 4.2.7 to find for every r > r1(F ) a surjection(
D̃ (m)

n,k (−r)
)⊕s
� F ,

for some s (depending on r). Tensoring with Q gives then the desired surjection onto E .

Hence assertion (i). Furthermore, for i > 0

H i (Xn,E ) = H i (Xn,F )⊗ZQ = 0,

by Proposition 4.2.11, and this proves (ii).

(b) Now suppose E is a coherent D̃†
n,k,Q-module. By Proposition 4.2.14(ii) there is

m > 0 and a coherent module Em over D̃ (m)
n,k,Q and an isomorphism of D̃†

n,k,Q-modules

D̃†
n,k,Q⊗D̃ (m)

n,k,Q
Em

'
−→ E .

Now use what we have just shown for Em in (a) and get the sought for surjection after

tensoring with D̃†
n,k,Q. This proves the first assertion. We have

E = D̃†
n,k,Q⊗D̃ (m)

n,k,Q
Em = lim

−→
`>m

D̃ (`)
n,k,Q⊗D̃ (m)

n,k,Q
Em = lim

−→
`>m

E`,

where E` = D̃ (`)
n,k,Q⊗D̃ (m)

n,k,Q
Em is a coherent D̃ (`)

n,k,Q-module. Then we have for i > 0

H i (Xn,E ) = lim
−→
`>m

H i (Xn,E`) = 0,

by part (a). And this proves assertion (ii).

4.3. Xn is D̃ (m)
n,k,Q-affine and D̃†

n,k,Q-affine

Proposition 4.3.1. (i) Let E be a coherent D̃ (m)
n,k,Q-module. Then E is generated by its

global sections as D̃ (m)
n,k,Q-module. Furthermore, E has a resolution by finite free

D̃ (m)
n,k,Q-modules.

(ii) Let E be a coherent D̃†
n,k,Q-module. Then E is generated by its global sections

as D̃†
n,k,Q-module. H0(Xn,E ) is a H0(Xn, D̃

†
n,k,Q)-module of finite presentation.

Furthermore, E has a resolution by finite free D̃†
n,k,Q-modules.

Proof. Using Theorem 4.2.16 we can argue exactly as in [23].

4.3.2. The functors L oc(m)n,k and L oc†
n,k. Let E be a finitely generated

H0(Xn, D̃
(m)
n,k,Q)-module (respectively a finitely presented H0(Xn, D̃

†
n,k,Q)-module). Then

we let L oc(m)n,k (E) (respectively L oc†
n,k(E)) be the sheaf on Xn associated to the presheaf

U 7→ D̃ (m)
n,k,Q(U )⊗H0(Xn ,D̃

(m)
n,k,Q)

E (respectively U 7→ D̃†
n,k,Q(U )⊗H0(Xn ,D̃

†
n,k,Q)

E).
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It is obvious that L oc(m)n,k (respectively L oc†
n,k) is a functor from the category of

finitely generated H0(Xn, D̃
(m)
n,k,Q)-modules (respectively finitely presented H0(Xn, D̃

†
n,k,Q)

-modules) to the category of sheaves of modules over D̃ (m)
n,k,Q (respectively D̃†

n,k,Q).

Theorem 4.3.3. (i) The functors L oc(m)n,k and H0 (respectively L oc†
n,k and H0)

are quasi-inverse equivalences between the categories of finitely generated

H0(Xn, D̃
(m)
n,k,Q)-modules and coherent D̃ (m)

n,k,Q-modules (respectively finitely presented

H0(Xn, D̃
†
n,k,Q)-modules and coherent D̃†

n,k,Q-modules).

(ii) The functor L oc(m)n,k (respectively L oc†
n,k) is an exact functor.

Proof. The proofs of [23, 5.2.1, 5.2.3] for the first and the second assertion, respectively,

carry over word for word.

5. Localization of representations of GL2(L)

5.1. Finitely generated modules over compact type algebras

A space of compact type is an L-vector space V = lim
−→m∈N Vm equal to a locally convex

inductive limit over a countable system of Banach spaces Vm where the transition maps

Vm → Vm+1 are injective compact linear maps [14, Definition 1.1.16]. Any space of

compact type is Hausdorff. A compact type topological algebra (for short, a compact

type algebra) is a topological L-algebra A = lim
−→m

Am equal to a locally convex inductive

limit of Banach algebras Am with injective, continuous, compact linear and multiplicative

transition maps Am → Am+1 [15, Definition 2.3.1]. We have the following generalization

of [38, Proposition 2.1]. All modules are left modules.

Proposition 5.1.1. Let A = lim
−→m

Am be a compact type algebra with noetherian Banach

algebras Am .

(i) Each finitely generated A-module M carries a unique compact type topology (called

its canonical topology) M = lim
−→m

Mm such that the A-module structure map A×
M → M becomes continuous; each Mm can be chosen to be a finitely generated

Am-submodule of M.

(ii) every finitely generated A-submodule of M is closed in the canonical topology;

(iii) any linear map between finitely generated A-modules is continuous and strict with

closed image for the canonical topologies;

(iv) if M admits a finite presentation A⊕s
→ A⊕r f

→ M → 0, then the quotient topology

on M ' A⊕r/ ker( f ) coincides with the canonical topology.

Proof. (i) Let x1, . . . , xr be generators for M and put Mm :=
∑

i Am xi ⊂ M . According to

[38, Proposition 2.1] the Am-module Mm has a unique structure as Banach module and the

natural injection Mm → Mm+1 is continuous. Moreover, the latter injection is a compact

linear map as follows from the compactness of Am → Am+1 along the lines of the proof
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of [38, Lemma 6.1]. Hence, the inductive limit topology on M = lim
−→m

Mm is as claimed

and it remains to show uniqueness. However, if M has a second such topology, say τ ,

then each inclusion Mm ↪→ Mτ is continuous. The identity map Mcan
→ Mτ is therefore

a continuous bijection. By the open mapping theorem, in the version of [14, Theorem

1.1.17], it is therefore strict. Thus, it is a topological isomorphism. This shows (i).

(ii) If N ⊆ M is any submodule of M , then Nm := Mm ∩ N is a submodule of the

Am-module Mm and hence closed by [38, Proposition 2.1]. The inductive limit topology

on N ′ = lim
−→m

Nm makes the natural map N ′→ M a closed embedding [14, Proposition

1.1.41]. However, if N is finitely generated, then N = N ′ which proves (ii).

(iii) Given a linear map f : M → N between finitely generated modules, we have

f (Mm) ⊆ Nm for all large enough m. For such m, the induced map fm : Mn → Nm is

continuous, cf. [38, Proposition 2.1], and hence, so is f = lim
−→m

fm . The image im( f ) ⊆ N
is closed by (ii). Moreover, f : M → im( f ) is a continuous surjection and therefore strict

by [14, Theorem 1.1.7]. This proves (iii).

(iv) According to (ii) the submodule ker( f ) ⊆ A⊕r is closed and the quotient topology

on M ' A⊕r/ ker( f ) is therefore of compact type, cf. [37, Proposition 1.2]. Since it makes

the A-module structure map A×M → M continuous, it must coincide with the canonical

topology by the uniqueness part in (i).

Remark 5.1.2. Suppose there is a central ideal Im ⊂ Am for each m with Im+1 = Am+1 Im
and Im+1 ∩ Am = Im . This yields a central ideal I ⊂ A with A/I = lim

−→m
Am/Im . The

algebra A/I is then a compact type algebra.

We need the following lemma which justifies the replacement of completed tensor

products which occur in certain situations when working with weak Fréchet–Stein

structures, cf. [14, Definition 1.2.6], by ordinary tensor products. The key point here

is that we consider finitely presented modules over compact type algebras A = lim
−→m

Am
with noetherian defining Banach algebras Am . Recall that, if A is a locally convex

topological algebra and M is a locally convex topological module, then M is said to

be a finitely generated topological module, if there is an A-module map A⊕r
→ M , which

is a continuous and strict surjection [14, Definition 1.2.1]. In this situation, the module

is called a finitely generated free topological module if the map A⊕r
→ M is additionally

injective, i.e., a topological isomorphism. Finally, given a continuous homomorphism

between locally convex topological L-algebras A→ B and a locally convex topological

A-module M , the completed tensor product B⊗̂A M will always be understood as in

[14, Lemma 1.2.3], i.e., by regarding B⊗A M as a quotient of B⊗L ,π M5, giving it the

quotient topology and then forming the Hausdorff completion.

Lemma 5.1.3. Let A′ and B ′ be compact type algebras with noetherian defining Banach

algebras. Let further A′ ⊆ A (respectively B ′ ⊆ B) be a topological algebra which is a

finitely generated free topological module over A′ (respectively B ′). Let A→ B be a

continuous homomorphism. Suppose M is a finitely presented (abstract) A-module. Giving

5The symbol ⊗L ,π refers to the projective tensor product, cf. [14, (0.9)].
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M its canonical topology as finitely generated A′-module, the natural map B⊗A M
'
−→

B⊗̂A M is bijective.

Proof. We choose a finite presentation of the A-module M

(R) A⊕s
→ A⊕r f

→ M → 0.

This is a finite presentation of M as A′-module, so that the map f is in fact strict

by Proposition 5.1.1. This shows that M is a finitely generated topological A-module.

According to [14, Proposition 1.2.5], the natural map B⊗A M → B⊗̂A M is surjective

and the map B⊗ f occurring in

(B⊗R) B⊕s
→ B⊕r B⊗ f

→ B⊗A M → 0

is strict. It remains to see that B⊗A M is Hausdorff. But B⊗A M is a finitely presented

B-module and therefore has its canonical topology as finitely generated B ′-module. Since

B⊗R is a finite presentation of B⊗A M as B ′-module, the map B⊗ f is a strict surjection

for the canonical topology, again by Proposition 5.1.1. Hence the original topology on

B⊗A M coincides with the canonical topology and hence, is Hausdorff.

5.2. Modules over Dan(G(n)◦)θ0

We apply these considerations to the algebra of global sections H0(Xn, D̃
†
n,n,Q).

Recall that it is canonically isomorphic to the coherent L-algebra Dan(G(n)◦)θ0 , cf.

Proposition 3.3.7.

Lemma 5.2.1. The algebras Dan(G(n)◦) and Dan(G(n)◦)θ0 are compact type algebras with

noetherian defining Banach algebras.

Proof. The discussion in [27, 5.3] applied to the smooth and affine o-group scheme G(n)
shows the property for Dan(G(n)◦). According to the remark after Proposition 5.1.1 the

property then passes to the central reduction Dan(G(n)◦)θ0 .

We consider the locally L-analytic compact group G0 = GL2(o) with its series of

congruence subgroups Gn+1 = G(n)◦(L). The group G0 acts by translations on the space

Ccts(G0, L) of continuous L-valued functions. Following [14, (5.3)] let D(G(n)◦,G0) be

the strong dual of the space of G(n)◦-analytic vectors

D(G(n)◦,G0) := (Ccts(G0, L)G(n)◦−an)
′

b.

It is a locally convex topological L-algebra naturally isomorphic to the crossed product

of the ring Dan(G(n)◦) with the finite group G0/Gn+1. In particular,

D(G(n)◦,G0) =
⊕

g∈G0/Gn+1

Dan(G(n)◦) ∗ δg (5.2.2)

is a finitely generated free topological module over Dan(G(n)◦). Denoting by C la(G0, L)
the space of L-valued locally analytic functions and dualizing the isomorphism

lim
−→

n
Ccts(G0, L)G(n)◦−an

'
−→ C la(G0, L)
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yields an isomorphism of topological algebras

D(G0)
'
−→ lim
←−

n
D(G(n)◦,G0).

This is the weak Fréchet–Stein structure on the locally analytic distribution algebra

D(G0) = D(G0, L) as introduced by Emerton in [14, Proposition 5.3.1]. In an obviously

similar manner, we may construct the ring D(G(n)◦,G0)θ0 and obtain an isomorphism

D(G0)θ0
'
−→ lim
←−n

D(G(n)◦,G0)θ0 .

We consider an admissible locally analytic G0-representation V , its coadmissible

module M := V ′b and its subspace of G(n)◦-analytic vectors VG(n)◦−an ⊆ V . The latter

subspace is naturally a nuclear Fréchet space [14, Lemma 6.1.6] and we let (VG(n)◦−an)
′

b
be its strong dual. It is a space of compact type and a topological D(G(n)◦,G0)-module

which is finitely generated [14, Lemma 6.1.13]. According to [14, Theorem 6.1.20] the

modules Mn := (VG(n)◦−an)
′ form a (D(G(n)◦,G0))n∈N-sequence, in the sense of [14,

Definition 1.3.8], for the coadmissible module M relative to the weak Fréchet–Stein

structure on D(G0). This implies that one has

Mn = D(G(n)◦,G0)⊗̂D(G0)M (5.2.3)

as D(G(n)◦,G0)-modules for any n. Furthermore, there are natural isomorphisms

D(G(n− 1)◦,G0)⊗̂D(G(n)◦,G0)Mn
'
−→ Mn−1,

of D(G(n− 1)◦,G0)-modules for any n. Here, the completed tensor product are

understood in the sense of [14, Lemma 1.2.3] as we have explained above. We have

the following slight refinements of these results.

Lemma 5.2.4. (i) The D(G(n)◦,G0)-module Mn is finitely presented.

(ii) The natural map

D(G(n− 1)◦,G0)⊗D(G(n)◦,G0) Mn
'
−→ D(G(n− 1)◦,G0)⊗̂D(G(n)◦,G0)Mn

is bijective.

Proof. (i) Let (M ′n)n∈N be any (D(G(n)◦,G0))n∈N-sequence for the Fréchet–Stein

structure of D(G0) exhibited in [14, Corollary 5.3.19]. Fix a number n. The space

M ′n is a finitely generated module over the noetherian Banach algebra A equal to the

crossed product of Dan(G(n)◦)(mn), the level-mn part of Dan(G(n)◦), with the finite group

G0/Gn+1. Here, mn is a sequence of natural numbers with mn →∞ for n→∞. In

particular,

M ′n = A⊗D(G0) M = A⊗̂D(G0)M. (5.2.5)

The algebra A is naturally contained in B := D(G(n)◦,G0) as shown in [14, equation

(5.3.20)]. By (5.2.3) and (5.2.5) we have Mn = B⊗̂A M ′n . However, M ′n is a finitely

presented A-module and the topological algebras A and B satisfy the assumptions of

Lemma 5.1.3: take A′ = A and B ′ = Dan(G(n)◦), cf. (5.2.2). Hence, the natural map

B⊗A M ′n
'
−→ B⊗̂A M ′n is bijective. This proves (i).
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(ii) The D(G(n)◦,G0)-module Mn is finitely presented according to (i). As we have

indicated above, Mn is a space of compact type and a topological D(G(n)◦,G0)-module.

By the uniqueness part in Proposition 5.1.1 its topology therefore coincides with

the canonical topology as finitely generated Dan(G(n)◦)-module. The assertion follows

therefore from Lemma 5.1.3.

Remark: These results have obvious analogues when the character θ0 is involved.

5.3. The functor L oc†

For every n > 0 we put D̃†
n,Q := D̃†

n,n,Q, and we denote the functor L oc†
n,n by L oc†

n in

the following. The group G0 = GL2(o) acts on the formal scheme Xn , and there is an

induced (left) action of G0 on the sheaf D̃†
n,Q. Given g ∈ G0 and a local section s of

D̃†
n,Q, there is thus a local section g.s of D̃†

n,Q. We can then consider the abelian category

Coh(D̃†
n,Q,G0) of (left) G0-equivariant coherent D̃†

n,Q-modules. Furthermore, the group

Gn+1 is contained in Dan(G(n)◦) as a set of delta distributions, and for h ∈ Gn+1 we

write δh for its image in H0(Xn, D̃
†
n,Q) = Dan(G(n)◦)θ0 . For g ∈ G0, h ∈ Gn+1, we have

g.δh = δghg−1 , and for a local section s of D̃†
n,Q we have then the relation

g.(sδh) = (g.s)(g.δh) = (g.s)δghg−1 . (5.3.1)

We denote by prn := prn,n−1 the blow-up morphism Xn → Xn−1. There is a natural

morphism of sheaves of rings

(prn)∗D̃
†
n,Q→ D̃†

n−1,Q (5.3.2)

which is G0-equivariant. Given a coherent D̃†
n,Q-module Mn the D̃†

n−1,Q-module

D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q
(prn)∗Mn

is G0-equivariant via g.(s⊗m) = (g.s)⊗ (g.m) for local sections s,m and g ∈ G0.

Consider its submodule Rn−1 locally generated by all elements sδh ⊗m− s⊗ (h.m) for

h ∈ Gn . Because of (5.3.1) the submodule Rn−1 is G0-stable. We put

D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q,Gn

(prn)∗Mn :=
(
D̃†

n−1,Q⊗(prn)∗D̃
†
n,Q
(prn)∗Mn

)/
Rn−1.

Definition 5.3.3. A G0-equivariant coadmissible module on X∞ := lim
←−n

Xn consists of a

family M := (Mn)n∈N of objects Mn ∈ Coh(D̃†
n,Q,G0) together with isomorphisms

D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q,Gn

(prn)∗Mn
'
−→Mn−1 (5.3.4)

of G0-equivariant D̃†
n−1,Q-modules for all n > 1.

A morphism M → N between two such modules consists of morphisms Mn → Nn in

Coh(D̃†
n,Q,G0) compatible with the isomorphisms above.
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Let M be a G0-equivariant coadmissible module on X∞. The isomorphisms

(5.3.4) induce morphisms (prn)∗Mn →Mn−1 having global sections H0(Xn,Mn)→

H0(Xn−1,Mn−1). We let

H0(X∞,M ) := lim
←−

n
H0(Xn,Mn).

On the other hand, we consider the category of coadmissible D(G0)θ0 -modules. Given

such a module M we have its associated admissible locally analytic G0-representation

V = M ′b together with its subspace of G(n)◦-analytic vectors VG(n)◦−an. The latter

is stable under the G0-action and its dual Mn := (VG(n)◦−an)
′

b is a finitely presented

D(G(n)◦,G0)θ0 -module, cf. Lemma 5.2.4.

According to Theorem 4.3.3 we have the coherent D̃†
n,Q-module

L oc†
n(Mn) = D̃†

n,Q⊗Dan(G(n)◦)θ0 Mn

on Xn . Using the contragredient G0-action on the dual space Mn , we put

g.(s⊗m) := (g.s)⊗ (g.m)

for g ∈ G0,m ∈ Mn and a local section s. In this way, L oc†
n(Mn) becomes an object of

Coh(D̃†
n,Q,G0).

Proposition 5.3.5. (i) The family L oc†
n(Mn), n ∈ N, forms a G0-equivariant

coadmissible module on X∞. Call it L oc†(M). The formation of L oc†(M) is

functorial in M.

(ii) The functors L oc† and H0(X∞, ·) are quasi-inverse equivalences between the

categories of coadmissible D(G0)θ0-modules and G0-equivariant coadmissible

modules on X∞.

Proof. We let Hn := Gn/Gn+1 and we denote a system of representatives in Gn for the

cosets in Hn by the same symbol. For simplicity, we abbreviate in this proof

D(n) := Dan(G(n)◦)θ0 and D(n,G0) := D(G(n)◦,G0)θ0 .

We have the natural inclusion D(n) ↪→ D(n,G0) from (5.2.2) which is compatible

with variation in n. Now suppose M is a D(n,G0)-module. We then have the free

D(n− 1)-module

D(n− 1)⊕M×Hn

on a basis em,h indexed by the elements (m, h) of the set M × Hn . Its formation is

functorial in M : if M ′ is another module and f : M → M ′ a linear map, then em,h →

e f (m),h induces a linear map between the corresponding free modules. The free module

comes with a linear map

fM : D(n− 1)⊕M×Hn → D(n− 1)⊗D(n) M

given by ⊕
(m,h)

λm,hem,h 7→ (λm,hδh)⊗m− λm,h ⊗ (h ·m)
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for λm,h ∈ D(n− 1) where we consider M a D(n)-module via the inclusion D(n) ↪→
D(n,G0). The map is visibly functorial in M and gives rise to the sequence of linear

maps

D(n− 1)⊕M×Hn
fM
−→ D(n− 1)⊗D(n) M

canM
−→ D(n− 1,G0)⊗D(n,G0) M −→ 0

where the second map is induced from the inclusion D(n) ↪→ D(n,G0). The sequence is

functorial in M , since so are both occurring maps.

Claim 1: If M is a finitely presented D(n,G0)-module, then the above sequence is exact.

Proof. We show ker(canM ) ⊆ im( fM ), the rest is clear. Choose a finite presentation of

the D(n,G0)-module M . Since the sequence is functorial in M , we obtain a commutative

diagram with exact columns. The 3× 3-lemma reduces us to the case of a finite free

module M = D(n,G0)
⊕r . Since it suffices to see that ker(canM ) lies in the submodule

generated by the images of the elements emi ,h , for generators m1, . . . ,mr of M and h ∈ Hn ,

we are further reduced to the case r = 1. In this case the statement follows directly from

(5.2.2).

Claim 2: Suppose M is a finitely presented D(n)-module and let M := L oc†
n(M). The

natural morphism

L oc†
n−1(D(n− 1)⊗D(n) M)

'
−→ D̃†

n−1,Q⊗(prn)∗D̃
†
n,Q
(prn)∗M

is bijective.

Proof. We have the equality of sheaves on Xn−1

R1(prn)∗D̃
(m)
n,n = R1(prn)∗D̃(m)

n,n = 0 (5.3.6)

for any m. Indeed, it suffices to verify this over affine open neighborhoods U of points

P ∈ Xsm
n−1(Fq). A Čech cohomology argument as in the proof of Lemma 2.3.4 shows that

H1(pr−1
n (U ), T̃ ⊗d

n,n ) = 0

for any d > 0. The cohomology sequence associated to the exact sequence of sheaves over

pr−1
n (U )

0→ D̃(m)
n,n;d−1 → D̃(m)

n,n;d →
q(m)d !

d!
T̃ ⊗d

n,n → 0,

cf. Proposition 3.2.1, shows by induction on d that

H1(pr−1
n (U ), D̃(m)

n,n;d) = 0

for any d > 0. Passing to the inductive limit over d gives

H1(pr−1
n (U ), D̃(m)

n,n ) = 0. (5.3.7)

In particular, R1(prn)∗D̃
(m)
n,n = 0. Let V = pr−1

n (U ) and let V j be the reduction of U modulo

p j+1. We may now argue as in the proof of (i) and (ii) of Proposition 4.2.1: using (5.3.7)
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together with a commutative diagram similar to (4.2.4) shows that the projective limit

of the system

(H1(V j , D̃(m)
n,n /p j+1D̃(m)

n,n )) j>0

is equal to H1(V, D̃(m)
n,n ) and that the system

(H0(V j , D̃(m)
n,n /p j+1D̃(m)

n,n )) j>0

satisfies the Mittag–Leffler condition. The latter condition allows us to apply [20, Ch. 0,

13.3.1] where we use a base for the topology of V consisting of open affines. This yields

a bijection between the projective limit of the H1(V j , D̃(m)
n,n /p j+1D̃(m)

n,n ) and H1(V, D̃ (m)
n,n ).

This completes the proof of (5.3.6). We conclude by inverting p and passing to the

inductive limit over m that R1(prn)∗D̃
†
n,Q = 0. Moreover, since Xn is a noetherian space of

dimension one, we have R2(prn)∗E = 0 for any abelian sheaf E on Xn by Grothendieck’s

vanishing theorem. According to Theorem 4.3.3, we therefore have R1(prn)∗E = 0 for

any coherent D̃†
n,Q-module E , in other words, the functor (prn)∗ is right exact on such

modules. Choosing a finite presentation of M reduces us now to the case M = D(n) which

is obvious.

Now let M be a finitely presented D(n,G0)-module. Let m1, . . . ,mr be generators for

M as a D(n)-module. We have a sequence of D(n− 1)-modules⊕
i,h

D(n− 1)emi ,h
f ′M
−→ D(n− 1)⊗D(n) M

canM
−→ D(n− 1,G0)⊗D(n,G0) M −→ 0,

where f ′M denotes the restriction of the map fM to the free submodule of D(n− 1)⊕M×Hn

generated by the finitely many vectors emi ,h, i = 1, . . . , r , h ∈ Hn . Since im( f ′M ) =
im( fM ) the sequence is exact by the first claim. Since it consists of finitely presented

D(n− 1)-modules, we may apply the exact functor L oc†
n−1 to it. By the second claim,

we get an exact sequence

(D̃†
n−1,Q)

⊕r |Hn |→ D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q
(prn)∗M → L oc†

n−1(D(n− 1,G0)⊗D(n,G0) M)→ 0,

where M = L oc†
n(M). The cokernel of the first map in this sequence equals by definition

D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q,Gn

(prn)∗M ,

whence an isomorphism

D̃†
n−1,Q⊗(prn)∗D̃

†
n,Q,Gn

(prn)∗M
'
−→ L oc†

n−1(D(n− 1,G0)⊗D(n,G0) M).

This implies both parts of the proposition.

5.4. The functor L oc†
∞ and GL2(L)-equivariance

Let G := GL2(L). Denote the canonical projection map X∞→ Xn by spn for each n. We

define the following sheaf of rings on X∞. Assume V ⊆ X∞ is an open subset of the form

sp−1
N (U ) with an open subset U ⊆ XN for some N . We have that

spn(V ) = pr−1
n,N (U )
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for any n > N and so, in particular, spn(V ) ⊆ Xn is an open subset for these n. Moreover,

pr−1
n,n−1(spn−1(V )) = spn(V )

for all n > N . The morphism (5.3.2) induces the ring homomorphism

D̃†
n,Q(spn(V )) = (prn,n−1)∗D̃

†
n,Q((spn−1(V )))→ D̃†

n−1,Q(spn−1(V )) (5.4.1)

for all n > N and we form the projective limit

D̃†
∞,Q(V ) := lim

←−
n>N

D̃†
n,Q(spn(V ))

over all these maps. The open subsets of the form V form a basis for the topology on

X∞ and D̃†
∞,Q is a presheaf on this basis. We denote the associated sheaf on X∞ by the

symbol D̃†
∞,Q as well. It is a G0-equivariant sheaf of rings on X∞.

Suppose M := (Mn)n is a G0-equivariant coadmissible module on X∞ as defined in the

previous subsection. The isomorphisms (5.3.4) induce G0-equivariant maps (prn)∗Mn →

Mn−1 which are linear relative to the morphism (5.3.2). In a completely analogous manner

as above, we obtain a sheaf M∞ on X∞. It is a G0-equivariant (left) D̃†
∞,Q-module on

X∞ whose formation is functorial in M .

Proposition 5.4.2. The functor M →M∞ from G0-equivariant coadmissible modules on

X∞ to G0-equivariant D̃†
∞,Q-modules is a fully faithful embedding.

Proof. We have spn(X∞) = Xn for all n. The global sections of M∞ are therefore equal

to

0(X∞,M∞) = lim
←−

n
0(Xn,Mn) = H0(X,M )

in the notation of the previous section. Thus, the functor L oc†
◦0(X∞,−) is a left

quasi-inverse according to Proposition 5.3.5.

We tentatively call the abelian subcategory of all G0-equivariant (left) D̃†
∞,Q-modules

equal to the essential image of the functor (·)∞ the coadmissible G0-equivariant

D̃†
∞,Q-modules. We denote by L oc†

∞ the composite of the functor L oc† with (·)∞.

5.4.3. The G0-action on the space X∞ admits a natural extension to an action of the

full group G. Indeed, let T be the Bruhat–Tits tree for the group PGL2(L) with its natural

G-action. Its vertexes correspond to the homothety classes of lattices 3 ⊂ L⊕2. Given a

vertex v ∈ T we denote by |T (v)|6n ⊂ T the set of points whose distance to v is less or

equal to n. There is a unique maximal compact subgroup Gv ⊆ G fixing the vertex v.

We denote by v0 the vertex corresponding to the class of the standard lattice 30 = o⊕ o.

In this case Gv0 = G0. As mentioned in § 2.1, all constructions in §§ 2–4 are associated

to the standard lattice 30 but can be done canonically for (the homothety class of) an

arbitrary lattice 3 ⊂ L⊕2. We distinguish the various constructions from each other by

adding the corresponding vertex v = [3] to them, i.e., we write Xn(v),Xn(v), D̃
(m)
n,k (v)

and so on.
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An element g ∈ G induces a morphism

X0(v) = Proj(3)
g.
−→ Proj(g3) = X0(gv)

which satisfies (gh). = (g.) ◦ (h.) and 1. = id for g, h ∈ G. By the universal property of

blow-up, this induces a morphism Xn(v)
g.
−→ Xn(gv) compatible with variation in n. These

morphisms pass to the formal completions Xn(v). Given an inclusion

|T (v)|6n ⊆ |T (v′)|6n′

the space Xn′(v
′) equals the blow-up of Xn(v) in the Fq -valued points of Xn(v)

sm which

correspond to the vertexes in the complement of |T (v)|6n in |T (v′)|6n′ . The action of G is

compatible with the blow-up morphism. The same holds for the formal completions. We

obtain thus a G-action on the projective limit over all Xn(v). Since a given set |T (v)|6n is

contained in |T (v0)|6n′ for large enough n′, this projective limit equals X∞ by cofinality.

We thus have indeed a natural G-action on X∞.

We note that, by definition of the action, there is an equality

spn,gv(g.V ) = g.spn,v(V ) (5.4.4)

in Xn(g.v) for any subset V ⊆ X∞ and the specialization map spn,v : X∞→ Xn(v).

Proposition 5.4.5. The G0-equivariant structure on the sheaf D̃†
∞,Q extends to a

G-equivariant structure.

Proof. Let g ∈ G. The isomorphism Xn(v)
g.
−→ Xn(gv) induces a ring isomorphism

D̃†
n,Q(v)(U )

g.
−→ D̃†

n,Q(gv)(g.U ) (5.4.6)

for any open subset U ⊆ Xn(v). In particular, for an open subset V ⊆ X∞ of the form

V = sp−1
N ,v(U ) with U ⊆ XN (v) open, this gives a ring homomorphism for n > N

D̃†
n,Q(v)(spn,v(V ))

g.
−→ D̃†

n,Q(gv)(g.spn,v(V )) = D̃†
n,Q(gv)(spn,gv(gV )), (5.4.7)

where we have used (5.4.4). Given an inclusion |T (v)|6n ⊆ |T (v′)|6n′ the blow-up

morphism

pr(n′,v′),(n,v) : Xn′(v
′) −→ Xn(v)

induces a morphism of sheaves of rings

(pr(n′,v′),(n,v))∗D̃
†
n′,Q(v

′) −→ D̃†
n,Q(v) (5.4.8)

in a manner analogous to (5.3.2). Indeed, let Gv denote the smooth affine Bruhat–Tits

group scheme over o associated with the vertex v and let gv be its Lie algebra. From the

commutative diagram

Lie(Gv′(n′)) = $ n′gv′ −→ H0(Xn′(v
′), TXn′ (v

′)log)

↓ ↓

Lie(Gv(n)) = $ ngv −→ H0(Xn(v), TXn(v)log)
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we deduce a morphism

(pr(n′,v′),(n,v))∗T̃
(m)

n′,n′(v
′)→ T̃ (m)

n,n (v)

for any m. Passing to differential operators yields the claimed morphism.

Given V ⊂ X∞ of the form V = sp−1
ñ,ṽ(U ) with an open set U ⊆ Xñ(ṽ), the morphism

(5.4.8) induces a ring homomorphism

D̃†
n′,Q(v

′)(spn′,v′(V )) = (pr(n′,v′),(n,v))∗D̃
†
n′,Q(v

′)(spn,v(V ))→ D̃†
n,Q(v)(spn,v(V )) (5.4.9)

whenever there are inclusions

|T (ṽ)|6ñ ⊆ |T (v)|6n ⊆ |T (v′)|6n′

and we may form the projective limit

lim
←−
(n,v)

D̃†
n,Q(v)(spn,v(V )).

However, again by cofinality, this projective limit equals D̃†
∞,Q(V ). Since the

homomorphism (5.4.7) is compatible with variation in n we deduce for a given g ∈ G
a ring homomorphism

D̃†
∞,Q(V ) = lim

←−
(n,v)

D̃†
n,Q(v)(spn,v(V ))

g.
→ lim
←−
(n,gv)

D̃†
n,Q(gv)(spn,gv(gV )) = D̃†

∞,Q(gV ).

It implies that the sheaf D̃†
∞,Q is G-equivariant. It is clear from the construction that the

G-equivariant structure extends the G0-structure.

A pair consisting of a coadmissible G0-equivariant D̃†
∞,Q-module M together with a

G-action on M which extends its G0-action will be called a coadmissible G-equivariant

D̃†
∞,Q-module. In the following we simply write M for such a pair, the G-action being

understood.

Theorem 5.4.10. The functors L oc†
∞ and 0(X∞, ·) are quasi-inverse equivalences

between the categories of coadmissible D(G0)θ0-modules and coadmissible G0-equivariant

D̃†
∞,Q-modules. They lift to quasi-inverse equivalences between the categories of

coadmissible D(G)θ0-modules and coadmissible G-equivariant D̃†
∞,Q-modules (also

denoted by L oc†
∞ and 0(X∞, ·)). We thus have a commutative diagram of functors{

coadmissible
D(G)θ0 −modules

}
L oc†

∞

'
//

��

{
coadmissible G− equiv.

D̃†
∞,Q−modules

}

��{
coadmissible

D(G0)θ0 −modules

}
L oc†

∞

'
//
{

coadmissible G0− equiv.
D̃†
∞,Q−modules

}
where the left-hand vertical arrow is the restriction functor coming from the

homomorphism D(G0)θ0 → D(G)θ0 and the right-hand vertical arrow is the forgetful

functor.
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Proof. We only need to show the second statement. It is clear that a coadmissible

D(G0)θ0 -module which comes from a coadmissible G-equivariant D̃†
∞,Q-module is a

D(G)θ0 -module. For the converse, we consider a vertex v ∈ T and the corresponding

localization functor L oc†
n,Q(v) which is an equivalence between finitely presented

Dan(Gv(n)◦)θ0 -modules and coherent D̃†
n,Q(v)-modules on Xn(v). Here, Gv denotes the

smooth affine Bruhat–Tits group scheme over o associated with the vertex v. The adjoint

action of G on its Lie algebra induces a ring isomorphism

Dan(Gv(n)◦)
g.
→ Dan(Ggv(n)◦) (5.4.11)

for any g ∈ G. Now consider a coadmissible D(G)θ0 -module M with dual space V = M ′.
We have the family (Mn,v)(n,v) where

Mn,v = L oc†
n,Q(v)(Mn,v) = D̃†

n,Q(v)⊗Dan(Gv(n)◦)θ0 Mn,v

and Mn,v = (VGv(n)◦−an)
′. Let g ∈ G. The map m 7→ gm on M induces a map Mn,v →

Mn,gv which is linear relative to (5.4.11). We therefore have for any open subset U ⊆ Xn(v)

a homomorphism

Mn,v(U )
g.
−→Mn,gv(g.U )

which is induced by the map

s⊗m 7→ (g.s)⊗ gm

for s ∈ D̃†
n,Q(v)(U ),m ∈ Mn,v and where g. is the ring isomorphism (5.4.6). In particular,

for an open subset V ⊆ X∞ of the form V = sp−1
N ,v(U ) with U ⊆ XN (v) open, this gives

a homomorphism for n > N

Mn,v(spn,v(V ))
g.
−→Mn,gv(g.spn,v(V )) =Mn,gv(spn,gv(gV )) (5.4.12)

which is linear relative to the ring homomorphism (5.4.7).

Now for every inclusion

|T (v)|6n ⊆ |T (v′)|6n′ ,

we have a morphism

(pr(n′,v′),(n,v))∗Mn′,v′ −→Mn,v (5.4.13)

compatible with the morphism of rings (5.4.8) as follows. First of all, one has

(pr(n′,v′),(n,v))∗
(
L oc†

n′,Q(v
′)(Mn′,v′)

)
=
(
(pr(n′,v′),(n,v))∗(D̃

†
n′,Q(v

′))
)
⊗Dan(Gv′ (n′)◦)θ0 Mn′,v′

which can be proved along the lines of claim 2 in the proof of Proposition 5.3.5. Moreover,

we have inclusions Gv′(n′) ⊆ Gv(n) and thus

VGv(n)◦−an ⊆ VGv′ (n′)◦−an.

The dual map Mn′,v′ → Mn,v is linear relative to the natural inclusion

Dan(Gv′(n′)◦)→ Dan(Gv(n)◦).

The latter inclusion is compatible with the morphism of rings (5.4.8) via taking global

sections. Hence, we have a morphism (5.4.13) as claimed. We now have everything at
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hand to follow the arguments in the proof of the preceding proposition word for word

and to conclude that the projective limit M∞ has a G-action which extends its G0-action

and which makes it a G-equivariant D̃†
∞,Q-module. This completes the proof of the

theorem.

Remark. Let L ⊂ K be a complete and discretely valued extension field. If we consider

the K -algebras Dan(G(k)◦)⊗̂L K , D(G0)⊗̂L K etc. as well as the sheaves of K -algebras

D̃ (m)
n,k,Q⊗̂L K , D̃†

n,k,Q⊗̂L K , then there are obvious versions ’over K ’ of the Theorems 4.3.3

and 5.4.10.

6. Examples of localizations

6.1. Smooth representations

If V is a smooth G-representation (i.e., the stabilizer of each vector v ∈ V is an open

subgroup of G), then VG(n)◦−an equals the space of fixed vectors V Gn+1 in V under the

action of the compact subgroup Gn+1. Suppose V is admissible (i.e., the vector space

V Gn+1 is finite-dimensional). Since gV = 0, one finds

L oc†
n((V

Gn+1)′) = OXn ,Q⊗L (V Gn+1)′, (6.1.1)

where G0 acts diagonally and D̃†
n,Q acts through its natural action on OXn ,Q.

6.2. Representations attached to U (g)-modules

In this section, we compute the G0-equivariant coadmissible module L oc†(M) on X∞
for a class of coadmissible D(G)-modules M related to the pair (g, B). Here B ⊂ GL2,L
denotes the Borel subgroup of upper triangular matrixes and B denotes its group of

L-rational points. Let b be its Lie algebra. Let T ⊂ B be the subgroup of diagonal

matrixes with Lie algebra t.

Let L ⊂ K be a complete and discretely valued extension field. To simplify notation, we

make the convention that, when dealing with universal enveloping algebras, distribution

algebras, differential operators etc. we write U (g), D(G0), D̃†
n,k,Q etc. to denote the

corresponding objects after base change to K , i.e., what is precisely U (gK ), D(G0)⊗̂L K ,

D̃†
n,k,Q⊗̂L K and so on (compare also final remark in § 5).

The group G and its subgroup B act via the adjoint representation on U (g) and we

denote by

D(g, B) := D(B)⊗U (b) U (g) (6.2.1)

the corresponding skew-product ring. The skew multiplication here is induced by

(δb′ ⊗ x ′) · (δb⊗ x) = δb′b⊗ δb−1(x ′)x

for b, b′ ∈ B and x, x ′ ∈ U (g). If λ denotes a locally analytic character of B, then we have

a canonical algebra isomorphism

D(g, B)/D(g, B)I (λ) ' U (g)/U (g)I (dλ) (6.2.2)

where I (λ) respectively I (dλ) denote the ideals equal to the kernel of D(B)
λ
−→ K

respectively b
dλ
−→ K . Replacing B by B0 = B ∩G0, we obtain a skew-product ring
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D(g, B0) with similar properties. Given a D(g, B)-module M one has

D(G)⊗D(g,B) M = D(G0)⊗D(g,B0) M (6.2.3)

as D(G0)-modules [35, 4.2]. We consider the functor

M 7→M := D(G)⊗D(g,B) M

from D(g, B)-modules to D(G)-modules [32]. If M is finitely generated as U (g)-module,

then M is coadmissible by [35, 4.3]. From now on we assume that M is a finitely generated

U (g)-module. We let V :=M′b be the locally analytic G-representation corresponding to

M and denote by

Mn := (VG(n)◦−an)
′

b

the dual of the subspace of its G(n)◦-analytic vectors. According to Lemma 5.2.4 the

D(G(n)◦,G0)-module Mn is finitely presented and has its canonical topology.

Lemma 6.2.4. The canonical map

D(G(n)◦,G0)⊗D(G0) M '
−→Mn

is an isomorphism.

Proof. It suffices to show that the left-hand side is complete. We have

D(G(n)◦,G0)⊗D(G0) M = D(G(n)◦,G0)⊗D(g,B0) M,

according to (6.2.3). The group B0 is topologically finitely generated. As in the proof of

[35, 4.3] we may write the module D(G(n)◦,G0)⊗D(G0) M as the quotient of the finitely

presented module D(G(n)◦,G0)⊗U (g) M by a finitely generated submodule. By (ii) of

Proposition 5.1.1, this quotient is complete.

Recall the congruence subgroup Gn+1 = G(n)◦(L) of G0. Put Bn+1 := Gn+1 ∩ B0.

The corresponding skew-product ring D(g, Bn+1) is contained in Dan(G(n)◦) according

to (5.2.2). Let C(n) be a system of representatives in G0 containing 1 for the

residue classes in G0/Gn+1 modulo the subgroup B0/Bn+1. Note that for an element

g ∈ G0 and a Dan(G(n)◦)-submodule N of D(G0), the abelian group δg N is again

a Dan(G(n)◦)-submodule because of the formula xδg = δgAd(g−1)(x) for any x ∈
Dan(G(n)◦).

Lemma 6.2.5. The natural map of (Dan(G(n)◦), D(g, B0))-bimodules∑
:

⊕
g∈C(n)

δg(Dan(G(n)◦)⊗D(g,Bn+1) D(g, B0))
'
−→ D(G(n)◦,G0)

is an isomorphism.

Proof. Since Lie(Bn+1) = Lie(B0) = b, the definition (6.2.1) implies that D(g, B0) equals

the direct sum over B0/Bn+1 copies of D(g, Bn+1). Hence, (5.2.2) implies the claim.
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The two lemmas allow us to write

Mn =
⊕

g∈C(n)

δg(Dan(G(n)◦)⊗D(g,Bn+1) M) =
⊕

g∈C(n)

δg Man
n

as modules over Dan(G(n)◦). Here

Man
n := Dan(G(n)◦)⊗D(g,Bn+1) M,

a finitely presented Dan(G(n)◦)-module. If M has character θ0, so has Man
n . As explained

above, the ‘twisted’ module δg Man
n can and will be viewed as having the same underlying

group as Man
n but with an action of Dan(G(n)◦) pulled-back by the automorphism

Ad(g−1). Since the adjoint action of G0 fixes the center in U (g), the character of the

module δg Man
n (if existing) does not depend on g.

If M has character θ0, then the D̃†
n,Q-module L oc†

n(δg Man
n ) on Xn can be described

as follows. For any g ∈ G0 let g∗ denote the direct image functor coming from the

automorphism g of Xn . If N denotes a (coherent) D̃†
n,Q-module, then g∗N is a (coherent)

D̃†
n,Q-module via the isomorphism D̃†

n,Q
'
−→ g∗D̃

†
n,Q.

Lemma 6.2.6. One has

L oc†
n(δg Man

n ) = g∗L oc†
n(M

an
n ) = g∗

(
D̃†

n,Q⊗D(g,Bn+1) M
)
.

Proof. The second identity follows from the definition of L oc†
n by contracting tensor

products. The automorphism D̃†
n,Q

'
−→ g∗D̃

†
n,Q equals Ad(g−1) on global sections.

The identity map is a Dan(G(n)◦)-linear isomorphism between the global sections of

L oc†
n(δg Man

n ) and g∗L oc†
n(M

an
n ). Since both sheaves are coherent D̃†

n,Q-modules, the

isomorphism extends to the sheaves by Theorem 4.3.3.

Since L oc†
n commutes with direct sums the lemma implies

L oc†
n(Mn) =

⊕
g∈C(n)

g∗
(
D̃†

n,Q⊗D(g,Bn+1) M
)

as D̃†
n,Q-modules. Of course, L oc†

n(Mn) is G0-equivariant and the collection of the

L oc†
n(Mn) for all n, is equal to the G0-equivariant coadmissible module on X∞

corresponding to M by the equivalence Proposition 5.3.5.

6.3. Principal series representations

6.3.1. A general formula. Let λ be a locally analytic K -valued character of T ,

viewed as a character of B. Let

M(λ) = U (g)⊗U (b) Kdλ

be the induced module. Then M(λ) is a D(g, B)-module [35]. Let M(λ) be the coadmissible

D(G)-module associated with M(λ). Its dual equals the locally analytic principal series

representation

V := IndG
B (λ
−1) = { f ∈ C la(G, K ) : f (gb) = λ(b) f (g) for all g ∈ G, b ∈ B}
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with G acting by left translations. Here, C la(·, K ) denotes K -valued locally analytic

functions. We now choose n large enough such that the restriction of λ to T ∩Gn+1
is T(n)◦-analytic. Denote by U− the unipotent radical of the Borel subgroup scheme

opposite to B. Restriction of functions induces an isomorphism

VG(n)◦−an '
⊕

g∈G0/Gn+1 B0

Can(U−(n)◦,g, K )

where U−(n)◦,g = gU−(n)◦g−1 and where Can(·, K ) denotes K -valued rigid-analytic

functions. Indeed, it is not difficult to see that, as Gn+1-representations, one has

V |Gn+1 =

⊕
g∈G0/Gn+1 B0

IndGn+1

Gn+1∩Bg
0
(λ−1,g),

where Bg
0 = gB0g−1 and where λg denotes the character of Bg

0 defined by λg(h) =

λ(g−1hg). Now the G(n)◦-analytic vectors in Vg := IndGn+1

Gn+1∩Bg
0
(λ−1,g) are the preimage of

Vg under the (injective) restriction map

Can(G(n)◦, K )→ C la(Gn+1, K ),

so that

(Vg)G(n)◦−an = { f ∈ Can(G(n)◦, K ) : f (hb) = λg(b) f (h)for all h ∈ Gn+1, b ∈ Gn+1 ∩ Bg
0 }.

Our assertion follows now from the rigid-analytic (Iwahori) decomposition

G(n)◦ = U−(n)◦,g ×T(n)◦,g ×U(n)◦,g

together with the fact that λg is T(n)◦,g-analytic for all g.

We have

M(λ) = D(g, Bn+1)/D(g, Bn+1)In+1(λ)

as a D(g, Bn+1)-module where In+1(λ) denotes the kernel of D(Bn+1)
λ
−→ K , cf. (6.2.2).

Let Dan(B(n)◦) be the analytic distribution algebra of B(n)◦. By our assumption on

n, the character dλ extends to a character of Dan(B(n)◦) whose kernel is generated by

I (dλ) ⊂ U (b). It follows that

M(λ)an
n = Dan(G(n)◦)/Dan(G(n)◦)In+1(λ) = Dan(G(n)◦)⊗U (g) M(λ).

Let DP1
L

be the sheaf of usual algebraic differential operators on the algebraic variety

P1
L . The Beilinson–Bernstein localization [3] of a finitely generated U (g)-module M with

character θ0 is a coherent DP1
L
-module Loc(M). Let P1,rig

L be the rigid-analytic space

associated to P1
L with its canonical morphism ρ : P1,rig

L → P1
L . Let

spXn
: P1,rig

L −→ Xn
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denote the specialization morphism6. Then (spXn
)∗ρ
∗Loc(M) is an OXn ,Q-module with an

action of the sheaf (spXn
)∗ρ
∗DP1

L
. We denote its base change along the natural morphism

(spXn
)∗ρ
∗DP1

L
−→ D̃†

n,Q

by Loc(M)†n , a coherent D̃†
n,Q-module. Suppose now that dλ is associated by the

Harish-Chandra isomorphism to the central character θ0. We then have

Loc(M(λ))†n = L oc†
n(M(λ)

an
n )

by the above. We can thus conclude

L oc†
n(M(λ)n) =

⊕
g∈C(n)

g∗Loc(M(λ))†n . (6.3.2)

6.3.3. The cases when λ = 1 or λ = ρ−2. Here we consider the character ρ−2
: T =

T(L)→ L∗ defined by

ρ−2
((

t1 0
0 t2

))
=

t2
t1
,

i.e., the negative root. Then dρ−2 and 0 = d1 are associated to θ0 by the Harish-Chandra

homomorphism. Next we consider the well-known exact sequence of U (g)-modules

0 −→ M(ρ−2) −→ M(1) −→ L0 −→ 0, (6.3.4)

where L0 denotes the one-dimensional trivial U (g)-module. The functor FG
B of [32]

associates to the sequence (6.3.4) the exact sequence of locally analytic representations

0 −→ indG
B (1) −→ IndG

B (1) −→ IndG
B (ρ

2) −→ 0, (6.3.5)

where indG
B (1) denotes the smooth induction of the trivial character 1 of B. Passing

in (6.3.5) to G(n)◦-analytic vectors, and then to the continuous duals of the spaces of

G(n)◦-analytic vectors, furnishes an exact sequence of D(G(n)◦,G0)-modules

0 −→M(ρ−2)n −→M(1)n −→
⊕

g∈C(n)

g∗L0 −→ 0, (6.3.6)

where we denote the extension of L0 to the Dan(G(n)◦)-module corresponding to the

trivial one-dimensional representation of G(n)◦ by L0, too. The Beilinson–Bernstein

localization of M(ρ−2) is a skyscraper sheaf supported at the fixed point of B on P1
L , cf.

[22, § 12.3], whereas the Beilinson–Bernstein localization of the trivial one-dimensional

representation is the structure sheaf of P1
L . Applying L oc†

n and (6.3.2) to (6.3.6) gives

then the following exact sequence of sheaves of D̃†
n,Q-modules on Xn :

0→
⊕

g∈C(n)

g∗Loc(M(ρ−2))†n →
⊕

g∈C(n)

g∗Loc(M(1))†n →
⊕

g∈C(n)

g∗OXn ,Q→ 0. (6.3.7)

The sheaf on the left is a skyscraper sheaf whose support is the set Xsm
n (Fq) of smooth

Fq -rational points of Xn , a set which is naturally in bijection with P1(oL/($
n+1)).

6Note that the specialization morphism factors into the three canonical maps P1,rig
L → P1,ad

L , P1,ad
L → X∞

and spn : X∞ −→ Xn , where the adic space P1,ad
L is homeomorphic to the projective limit over all formal

models of P1,rig
L .
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6.4. Two representations furnished by the p-adic upper half plane

In this section we consider the GL2(L)-equivariant line bundles O, the structure sheaf,

and �, the sheaf of rigid-analytic differential forms, on P1,rig
L and their restrictions to

the p-adic upper half plane Σ0,L . Their global sections over Σ0,L furnish coadmissible

D(GL2(L), L)-modules, which are closely related to the coadmissible module M(ρ−2)

considered in the previous section. As this material is not used later on, we only give

indications of the proofs. We also note that one can treat all line bundles O(k) in a similar

way, but only when k ∈ {−2, 0} do the corresponding coadmissible modules have central

character θ0, which is why we restrict to these cases.

6.4.1. The p-adic upper half plane. Let P1,rig
L be the rigid-analytic space attached

to the scheme P1
L over L. It is well-known and not difficult to prove that the subset

Σ0,L = P1,rig
L \P1

L(L)

is an admissible open subset of P1,rig
L , and is hence a rigid-analytic space in its own right,

called the p-adic upper half plane over L. The inductive limit of the formal schemes X◦n
furnishes a formal model Σ̂0,L for Σ0,L :

Σ̂0,L = lim
−→

n
X◦n,

cf. [7].

Proposition 6.4.2. (i) There is a canonical exact sequence of locally analytic

G-representations

0 −→ IndG
B (ρ

2) −→ O(Σ0,L)
′
−→ 1 −→ 0,

and hence an exact sequence of coadmissible D(G, L)-modules

0 −→ L0 −→ O(Σ0,L) −→M(ρ−2) −→ 0.

(ii) There is a canonical exact sequence of locally analytic G-representations

0 −→ St −→ �(Σ0,L)
′
−→ IndG

B (ρ
2) −→ 0,

where St denotes the smooth Steinberg representation (realized on an L-vector

space). Dually, there is an exact sequence of coadmissible D(G, L)-modules

0 −→M(ρ−2) −→ �(Σ0,L) −→ St′ −→ 0.

Proof. We deduce the exact sequences of locally analytic representations from the

description given in [31] and [32, § 7] (see also p. 4 of the introduction of [32]). The

exact sequences of D(G, L)-modules follow immediately from these, by duality. Let

L = O or L = �. Put L(Σ0,L)
0
= H0(Σ0,L ,L) and L(Σ0,L)

1
= H0(P1

L ,L). Then there

is a canonical exact sequence of locally analytic G-representations

0 −→ St⊗L H1(P1
L ,L)

′
−→ (L(Σ0,L)

0/L(Σ0,L)
1)′ −→ IndG

B (ρ
2) −→ 0. (6.4.3)

For L = O (respectively L = �) this is equivalent to the exact sequence in (i) (respectively

(ii)).
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For n ∈ Z>0 put

O(Σ0,L)n = ([O(Σ0,L)
′
]G(n)◦−an)

′, �(Σ0,L)n = ([�(Σ0,L)
′
]G(n)◦−an)

′,

and denote by Stn the space of Gn+1-invariant vectors in St.

Corollary 6.4.4. Let n be a non-negative integer.

(i) There is a canonical exact sequence of G0-equivariant sheaves of D̃†
n,Q-modules on

Xn

0 −→ OXn ,Q −→ L oc†
n(O(Σ0,L)n) −→

⊕
g∈C(n)

g∗Loc(M(ρ−2))†n −→ 0.

(ii) There is a canonical exact sequence of G0-equivariant sheaves of D̃†
n,Q-modules on

Xn

0 −→
⊕

g∈C(n)

g∗Loc(M(ρ−2))†n −→ L oc†
n(�(Σ0,L)n) −→ St′n ⊗L OXn ,Q −→ 0.

Proof. This follows from Proposition 6.4.2 together with (6.3.2).

Remark 6.4.5. As was pointed out in the previous section, the sheaf on the right

(respectively left) of the first (respectively second) exact sequence in Corollary 6.4.4

is a skyscraper sheaf whose support is the set Z0,n := Xsm
n (Fq) of smooth Fq -rational

points of Xn . Using [9], one can show that

O(Σ0,L)n = O(X◦,rign )†

is the space of overconvergent rigid-analytic functions, i.e., the space of rigid-analytic

functions on

X
◦,rig
n = sp−1

Xn
(X◦n)

which converge (to an unspecified extent) into the residue discs of the points in Zn .

It follows from this that the sheaf L oc†
n(O(Σ0,L)n) is equal to the sheaf O(† Z0,n) of

functions on Xn which are regular on X◦n and have overconvergent singularities along the

closed subset Z0,n . This is an overconvergent isocrystal on Xn . Similarly, one can show

that

�(Σ0,L)n = �(X
◦,rig
n )†

is the space of overconvergent rigid-analytic differential forms on X
◦,rig
n . The sheaf of

differential forms �(† Z0,n) on Xn which are regular on X◦n and have overconvergent

singularities along Z0,n is not an isocrystal, however. Otherwise the localization of the

space of global sections (on Xn) of this sheaf, namely L oc†
n(�(X

rig
n )

†), would have to

be equal to �(† Z0,n). But it follows from the second exact sequence in Corollary 6.4.4

that the restriction of L oc†
n(�(X

rig
n )

†) to X◦n is locally free of rank (q + 1)qn
− 1, and not

locally free of rank one.
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7. Representations furnished by an étale covering of the p-adic upper half

plane

The theory in § 4 might be useful when one tries to decide whether certain modules M over

D(GL2(o)) are coadmissible, especially if M ‘comes from geometry’ in a way that makes

it accessible to the techniques used here. In this section we show how the techniques from

the theory of arithmetic differential operators can be used to prove that some particular

locally analytic representations are admissible. The representations considered here are

those furnished by the structure sheaf of the first Drinfeld covering of the p-adic upper

half plane.

7.1. The first Drinfeld covering

7.1.1. Denote by L̂nr the completion of the maximal unramified extension of L, and

consider the base change Σ0,L ×Sp(L) Sp(L̂nr) which we will from now on denote by Σ0.

This rigid space has a natural semistable formal model

Σ̂0 = lim
−→

n
X◦n ×Spf(o) Spf(ônr),

where ônr is the ring of integers of L̂nr, cf. § 6.4.1. By [13] (cf. also [7]) the formal scheme
Σ̂0 represents a deformation functor of a particular two-dimensional formal group F
over ônr/($) which is equipped with an action of the maximal compact subring OD
of a quaternion division algebra D over L. Let $D ⊂ OD be a uniformizer. Denote by

F→ Σ̂0 the universal deformation of F , and let F[$
j

D] ⊂ F be the finite flat group scheme

of $
j

D-torsion points. Denote by F[$
j

D]
rig the associated rigid-analytic space. Note that

F[1] is just the zero section of F, which is isomorphic to Σ̂0. Then

Σ1 = F[$D]
rig
\F[1]rig = F[$D]

rig
\Σ0.

Multiplication by $D is a map F[$D] → F[1] and hence induces a morphism f : Σ1 →

Σ0 which is an étale covering space with Galois group (OD/($D))
∗
' F∗q2 . We henceforth

write F∗q2 for this covering group.

Remark 7.1.2. The group GL2(L) acts on Σ0,L by fractional linear transformations, and

therefore also on Σ0 = Σ0,L ×Sp(L) Sp(L̂nr), and on the formal model Σ̂0. However, this

action, which is ônr-linear, is not the action which is induced by the modular interpretation

of Σ̂0 as a deformation space, cf. [7, I.6]. However, the group

GL2(L)(0) = {g ∈ GL2(L) | det(g) ∈ o∗L}

does act ônr-linearly on Σ̂0, and L̂nr-linearly on Σ0, and the action of this group lifts to

Σ1. But in this section we will anyway only consider the action of G0 = GL2(oL).

The subspaces Σ0(n) and Σ1(n). There is a map

r : Σ0 → |T |
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from Σ0 to the geometric realization |T | of the Bruhat–Tits tree T of PGL2(L). We refer

to [7, I.2.2] for the definition of this map (it is denoted by λ in this paper). Let v0 ∈ T
be the vertex which is fixed by GL2(o), and we denote by |T |6n ⊂ |T | the set of points

whose distance to v0 is less or equal to n. For instance, |T |60 = {v0}. Then

Σ0(n) = r−1(|T |6n),

is an affinoid subdomain of Σ0, and is equal to the generic fiber of Σ̂0(n) := X◦n ×Spf(o)
Spf(ônr). We also put

Σ1(n) = f −1(Σ0(n)),

and we let fn : Σ1(n)→ Σ0(n) denote the restriction of f .

7.1.3. A semistable model for Σ1. In [42] Teitelbaum has shown that there is

a finite (tamely ramified) extension K of L̂nr such that Σ1,K = Σ1×Sp(L) Sp(K ) has a

semistable formal model Σ̂1 over Spf(oK ). It follows from [42, p. 72] that Σ1,K has q − 1
connected components, which are transitively permuted by the action of the covering

group, and each of these is an étale covering of Σ0,K of degree q + 1. Consequently, the

formal scheme Σ̂1 has q − 1 connected components, each of which is finite of degree q + 1
over Σ̂0×Spf(oL ) Spf(oK ).

As a general convention, we consider from now on the rigid spaces Σ0, Σ0(n), Σ1,

Σ1(n), etc., as rigid spaces over K (i.e., we perform a base change to Sp(K )), and we

consider the formal schemes Σ̂0, Σ̂0(n), etc., as formal schemes over Spf(oK ) (i.e., we

perform a base change to Spf(oK )). The morphism f : Σ1 → Σ0 extends to a finite flat

morphism f̂ : Σ̂1 → Σ̂0 which is étale over the complement of the singular points of the

special fiber of Σ̂0. The irreducible components of the special fiber of Σ̂1 are isomorphic

to

C = {[x : y : z] ∈ P2
| xyq

− xq y = zq+1
}. (7.1.4)

According to [12, § 2], it was Drinfeld who proved that the discrete series representations

of SL2(Fq) are furnished by the `-adic étale cohomology of the affine curve xyq
− xq y = 1.

Each of these projective curves C lies over a unique irreducible component of the special

fiber of Σ̂0, isomorphic to P1, and there are q − 1 such curves C over each irreducible

component of the special fiber of Σ̂0. The induced morphism from C to P1, considered

as an irreducible component, is given by the formula [x : y : z] 7→ [x : y].
The formal scheme

Σ̂1(n)
def
= Σ̂1×Σ̂0

Σ̂0(n)

is then a formal model forΣ1(n), and it is an open formal subscheme of Σ̂1. The morphism

f̂ restricts to a morphism

f̂n : Σ̂1(n) −→ Σ̂0(n)

which is simply the projection from Σ̂1(n) = Σ̂1×Σ̂0
Σ̂0(n) to the second factor. Denote

by Σ̂1(n)c the formal completion of Σ̂1 along the closure of Σ̂1(n). Similarly, let Σ̂0(n)c be

the completion of Σ̂0 along the closure of Σ̂0(n). The morphism f̂n extends uniquely to a

morphism f̂ c
n : Σ̂1(n)c → Σ̂0(n)c such that one has a commutative diagram of morphisms
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of formal schemes

Σ̂1(n) //

f̂n
��

Σ̂1(n)c //

f̂ c
n
��

Σ̂1

f̂
��

Σ̂0(n) // Σ̂0(n)c // Σ̂0

(7.1.5)

The special fiber of a formal scheme will always be denoted by the subscript ‘s’, e.g.,

Σ̂1(n)s denotes the special fiber of Σ̂1(n). When it is clear from the context that it is

only the special fiber of a given formal scheme Y which matters, we may drop the index

‘s’ and write Y instead of Ys . Put Z1,n = Σ̂1(n)cs \ Σ̂1(n)s . This is a finite set of points

of Σ̂1,s .

7.1.6. Sheaves of overconvergent functions. Let

spΣ̂1
: Σ1 −→ Σ̂1

be the specialization map, and let

vn : Σ̂1(n)s ↪→ Σ̂1,s

be the open immersion. Associated to this morphism is the sheaf v†
nOΣ1 on Σ1, cf. [6,

4.0.1], and we consider the sheaf

Fn
def
= (spΣ̂1

)∗v
†
nOΣ1 (7.1.7)

on Σ̂1,s which is supported on Σ̂1(n)cs . Another way to describe Fn is as the sheaf of

rigid-analytic functions on Σ̂1(n)c which are regular on (the tubular neighborhood of)
Σ̂1(n) and have overconvergent singularities along Z1,n :

Fn = OΣ̂1(n)c,Q
(† Z1,n

)
.

By its very definition, the space of global sections of Fn on Σ̂1 is equal to the space of

overconvergent functions on Σ1(n), which we denote by H0(Σ1(n),O)†, i.e.,

H0(Σ̂1,Fn
)
= H0(Σ̂1(n)c,Fn

)
= H0(Σ1(n),O)†.

7.2. Main result: coadmissibility of the space of global functions

Recall that G0 denotes the group GL2(oL). Let Dan(G(0)◦)nr be the completed tensor

product over L of Dan(G(0)◦) with the finite extension K of L̂nr. Similarly, denote by

D(G(n)◦,G0)
nr respectively D(G0, K ) the completed tensor product of D(G(n)◦,G0)

respectively D(G0) with K over L.

Theorem 7.2.1. (i) For every n ∈ Z>0 the space H0(Σ1(n),O)† is a

Dan(G(n)◦)nr-module of finite presentation.

(ii) For every n ∈ Z>0 the space H0(Σ1(n),O)† is a finitely generated

D(G(n)◦,G0)
nr-module.

(iii) For every n ∈ Z>1 the restriction map

H0(Σ1(n),O)† −→ H0(Σ1(n− 1),O)†
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induces an isomorphism of D(G(n)◦,G0)
nr-modules

D(G(n− 1)◦,G0)
nr
⊗D(G(n)◦,G0)nr H0(Σ1(n),O)†

'
−→ H0(Σ1(n− 1),O)†. (7.2.2)

(iv) The space H0(Σ1,O) is a coadmissible D(G0, K )-module.

Proof. (i) This will be shown in the following § 7.3, where we treat first the case when

n = 0, and in § 7.4, which deals with the case of general n.

(ii) This follows from (i) because D(G(n)◦,G0)
nr contains Dan(G(n)◦)nr.

(iii) This will be shown in § 7.5.

(iv) This is a consequence of (ii) and (iii), by [14, 6.1.20].

Consider a character χ : F∗q2 → K ∗ of the covering group F∗q2 , and denote by

H0(Σ1,O)χ the χ-isotypic component of H0(Σ1,O). As G0 commutes with the action

of F∗q2 , this is a D(G0, K )-submodule of H0(Σ1,O), and we have the decomposition of

D(G0, K )-modules

H0(Σ1,O) =
⊕
χ

H0(Σ1,O)χ ,

where χ runs over all characters of F∗q2 .

Corollary 7.2.3. For every character χ : F∗q2 → K ∗ the space H0(Σ1,O)χ is a

coadmissible D(G0, K )-module.

Proof. The projection map

H0(Σ1,O)� H0(Σ1,O)χ , f 7→
1

q2− 1

∑
ζ∈F∗

q2

χ(ζ ) · (ζ−1. f ),

is continuous and has as section the natural inclusion. Hence each isotypic component

H0(Σ1,O)χ is the quotient of a coadmissible module by a closed submodule, and is thus

coadmissible too.

Remark 7.2.4. Consider the de Rham sequence

0 −→ K −→ H0(Σ1,O) −→ H0(Σ1, �) −→ H1
dR(Σ1/K ) −→ 0.

It is exact because Σ1 is a Stein space (as is Σ0). One can show that the de Rham

cohomology on the right is the (algebraic) dual space of a finite number of irreducible

smooth representations of GL2(L)(0) (cf. Remark 7.1.2 for the notation)7. It follows from

[38, 3.2] that the category of coadmissible modules is closed under extensions. Therefore,

Theorem 7.2.1 implies that H0(Σ1, �) is a coadmissible D(G0, K )-module, and the same

is true for the isotypic components H0(Σ1, �)
χ .

7As far as we know, a proof of this has not been written up so far. It should be possible to do so by
using the work of Grosse-Klönne on Hyodo–Kato cohomology for such spaces as Σ1.
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Remark 7.2.5. Denote by Xnr
n and Xnr,◦

0 the fiber products Xn ×Spf(o) Spf(oK ) and

X◦n ×Spf(o) Spf(oK ), respectively. Making this base change is necessary later on to relate

Xnr
n to Σ̂0. Indeed, in the following we often consider certain sheaves on Σ̂0(n)cs as sheaves

on the special fiber Xnr
n,s of Xnr

n . This will in fact be one of the key features of the arguments

which will be employed in Proposition 7.3.1 and § 7.4.11 below. We elaborate here on this

relation.

According to our conventions set up in § 7.1.3, we have, by definition, Σ̂0(n) = Xnr,◦
n .

It therefore suffices to consider only points in Σ̂0(n)cs \ Σ̂0(n)s .
Let us consider the blow-up morphism prn+1,n : X

nr
n+1 → Xnr

n . This morphism induces

an isomorphism pr−1
n+1,n

(
Xnr,◦

n
) ∼
−→ Xnr,◦

n . The closure of Σ̂0(n)s = Xnr,◦
n,s in Σ̂0,s is the same

as the closure of pr−1
n+1,n

(
Xnr,◦

n,s
)

in Xnr
n+1,s , i.e., it is the strict transform of Xnr,◦

n,s .

In order to describe the situation locally, we let A = Spf(oK 〈x〉) ⊂ Xnr
n be the smooth

locus of an outermost component of Xnr
n . We consider the point in the special fiber where

x vanishes. Blowing up A in this point leads to a formal scheme A′ which is glued together

from Spf(oK 〈x, y〉/(xy−$)) and Spf(oK 〈x, z〉/(x −$ z)). These two formal schemes are

glued together along the open subsets where y and z, respectively, are invertible, according

to the relation yz = 1. Denote by k the residue field of K (it is an algebraic closure of

the residue field Fq of L). It is easy to see that the strict transform of the special fiber

As = Spec(k[x]) in A′ is the closed subscheme of A′ defined by the ideal ($, y), which is

Spec(oK 〈x, y〉/(xy−$)/(y,$)) = Spec(k[x]). Completing A′ along this closed subscheme

gives the formal scheme Ac
:= Spf(oK 〈x〉[[y]]/(xy−$)) (which is not a p-adic formal

scheme). The upshot is then that the open immersion A◦ := Spf(oK 〈x, 1
x 〉) ↪→ A factors

as follows: A◦ ↪→ Ac
→ A, and the morphism Ac

→ A corresponds on affine coordinate

rings to the ring homomorphism oK 〈x〉 → oK 〈x〉[[y]]/(xy−$). The induced morphism

on the special fibers of these formal schemes (modulo their largest ideals of definition) is

an isomorphism: Ac
s
∼
−→ As .

The induced morphism of rigid-analytic spaces Ac,rig
→ Arig corresponds to the

inclusion of the semi-open annulus {|$ | < |x | 6 1} into the disc {|x | 6 1}. Moreover,

the family of strict neighborhoods of A◦,rig = Spf
(
oK 〈x, 1

x 〉
)rig
= {|x | = 1} in the annulus

Ac,rig
' {|$ | < |x | 6 1} is cofinal in the family of strict neighborhoods of A◦,rig in

Arig
' {|x | 6 1}, because Ac,rig is itself a strict neighborhood of A◦,rig. We summarize

the local situation by the following diagram in which the upper horizontal arrows are

open immersions of rigid-analytic spaces, and where the vertical arrows are specialization

morphisms

A◦,rig //

��

Ac,rig //

��

Arig

��
A◦s = Spec(k[x, x−1

]) // Ac
s

' // As

(7.2.6)

From this local description we deduce the following. Firstly, the open immersion

Σ̂0(n) = Xnr,◦
n ↪→ Xnr

n factors as follows: Σ̂0(n) ↪→ Σ̂0(n)c → Xnr
n . Moreover, the morphism

induced by Σ̂0(n)c → Xnr
n on the special fibers of these formal schemes is an isomorphism:

Σ̂0(n)cs
∼
−→ Xnr

n,s .
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Let ]Σ̂0(n)cs [ be the tubular neighborhood of Σ̂0(n)cs in Σ0, i.e., ]Σ̂0(n)cs [= sp−1
Σ̂0

(
Σ̂0(n)cs

)
.

This rigid-analytic space is canonically isomorphic to the rigid-analytic space associated

to the formal scheme Σ̂0(n)c. And the morphism of formal schemes Σ̂0(n)c → Xnr
n

induces an open embedding of rigid-analytic spaces ]Σ̂0(n)cs [↪→ (Xnr
n )

rig
' P1,rig

K . Finally

the system of strict neighborhood ofΣ0(n) in ]Σ̂0(n)cs [ (orΣ0) is cofinal in the system of all

strict neighborhoods of Σ0(n) in (Xnr
n )

rig, because ]Σ̂0(n)cs [ is itself a strict neighborhood

of Σ0(n). This is why an overconvergent sheaf on (Σ̂0(n)s, Σ̂0(n)cs) is the same as an

overconvergent sheaf on (Xnr,◦
n,s ,X

nr
n,s). We summarize the situation by the following

diagram in which the upper horizontal arrows are open immersions of rigid-analytic

spaces, and where the vertical arrows are specialization morphisms

Σ0(n) //

��

]Σ̂0(n)cs [ //

��

(Xnr
n )

rig

��
Σ̂0(n)s // Σ̂0(n)cs

' // Xnr
n,s

(7.2.7)

7.3. The starting point: the affinoid Σ1(0)

The case when n = 0 is somewhat easier to deal with because Σ̂1(0)cs is smooth, since

it is a disjoint union of q − 1 copies of the curve in (7.1.4). Moreover, the morphism

f̂0,s : Σ̂1(0)s → Σ̂0(0)s is smooth too. It is because of these simplifications that we treat

this case beforehand. Let D†
Xnr

0 ,Q
be the sheaf of arithmetic differential operators on the

smooth formal scheme Xnr
0 .

Proposition 7.3.1. The space H0(Σ1(0),O)† is a finitely presented Dan(G(0)◦)nr-module.

Proof. Recall the sheaf F0 = (spΣ̂1
)∗v

†
0OΣ1 introduced in (7.1.7). This sheaf on Σ̂1(0)cs

depends only on Σ̂1(0)s which is a disjoint union of affine Deligne–Lusztig curves xyq
−

xq y = 1. By [18, § 2], F0 is an overconvergent F-isocrystal on the pair (Σ̂1,s(0), Σ̂1(0)cs),
where we use here the notation of [43]. It is overconvergent along Z1,0 = Σ̂1(0)cs \ Σ̂1(0)s .
Consider the diagram

Σ̂1(0)s //

f̂0,s
��

Σ̂1(0)cs //

f̂ c
0,s
��

Σ̂1

f̂
��

Σ̂0(0)s // Σ̂0(0)cs // Σ̂0

(7.3.2)

cf. (7.1.5). By [43, Theorem 4.1.4], the direct image ( f̂ c
0 )∗F0 is an overconvergent

F-isocrystal on the pair (Σ̂0(0)s, Σ̂0(0)cs). The preceding diagram (7.3.2) corresponds to

the diagram in [43, Theorem 4.1.1]. Note that Σ̂0(0)cs is isomorphic to the special fiber of

Xnr
0 , which is projective line over the residue field of oK (compare the discussion in Remark

7.2.5). We can thus consider ( f̂ c
0 )∗F0 as an overconvergent isocrystal on (Xnr,◦

0,s ,X
nr
0,s). In

particular, it carries the structure of a module over D†
Xnr

0 ,Q
.
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By [8, Theorem 4.3.5] or [28, Proposition 3.1], the D†
Xnr

0 ,Q
-module ( f̂ c

0 )∗F0 on Xnr
0,s , is

holonomic, and, in particular, coherent. By the main result of [23] (or by Theorem 4.3.3),

the space of global sections of this sheaf, namely

H0(Xnr
0,s, ( f̂ c

0 )∗F0
)
= H0(Σ1(0),O)†,

is a finitely presented H0(Xnr
0,s,D

†
Xnr

0 ,Q
)-module. Using Proposition 3.3.7 we see that it is

a finitely presented Dan(G(0)◦)nr
θ0

-module.

7.4. Extending the arguments to Σ1(n) for all n

In this section we prove Theorem 7.2.1 for all n. To simplify notation we occasionally write

D̃†
n,Q instead of D̃†

n,n,Q. We recall that the special fiber Σ̂0(n)cs of Σ̂0(n)c is canonically

isomorphic to the special fiber of Xnr
n , cf. Remark 7.2.5.

7.4.1. Three types of closed points. We want to show that ( f̂ c
n )∗Fn is a coherent

D̃†
n,Q-module on Xnr

n . Once we have this result at hand we can apply Proposition 4.3.1 to

deduce that

H0(Xnr
n,s, ( f̂ c

n )∗Fn) = H0(Σ1(n),O)†

is a coherent Dan(G(n)◦)θ0 -module and we are done. In order to show that ( f̂ c
n )∗Fn is a

coherent D̃†
n,Q-module, we distinguish the following types of closed points on Xnr

n,s :

(a) Points x which lie on the smooth locus of Xnr
n,s , but not in Xn(Fq).

(b) Points x which lie on the singular locus of Xnr
n,s .

(c) Points x which lie on the smooth locus of Xnr
n,s and in Xn(Fq). These are exactly

the smooth Fq -rational points of Xn , the set of which we denote by Xsm
n (Fq).

For any open subscheme U of Xn we let D(m)
U log denote the usual sheaf of logarithmic

arithmetic differential operators of level m on U as considered in [26, 33]. We write D (m)
U log

for its p-adic completion and D†
U log,Q for the union of the D (m)

U log,Q. We use the same

notations for an open formal subscheme U of Xn , that is, we write D(m)
U log for the usual

sheaf of logarithmic arithmetic differential operators of level m on U etc. Finally, we

denote the OXn -module given as the base change of D̃(m)
n,k along the morphism of ringed

spaces Xn ⊂ Xn by the same symbol D̃(m)
n,k , when no confusion is likely. It is a sheaf of

rings on Xn .

Proposition 7.4.2. Let U be an open formal subscheme of Xn and let E̊ be a D̃(m)
n,n |U -module

which is coherent as an OU -module. Then:

(i) E̊ is coherent over D̃(m)
n,n |U ;

(ii) the canonical homomorphism

E̊
'
−→ D̃ (m)

n,n |U ⊗D̃(m)
n,n |U

E̊

given by a 7→ 1⊗ a is an isomorphism.
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Proof. We follow the arguments of [6, Proposition 3.1.3]. We may assume that U is

affine and such that the ring D̃(m)
n,n (U ) := 0(U, D̃(m)

n,n ) is noetherian, cf. Proposition 3.2.1.

Since E̊ is coherent over OU , there is a surjection O⊕r
U → E̊ and hence a surjection

(D̃(m)
n,n |U )

⊕r
→ E̊ . Let N be its kernel. The subsheaf D̃(m)

n,n |U ⊂ D(m)
U log has the induced order

filtration Fi (D̃(m)
n,n |U ), i > 0 which is a filtration by coherent OU -submodules. Letting Ni

be the kernel of the morphism (Fi (D̃(m)
n,n |U ))

⊕r
→ E̊ , it follows that N has a filtration by

coherent OU -modules. Since D̃(m)
n,n (U ) is noetherian, there is a surjection (D̃(m)

n,n (U ))⊕s
→

0(U,N ). Since 0(U, .) commutes with inductive limits, one obtains from this a surjection

(D̃(m)
n,n |U )

⊕s
→ N . The D̃(m)

n,n |U -module E̊ has therefore a finite presentation. Since D̃(m)
n,n |U

is a sheaf of coherent rings [5, (3.1.1)], any module of finite presentation is coherent. This
shows (i).

The map in (ii) is injective, since the module structure on E̊ extends by continuity

from D̃(m)
n,n |U to D̃ (m)

n,n |U . We put ∂ := $ n∂x , where x is the standard coordinate on X0, so

that D̃(m)
n,n |U is generated over OU by ∂〈d〉 :=

q(m)d !

d! ∂
d for d > 0. In particular, Fi (D̃(m)

n,n |U ) =∑
d6i ad∂

〈d〉 with local sections ad of OU . Put ∂ ′ := ∂〈p
m
〉. Given an integer r < pm , one

has ∂〈r〉∂ ′〈q〉 = uq,r∂
〈pmq+r〉 where uq,r is a p-adic unit. This implies that any operator

P ∈ D̃ (m)
n,n |U can be written in the form P =

∑
k Bk∂

′k where Bk ∈ D̃(m)
n,n |U is an operator

of order < pm and Bk tends p-adically to zero for k →∞. Let e be a local section of E̊ .
Since E̊ is coherent over OU , the OU -submodule generated by the elements ∂ ′k .e for k > 0
is generated by finitely many of those elements. Thus, there is a number ` and sections
a0, . . . , a`−1 of OU and a relation(

∂ ′`−
∑
j<`

a j∂
′ j
)
.e = 0.

It follows as in the proof of [6, 3.1.3] that for any element Bk there are operators Rk ∈

D̃(m)
n,n |U of order < pm` and Qk ∈ D̃(m)

n,n |U such that

Bk∂
′k
= Qk

(
∂ ′`−

∑
j<`

a j∂
′ j
)
+ Rk

with Qk and Rk tending p-adically to zero if Bk tends p-adically to zero. It follows that

P ⊗ e = 1⊗ (
∑

k Rk).e in D̃ (m)
n,n |U ⊗D̃(m)

n,n |U
E̊ which proves the surjectivity in (ii).

Corollary 7.4.3. Let U be an open formal subscheme of Xn and let E̊ be coherent
OU -module. Put E := E̊ ⊗Q. Then:

(i) If E̊ is a D̃(m)
n,n |U -module for some m then the canonical homomorphism

E
'
−→ D̃ (m)

n,n,Q|U ⊗D̃(0)
n,n,Q|U

E

is an isomorphism and E is coherent over D̃ (m)
n,n,Q|U .

(ii) If E̊ is a D̃(m)
n,n |U -module for any m then the canonical homomorphism

E
'
−→ D̃†

n,n,Q|U ⊗D̃(0)
n,n,Q|U

E

is an isomorphism and E is coherent over D̃†
n,n,Q|U .
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Proof. Since D̃(m)
n,n and D̃(0)

n,n agree upon tensoring with Q, the isomorphism in claim (i)

follows from tensoring the isomorphism in part (ii) of Proposition 7.4.2 with Q. Taking

the limit over m gives the isomorphism in claim (ii). It remains to prove the assertions

about coherence. According to part (i) of Proposition 7.4.2, the module E̊ is coherent

over D̃(m)
n,n |U . Passing to an open subspace of U we may therefore assume that there is a

finite presentation (
D̃(m)

n,n |U
)⊕s
→
(
D̃(m)

n,n |U
)⊕r
→ E̊ → 0.

Tensoring with Q gives a presentation of E over D̃(0)
n,n,Q|U . Tensoring the latter with

D̃ (m)
n,n,Q|U or D̃†

n,n,Q|U and gives a finite presentation of E over D̃ (m)
n,n,Q|U or D̃†

n,n,Q|U . Since

the latter sheaves are sheaves of coherent rings, any module of finite presentation is

coherent. This completes the proof.

Let R ⊂ o be any system of representatives for o/$o and put R∞ = R∪ {∞}. Let

1 6 ν 6 n. Each vector a ∈ R∞×Rν−1 determines an outermost component of Xn and

each an ∈ R determines a smooth Fq -rational point in this component. Proceeding as in

the case o = Zp [33, 4.3] we may construct the analogous open subscheme X(ν)a of X◦n ,

endowed with a local coordinate x (ν−1)
a , and the smooth open subscheme D(n)a,an in the

outermost component of Xn belonging to a, endowed with a local coordinate x (n)a,an . The

latter component intersects the remaining components in a unique singular point given

locally by an equation x (ν−1)
a z(ν)a = p where z(ν)a is a local coordinate on the component.

The open sets X(ν)a
[ 1

x (ν−1)
a

]
together with the D(n)a,an form an open covering of the smooth

locus of Xn .

Lemma 7.4.4. Suppose U is an open subspace of Xn which is smooth. The inclusion

D(m)
U log ⊂ D(m)

U is an equality.

Proof. The logarithmic tangent sheaf TXlog
n

is generated on X(ν)a freely by x (ν−1)
a ∂x (ν−1)

a
. It

therefore coincides with the usual tangent sheaf on X(ν)a [
1

x (ν−1)
a
]. Similarly on D(n)a,an . Hence

TU log = TU which implies the claim.

Lemma 7.4.5. One has D̃(m)
n,k ⊂ D(m)

Xlog
n

for any k > n. For k = n this inclusion becomes an

equality over each D(n)a,an .

Proof. By definition one has T̃n,k ⊆ TXlog
n

and this implies D̃(m)
n,k ⊆ D(m)

Xlog
n

. Now suppose

k = n and U = D(n)a,an . Since U is smooth, D(m)
U log = D(m)

U is generated over OU by
q(m)d !

d! ∂
d
x (n)a,an

whereas the subsheaf D̃(m)
n,n |U is generated over OU by

q(m)d !

d! $
dn∂d

x where x is the standard

coordinate on X0. But according to equation (24) in the proof of [33, Proposition 5.2(a)],

we have ∂x (n)a,an
= $ n∂x . This implies the claim.
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7.4.6. Coherence at points of type (a). By definition of the sheaf ( f̂ c
n )∗Fn we

have for its restriction to the open subset Σ̂0(n)s ⊂ Xnr
n,s that((

f̂ c
n
)
∗
Fn
)∣∣
Σ̂0(n)

= (spΣ̂0(n))∗( fn)∗OΣ1(n)

where fn is the restriction of f to Σ1(n) = f −1(Σ0(n)). The points of type (a) lie in the

smooth locus U := Σ̂0(n)sm of Σ̂0(n). Let V := f̂ −1
n (U ). The morphism

f̂n : V −→ U

induced by f̂n is smooth and proper. Under these assumptions, the coherent OU,Q-module

E := Q⊗ ( f̂n)∗OV is a convergent isocrystal over (the closed fiber of) U [29, 3.7].

According to [6, 3.1.2], there exists, for every m, a D (m)
U -module E̊ which is coherent

over OU together with an D (m)
U,Q-linear isomorphism Q⊗ E̊ ' E . Via the natural inclusion

D̃ (m)
n,n |U ⊆ D (m)

U , cf. Lemmas 7.4.4 and 7.4.5, we may endow E̊ with a D̃ (m)
n,n -module

structure and apply part (ii) of Corollary 7.4.3. Thus, E is a coherent D̃†
n,n,Q-module.

It follows that
((

f̂ c
n
)
∗
Fn
)∣∣

U is a coherent D̃†
n,n,Q-module, too. This proves our claim for

points of type (a).

7.4.7. Coherence at points of type (b). We have((
f̂ c
n
)
∗
Fn
)∣∣
Σ̂0(n)

= (spΣ̂0(n))∗( fn)∗OΣ1(n)

as explained above. Since points of type (b) are singular, we make use of logarithmic

structures. Let k be the residue field of oK equipped with the trivial log structure. The

morphism

f̂n,s : Σ̂1(n)s −→ Σ̂0(n)s

is a finite flat morphism of degree |F×q |. We equip source and target with their fine log

structures coming from the singular loci [25, 3.7(2)]. In particular, source and target are

log smooth over k and f̂n,s is a log morphism. The target Σ̂0(n)s is covered by (the base

change to k of) the reductions of the X(ν)a for 1 6 ν 6 n and a ∈ R∞×Rν−1. On the

reduction of X(ν)a we have local coordinates x (ν−1)
a and z(ν)a and a unique double point at

x (ν−1)
a z(ν)a = 0. The log structure is therefore given by the monoid formed by the powers

(x (ν−1)
a )n1(z(ν)a )n2 with ni ∈ N. We now use the notation introduced in the discussion

around (7.1.4). So let [x : y] be projective coordinates on the x (ν−1)
a -component such

that x (ν−1)
a =

x
y . Writing s = z

y it follows from this discussion that

C ∩ f̂ −1
n,s ({y 6= 0}) =

{
sq+1
= x (ν−1)

a
(
1−

(
x (ν−1)

a
)q−1)}

.

A similar description holds on the z(ν)a -component. Hence there is an étale chart for f̂n,s

over the reduction of X(ν)a in which the corresponding map of monoids (or rather of their

group completions) is given by multiplication with (q + 1) on Z⊕2, cf. [16, p. 477]. The

latter map is therefore injective and the order of its cokernel is prime to p. According to

[25, 3.5] and [25, 4.1(1)iv], the morphism f̂n,s is therefore log smooth and integral.
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In the following we make use of the work of Shiho on the logarithmic version of the

convergent topos in characteristic p [30]. To make the comparison easier for the reader,

we adapt some notation. Let V := oK and equip Spf V with its log structure coming from

the closed point of SpecV . Let X i be Σ̂i (n)s for i = 0, 1. Following [40, 2.1.3] we denote

by (X i/V )log
conv,Zar the log convergent site of X i over Spf V with respect to the Zariski

topology and by KX1/V the isocrystal

T 7→ 0(T,OT )⊗Q
on (X1/V )log

conv,Zar. Since X0 is log smooth over k, the morphism f̂n,s has even log smooth

parameter in the sense of [39, 3.4]. We may therefore apply [39, 4.10] to f̂n,s and

KX1/V . Hence, for each number q > 0, there is a unique isocrystal Fq on (X0/V )log
conv,Zar

whose value on the enlargement Σ̂0(n) is given by the relative log analytic cohomology

Rq( fs)X1/Σ̂0(n),an∗ of KX1/V (as defined in [39, 4.1]). By definition, the latter analytic

cohomology is computed on the level of rigid-analytic generic fibers via the log de Rham

complex. Since the rigid-analytic morphism f is étale, one finds F0(Σ̂0(n)) = f∗OΣ1(n)
and Fq(Σ̂0(n)) = 0 for q > 0.

The isocrystal F0 admits an interpretation via tubular neighborhoods, as in the

non-logarithmic setting [4, 2.2.5]. In particular, F0 induces a convergent logarithmic

connection ∇ on f∗OΣ1(n) and E := (spΣ̂0(n))∗ f∗OΣ1(n), cf. [39, 2.2.7] and [39, p. 67]. We

claim that the actions of the logarithmic derivations induced by ∇ extend to an action

of the sheaf of logarithmic arithmetic differential operators D†
Σ̂

log
0 ,Q

on E . Since sections

of D†
Σ̂

log
0 ,Q

locally admit convergent power series expansions [26, 2.3.2.C.], it suffices to

verify the appropriate convergence condition for the Taylor series of ∇ [6, (3.0.1.1)]. But

this convergence condition follows from the fibration lemma [39, 2.31] applied to the

projection p1, as in the non-logarithmic setting [4, 2.2.13].

The D†
Σ̂

log
0 ,Q

-module E is coherent over O
Σ̂0(n),Q and therefore coherent over D†

Σ̂
log
0 ,Q

, cf.

[10, 3.1]. It follows from the proof of [10] that there is for every m, a D (m)

Σ̂
log
0

-module E̊ which

is coherent over O
Σ̂0(n)

together with an D (m)

Σ̂
log
0 ,Q

-linear isomorphism Q⊗ E̊ ' E . Via the

natural inclusion D̃ (m)
n,n |Σ̂0

⊆ D (m)

Σ̂
log
0

, cf. Lemma 7.4.5, we may endow E̊ with a D̃ (m)
n,n -module

structure and apply part (ii) of Corollary 7.4.3. Thus, E is a coherent D̃†
n,n,Q-module.

This proves our claim for points of type (b).

7.4.8. An alternative argument valid when the ramification index is small.

Suppose the ramification index of L/Qp is 6 p− 1. The fact that ( f̂ c
n )∗Fn is a coherent

D̃†
n,n,Q-module at points of type (a) and (b) can then be seen explicitly as follows. The

open subset Σ̂0(n) is covered by open formal subschemes U equal to (the base change to

oK of) the formal completions X̂(ν)a for 1 6 ν 6 n and a ∈ R∞×Rν−1. Over U the sheaf

D̃(m)
n,n is generated by

q(m)d !

d! $
dn∂d

x where x is the standard coordinate on X0. According to

[5, 2.4.3] any element P ∈ D̃†
n,n has therefore a unique expression over U as infinite series

in the form P =
∑

d>0 ad($
n∂x )

d/d! where the coefficients ad ∈ O(U ) have the property
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that there exist real constants c > 0, η < 1 (depending on P) with ‖ad‖ < cηd for all

d. Here ‖.‖ denotes some Banach norm on the affinoid algebra A := O(U )Q. We denote

by ‖.‖ also a Banach norm on the finite A-module B := E (U ). We write A := O(U ) and

B := E̊ (U ). Making U smaller if necessary we may assume that B is a finite free A-module

of rank t = |F×p2 |. More precisely, there is a unit 5 ∈ A× such that B = A[X ]/1− X t5

[42]. The powers 5 j for j = 0, . . . , t − 1 induce a decomposition

B '
t−1⊕
j=0

A( j)

as A-modules where A( j) equals A. Similarly for the A-module B. Since the morphism

f is finite étale, we have the Gauss–Manin connection on the étale A-algebra B. A

short calculation along the lines of [18, 2.(I)] shows that it respects the direct sum

decomposition B '
⊕

j A( j) and is given on the jth summand as

f 7→ d( f )− j t−1 f d log(5)

for f ∈ A. Here, d : A→ �A/K is the canonical derivation of the K -algebra A and

d log(5) := d(5)/5. The induced action of a derivation ∂ ∈ DerK (A) on the jth factor

A( j) is therefore given by

f 7→ ∂. f := ∂( f )− j t−1 f ∂(5)/5. (7.4.9)

To obtain from this an action of an infinite sum like P on B, it suffices to verify for any

f ∈ B and any η < 1 the convergence property∥∥∥∥( ($ n∂x )
d

d!

)
. f
∥∥∥∥ηd
→ 0 (7.4.10)

for d →∞ [6, 3.1.1]. The GL2(o)-equivariance of the situation allows us to assume that

the affinoid Sp(A) = sp−1(U ) ⊂ P1,an
K equals{

z ∈ P1,an
K : |z| 6 1

}
−

⋃
i=0,...,q−1

(B1(i)∪ B1/q(qi))− B1/q(0),

where Bδ(z0) is the open ball of radius δ centered at z0 and where the affine coordinate z on

P1,an
K is induced by x (ν−1)

a [41, p. 649]. According to the Mittag–Leffler decomposition [17,

Proposition 2.2.6], we may assume that f is a holomorphic function on the complement

in P1,an
K of one of the above open discs. We may assume that the radius of the open

disc is 1 (otherwise we work with the coordinate z = z(ν)a ) and may thus write f (z) =∑
n60 an(z− z0)

n with an ∈ K such that limn→∞ |a−n| = 0. Moreover, ‖ f ‖ = maxn60 |an|

and so ‖∂z( f )‖ 6 ‖ f ‖. According to the proof of [42, Corollary 6] we may assume that

5 is a polynomial in z with coefficients in oK and so ‖∂z(5)‖ 6 ‖5‖. All in all, this

implies ‖∂z . f ‖ 6 ‖ f ‖ according to (7.4.9). On the other hand, by the equation (5.1.3) in

the proof of [33, Proposition 5.1.2], we have ∂z := ∂x (ν−1)
a
= $ ν−1∂x and therefore $ n∂x =

a$∂z with a p-adic integer a. The convergence property (7.4.10) follows now from the

fact |$
d
|

d! η
d
→ 0. The latter fact holds since |$ |η < p−

1
p−1 (it is here where we use the

assumption on the ramification index of L).
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7.4.11. Coherence at points of type (c). We recall that the special fiber of Σ̂0(n)c

is canonically isomorphic to the special fiber of Xnr
n , cf. the discussion in Remark 7.2.5.

Let Σ̂0,s(v) ⊂ Σ̂0(n)cs ' Xnr
n,s be one of the ‘outermost’ irreducible components of Xn,s .

These are indexed by the vertexes v of T which have distance n to v0. Let Σ̂0,s(v)
◦

be the smooth locus of Σ̂0,s(v). Then Σ̂0,s(v)
◦ is isomorphic to an affine line over the

residue field of oK . Let Σ̂0,s(v)
◦◦
⊂ Σ̂0,s(v)

◦ be the complement of the Fq -rational points
of Σ̂0,s(v)

◦. Put
Σ1(v) = f −1(sp−1

Σ̂0

(
Σ̂0,s(v)

◦◦
))
.

The étale covering
f |Σ1(v) : Σ1(v) −→ sp−1

Σ̂0

(
Σ̂0,s(v)

◦◦
)

is isomorphic to the covering Σ1(0)→ Σ0(0). Let Σ̂1,s(v) ⊂ Σ̂1,s be the image of Σ1(v)

under the specialization map. Denote here by the superscript ‘c’ the topological closure8.
Note that Σ̂0,s(v)

c is equal to
[
Σ̂0,s(v)

◦◦
]c

and is isomorphic to a projective line over the
residue field of oK . Then we have a commutative diagram

Σ̂1,s(v) //

f̂ (v)s
��

Σ̂1,s(v)
c //

f̂ (v)cs
��

Σ̂1

f̂
��

Σ̂0,s(v)
◦◦ // Σ̂0,s(v)

c // Σ̂0

(7.4.12)

where the vertical morphisms on the left and in the middle are those induced by f̂ . This
diagram is analogous to the diagram (7.3.2). By [43, Theorem 4.1.4], the sheaf ( f̂ (v)c)∗Fn
is an overconvergent F-isocrystal on the pair(

Σ̂0,s(v)
◦◦, Σ̂0,s(v)

c).
By [8, Theorem 4.3.5] or [28, Proposition 3.1], the D†

Σ̂0,s (v)c,Q
-module ( f̂ (v)c)∗Fn is

holonomic, and, in particular, coherent. Here, D†
Σ̂0,s (v)c,Q

is the usual sheaf of arithmetic

differential operators on Σ̂0,s(v)
c.

We now use the fact that the sheaf D̃†
n,n,Q on Xn , when restricted to Σ̂0,s(v) ⊂

Σ̂0(n)cs ' Xnr
n,s is isomorphic to D†

Σ̂0,s (v),Q
, cf. Lemmas 7.4.4 and 7.4.5. Therefore,

( f̂ (v)c)∗(Fn)|Σ̂0,s (v)c
is a coherent module over D̃†

n,n,Q|Σ̂0,s (v)c
. In particular, if x is a

smooth Fq -rational point of Xn , which necessarily lies on Σ̂0,s(v) for some vertex v which

has distance n to v0, the sheaf ( f̂ c
n )∗(Fn) is coherent over D̃†

n,n,Q at x . This proves our

claim for points of type (c).

7.5. G(n− 1)◦-analytic vectors in the dual of H0(Σ1(n),O)†

We abbreviate

R := D(G0, K ), Rn := D(G◦(n),G0)
nr and En := H0(Σ1(n),O)†.

The rigid-analytic space Σ1 is quasi-Stein with defining affinoid covering given by the

Σ1(n). This implies that the restriction map En → En−1 has dense image. Hence, the

8Earlier, when we considered the formal scheme Σ̂0(n), we denoted by Σ̂0(n)c the completion along the
topological closure of Σ̂0(n) in Σ̂0. The special fiber of Σ̂0(n)c is simply the closure of the special fiber
of Σ̂0(n) in Σ̂0,s . In this sense the notation here is consistent with the earlier notation.
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induced homomorphism of finitely generated Rn−1-modules

hn : Rn−1⊗Rn En −→ En−1

has dense image. On the other hand, this image is closed by Proposition 5.1.1, and so

hn is surjective. We now show that hn is injective. To start with, the restriction map

En → En−1 is injective. Since the natural ring homomorphism R→ Rn is flat, the map

Rn−1⊗R En −→ Rn−1⊗R En−1

is injective. Hence, the injectivity of hn follows if we can show that, for each n, the natural

map

wn : Rn ⊗R En
'
−→ En

is a bijection. Since wn is obviously surjective, we prove its injectivity in the following.

Since the group Gn+1 acts G(n)◦-analytically on the strong dual (En)
′

b, we may dualize

the isomorphism in [14, 3.4.5] and obtain the isomorphism

Dan(G(n)◦)⊗̂D(Gn+1)En
'
−→ En .

The latter factors through the natural surjection

ŵn : Rn⊗̂R En → En

which must then be an isomorphism, too. It therefore remains to see that the natural

map

ι : Rn ⊗R En −→ Rn⊗̂R En

is injective (and hence bijective). Fix a set of generators e1, . . . , es for the Rn-module En .

Consider the topological Rn-module M := Rn ⊗K ,π En . Its underlying topological space

is Hausdorff [36, 17.5] and has a completion which is of compact type [14, 1.1.32]. Let

N be its closed Rn-submodule generated by the finitely many elements 1⊗ δge j − δg ⊗ e j
where g runs through a finite set of topological generators for the group G0. There

is a natural quotient map q : M/N → Rn ⊗R En . On the other hand, the natural map

ι′ : M/N → M̂/N of M/N into its Hausdorff completion is injective. Arguing as in [35,

3.4], the completion M̂/N is the same as Rn⊗̂R En . We obtain an injective map ι′ : M/N →
Rn⊗̂R En which is seen to equal ι ◦ q. Hence ι must be injective, too.
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11. A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ.

Math. Inst. Hautes Études Sci. 82 (1995), 5–96. (1996).
12. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.

of Math. (2) 103(1) (1976), 103–161.
13. V. G. Drinfel’d, Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen.
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